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For many decades, researchers have studied how plants use bet-hedging strat-
egies to insure against unpredictable, unfavourable conditions. We improve
upon earlier analyses by explicitly accounting for how variable precipitation
affects annual plant species’ bet-hedging strategies. We consider how the sur-
vival rates of dormant seeds (in a ‘seed bank’) interact with precipitation
responses to influence optimal germination strategies. Specifically, we incor-
porate how response to resource availability (i.e. the amount of offspring
(seeds) generated per plant in response to variation in desert rainfall) influ-
ences the evolution of germination fractions. Using data from 10 Sonoran
Desert annual plants, we develop models that explicitly include these
responses to model fitness as a function of precipitation. For each of the species,
we identify the predicted evolutionarily stable strategies (ESSs) for the fraction
of seeds germinating each year and then compare our estimated ESS values
to the observed germination fractions. We also explore the relative importance
of seed survival and precipitation responses in shaping germination strate-
gies by regressing ESS values and observed germination fractions against
these traits. We find that germination fractions are lower for species with
higher seed survival, with lower reproductive success in dry years, and
with better yield responses in wet years. These results illuminate the evolution
of bet-hedging strategies in an iconic system, and provide a framework for
predicting how current and future environmental conditions may reshape
those strategies.

1. Introduction

For organisms inhabiting variable environments, it can be difficult to perfectly
time key life-history functions, such as emergence or reproduction, with favour-
able conditions. In such environments, natural selection will favour traits or
strategies that buffer against uncertainty, usually by spreading risk over time
or space. This is often achieved through bet-hedging, in which strategies or
traits reduce variance in reproductive success at some cost to mean reproductive
success [1-3]. Empirical examples of putative bet-hedging strategies include
iteroparity [4], variable diapause [5,6] and variable offspring size [7,8]. Delayed
seed germination in annual plants is the classic example of bet-hedging [9], in
which variance in success is reduced by spreading germination over multiple
years, which has been clearly demonstrated in annual plants of the Sonoran
Desert [10,11].

Bet-hedging strategies interact with other traits to determine fitness, so the
degree of bet-hedging should depend on other traits that influence whether an
organism can survive until reproduction [10,12]. For instance, the adaptive
value of delaying germination depends on the risk of seed mortality of seeds
stored underground and seeds freshly produced [11,13], which can depend
on seed traits, such as varying seed coat thickness. Further, the effect of variable
conditions may also be mediated by traits expressed later in the life cycle, such
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Figure 1. (a) The life cycle of an individual seed, as described by equation (1). An individual seed remains dormant with probability T — g and survives to the next
autumn with probability s, (outer circle). Otherwise, it germinates, becomes a reproductive plant with probability 7, (b), and produces Y; seeds per square metre
(c); a fraction s, of ¥; then contributes to the following autumn (inner circle). (b,¢c) The hurdle model for ERLA. (b) The binomial regression for ERLA, where the
open circles located on the zero and one lines represent reproductive failures and successes corresponding to precipitation values P in year ¢, and the solid, logistic
curve represents the probability of reproductive success 7r; as a function of precipitation. (c) The linear regression of the post-hurdle low-density yield values K,

against P; on a log—log scale for ERLA.

as those that relate to the organism’s ability to tolerate stress
as well as the ability to capitalize on resource bonanzas.

In desert annual plants, low-resource tolerance (i.e. stress
tolerance) and resource-use capacity (i.e. the ability to capitalize
on bonanzas) are likely to influence the fitness consequences of
annual germination rates. One approach to assess the fitness
consequences of such functional responses is through relating
resource availability to two quantities: the probability of produ-
cing any offspring (reproductive success) and the number of
offspring (yield upon reproductive success). The set of inter-
cepts and slopes from these per-species relations explain
performance upon low-resource availability and responsive-
ness to increased resource availability, respectively, and can
be incorporated into models for understanding the adaptive
value of germination timing. Of course, abiotic conditions,
such as temperature or precipitation, are not the only sources
of risk in uncertain environments. The fitness consequences of
risk-spreading strategies also depend on biotic conditions,
making traits that affect response to competition or other
density-dependent processes important as well [14,15]. Under
density dependence, the optimal strategy depends on those
employed by other individuals in the population; methods
from adaptive dynamics can be used to identify evolutionarily
stable strategies (ESSs) [16].

