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ABSTRACT 
Pedagogical content knowledge (PCK) is specialized knowledge 
necessary to teach a subject. PCK integrates subject-matter 
content knowledge with knowledge of students and of teaching 
strategies so that teachers can perform the daily tasks of 
teaching. Studies in mathematics education have found 
correlations between measures of PCK and student learning. 
Finding robust, scalable ways for developing and measuring 
computer science (CS) teachers’ PCK is particularly important in 
CS education in the United States, given the lack of formal CS 
teacher preparation programs and certifications. However, 
measuring pedagogical content knowledge is a challenge for all 
subject areas. It can be difficult to write assessment items that 
elicit the different aspects of PCK and there are often multiple 
appropriate pedagogical choices in any given teaching scenario. 
In this paper, we describe a framework and pilot data from a 
questionnaire intended to elicit PCK from teachers of high 
school introductory CS courses and we propose future directions 
for this work.  

CCS CONCEPTS 
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1 INTRODUCTION 
Shulman introduced the idea of pedagogical content knowledge 
(PCK) as a special category of knowledge for teaching [21]. 
Whereas subject-matter content knowledge is necessary for 
anyone who seeks to master a subject, PCK is only necessary for 
those who are teaching it. Aspects of PCK include knowledge of 
how students think about concepts, knowledge of what makes 
learning concepts difficult, and knowledge of how to use 
different content representations to make concepts 
understandable for others [21].  

This paper describes an effort to develop a framework for 
understanding computer science teaching knowledge, drawing 
from similar efforts in mathematics education, and to develop 
items that will elicit this knowledge from computer science 
teachers. The results reported here are a subset of the data 
collected for a larger project to document knowledge change in 
novice computer science teachers. 



 

1.1 Pedagogical Content Knowledge in 
Mathematics Education 

There is a large body of work in mathematics education to refine 
the concept of PCK and develop measures for it. This project 
aimed to adapt those methods into a computer science education 
context. The Learning Mathematics for Teaching Project [1] 
elaborated and refined Shulman’s concept of PCK in 
mathematics by analyzing the work of mathematics teachers and 
identifying how mathematical knowledge is used. This paper 
focuses on four of these categories: 

 
1. Common content knowledge (CCK): the mathematical 

knowledge and skill that is common across disciplines that 
use mathematics, such as performing calculations or 
otherwise solving mathematics problems. 

2. Specialized content knowledge (SCK): the mathematical 
knowledge and skill unique to teaching, such as evaluating 
whether a student’s non-standard approach to a problem is 
sufficiently general. 

3. Knowledge of content and students (KCS): knowledge that 
combines knowing about students and knowing about 
mathematics, such as knowing what students will find 
motivating or confusing. 

4. Knowledge of content and teaching (KCT): knowledge that 
combines knowing about teaching and knowing about 
mathematics, such as understanding how to sequence topics 
or choose representations for instruction. 

 
Hill and colleagues [8] then used this framework to develop 
assessments of Mathematics Knowledge for Teaching (MKT). 
The MKT focuses on teachers’ knowledge of content (both 
common and specialized) and knowledge of students and 
content. Teachers’ performance on these assessments was found 
to predict student learning gains in first and third grades, after 
controlling for students’ absence rates and demographic 
characteristics, classroom characteristics, and teachers’ 
professional backgrounds [9]. 

1.2 Pedagogical Content Knowledge in 
Computer Science Education 

The concept of PCK has recently been applied to CS education 
research. For example, in a study of experienced computing 
teachers learning to teach a new programming paradigm, 
Liberman et al. [12] explored the connection between CS PCK 
and content knowledge. They found teachers entered a state of 
regressed expertise where they displayed elements of both novice 
teaching and expert teaching. Buchholz et al. [4] provided 
anecdotal evidence that pre-service CS teachers progress 
through stages of complexity in their PCK when developing 
teaching modules. Baxter’s [2] case study of two experienced CS 
teachers, one formally trained and the other self-taught, 
demonstrated how PCK could vary across teachers with similar 
levels of expertise and how PCK was enacted differently in their 
classrooms. Lastly, the KUI research project [3] created a 

framework of CS PCK that focuses on both content knowledge 
and the processes of teaching. 

