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ABSTRACT The complete genome sequence of the gammaproteobacterial isolate
Serratia quinivorans 124R consists of 5 Mb over 2 scaffolds and a G�C content of
52.85%. Genes relating to aromatic metabolism reflect its isolation on organosolv
lignin as a sole carbon source under anoxic conditions as well as the potential for
lignin biorefinery applications.

Lignin is an abundant, natural resource for aromatic chemical production; yet, only
1% to 2% of lignin produced annually in the paper and pulp industry is processed

(1). Bacterial anoxic depolymerization techniques need further development to valorize
lignin, but exact mechanisms remain largely undefined (2–4). Known enzymes include
glutathione S-transferases (GSTs) in the �-etherase system (5–8); however, isolation and
characterization of anaerobic lignin-degrading bacteria will help advance understand-
ing of and discover new mechanisms.

In this study, temperate forest soil was used to inoculate minimal medium (9)
containing organosolv lignin as the sole carbon source under anoxic conditions and
was transferred onto fresh medium every 4 to 9 weeks for 465 days. Consortia were
diluted to 1 to 5 cells/ml onto a 0.001% five-carbon mixture (10) incubated anaerobi-
cally in the dark at 25°C for 6 weeks and then were streaked onto R2A agar for colony
isolation. To screen for lignin depolymerization capabilities, isolates were grown an-
oxically on R2A plates containing lignin-mimicking dyes, malachite green and Congo
red (11). Isolate 124R was selected for genome sequencing due to the formation of
clearing zones for both dyes.

Genomic DNA was extracted using the Qiagen Genomic-tip protocol for bacteria. A
�10-kbp PacBio SMRTbell library was constructed and sequenced on the PacBio RS II
platform (12). This generated 296,135 filtered subreads, totaling 591,980,396 bp. Raw
reads were assembled using Hierarchical Genome Assembly Process 3 (HGAP3; SMRT
Analysis v2.3.0.p5) (13). The final draft assembly contained 2 contigs in 2 scaffolds,
covering a total of 5,025,603 bp, with an N/L50 value of 1/4,986,851, a G�C content of
52.85%, and an average sequence coverage of 86.8�. Gene prediction and functional
annotation were performed using the Department of Energy Joint Genome Institute
(DOE JGI) annotation pipeline (14), available through the Integrated Microbial Genomes
data management system (15, 16). 124R contains 4,636 predicted protein-coding
sequences, of which 86.06% were assigned a function, as well as 85 tRNAs and 7 rRNA
operons. Putative aromatic metabolic pathways were analyzed using the MetaCyc and
KEGG databases via the Integrated Microbial Genomes and Microbiomes (IMG/M) database
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(16). Seventy-six enzymes were identified (encompassing 41 functions under KEGG map
01220), including complete metabolism of benzoate and 4-hydroxyphenylacetate. Genes
for anaerobic degradation of gallate, phenylacetate, and 4-coumarate were found
within MetaCyc. Additionally, two homologues to the Nu-class GSTs were identified via
IMG/M NCBI BLAST (16).

The 16S rRNA gene of 124R was queried using NCBI BLASTn (17) and shared 99%
sequence identity with Serratia quinivorans strain 4364 and Serratia proteamaculans
DSM 4543, which are in the class Gammaproteobacteria and family Yersiniaceae. How-
ever, 124R shared �89% average nucleotide identity (18) and �95% two-way average
amino acid identity (19) with Serratia quinivorans (strains NCTC13194, NCTC13189, and
NCTC11544) and Serratia proteamaculans (strains 568, MFPA44A14, and NCTC10861).
DNA-DNA hybridization (DDH) calculations (20) resulted with a �34% DDH estimate
across comparisons, further supporting this species demarcation (21). These findings
suggest that 124R is a distinct Serratia species with both lignin depolymerization and
catabolic potential for lignin biorefinery applications.

Data availability. This whole-genome shotgun project has been deposited in
GenBank under accession no. NZ_SHMO00000000 (SRA accession no. SRX5216996). The
version described in this paper is the first version, NZ_SHMO01000000.
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