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ABSTRACT

Pedagogical content knowledge (PCK) is specialized knowledge
necessary to teach a subject. PCK integrates subject-matter
content knowledge with knowledge of students and of teaching
strategies so that teachers can perform the daily tasks of
teaching. Studies in mathematics education have found
correlations between measures of PCK and student learning.
Finding robust, scalable ways for developing and measuring
computer science (CS) teachers’ PCK is particularly important in
CS education in the United States, given the lack of formal CS
teacher preparation programs and certifications. However,
measuring pedagogical content knowledge is a challenge for all
subject areas. It can be difficult to write assessment items that
elicit the different aspects of PCK and there are often multiple
appropriate pedagogical choices in any given teaching scenario.
In this paper, we describe a framework and pilot data from a
questionnaire intended to elicit PCK from teachers of high
school introductory CS courses and we propose future directions
for this work.
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1 INTRODUCTION

Shulman introduced the idea of pedagogical content knowledge
(PCK) as a special category of knowledge for teaching [21].
Whereas subject-matter content knowledge is necessary for
anyone who seeks to master a subject, PCK is only necessary for
those who are teaching it. Aspects of PCK include knowledge of
how students think about concepts, knowledge of what makes
learning concepts difficult, and knowledge of how to use
different  content representations to make
understandable for others [21].

This paper describes an effort to develop a framework for

concepts

understanding computer science teaching knowledge, drawing
from similar efforts in mathematics education, and to develop
items that will elicit this knowledge from computer science
teachers. The results reported here are a subset of the data
collected for a larger project to document knowledge change in
novice computer science teachers.



1.1 Pedagogical Content Knowledge in
Mathematics Education

There is a large body of work in mathematics education to refine
the concept of PCK and develop measures for it. This project
aimed to adapt those methods into a computer science education
context. The Learning Mathematics for Teaching Project [1]
elaborated and refined Shulman’s concept of PCK in
mathematics by analyzing the work of mathematics teachers and
identifying how mathematical knowledge is used. This paper
focuses on four of these categories:

1. Common content knowledge (CCK): the mathematical
knowledge and skill that is common across disciplines that
use mathematics, such as performing calculations or
otherwise solving mathematics problems.

2. Specialized content knowledge (SCK): the mathematical
knowledge and skill unique to teaching, such as evaluating
whether a student’s non-standard approach to a problem is
sufficiently general.

3. Knowledge of content and students (KCS): knowledge that
combines knowing about students and knowing about
mathematics, such as knowing what students will find
motivating or confusing.

4. Knowledge of content and teaching (KCT): knowledge that
combines knowing about teaching and knowing about
mathematics, such as understanding how to sequence topics
or choose representations for instruction.

Hill and colleagues [8] then used this framework to develop
assessments of Mathematics Knowledge for Teaching (MKT).
The MKT focuses on teachers’ knowledge of content (both
common and specialized) and knowledge of students and
content. Teachers’ performance on these assessments was found
to predict student learning gains in first and third grades, after
controlling for students’ absence rates and demographic
characteristics, classroom characteristics, and
professional backgrounds [9].

teachers’

1.2 Pedagogical Content Knowledge in
Computer Science Education

The concept of PCK has recently been applied to CS education
research. For example, in a study of experienced computing
teachers learning to teach a new programming paradigm,
Liberman et al. [12] explored the connection between CS PCK
and content knowledge. They found teachers entered a state of
regressed expertise where they displayed elements of both novice
teaching and expert teaching. Buchholz et al. [4] provided
anecdotal evidence that pre-service CS teachers progress
through stages of complexity in their PCK when developing
teaching modules. Baxter’s [2] case study of two experienced CS
teachers, one formally trained and the other self-taught,
demonstrated how PCK could vary across teachers with similar
levels of expertise and how PCK was enacted differently in their
classrooms. Lastly, the KUI research project [3] created a

framework of CS PCK that focuses on both content knowledge
and the processes of teaching.

CS education researchers have employed a variety of
methods to study PCK. For example, several scholars used the
CoRe (Content Representation) instrument to elicit educators’
ideas about teaching CS [4,7,13,18]. Interviews have been used to
understand instructional strategies, the impact of lessons on
teacher knowledge development, and how teachers judge the
difficulty of topics for their students [2,11]. Ohrndorf and
Schubert [15,16] developed an assessment that asked teachers to
explain possible student responses and misconceptions. Saeli et
al. [19] employed a document analysis approach to analyze the
PCK information contained in CS textbooks. Doukakis and
colleagues [6] developed an assessment for in-service CS
teachers based on the Technological Pedagogical and Content
Knowledge (TPACK) framework ' that included two items
targeting PCK [14]. In another paper, we described the
development of think-aloud tasks we created to drive discussion
about teachers’ PCK [10]. While scholars have employed a
variety of methods to study and define PCK in CS, the existing
body of research does not provide strong empirical evidence
linking specific pedagogical practices to student learning
outcomes [17]. Furthermore, there has yet to be a validated
assessment of CS PCK that can be used to evaluate teachers’
preparedness to teach an introductory CS course.