CS education researchers have employed a variety of 
methods to study PCK. For example, several scholars used the 
CoRe (Content Representation) instrument to elicit educators’ 
ideas about teaching CS [4,7,13,18]. Interviews have been used to 
understand instructional strategies, the impact of lessons on 
teacher knowledge development, and how teachers judge the 
difficulty of topics for their students [2,11]. Ohrndorf and 
Schubert [15,16] developed an assessment that asked teachers to 
explain possible student responses and misconceptions. Saeli et 
al. [19] employed a document analysis approach to analyze the 
PCK information contained in CS textbooks. Doukakis and 
colleagues [6] developed an assessment for in-service CS 
teachers based on the Technological Pedagogical and Content 
Knowledge (TPACK) framework 1  that included two items 
targeting PCK [14]. In another paper, we described the 
development of think-aloud tasks we created to drive discussion 
about teachers’ PCK [10]. While scholars have employed a 
variety of methods to study and define PCK in CS, the existing 
body of research does not provide strong empirical evidence 
linking specific pedagogical practices to student learning 
outcomes [17]. Furthermore, there has yet to be a validated 
assessment of CS PCK that can be used to evaluate teachers’ 
preparedness to teach an introductory CS course. 

This lack of validated assessments of CS PCK presents a 
challenge for evaluating the numerous efforts around the United 
States to train more K-12 computer science teachers, especially 
given the lack of formal CS teacher preparation and certification 
programs [5]. How can we evaluate the PCK content of such 
professional learning programs? How can we tell when a teacher 
is equipped to teach computer science? A validated CS PCK 
assessment could help us address these questions and better 
gauge the community’s efforts at increasing the CS teacher 
workforce. 

2 DEVELOPING AN ASSESSMENT OF CSPCK: 
FRAMEWORK AND CONTENT 

Developing measures of PCK that can be used to evaluate 
individual teachers is a challenging proposition—even the 
Mathematics Knowledge for Teaching assessments are intended 
only for assessing groups of teachers for research purposes [20]. 
In conducting this preliminary foray into creating such an 
assessment, we were inspired and guided by the Mathematical 
Work of Teaching framework [20]. Selling and colleagues [20] 
identified four areas of difficulty for PCK assessment developers 
and created a framework for navigating them. The four areas of 
difficulty are: 

 
1. Developing items that measure SCK instead of exclusively 

measuring CCK, 

                                                                    
1 TPACK is another extension of Shulman’s categories of teacher knowledge that 
incorporates teacher knowledge of technology and how to teach with technology. 



 

2. Developing items that measure SCK without touching on 
pedagogical decision-making, 

3. Identifying the work of teaching that draws on teachers’ SCK, 
and 

4. Understanding how SCK might be used across multiple grade 
bands. 
 
Selling et al.’s Mathematical Work of Teaching (MWT) 

framework can be used to construct measures of teachers’ 
subject-matter knowledge, especially specialized content 
knowledge. The MWT framework is organized around three 
mathematical objects: explanations (including justifications and 
reasoning), mathematical structure, and representations. Each 
object is aligned to a set of actions (e.g., comparing explanations, 
critiquing explanations, or writing explanations). Assessment 
developers can then write prompts for the different actions. We 
follow a similar structure for our CSPCK assessment framework, 
though we also deviate from it in important ways. In adapting 
the MWT framework for CS, we consulted and received feedback 
from two experts in computer science pedagogy before arriving 
at our final constructs and teaching actions. 

