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Abstract—1It has long been a challenging problem to design
algorithms for Markov decision processes (MDPs) with continu-
ous states and actions that are provably approximately optimal
and can provide arbitrarily good approximation for any MDP.
In this paper, we propose an empirical value learning algorithm
for average MDPs with continuous states and actions that
combines empirical value iteration with n function-parametric
approximation and approximation of transition probability dis-
tribution with kernel density estimation. We view each iteration
as operation of random operator and argue convergence using
the probabilistic contraction analysis method that the authors
(along with others) have recently developed.

I. INTRODUCTION

Sequential decision making under uncertainty problems
are often formulated as Markov Decision Processes (MDPs)
[14]. Various dynamic programming algorithms are available
for discrete state spaces [2]. For continuous state space,
techniques like state aggregation and function approximation
have to be used [3], [11]. MDPs with average reward
criterion require certain restrictions on the underlying in-
duced Markov chains to establish the existence of stationary
optimal policies [1]. In the discounted setting, the Bellman
operator is contractive with respect to sup-norm. For the
averaged case, contractive property only holds with respect
to a semi-norm.

For MDPs with finite state and action spaces, an extensive
study on the existence and structural properties of optimal
policies as well as algorithms to compute such policies are
available [14]. But computing optimal policies is generally
a challenging problem when state and action spaces are
uncountable. One idea is to quantize such spaces with a finite
grid and constructing a reduced discrete model with a new
transition probability and reward function. For example, in
[13], a meta-MDP is constructed through state-aggregation
method. Similarly, [12] constructs an ‘artificial’ MDP using
kernel averaging. In [15], a discrete MDP is constructed for
continuous MDPs with when the rewards are not bounded.

In this paper, we consider continuous MDPs when we do
not know the transition kernel. Hence unlike previous works,
discretization of state and action spaces is not possible. We
only have access to samples of next states and thus propose
a sampling based algorithm. We define an approximate
Bellman operator which uses the density estimated by these
samples. Another key element in our algorithm is non-
parametric function approximation. Although we work with
nearest neighbor function approximation in this paper, it can
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be extended to other non-parametric function fitting methods
as long as it is non-expansive and uniform convergence is
obtained.

Our theoretical analysis is based on the idea of viewing
each iteration of the algorithm as application of a random
operator. The notion of probabilistic contraction and prob-
abilistic fixed points have been introduced in [8], [6], [9],
[17], [18]. In particular, [6], [17] uses truncation which
requires the knowledge of contraction coefficient. This may
not be easy to compute for continuous state and action
spaces. The convergence was argued via construction of a
Markov chain that stochastically dominates the norm of the
error introduced due to the approximation. Since, they were
either working with discounted setting or had a truncation
operator, the iterates of the algorithm were bounded. Hence,
the dominant Markov chain was on a finite state space for
which the invariant distribution was easy to analyze. In [7],
this was extended to unbounded iterates by constructing
the Markov chain on the set of natural numbers and then
analyzing the invariant distribution under some conditions.
This argument for convergence of random contraction to
probabilistic fixed point is used in [16] for MDPs with
continuous state and discrete action spaces. In this paper,
we extend the empirical framework to continuous action
spaces by optimization via sampling. Similar to [16], we use
nearest neighbors for function approximation. For nearest
neighbor function approximation, [5] provides a uniform
convergence under Lipschitz continuity assumption of the
regression function. This requires us to have MDPs with
Lipschitz continuous transition and reward function.

The main contribution of this paper is to introduce a
randomized off-policy (relative) value learning algorithm for
computing optimal policies for non-parametric continuous
MDPs with average reward criterion when the transition
kernel is unknown. We do not discretize the spaces or work
with a reduced model. Instead, we propose a sampling-based
algorithm. We also provide theoretical guarantee for the pro-
posed algorithm under the random operator framework which
can easily be extended to other regression techniques if they
have non-expansive property and uniform convergence.