Here, we build upon a model of Gremer & Venable [11] to
estimate long-term stochastic fitness in relation to germination
for 10 annual plants in the iconic Sonoran Desert winter annual
community. We have chosen to analyse these particular
species, as they are both abundant and a good representation
of the variation in functional trait strategies and demography
in the system [10,11]. Here, as in Gremer & Venable [11], we
use germination fractions to indicate the degree of bet hedging.
Low germination fractions indicate that less seeds germinate
in a given year and, instead, more remain in the seedbank.
These dormant seeds serve as a ‘hedge’ against uncertainty
in any given year, so lower germination indicates higher bet
hedging. Conversely, high germination fractions indicate less
bet hedging, with perfect germination fractions (i.e. 100%
germination) indicating that no bet hedging is occurring.
Unlike Gremer & Venable [11], we directly model the effect
of precipitation on plant yield for this water-limited system.

In doing so, we can see how precipitation relates to the fitness,
trait evolution and bet-hedging strategies of each species.
Specifically, we model the probability of reproductive success
(versus reproductive failure) and per capita yield, conditioned
on reproductive success, as functions of precipitation and
intraspecific density. We incorporate these relationships into
a density-dependent seed bank model to predict evolutionarily
stable germination strategies. To distinguish the relative impor-
tance of density, seed survival and functional responses in
driving the evolution of germination strategies, we then build
a statistical regression model and use it to explore how well it
predicts observed and model-predicted germination strategies.

2. Model and methods

To model the seed bank dynamics of annual plants, we adapted
a seed bank model (figure 1a) introduced by Gremer & Venable
[11] and related their low-density yield to precipitation (details
on the empirical data that we used to parametrize the seed bank
model can be found in the electronic supplementary material,
appendix A3). To model low-density yield values from precipi-
tation, we used a two-step hurdle model [17]. First, using a
binomial regression, we identify the probability a germinating
individual reproduces under a certain amount of precipitation
(i.e. the probability that an individual crosses the ‘reproductive
hurdle’ (figure 1b)). Then, we determine how the yield of repro-
ducing individuals depends on this precipitation (figure 1c)
(i.e. once an individual crosses the reproductive hurdle, we
determine its yield from precipitation). Incorporating our
hurdle model into Gremer & Venable’s [11] bet-hedging, seed
bank model, we calculate the evolutionarily stable germination
fraction (ESS) for each of the 10 species, independently. We then
use a statistical regression to estimate the relative importance of
several parameters (that reflect species-specific life-history
traits) in governing both predicted and observed ESS germina-
tion fractions. While we use the modified bet-hedging model to
predict germination values via ESS analysis, we use the statisti-
cal regression or model to assess the relative importance of
different life-history traits in explaining predicted and observed
germination fractions.
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(i) Bet-hedging model

Let n; denote the density of seeds in the seed bank in year ¢
for a focal species. A fraction of ¢ seeds germinate each
year. Under low-density conditions, germinating seeds con-
tribute K; seeds to the seed bank in year t; we refer to K; as
the low-density yield” in year t. These seeds survive to the
next year with probability spew, the survival rate of fresh
seeds. Negative density dependence reduces yield by a
factor 1/(1 + agn,), where a > 0 is a species-specific compe-
tition coefficient for the germinating population. A fraction
of (1 —g) seeds remain dormant until the next year, each
surviving with probability s, q, the survival rate of dormant
seeds (figure 1). Under these assumptions,

_ 8KiSnew

M1 = +agn, + (1 = g) Soldt- (VA

Benaim & Schreiber [18] show that the density of seeds
with probability one to a unique statio-
nary distribution as t — oo. In particular, if the low-density
per capita growth rate

r= [E[log (gKtsnew +(1- g)sold)] (2.2)

is negative, then 1; converges with probability 1 to 0. Alterna-
tively, if this low-density per capita growth rate is positive, 1,
converges to a unique, positive stationary distribution 71(g). In
particular, we can approximate the stationary distribution
71(g) by one sufficiently long run of the model.

converges

(i) Modelling low-density yield from precipitation: the

reproductive hurdle
While Gremer & Venable [11] estimated K; directly from the
demographic data, we model how K; depends on precipitation
P;in each year in order to analyse the effect of precipitation on
seed bank dynamics. We used the same 30 years of data as
Gremer & Venable [11] and obtained each year’s observed
yield and precipitation values for the 10 desert annuals
featured in an earlier study by Venable [10]. Following Venable
[10], a factor of 0.5 is added to yield and a factor of 1 is added to
precipitation, so that the residuals of the linear regressions
between log-yield and log-precipitation were approximately
normally distributed. Let N; = gn; be the seedlings per metre
square in year f. Then the observed yield is Y; = K;/(1 4 aNy),
where a and K; are the measured competitive coefficient and
measured low-density yield for year t, both calculated by
Gremer & Venable [11].