Our framework is organized around two areas of teacher 
knowledge: 1) knowledge of explanations and 
representations and 2) knowledge of suboptimal solutions, 
bugs, and misconceptions. We combine explanations and 
representations, which are separate mathematical objects in the 
MWT framework, into one category because explanations often 
include one or more representations. The actions associated with 
knowledge of explanations and representations include 
developing, delivering, and critiquing explanations for a given 
CS concept. Items aligned to this first area were expected to elicit 
more responses related to CCK and SCK, but responses could 
also touch on KCS or KCT. The second area in our framework, 
knowledge of suboptimal solutions, bugs, and misconceptions, is 
related to the mathematical structure area in the MWT 
framework, in that assessment items may ask teachers to analyze 
the structure of student work. However, we chose to broaden the 
construct to increase the likelihood of capturing elements of KCS 
and KCT—the MWT framework is largely focused on eliciting 
SCK. The actions associated with this second area include 
predicting student errors and evaluating student work. Items 
aligned to this second area were expected to elicit more 
responses related to KCS, but would likely also invoke CCK, 
SCK, and possibly KCT. 

2.1 Item Development 
We developed a 9-item preliminary assessment divided into 
three sections, each covering a different content area that is 
fundamental to introductory computer science courses: 
algorithms, variables and assignment, and control structures. 
Each question was presented as a brief teaching scenario that 
required the respondent to engage in a real-world teaching task. 
All questions were open-ended. An experienced high school 
computer science teacher reviewed the draft questions for 
interpretability. The first question in each section asked 
respondents to identify what was most important for students to 

understand about the topic during an introductory lesson. The 
inclusion of this question was inspired by the CoRe instrument 
[13]. Then each section contained two additional questions: one 
which targeted knowledge of explanations and representations 
and one which targeted suboptimal solutions, bugs, and 
misconceptions. Table 1 describes the prompts. 

Table 1: Alignment of Questions to Areas of Teacher 
Knowledge 

# Target Description 
Algorithms 
2 Suboptimal 

solutions, bugs, 
misconceptions 

Given a student-written algorithm 
for making a sandwich, describe how 
to highlight important ideas about 
algorithms while following the 
directions to make a real sandwich. 

3 Explanations / 
representations 

Discuss the difficulties or limitations 
of the sandwich activity for 
introducing algorithms to 
introductory CS students. 

Variables and Assignment 
2 Explanations / 

representations 
Decide if “A variable in 
programming is a name that refers to 
information the program can use 
later” is accurate. If not, explain what 
is misleading and how to improve 
the definition. 

3 Suboptimal 
solutions, bugs, 
misconceptions 

Answer a homework question about 
variables and assignment, predict 
students’ incorrect responses on the 
question, and explain why students 
make those errors (see Appendix). 

Control Structures 
2 Suboptimal 

solutions, bugs, 
misconceptions 

Diagnose a student’s level of 
understanding of control structures 
based on a code segment she wrote 
for an assignment. The code segment 
contains many repeated lines of code 
and no loops. 

3 Explanations / 
representations 

Describe feedback that would 
improve the student’s understanding 
of control structures. 

3 RESEARCH METHOD 

3.1  Participants 
The results reported are from 21 high school computer science 
teachers. Nine were teaching a pre-AP introductory computer 
science course using a block-based programming language; 12 
were teaching Advanced Placement Computer Science A in Java. 
Four teachers had degrees in computer science. All were 
participating in an in-service professional learning program in 
which industry professionals co-teach with high school teachers 
to launch computer science programs at their schools. At 
baseline, participants averaged 1.14 years with the program, 1.5 
years teaching CS, and 10.3 years teaching overall. 



 

3.2  Procedure 
3.2.1 Data collection. Participants completed the online CS PCK 
assessment at the beginning and end of the school year as part of 
a larger survey. Only teachers who completed both pre-test and 
the post-test are included in this analysis. When questions 
included code segments, the pre-AP course teachers were shown 
Snap! blocks while the AP CS A teachers were shown Java code. 
Participants were instructed to take no more than 30 minutes to 
complete all nine questions. 