The rest of the paper is organized as follows. Section
IT presents some preliminaries. The algorithm combining
the approximate operator with function approximation is
presented in Section III. The theoretical analysis is then
presented in Section IV.



II. PROBLEM FORMULATION

Consider an MDP (X,U,r, P) where X is the state
space and U is the action space, r : X x U — R is the
reward function and P is the transition kernel. The transition
probability kernel is given by P(:|x,u), i.e., if action u is
executed in state z, the probability that the next state is in
a Borel-measurable set B is P(X;y1 € B|X; = x,us = u).
For a stationary and deterministic policy m : X — U, we
are interested in maximizing the long-run average expected
reward defined as
T—1

Zr(xt,ut)

t=0

- R |
J (x)thrgloréf?E

Ty =X, U = ’/T($t)‘| .

Let J*(z) = sup, J™(z). A policy 7* is said to be optimal
if for all z € X, it satisfies J™ () = J*. Let C(X) be the
set of continuous and bounded functions over X. For each
f € C(X), define

|f(y) — f(2)]
ly =l

Lip(&X') denotes the set of all Lipschitz continuous functions
on X, ie.,

Lip(X) = {f € C(X) : || flluip < 00}

We now make the following assumptions.
Assumption 1: (a) X and U are compact subsets in R
and R respectively. Furthermore, U/ is convex.
(b) For every (z,u), |r(x,u)| < rmax and for every u,
r(-,u) is Lipschitz continuous.
(c) For every u € U, transition kernel P(-|x,u) has a pos-
itive Radon-Nikodym derivative, p(y|x,u) with respect
to Lebesgue measure, A\ on R?, for all z,y € R%.
(d) The transition probability density is Lipschitz contin-
uous in the present state, i.e, for all u € U and
x,y,z € X, there exists Zp(z) such that

= p(zly,u)| < Ly(2)||lz — yl|

where [, Ly(2)A\(dz) = L,
(e) There exists o < 1 such that

[ fllip =

sup
(z,y)eXxX

p(z], u)

Sup HP(|I,U) - P('|xl7u/)HTV =2«
(zu), (2’ ,u)
where || - ||y denotes the total variation norm.

(f) The reward and the transition kernel are Lipschitz
continuous with respect to the action i.e., there exist
constants L, and L, such that for all (z,u,u’) €
X xU xU and a measurable set B of X, the following
holds

—r(@,u)| < Leflu — ||
P(Blz,u')] < Lyllu —u'||

r(, u)

|P(Blz,u) —

Assumption 1(b) establishes that for every a, r(-,u) €
Lip(X), (c) and (d) imply that if v € Lip(X) then for
any action u, [v(y)P(dy|-,u) € Lip(X); (e) implies that
under any stationary and deterministic policy, ¢-step transi-
tion probability converges to a unique invariant probability
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measure (over the state process {z;}) in total variation norm,
uniformly in = and at a geometric rate. The last assumption is
Lipschitz continuity of reward and transition kernel in action
variable. The compactness of action space combined with
Lipschitz continuity implies that the greedy policies do exist.
Under these assumptions, there exists (J*,v*) € R x C(X)
such that the following optimality equation holds:

{r(x,u) +/v*(x’)P(dac’|x,u)}. (1)

Define the Bellman operator T : C(X) — C(X) as

J* +v*(x) = sup
ueU

/
TU(.%‘) = rq?gb)[{ [r(m,a) + EI/NP(.‘z’u)’U(JI )] .
Hence, J* = Tv* — v*. Note that v* is unique upto a
constant.

Iteration on a Quotient Space.: Let us now define
the span semi-norm and the quotient space. For a function
feC(Xx), span(f) := sup, f(x) — inf, f(z). Clearly, this
is a semi-norm and for the constant function f, we have
span(f) = 0. Let us now define an equivalence relation ~
on C(X) defined by f ~ g if and only if there exists a
constant ¢ such that for all + € X, f(x) — g(z) = c. Let
C(X) =C(X)/ ~ be the quotient space. The following then
is not difficult to show for the quotient space.