For our two-step hurdle model relating low-density yield
to precipitation, we model the probability of reproductive
failure (K; < 1) or success (K; > 1) with a binomial regression
(figure 1b). Specifically, we keep track of each species’s repro-
ductive failures and successes, and their corresponding
log-precipitation values, all of which were measured within
the 30 years of yield and precipitation data. We then binomially
regress these failures and successes against log-precipitation,
the regression being the reproductive hurdle or probability
an individual reproduces as a function of log-precipitation.
For the subset of years that a species experienced reproductive
success (i.e. cleared the hurdle), we linearly regress non-zero,
low-density yield K; against precipitation P; on the log scale
(figure 1c): log(K;) = log(a) + Bolog(Py), where P; is the
measured precipitation for year t. The reproductive hurdle
and the post-hurdle regressions define a two-step process

relating the low-density yield K; to the precipitation Py:

K — asz 2 w%th probab%l%ty (71t)
0.5 with probability (1 — )

where the probability of crossing the reproductive hurdle is

1

T L e (B log(P)

(23)
We call o the reproductive intercept, 3, the reproductive slope,
a, the log-yield intercept, and 3, the log-yield slope. Larger
reproductive intercepts and reproductive slopes correspond
to higher probabilities of reproductive success in low and
high precipitation years, respectively. Larger log-yield inter-
cepts and log-yield slopes correspond to higher yield in low
and high precipitation years, respectively. Larger log-yield
intercepts represent increased ability to reproduce under low
resource availability (i.e. tolerance to low water availability),
whereas larger values for log-yield slopes represent increased
responsiveness to resources and ability to capitalize on wet
years for reproduction.

(iii) Predicting ESS values

To identify the ESS for the germination fraction g, consider a
‘mutant” population at very low density 7 with a different
germination strategy, g. At low densities, this mutant popu-
lation has a negligible feedback on the resident population
and itself, but is influenced by the resident. Hence, its
population dynamics are initially approximated by

gKt+1Snewﬁt

1+ agn, + (1 = g) Soldfs- (24)

Mgy =
The success or failure of the invasion of these mutants is
determined by their stochastic growth rate
~ gKlsnew ~

, 9 =E|log| -=———+(1 - . 2.5
18 8) {og(lﬂgn(g)ﬂ g)sold):| 2.5)
If 7(g, §) < 0 the invasion fails, and if r(g, g) > 0 it succeeds
[19]. A germination strategy g is an ESS if r(g, g) < 0 for all
g # g (i.e.no other strategy can invade). A necessary condition
foran ESSwith 0 < g < 1is that h(g) = (0r/0%)(g, g) = 0. Since
(©%r/03%)(g, §) < 0 for all g, if such a g is found, it is unique.
Thus to find the ESS, we solve for the root of h(g) strictly
between 0 and 1 (see electronic supplementary material,
appendix Al).

3. Results
(iv) Reproductive hurdle model

Species were significantly different in their reproductive
and log-yield intercepts for both the binomial regression
modelling reproductive success and the post-hurdle model.
For a common slope, binomial sub-model with solely log-
precipitation and species as predictors, a pairwise Wald’s
test detected differences between multiple pairs of reproduc-
tive intercepts. In particular, EVMU significantly differed
from ERCI, PERE, PLIN, PLPA and SCBA (p < 0.05); STMI
significantly differed from PERE and SCBA (p < 0.05) (see
table 1 for species” full nomenclature). The rest of the pairs
were not significantly different, according to the pairwise
Wald'’s test. A post-hoc Tukey test with a Bonferroni correc-
tion also did not reveal significant differences for any
pairing. We compared the common slope sub-model to a
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Figure 2. (a) The observed germination fractions against model-estimated ESS values for each species. (b) Germination fractions against germination estimates
found by taking the inverse-logit of Ly. Points lying on the dotted line represents equality between predicted ESS values and observed germination fractions.
Points have been coloured from light blue (low seed survival) to dark blue (high seed survival).