This lack of validated assessments of CS PCK presents a
challenge for evaluating the numerous efforts around the United
States to train more K-12 computer science teachers, especially
given the lack of formal CS teacher preparation and certification
programs [5]. How can we evaluate the PCK content of such
professional learning programs? How can we tell when a teacher
is equipped to teach computer science? A validated CS PCK
assessment could help us address these questions and better
gauge the community’s efforts at increasing the CS teacher
workforce.

2 DEVELOPING AN ASSESSMENT OF CSPCK:
FRAMEWORK AND CONTENT

Developing measures of PCK that can be used to evaluate
individual teachers is a challenging proposition—even the
Mathematics Knowledge for Teaching assessments are intended
only for assessing groups of teachers for research purposes [20].
In conducting this preliminary foray into creating such an
assessment, we were inspired and guided by the Mathematical
Work of Teaching framework [20]. Selling and colleagues [20]
identified four areas of difficulty for PCK assessment developers
and created a framework for navigating them. The four areas of
difficulty are:

1. Developing items that measure SCK instead of exclusively
measuring CCK,

' TPACK is another extension of Shulman’s categories of teacher knowledge that
incorporates teacher knowledge of technology and how to teach with technology.



2. Developing items that measure SCK without touching on
pedagogical decision-making,

3. Identifying the work of teaching that draws on teachers’ SCK,
and

4. Understanding how SCK might be used across multiple grade
bands.

Selling et al’s Mathematical Work of Teaching (MWT)
framework can be used to construct measures of teachers’
subject-matter knowledge, especially specialized content
knowledge. The MWT framework is organized around three
mathematical objects: explanations (including justifications and
reasoning), mathematical structure, and representations. Each
object is aligned to a set of actions (e.g., comparing explanations,
critiquing explanations, or writing explanations). Assessment
developers can then write prompts for the different actions. We
follow a similar structure for our CSPCK assessment framework,
though we also deviate from it in important ways. In adapting
the MWT framework for CS, we consulted and received feedback
from two experts in computer science pedagogy before arriving
at our final constructs and teaching actions.

Our framework is organized around two areas of teacher
knowledge: 1)  knowledge of explanations and
representations and 2) knowledge of suboptimal solutions,
bugs, and misconceptions. We combine explanations and
representations, which are separate mathematical objects in the
MWT framework, into one category because explanations often
include one or more representations. The actions associated with
knowledge of explanations and representations include
developing, delivering, and critiquing explanations for a given
CS concept. Items aligned to this first area were expected to elicit
more responses related to CCK and SCK, but responses could
also touch on KCS or KCT. The second area in our framework,
knowledge of suboptimal solutions, bugs, and misconceptions, is
related to the mathematical structure area in the MWT
framework, in that assessment items may ask teachers to analyze
the structure of student work. However, we chose to broaden the
construct to increase the likelihood of capturing elements of KCS
and KCT—the MWT framework is largely focused on eliciting
SCK. The actions associated with this second area include
predicting student errors and evaluating student work. Items
aligned to this second area were expected to elicit more
responses related to KCS, but would likely also invoke CCK,
SCK, and possibly KCT.

2.1 Item Development

We developed a 9-item preliminary assessment divided into
three sections, each covering a different content area that is
fundamental to introductory computer science courses:
algorithms, variables and assignment, and control structures.
Each question was presented as a brief teaching scenario that
required the respondent to engage in a real-world teaching task.
All questions were open-ended. An experienced high school
computer science teacher reviewed the draft questions for
interpretability. The first question in each section asked
respondents to identify what was most important for students to

understand about the topic during an introductory lesson. The
inclusion of this question was inspired by the CoRe instrument
[13]. Then each section contained two additional questions: one
which targeted knowledge of explanations and representations
and one which targeted suboptimal solutions, bugs, and
misconceptions. Table 1 describes the prompts.