Lemma 1: [16] (C(X), span) is a Banach space.
Furthermore, we can show that the operator T is a contrac-
tion in the span semi-norm. The next theorem is from [10].

Theorem 2: [10] Suppose that Assumptions 1 hold. Then,
operator T' : C(X) — C(X) is a span-contraction operator,
ie.,

span(Tvy — Tg) < aspan(vy — vg)

where v1,v9 € C(X) and « is defined in Assumption 1(c).
Now considgr av € C(X), and let ¥ be the corresponding
element in C(X) and T : C(X) — C(X) defined as T% =
Tv. Since T is a span-contraction, then so is T which by
Banach fixed point theorem has a unique fixed point, which
can be found by a simple iterative procedure on the quotient
space that is easy to translate into an operation on the original
space.

A. Approximate Bellman operator

In this paper, we assume that the transition kernel is
unknown but for a given state-action pair, we can get
samples of the next state from the generative model. Us-
ing these samples, we approximate the dynamics by non-
parametric density estimation. We begin with a smoothing
kernel £ : X — R defined as any smooth function such
that [ K(z)dz =1, [2K(z)dz =0 and [ 2*K(z)dz < oo.
Assume that for any (z,u) € X x U, we have access to
M independent and identically distributed samples Y, ~
P(-|lz,u), i = 1,2,... M. Let hps be the bandwidth, then
the kernel density estimator is defined as

Y(lfu
- ( )

pM(y|$ U



For instance, the kernels commonly used are the Gaussian

kernel, K(z) = \/%exp(—||x||2/2) and tophat kernel,
K(z) = 4I(||=|| <1) where I is an indicator function.

In this paper, we focus on Gaussian kernels so that the
Lipschitz property is preserved. The bandwidth, i, controls
the smoothness of estimation and hence, neq@s to be chosen
carefully. Let the estimated distribution be Pps. Let us now
define an approximation of Bellman operator Ty : C(X) —
C(X) as follows:

Tav(z) = max |r(z,u) + E

=7 1/~13M('\m>u)v(xl)

Clearly, ZFM is a random operator. Let ap; be the random
variable defined as

sup  ||Pa(|w,u) — Py (|2, o) ||y = 28

(z,u),(z’,u’)
Then one can show that for all vy, vy € C(X)
span(val - vag) < ays span(vy — vg)

We analyze probabilistic contraction of the approximate
Bellman operator, T by arguing that &y < 1 with high
probability (as presented in detail in Section IV).

Note that in the operators defined previously, we have
optimization over the action space. In this paper, we consider
optimization via sampling. This means for a given state
r € X and sample sizes M and L, we first sample L actions
uniformly from ¢/ and then generate )M samples of next
state (for each sampled action). This leads us to define an
approximate Bellman operator Ty 1, : C(X) — C(X) as

max

TILLL v(x) - U, U2,... UL,

r(z,w) + Em/~ﬁM(-|x,u,,)”(x,)] .

B. Nearest neighbor function approximation

Let us now define a function space 7 = {f : X — R}.
Let IT £ be the function approximation operator which maps a
bunch of samples to a function in the space F. While various
non-parametric function spaces can be considered, we will
choose nearest neighbors (NN) for function approximation
(other non-parametric function approximation methods, e.g.,
kernel regression, etc. will also work). n—NN is a powerful
yet simple approach in non-parametric regression. Suppose
that we have N samples, {(x;, f(z;))}};. In this case, we
first fix z € X and reorder the samples {x1,xzs,... 2N}
according to increasing distance of xz; from z. Let the
reordered samples be {x(;} for 1 <i < N. Now we pick
n nearest neighbors and estimate the function as

I 1 ~
[H]-‘f } z)=—) [f(z@m)
(@) =~ ; (@)
Thus, it allows to reconstruct a function from some fi-
nite samples. Note that the function approximation operator
IIx(N,n) depends on both the sample size and number of
nearest-neighbors used. Moreover, since this is an averaging
operator, we can argue that this is non-expansive mapping
with respect to sup-norm.
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C. Random contraction