Table 1. This table contains (from left to right) values for seed survivorship in the seed bank, seed survivorship of fresh seeds, reproductive intercepts,
reproductive slopes, log-yield intercepts, log-yield slopes and competition factors. Superscripted characters next to « and 3 values indicate how significantly

different these parameters are from 0: 0.1, 0.05", 0.01" and 0.001" .

species Sold Snew ay B a; B a

Monaptilon belliodes (MOBE) 0273 0.102 —-331* 274 173 0.79 0.0163
Erodium cicutarium (ERCI) 0.429 0.132 —1.55 197" 0.02 125" 0.0351
Stylocline micropoides (STMI) 0.458 0.145 —178 146 —167 2337 0.0156
Schismus barbatus (SCBA) 0.512 0.150 —2.03 3.10° —0.54 238" 0.0112
Eriophyllum lanosum (ERLA) 0.532 0.153 —3.15" 286" —0.73 1957 0.0114
Plantago patagonica (PLPA) 0.550 0.160 —218 243 145 0.84 0.0069
Erodium texanum (ERTE) 0.577 0.170 —129 143" —0.07 136 0.0532
Plantago insularis (PLIN) 0.596 0.168 —1.42 214" 1.52 0.89" 0.0380
Pectocarya recurvata (PERE) 0.627 0173 —0.10 143 0.93 1447 0.0167
Evax multicaulis (EVMU) 088 0214 —386" 236 158 130" 00119

common intercept sub-model (the interaction and log-precipi-
tation as predictors). The common slope, sub-model was the
winning model in AIC, BIC and log-likelihood comparisons
and was not significantly different from the full binomial
model. The binomial fit (the coefficients coming from the
full binomial model) for Eriophyllum lanosum (ERLA) is
shown in figure 1b.

A common intercept, post-hurdle model showed SCBA’s
log-yield slope significantly differed from ERCI, ERLA, ERTE,
MOBE, PLIN, PLPA and STMI; PERE significantly differed
from ERCI and ERTE; EVMU significantly differed from
ERCI, ERTE, PLPA, and STMI (p < 0.05). Non-listed pairs of
log-yield slopes were not significantly different from one
another. In addition, a post-hoc Tukey test with a Bonferroni
correction revealed significant differences between EVMU
and ERCI, ERTE and SCBA, and ERCI and SCBA (p < 0.05).
No other pairs were significantly different. In contrast, a
common slope sub-model also yielded significant intercepts
but was not selected after comparing AIC, BIC and log-
likelihood values to the common intercept sub-model. The
common intercept sub-model was also found to not be

significantly different from the full, linear model. The post-
hurdle fit (the coefficients coming from the full, linear model)
for ERLA is shown in figure 1c.

(v) Predicted ESS values

With the purpose of estimating ESS values as accurately as
possible, we used the full models’ intercepts and slopes,
unique for each species, for both reproductive success and
post-hurdle yields. We have incorporated the resulting repro-
ductive and log-yield intercepts and slopes, survival rates
within the seed bank, and the competitive responses into
one table (table 1). Predicted ESS values from the full
models corresponded well with observed germination frac-
tions; our ESS values explain 69% of the variance (adjusted
R? in observed germination fractions (on the logit—logit
scale), although our ESS values typically overestimate these
germination fractions (figure 2).
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(vi) Factors shaping bet hedging

To explore the effect of each trait on ESS values and observed
germination rates, we also examined how well our model-
estimated ESS values and observed germination fractions
could be estimated by parameters of table 1 on the logit scale.
We used our ANOVA—along with the non-dimensionalization
of equation (2.1) (see electronic supplementary material, appen-
dix A2)—to reduce the potential predictors to reproductive
intercepts, log-yield slopes and survival rates of dormant
seeds. The resulting linear regression

Liss = 0.89 + 0.21d; — 0.323, — 05634, (3.1)

explains 90% (adjusted R?) of the variance in the predicted ESS
values, where the hatted variables denote the standardized pre-
dictor variables. Survival rates of dormant seeds have the most
impact on variation in ESS values, followed by log-yield slopes
and reproductive intercepts. Finally, we analysed the amount of
variance in observed germination fractions explained by these
three parameters. The resulting linear regression

Lops = —0.29 + 0.466; — 0.44f3, — 0.5%,q (3.2)

explains 69% (adjusted R?) of the variance in the observed
germination fractions (figure 2). Seed survival rates again have
the largest negative effect on the germination rates. By contrast,
reproductive intercepts have a much larger positive effect on
observed germination rates than they did in the model-predicted
ESS values. Log-yield slopes had a much stronger negative
impact on observed germination rates than the model-predicted
ESS values. Both regressions show that germination fractions are
lower for species that have larger survival rates of seeds in the
seed bank (s,14), higher for species with greater reproductive suc-
cess in dry years () and lower for species that capitalize on wet
years upon reproductive success ().