Table 1: Alignment of Questions to Areas of Teacher
Knowledge

#  Target

Algorithms

2 Suboptimal
solutions, bugs,
misconceptions

Description

Given a student-written algorithm
for making a sandwich, describe how
to highlight important ideas about
algorithms while following the
directions to make a real sandwich.
Discuss the difficulties or limitations
of the sandwich activity for
introducing algorithms to
introductory CS students.
Variables and Assignment
2 Explanations / Decide if “A variable in
representations ~ programming is a name that refers to
information the program can use
later” is accurate. If not, explain what
is misleading and how to improve
the definition.
Answer a homework question about
variables and assignment, predict
students’ incorrect responses on the
question, and explain why students
make those errors (see Appendix).

3  Explanations /
representations

3  Suboptimal
solutions, bugs,
misconceptions

Control Structures

2 Suboptimal
solutions, bugs,
misconceptions

Diagnose a student’s level of
understanding of control structures
based on a code segment she wrote
for an assignment. The code segment
contains many repeated lines of code
and no loops.

Describe feedback that would
improve the student’s understanding
of control structures.

3  Explanations /
representations

3 RESEARCH METHOD

3.1 Participants

The results reported are from 21 high school computer science
teachers. Nine were teaching a pre-AP introductory computer
science course using a block-based programming language; 12
were teaching Advanced Placement Computer Science A in Java.
Four teachers had degrees in computer science. All were
participating in an in-service professional learning program in
which industry professionals co-teach with high school teachers
to launch computer science programs at their schools. At
baseline, participants averaged 1.14 years with the program, 1.5
years teaching CS, and 10.3 years teaching overall.



3.2 Procedure

3.2.1 Data collection. Participants completed the online CS PCK
assessment at the beginning and end of the school year as part of
a larger survey. Only teachers who completed both pre-test and
the post-test are included in this analysis. When questions
included code segments, the pre-AP course teachers were shown
Snap! blocks while the AP CS A teachers were shown Java code.
Participants were instructed to take no more than 30 minutes to
complete all nine questions.

3.2.2 Coding. Participants’ responses to the questions were
coded to determine if the items were eliciting the types of
teacher knowledge expected. The codes were based on Ball’s
domains of mathematical knowledge [1]. A single response could
receive multiple codes. Specialized and common content
knowledge were condensed into one category, content
knowledge (CK), due to difficulty distinguishing between
specialized and common content knowledge in responses.
Responses that gave vague references to content were not coded
as CK (i.e., “It is important for students to learn what is an
algorithm”). The KCT and KCS codes were applied using Ball’s
descriptions (i.e., “Variable is simply a holding place. I refer to it
as a bucket and use visuals to demonstrate” was coded KCT;
“Students don’t have much trouble generating if-then
statements, but they don’t often think of ways to use other
varieties of conditional statements, loops, and nested loops” was
coded KCS). KCT and KCS codes were not applied to more
general knowledge of pedagogy or student learning unless the
response explained how the concept applied to computer science
(i.e., “Do a lot of examples. Do a few problems together”). The
third question about variables was not coded, as all answers
responsive to the prompt would have been coded KCS.

Raters first discussed the codes and coded a sample of 30 pre-
test responses for the variables questions to calibrate”. If there
was inter-rater disagreement, researchers discussed and came to
consensus on the appropriate code or codes to assign. Then two
raters coded the full data set, re-coding the initial 30 responses
used for calibration. Approximately 50 responses were coded by
both raters to check for inter-rater reliability. The average
Cohen’s kappa for the algorithms section was 0.58. The average
Cohen’s kappa for the variables and control structures sections
was 0.76 and 0.78, respectively. When there was inter-rater
disagreement, the lead rater made a final determination on the
appropriate code to assign.

4 RESULTS

4.1 Types of Teacher Knowledge Elicited

An analysis of the codes assigned to teacher’s responses revealed

that the prompts did elicit different types of teacher knowledge.
4.1.1 What’s important to learn in this lesson? The first

question in section, which asked teachers to describe what was

*The data reported in this paper represent a subset of all data collected for the
project. Rater calibration was conducted on the larger data set.

most important about the topic for an introductory lesson,
largely elicited CK across all three topic areas—nearly all 21
teachers in the sample provided a response that was coded as
CK. There was little change from pre-test to post-test (see Fig. 1).
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Figure 1: Teachers mainly demonstrated CK when
responding to questions about what was important for
students to learn about a topic in an introductory lesson.
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Figure 2: Teachers demonstrated some growth from pre-
test to post-test on knowledge of explanations and
representations.



4.1.2 Teacher knowledge of explanations and representations.
There is a different pattern of responses for each question in this
area, probably because the three questions used qualitatively
different teaching scenarios. The algorithms and control
structures questions elicited CK and KCT; the algorithms
question also elicited a small amount of KCS. There was a
noticeable change from pre-test to post-test on the algorithms
and control structures questions. The response pattern to the
variables question is like that seen in the “what’s important?”
questions—nearly all teachers in the sample provided a CK
response, with little change from pre-test to post-test (Fig. 2).