In this section, we introduce the definition of random
contraction operator and fixed points in probabilistic sense as
provided in [8], [16]. Consider a function space F with norm
||-[|- Suppose there is a contraction operator H : F — F. Let
Hpy be the approximation of operator H via finite samples
N. R

Definition 1: An operator Hy : F — F is said to be a
random contraction operator with respect to norm || - || if
there exists a random variable 3 such that 8 < 1 with high
probability and the following holds for all f,g € F:

I £ — A gll < BIf — gl
Suppose that HY, denote that the iteration of operator k
times, we now define a weak probabilistic fixed point.
Definition 2: A function f € F is a weak probabilistic
fixed point for a sequence of random operators { Hx} with
respect to a given norm || - || if

lim lim P(Hﬁ]]il fo—fll>¢)=0
N —o00 k—o00

for all fy € F.
Based on the above definition, one can also define an (e, §)-
weak probabilistic fixed point.

III. ALGORITHM AND THE MAIN RESULT

We now present the Random Empirical Relative Value
Learning (RERVaL) algorithm, a non-parametric off-policy
algorithm for MDPs with continuous state and action
space. It is a sampling-based algorithm combined with non-
parametric density estimation and function approximation.
It first samples the state and action space uniformly and
estimates the probability density for each sampled state
and action. Then, the approximate Bellman operator gives
samples of value function which are then used for regression.

Recall that in relative value iteration, there is a bias
subtraction at each iteration. This does not change the span
norm but keeps the iterates bounded. In our algorithm, we
make our samples for regression non-negative by subtract-
ing the minimum of the function. Since the optimal value
function is unique up to a constant, we are choosing a non-
negative optimal value function. This makes the samples for
regression non-negative. Let the number of state samples be
N, number of action samples be L, next state samples be M
and number of neighbors for function approximation be n.
Let 'y : RY — RY be an operator such that

I'y? =7 —min?' 1x

where 1, is a vector ofA all ones of size N. Let us denote the
composed operator by G(N, L, M,n) = II%I'y T, 1, where
we use the fact that the function approximation depends
both on N and n. Algorithm 1 will iterate the random
operator G(N, L, M, n) (or just G for compact notation), i.e.,
Vg1 = G v = G* vg. Using the non-expansive property of
NN regression, we will establish that the composed oper-
ator G is a contraction with high probability (probabilistic
contraction).



Now, we specify the RERVaL algorithm in detail. We first
sample N states from X uniformly followed by sampling
L actions from U . Then, perform an ‘approximate’ value
iteration step on these sampled points by estimating the
density via mini-batches of next states. Then, we do function-
fitting using nearest neighbors, which gives us the next iterate
of the value function.

Algorithm 1 RERVaL
Input: sample sizes N, L,M,n > 1; initial seed vp; total
iterations K > 1.
Fork=1,...,K
1) Sample {xl}f\il from X’ uniformly
2) Sample {u;; }le from U uniformly foreach1 <i < N
3) Kernel density estimation pas(-|x;, u;;) for each 1 <
t<Nand 1 <5< L R
4) Approximate value iteration: 0, (z;) < Ta,rVk—1,
V() <= Uy, (25) — min,, vy, fori,j =1,2,...,N
5) Function approximation: vy < II£Uy.
6) Increment k£ < k + 1 and return to Step 1.

We can now establish that the iterates of the algorithm,
v converge to a weak probabilistic fixed point of the
operator G(N, L, M,n) = II'+T'x Ty, and hence a good
approximation to v*, the fixed point of 7" in the span semi-
norm with high probability if N, L, M, n and k are large
enough.