3.2.2 Coding. Participants’ responses to the questions were 
coded to determine if the items were eliciting the types of 
teacher knowledge expected. The codes were based on Ball’s 
domains of mathematical knowledge [1]. A single response could 
receive multiple codes. Specialized and common content 
knowledge were condensed into one category, content 
knowledge (CK), due to difficulty distinguishing between 
specialized and common content knowledge in responses. 
Responses that gave vague references to content were not coded 
as CK (i.e., “It is important for students to learn what is an 
algorithm”). The KCT and KCS codes were applied using Ball’s 
descriptions (i.e., “Variable is simply a holding place. I refer to it 
as a bucket and use visuals to demonstrate” was coded KCT; 
“Students don’t have much trouble generating if-then 
statements, but they don’t often think of ways to use other 
varieties of conditional statements, loops, and nested loops” was 
coded KCS). KCT and KCS codes were not applied to more 
general knowledge of pedagogy or student learning unless the 
response explained how the concept applied to computer science 
(i.e., “Do a lot of examples. Do a few problems together”). The 
third question about variables was not coded, as all answers 
responsive to the prompt would have been coded KCS. 

Raters first discussed the codes and coded a sample of 30 pre-
test responses for the variables questions to calibrate2. If there 
was inter-rater disagreement, researchers discussed and came to 
consensus on the appropriate code or codes to assign. Then two 
raters coded the full data set, re-coding the initial 30 responses 
used for calibration. Approximately 50 responses were coded by 
both raters to check for inter-rater reliability. The average 
Cohen’s kappa for the algorithms section was 0.58. The average 
Cohen’s kappa for the variables and control structures sections 
was 0.76 and 0.78, respectively. When there was inter-rater 
disagreement, the lead rater made a final determination on the 
appropriate code to assign. 

4 RESULTS 

4.1  Types of Teacher Knowledge Elicited 
An analysis of the codes assigned to teacher’s responses revealed 
that the prompts did elicit different types of teacher knowledge. 

4.1.1 What’s important to learn in this lesson? The first 
question in section, which asked teachers to describe what was 

                                                                    
2 The data reported in this paper represent a subset of all data collected for the 
project. Rater calibration was conducted on the larger data set. 

most important about the topic for an introductory lesson, 
largely elicited CK across all three topic areas—nearly all 21 
teachers in the sample provided a response that was coded as 
CK. There was little change from pre-test to post-test (see Fig. 1). 

 

Figure 1: Teachers mainly demonstrated CK when 
responding to questions about what was important for 
students to learn about a topic in an introductory lesson. 

 

Figure 2: Teachers demonstrated some growth from pre-
test to post-test on knowledge of explanations and 
representations. 



 

4.1.2 Teacher knowledge of explanations and representations. 
There is a different pattern of responses for each question in this 
area, probably because the three questions used qualitatively 
different teaching scenarios. The algorithms and control 
structures questions elicited CK and KCT; the algorithms 
question also elicited a small amount of KCS. There was a 
noticeable change from pre-test to post-test on the algorithms 
and control structures questions. The response pattern to the 
variables question is like that seen in the “what’s important?” 
questions—nearly all teachers in the sample provided a CK 
response, with little change from pre-test to post-test (Fig. 2). 

4.1.3 Teacher knowledge of suboptimal solutions, bugs, and 
misconceptions. The two questions that were aligned to this area 
asked teachers to react to student work. The algorithms question 
elicited mainly CK and KCT while the control structures 
question elicited mainly CK and KCS (Fig. 3). 

 

Figure 3: Suboptimal solutions, bugs, and misconceptions: 
the algorithms question elicited mainly CK and KCT while 
the control structures question elicited CK and KCS. 