4. Discussion

Our approach, which explicitly incorporates an aspect of
environmental variation, and species-specific responses to that
variation, into models for understanding the factors that shape
optimal strategies, illuminates life-history evolution in variable
environments and is likely to be useful in many other systems.
The ESS model predicts germination fractions based on uncer-
tainty in precipitation, whereas the statistical model indicates
the relative importance of survival rates, reproductive success
and precipitation-dependent yield. Most important is seed sur-
vivorship: the safer it is to be in the seed bank, the more
beneficial it is to bet-hedge, a result consistent with classical
bet-hedging theory [9,13]. Equally as important as the precipi-
tation-dependent yield (but less so than seed survivability) is
the sensitivity of reproductive success in low-rainfall years.
Higher reproductive success in dry years selects for desert
annuals to bet-hedge less. However, higher rates of seed pro-
duction in wet years push annuals to bet-hedge more, which
could be attributed to higher rates of seed production in wet
years being linked to lower rates of seed production in dry years.

Indeed, empirical observations in this system indicate
that some species are better able to capitalize on favourable
conditions than others. For instance, Angert ef al. [20] exper-
imentally demonstrated differences in leaf area and biomass
allocation in response to precipitation pulses between two
species of winter annuals. The more stress-tolerant species (Pec-
tocarya recurvata) was less able to capitalize on the resource

pulse than the other, less tolerant species (Stylocline micro-
poides). Similarly, Kimball et al. [21] showed that species with
high relative growth rates (RGR) and low water-use efficiency
(WUE) were favoured in years with large, and more frequent
rain events, using 25 years of climate and fitness data for this
winter annual system. These functional trade-offs also relate
to germination biology; resource acquisitive species with low
germination fractions also have germination physiologies
cued to slower germination and in a narrower range of
conditions [22]. In other words, they have physiologies tuned
to slower and more cautious germination, but also have less
tolerant, resource acquisitive traits once established. Thus,
functional responses included in our ESS analyses strongly
affect long-term variation in fitness and germination in
response to precipitation in this system.

Our ESS estimates explained approximately 29% more
variance in germination fractions than a linear regression on
Gremer & Venable’s predicted values, although we consistently
overestimate the observed germination fractions, whereas their
predictions are a mixture of under- and over-predicted values
with smaller summed squared-residuals (figure 2a) [11]. Our
over-estimates might stem from all the possible risks or factors
that may select for greater bet-hedging, such as seed predation,
interspecific competition, variable temperature and disease
[23-29], which were not included in our model. Furthermore,
30 years of precipitation data might not fully capture the long-
term variation in precipitation that has shaped the evolution
of germination timing in these species.

Our analyses also indicate differences in what is driving
predicted ESS values versus observed germination rates.
While the general intercept, reproductive yield and seed survi-
val rates within the seed bank affect predicted ESS values (see
equation (3.1)), reproductive success is a better predictor of
observed germination fractions (see equation (3.2)). The gen-
eral intercepts of the two regressions account for the largest
difference in fit between the statistical model and the ESS
models’ predicted germination fractions. This major difference
partially stems from the variance in our predicted yield values
generally having lower variance than that of the estimated low-
density yield values of Gremer & Venable [11]. Larger vari-
ation in our yield values would select for more bet-hedging
(lower ESS estimates) for all 10 species, and consequently sub-
tract from the general intercept to equation (3.1). The second
largest difference is that of the coefficient of the &; term, or stan-
dardized reproductive intercept. Since reproductive success is
also determined solely from precipitation in our model, the
difference in coefficient magnitudes may be highlighting our
inability to capture variation in reproductive success from rain-
fall alone. Thus, the statistical model suggests that the variance
in both yield and reproductive success is not completely
explained by the variation in the 30 years of precipitation.
Other factors such as temperature may also play a role in med-
iating responses to water availability, particularly in this
system, and could be incorporated in future models [21,30,31].