4.1.3 Teacher knowledge of suboptimal solutions, bugs, and
misconceptions. The two questions that were aligned to this area
asked teachers to react to student work. The algorithms question
elicited mainly CK and KCT while the control structures
question elicited mainly CK and KCS (Fig. 3).
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Figure 3: Suboptimal solutions, bugs, and misconceptions:
the algorithms question elicited mainly CK and KCT while
the control structures question elicited CK and KCS.

4.2 Teachers’ Predictions of Student Errors

Table 2: Most Common Errors Predicted by Teachers

# Teachers Predicting Error

Error Pre-test Post-test
15 12 12

5 11 11

10 4 5

22 4

The third question in the variables section asked teachers to
answer a homework question and predict student errors on the

question (see Appendix). No teachers in this analysis answered
the question incorrectly on pre-test or post-test. Table 2 shows
the four errors most commonly predicted by teachers—the
distribution is largely the same from pre-test to post-test.

Three of these errors are reflected in Sorva’s “misconception
catalogue” [22]; Sorva does not indicate which might be more
common. Students who do not understand the sequentiality of
statements may say the output is 15 because they use y = 10
when evaluating x + y, or they may say the output is 5 because
they ignored the other lines of code. Or a student with the
parallelism misconception may think the output is 22 because
they think the line x = x + y is always active.

Many teachers predicted 10 as a student error, citing
students’ “carelessness” or “confusing x and y” rather than a
content-oriented misconception.

5 DISCUSSION

5.1 Limitations and Lessons Learned

5.1.1 Face validity of prompts. The algorithms questions were
problematic, as demonstrated by the low inter-rater reliability.
The scenario presented in this section elicited many responses
that were more related to classroom management than CS (e.g., a
limitation of the activity is that it makes a mess, or students may
have food allergies). The control structures questions showed
better inter-rater reliability, but did not necessarily elicit rich
responses. Many teachers diagnosed that the student did not
understand looping well, but then gave simple directives to
change the code (e.g., “I would advise Alice to use a loop to
minimize her coding”) instead of conceptually-oriented feedback.

5.1.2 Generalizability. This study cannot yet inform our
understanding of how PCK might differ between expert and
novice computer science teachers, partly because the prompts
need refinement and partly because the participants consisted
almost entirely of novice computer science teachers in a single
PD program. We also did not code for correctness of the content
knowledge demonstrated. However, we still found evidence of
differing levels of teacher knowledge. For example, although the
following responses to the third algorithms question were both
coded as KCT, the second response, which was provided by a
technology professional in the larger study, demonstrates deeper
understanding of the limitations of the exercise.

1. I think it provides a basic understanding of the specificity
necessary for computers.

2. The limitation of this exercise is that it’s limited to making a
physical product and the set of instructions you can specify is
infinite (as opposed to the finite set of instructions a computer
can execute). It’s difficult to guide students to give
instructions at the right level of abstraction since it’s hard to
describe the interface of human capabilities.

5.2 Conclusions and Future Directions

The development and testing of this short preliminary
assessment provided useful insights. Participating teachers did



well on the questions that asked them to demonstrate basic
content knowledge and were forthcoming with other evidence of
CK. Eliciting aspects of pedagogical content knowledge proved
to be more difficult and there was insufficient variation in the
sample to analyze responses in terms of depth. However,
teachers did identify common student errors that would be
predicted by research. In the next phase of this project, we will
be iterating on the assessment questions, expanding the item
pool, and conducting additional phases of validity testing.
Future validity testing will contain qualitative work, such as
think-aloud studies with teachers completing the assessment and
testing the items with a broader population of high school CS
teachers. We also plan to expand the coding scheme to capture
some indication of the depth of teacher knowledge being
displayed. Another area for further exploration is how the
different areas of teacher knowledge are developed. In our
sample, pre-test to post-test change was most evident in
responses to the explanations and representations questions,
suggesting that knowledge development in this area may depend
more heavily on practical experience than on direct instruction.

A APPENDIX

You have assigned your students homework that includes the
following question.

Snap! version
Consider the following script.

say '
What does the sprite say when the script is clicked?

Java version

Consider the following code segment.
int x = 5;

int v = T7;

X o= x 4+ y;

y = 10;

System.out.println(x);

What is the output?

What is the correct response? What incorrect responses do you
expect to see from your students, and why do you think students
will make those errors?
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