Theorem 3: Suppose that Assumptions 1 and 2 hold.
Given €,0 > 0, there exist constants B and C' such that

f
or any o .
> log ( > ,

8BC

€

2

0

16BC

€

N Z N()(E,&)

N € ¢
nzmle)=5\150) ™
du
Ly=L,+ BL,)di u 1
L> Lo(e,6) = (( U + B L,) diam( )) log - .
€ 1)
we have

lim lim P(span(vg —v*) >¢€) < 4.
M—00 k—o00

Note that the nearest neighbors scale very poorly with
dimension which is reflected in our bounds. This can be made
better by using kernel regression (e.g., Nadaraya-Watson
kernel regression). Furthermore, the dependence on next state
sample size M is due to asymptotic convergence of kernel
density estimation.

IV. ANALYSIS: PROOF OF THEOREM 3

In this section, we prove Theorem 3. There are three
approximations in RERVaL.: first one due to sampling, second
one due to density estimation and lastly due to function
fitting. We first bound the error due to these approximations.
As mentioned before, each iteration of RERValL can be
viewed as iteration of a random operator, we then bound
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the error in one iteration. In the end, we use a stochastic
dominance argument to argue convergence.

Error due to optimization via sampling: Let the Q-value
function be Q(x,u) = r(x,u) + YEyzwp(|z,uv(z’) for all
v € C(X). We now argue that if the value function v is
bounded by B then the ()-value function is L -Lipschitz
continuous in action variable where Ly = L, + B L,,. For
all (z,u,u’) € X xU xU

Q(z,u) = Q(z,u/)|
< r(@,u) = r(z, o) + /X |(P(dylz,u) — Pdy|z, u')) v(y)|

SLAu—w++B/WPMMauy—Pwm%wn
X
< (L, +BLy) Ju |

where the last inequalities follow from Assumption 1. Now
since v € C(X) and X is compact, there exists a constant
B such that |[v(z)| < B for all z € X'. Let us also define a
(random) operator, 77, as follows

Tpv(x) = womax r(@, ) + VB p(fn0(2)]

The next lemma bounds the error due to sampling for finding
the best action. The proof is given in the appendix.

Lemma 4: Choose ¢ > 0 and ¢ € (0, 1). Let diam({/) be
the diameter of the action space Y. Then for all v € C(X)
if L > Lo(e,d) then

P (|Tv(x) — Ty o(z)| > e) <5

for all z € X.

Proof: Let f(u) = r(x,u) +vEzv(a’) for a given z €
X. Let v* be the maxima. Let the ball centered at » and
radius 7 be B (u, r). Now, the volume of this d/- dimension
ball is vol(B (u,r)) o r%. Let U, = {u € U : f(u) <
max, f(u)—e}. Moreover, let U, 1, = {u € U : ||[u* —u| <
¢/Ly}. Since f is Ly-Lipschitz, u ¢ Uy = u & Ue 1,
Hence,

(U, 1,
Pl flhsy) =1 - ke
du
€
=1- <LU diam(U)) @

where the last inequality follows from Lemma 5.2 in [19]
and diam(U) = sup,, .,/ ||u — u'||. Now,

P(ﬂM> )=1—Pmﬁﬁm¢m9
1P ({u £ U
> 1 P({ur ¢ Uy ]

where the second equality is due to the fact that
{ui,ug...ur} are iid. and the last inequality follows
Lipschitz continuity of the function f. Now, using (2) we

have
duy
)21 1( <uo

- jax f(ug)

L

P () - g, S .