As a model for displaying the relative importance of survi-
val rates, reproduction rates and conditional seed production
rates, the statistical regression for observed germination frac-
tions suggests that we are not fully capturing variance in
yield and reproductive values. Thus, discerning these biologi-
cal uncertainties and modelling them will be an important step
toward understanding the reasons why desert annuals hedge
their bets as much as they do. Moreover, our ESS model can
be a significant springboard to predicting germination rates
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for desert annuals: not only can one fine-tune the ESS estimates
we have predicted by incorporating variable factors such as
temperature and predation, one may also use this same ESS
machinery to predict germination rates of desert annuals out-
side of the 10 studied here. Finally, as 30 years of data did
not capture the whole picture in mean and variation in precipi-
tation, it will be equally important to investigate how
differences in either of these affect ESSs.

Data accessibility. All measured quantities for this study can be found at
Dr Lawrence Venable’s Desert Annual Archive (http://www.eebweb.

CSV files are both available via GitHub (https://github.com/
wscuello/ESSDesertAnnuals).

Authors” contributions. W.S.C. and S.J.S. conceived of the study and devel-
oped the model and analytical methods. All authors gave feedback
on the model and methods and were involved in the interpretation
of the results. W.S.C. carried out the statistical analysis and model
simulations. W.S.C. and J.R.G. wrote the manuscript. All authors
contributed to content and editing of the manuscript.

Competing interests. We declare we have no competing interests.

Funding. This work was supported by the NSF (IOS 1456724 to A.S.
and DMS 1313418 and 1716803 to S.J.S.).

Acknowledgements. We thank Dr Larry Venable for the demography and

arizona.edu/faculty /venable/LTREB/LTREB%20data.htm).

R and precipitation data.

References

1. Slatkin M. 1974 Competition and regional environmental changes. Ecol. Lett. 14, 1183—-1190.  23. Kistenmacher M, Gibson JP. 2016 Bet-hedging
coexistence. Ecology 55, 128—134. (doi:10.2307/ (doiz10.1111/ele.2011.14.issue-12) against larval herbivory and seed bank mortality in
1934625) 13. Ellner S. 1985 ESS germination strategies in the evolution of heterocarpy. Amer. J. Bot. 103,

2. Seger J, Brockmann HJ. 1987 What is bet-hedging? randomly varying environments. |. Logistic-type 1383—1395. (doi:10.3732/ajh.1600078)

Oxf. Surv. Evol. Biol. 4, 182—-211. models. Theor. Popul. Biol. 28, 50—79. (doi:10. 24. Horst JL, Venable DL. 2017 Frequency-dependent

3. Schreiber SJ. 2015 Unifying within- and between- 1016/0040-5809(85)90022-X) seed predation by rodents on Sonoran Desert winter
generation bet-hedging theories: an ode to 14. Ellner S. 1987 Alternate plant life history strategies annual plants. Ecology 99, 196—203. (doi:10.1002/
J.H. Gillespie. Am. Nat. 186, 792—796. (doi:10. and coexistence in randomly varying environments. ecy.2066)

1086/683657) In Theory and models in vegetation science (eds 25. Kalisz S. 1986 Variable selection on the timing of

4. Tuljapurkar S. 1990 Delayed reproduction and IP Prenice, E van der Maarel), pp. 199—208. Berlin, germination in Collinsia verna (Scrophulariaceae).
fitness in variable environments. Proc. Nat/ Germany: Springer. Evolution 40, 479—491. (doi:10.1111/ev0.1986.40.
Acad. Sci. USA 87, 1139—1143. (doi:10.1073/pnas.  15. Groom MJ. 1998 Allee effects limit population issue-3)

87.3.1139) viability of an annual plant. Am. Nat. 151, 26. Tielborger K, Valleriani A. 2005 Can seeds predict

5. Hairston Jr NG, Munns Jr WR. 1984 The timing of 487—-496. (doi:10.1086/286135) their future? Germination strategies of density-
copepod diapause as an evolutionarily stable strategy. ~ 16.  Diekmann 0. 2002 A beginners guide to adaptive regulated desert annuals. Oikos 111, 235244,
Am. Nat. 123, 733—-751. (doi:10.1086/284236) dynamics. Banach Center Publications 63, 47— 86. (doi:10.1111/0ik.2005.111.issue-2)