4.2  Teachers’ Predictions of Student Errors 

Table 2: Most Common Errors Predicted by Teachers 

Error 
# Teachers Predicting Error 

Pre-test Post-test 
15 12 12 
5 11 11 
10 4 5 
22 4 1 

 
The third question in the variables section asked teachers to 

answer a homework question and predict student errors on the 

question (see Appendix). No teachers in this analysis answered 
the question incorrectly on pre-test or post-test. Table 2 shows 
the four errors most commonly predicted by teachers—the 
distribution is largely the same from pre-test to post-test. 

Three of these errors are reflected in Sorva’s “misconception 
catalogue” [22]; Sorva does not indicate which might be more 
common. Students who do not understand the sequentiality of 
statements may say the output is 15 because they use y = 10 
when evaluating x + y, or they may say the output is 5 because 
they ignored the other lines of code. Or a student with the 
parallelism misconception may think the output is 22 because 
they think the line x = x + y is always active. 

Many teachers predicted 10 as a student error, citing 
students’ “carelessness” or “confusing x and y” rather than a 
content-oriented misconception. 

5 DISCUSSION 

5.1  Limitations and Lessons Learned 
5.1.1 Face validity of prompts. The algorithms questions were 
problematic, as demonstrated by the low inter-rater reliability. 
The scenario presented in this section elicited many responses 
that were more related to classroom management than CS (e.g., a 
limitation of the activity is that it makes a mess, or students may 
have food allergies). The control structures questions showed 
better inter-rater reliability, but did not necessarily elicit rich 
responses. Many teachers diagnosed that the student did not 
understand looping well, but then gave simple directives to 
change the code (e.g., “I would advise Alice to use a loop to 
minimize her coding”) instead of conceptually-oriented feedback. 

5.1.2 Generalizability. This study cannot yet inform our 
understanding of how PCK might differ between expert and 
novice computer science teachers, partly because the prompts 
need refinement and partly because the participants consisted 
almost entirely of novice computer science teachers in a single 
PD program. We also did not code for correctness of the content 
knowledge demonstrated. However, we still found evidence of 
differing levels of teacher knowledge. For example, although the 
following responses to the third algorithms question were both 
coded as KCT, the second response, which was provided by a 
technology professional in the larger study, demonstrates deeper 
understanding of the limitations of the exercise. 

 
1. I think it provides a basic understanding of the specificity 

necessary for computers. 
2. The limitation of this exercise is that it’s limited to making a 

physical product and the set of instructions you can specify is 
infinite (as opposed to the finite set of instructions a computer 
can execute). It’s difficult to guide students to give 
instructions at the right level of abstraction since it’s hard to 
describe the interface of human capabilities. 

5.2  Conclusions and Future Directions 
The development and testing of this short preliminary 
assessment provided useful insights. Participating teachers did 



 

well on the questions that asked them to demonstrate basic 
content knowledge and were forthcoming with other evidence of 
CK. Eliciting aspects of pedagogical content knowledge proved 
to be more difficult and there was insufficient variation in the 
sample to analyze responses in terms of depth. However, 
teachers did identify common student errors that would be 
predicted by research. In the next phase of this project, we will 
be iterating on the assessment questions, expanding the item 
pool, and conducting additional phases of validity testing.  
Future validity testing will contain qualitative work, such as 
think-aloud studies with teachers completing the assessment and 
testing the items with a broader population of high school CS 
teachers. We also plan to expand the coding scheme to capture 
some indication of the depth of teacher knowledge being 
displayed. Another area for further exploration is how the 
different areas of teacher knowledge are developed. In our 
sample, pre-test to post-test change was most evident in 
responses to the explanations and representations questions, 
suggesting that knowledge development in this area may depend 
more heavily on practical experience than on direct instruction. 

A APPENDIX 
You have assigned your students homework that includes the 
following question. 

 
Snap! version 
Consider the following script. 

 
What does the sprite say when the script is clicked? 
 
Java version 
Consider the following code segment. 

 
What is the output? 
 

What is the correct response? What incorrect responses do you 
expect to see from your students, and why do you think students 
will make those errors? 
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