L, diam(UA)



1
) and using 1 —z <

Putting (L diam u)> —log (5

(’LL* — maxi<i<r f(ul)) > ¢ for the
choice of L. ]

Error due to density estimation: We first want to
establish that when M is large enough, aj; < 1 with high
probability. Let us now recall that L, distance between any
two densities p and v over X is given as:

= vl = /X 1(z) — v(z)| da

If we can bound the L; norm, we get a bound on total-
variation norm as well since if [|u — v|dz < & then
|u(B) —v(B)] < ¢ for all B. Next, we present convergence
of estimated density to the true density in L; norm as shown
in [4] which needs the following assumptions:
Assumption 2: 1) Let X : R? — R such that
J K(z)dz =1 and L(y) = sup, >, K(z) for y > 0.
2) hyy is a sequence of positive numbers such that by — 0
and M hd, — oo as M — oo.
3) The density p(-|z,u) is almost everywhere continuous
for all (z,u) € XxU and ||z||¢ K(x) — 0as ||z| — oc.
Proposition 1: Let IC be a smoothing kernel such that As-
sumption 2 holds, then the following holds with probability
L,

e~ ", we have P(f

lim ||P(:|z,u) — Pa(-|z, u)|1 = 0.

M —o0

for all (z,u) € X x U.
This now leads to the following lemma:

Lemma 5: Assume that Assumption 2 holds then for any
5 €(0,1—a),

. a>1_ _
JMllinoo ]P)(Oé]w = 1 5) 0

Proof: The proof is a direct application of Proposition
1. For any (z,u), (z',u’) € X x U,
Pl u)lrv

< Par(l2,w) = P(|a, w)|rv
= Pl ) lov + (| P(fa,w) —

1P (|2, w) =

+ 1P|, )

Using ergodicity of transition kernel as mentioned in assump-
tion 1(e) and Proposition 1, we conclude the lemma. |

Error due to function approximation with nearest neigh-
bors.: In the previous section, we had defined I ; for vectors
in RY but it can be extended to X as I' : C(X) — C(X)
defined as I' f = f — min f. Let gp; : X — R be such that

s )= | {04 By gy @)}

for any value function v € Lip(X).
furp: X = Rand far 0 X = R via

o,z () and  farr (z) = E[T garz]

fM, 1 1s the regression function. It is the expected value of
our approximate estimator of T'v. As expected, fnr,, — Tv

max
U1,U2,--- UL

Now, we define

=E [gM,L]

P(|2" ")y
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as M, L — oo. We note that fj; 1, is not necessarily equal
to T'v by Jensen’s inequality.

In the next lemma, we show that we can make the
bias between the regression function fas s and the Bellman
update 7" v arbitrarily small uniformly over x € X when M
and L are large enough.

Lemma 6: Under Assumptions 1 and 2, if L > Ly(e, 6)
then for any ¢ > 0, following holds

i - <
Jim ([ farn = Toll <€

with probability at least 1 — §.
Proof: For any z € X', we compute

| far,L (x)
<|fum, ()

—Tv(z)]

— T (@) | +|Tpo (z) — T (x) |

Let us now bound the first term:

\far,r () = Tpo (2) |
— /
SE[ ul’I’g%%ﬂL {T (I7 ul) T EWNPM(“LUZ)U (17 )}
- uy Iuléaqu {T' (x7 Ul) + Ex’NP(- ‘ T, up) [U (I'/)]} H

<E

max
UL,U2,...U

|

Note that the value function v is a continuous function on
a compact set X' hence sup,cy v(z) = [[v]|ec < oc0. Let
the action which maximizes the inner term be u}, then by
Jenson’s and Cauchy-Schwartz inequalities we have

B, a? (@)~ B oy [0 0]

L

i | farz (2) = Tpo (2) |

<ol Jim | [ [Pl o)
—p(x’|x,u;)’)\(dx’)]

Using bounded convergence theorem and Theorem 1, this
term vanishes. The second term can be bounded by Lemma
4. u

The next lemma is from [5] which presents the rate of
convergence in sup-norm for nearest neighbor regression.

Lemma 7: Suppose for a value function v € Lip(X), there
exist constants B and C such that ||v||.c < B and the
regression function fj; is Lipschitz with constant C for any
M and L, then for §, ¢ > 0, N > Ny(e,d) and n > ng(e),
we have

lim ]P)(”G’U - f]w L”oo Z 6) S 0.

M —o00



One-step error analysis of the random operator: The
following lemma provides a probabilistic bound on the one-
step error of the RERVaL., which points out that the error in
one iteration can be controlled if the samples are sufficiently
large.