6. Menu F. 1993 Strategies of emergence in the 17. Mullahy J. 1986 Specification and testing of some 27. Dyer AR, Fenech A, Rice KJ. 2000 Accelerated
chestnut weevil Curculio elephas (Coleoptera: modified count data models. J. Econometrics 33, seedling emergence in interspecific competitive
Curculionidae). Oecologia 96, 383—390. (doi:10. 341-365. (doi:10.1016/0304-4076(86)90002-3) neighbourhoods. Ecol. Lett. 3, 523—529. (doi:10.
1007/BF00317509) 18. Benaim M, Schreiber SJ. 2009 Persistence of 1046/j.1461-0248.2000.00187.x)

7. Crump ML. 1981 Variation in propagule size as a structured populations in random environments. 28.  0oi MKJ, Auld TD, Denham AJ. 2009 Climate change
function of environmental uncertainty for tree frogs. Theor. Popul. Biol. 76, 19—34. (doi:10.1016/j.tph. and bet-hedging: interactions between increased
Am. Nat. 117, 724-737. (d0i:10.1086/283755) 2009.03.007) soil temperatures and seed bank persistence. Glob.

8. Charpentier A, Anand M, Bauch CT. 2012 Variable 19.  Chesson P, Ellner S. 1989 Invasibility and stochastic Change Biol. 15, 2375—-2386. (d0i:10.1111/gch.
offspring size as an adaptation to environmental boundedness in monotonic competition models. 2009.15.issue-10)
heterogeneity in a clonal plant species: integrating J. Math. Biol. 27, 117—-138. (d0i:10.1007/ 29. Dalling JW, Davis AS, Schutte BJ, Elizabeth AA. 2011
experimental and modelling approaches. J. Ecol. BF00276099) Seed survival in soil: interacting effects of predation,
100, 184—195. (doi:10.1111/jec.2011.100.issue-1) 20. Angert AL, Horst JL, Huxman TE, Venable DL. 2010 dormancy and the soil microbial community. J. Ecol.

9. Cohen D. 1966 Optimizing reproduction in a Phenotypic plasticity and precipitation response in 99, 89—-95. (doi:10.1111/jec.2010.99.issue-1)
randomly varying environment. J. Theor. Biol. 12, sonoran desert winter annuals. Amer. J. Bot. 97, 30. Gremer JR, Kimball S, Angert AL, Venable DL,
119—-129. (doi:10.1016/0022-5193(66)90188-3) 405—-411. (doi:10.3732/ajh.0900242) Huxman TE. 2012 Variation in photosynthetic

10.  Venable DL. 2007 Bet hedging in a quild of desert ~ 21. Kimball S, Gremer JR, Angert AL, Huxman TE, response to temperature in a guild of winter annual
annuals. Ecology 88, 1086—1090. (doi:10.1890/ Venable DL. 2012 Fitness and physiology in a plants. Ecology 93, 2693 —2704. (doi:10.1890/12-
06-1495) variable environment. Oecologia 169, 319—329. 0006.1)

1. Gremer JR, Venable DL. 2014 Bet hedging in desert (doi:10.1007/500442-011-2199-2) 31. Huxman TE, Kimball S, Angert AL, Gremer JR,
winter annual plants: optimal germination 22. Huang Z, Liu S, Bradford KJ, Huxman TE, Venable Barron-Gafford GA, Venable DL. 2013 Understanding
strategies in a variable environment. Ecol. Lett. 17, DL. 2016 The contribution of germination functional past, contemporary, and future dynamics of plants,
380-387. (doi:10.1111/ele.2014.17.issue-3) traits to population dynamics of a desert plant populations, and communities using Sonoran Desert

12. McNamara JM, Barta Z, Klaassen M, Bauer S. 2011 community. Ecology 97, 250—261. (doi:10.1890/ winter annuals. Amer. J. Bot. 100, 1369—1380.

Cues and the optimal timing of activities under

15-0744.1)

(doi:10.3732/ajb.1200463)

€1978107 98T § 70 'Y 2044  qdsi/jeuinol/biobuysijgndAiaposiefo H



	Predicting evolutionarily stable strategies from functional responses of Sonoran Desert annuals to precipitation
	Introduction
	Model and methods
	Bet-hedging model
	Modelling low-density yield from precipitation: the reproductive hurdle
	Predicting ESS values

	Results
	Reproductive hurdle model
	Predicted ESS values
	Factors shaping bet hedging

	Discussion
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgements
	References