Lemma 8: Given v € Lip(X), e > 0, and § € (0, 1).
Also choose N > Ny(e,0), n > ng(e) and L > Lg(e, d),
Then, we have

lim ]P’(span(év —Tv) >€) <.
M—o0
Proof:
By the triangle inequality,

span(av —Tv) < span(av - vayL) + span(favp — T o)

where the last inequality follows from the fact that
span(far— far) = span(E[Lgar, . — g, z]) = 0. Combining
with Lemma 6 and 7 concludes the proof. [ ]
Next we establish that it is indeed a random contraction.

Lemma 9: For a given N,M,n > 1, the operator
@(N, L,M,n) = II*T'n ZA“MVL is a random contraction
operator, i.e, for any vy, vy € C(X),

span(évl - é?}g) < ay span(vy — v9)

where ajs is a the random contraction coefficient.
The proof is similar to Lemma 4.6 in [16] and hence omitted.
Stochastic Dominance.: The following lemma is from
[7] which enables us to analyze iteration of the composed
operator.
Theorem 10: Assume that the following holds:

1) T : C(X) — C(X) is a contraction operator in span
norm with contraction coefficient o < 1.
2) For any v € Lip (X'), we have

lim }P’(span(év —Tv) >¢€) =0.

M,N,L,n—o0

3) Let ajs be the contraction coefficient of G such that
for § € (0,1 — ),

lim P(ay >1-06)=0.

M— o0

4) There exists w > 0 such that spcm(é v —=Tv*) <w
almost surely.

Then, v* is weak probabilistic fixed point of random operator

~

G(N,M,n).

Sketch of the proof: The key element in the proof is
stochastic dominance of a Markov chain (over natural num-
bers) on the error process {span(vi — v*)}r>0. Recall that
vp = G o1, we decompose the process as

span(vy, — v*) < span(Gvj_, — Gv*)
+ span(Gv* — Tv*)
< ay span(vg—1 —v*)

+ span(Gv* — Tw*)
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For for all v € Lip(X), let us now define for ¢ > 0,9 €
(0,1 -a),n,N,M > 1,

q(e,é,N,M,n)éIP’(aMgl—é, 3)
span (év — TU) < 6)7
which we will denote by g. By Hoeffding-Frechet bound,
qg>P(ay < 1—6)+P(spcm(@v—Tv) < e) -1
Fix kK > 0,e € (0,/2], € (0,1—) such that n = [2/0] <

k /e, a Markov chain is constructed over natural numbers as
follows:

n wp. qifYy=n
Ye =< Y. 1 wp. qif Yy >n+1
Vi1 4 [w/e] wp. 1—g

The next step is to show that this Markov chain stochastically
dominates the error process. Let us first define stochastic
dominance:

Definition 3: Let X and Y be two random variables, then
Y stochastically dominates X, written X < g Y , when
P(X >0) <P (Y > 0), for all § in the support of Y.

This yields for any ¢ > 0,

P(Yy > t) > P(span(vg — v*) > t)

Now it remains to show that the Markov chain admits an
invariant distribution which concentrates at state 1 when the
samples are sufficiently high.

Proof: [Proof of Theorem 3] Now we apply Theorem
10. Note that the first assumption in the theorem is satisfied
by the ergodicity condition assumed in Assumption 1. The
second and the third assumptions are satisfied by Lemma
8 and Lemma 5 respectively. The fourth one follows from
bounded rewards and the fact that v* is a fixed point of
operator T'. Hence, Theorem 10 can be applied to conclude
the convergence. [ ]

V. CONCLUSION

In this paper, we presented an approximately optimal,
offline batch algorithm for continuous MDPs with average
reward criterion. Instead of discretizing the continuous state
and action spaces, we propose a sampling based algorithm.
This allows us to deal with scenarios when the MDP is
unknown but there is generative model available. The sam-
ples from generative model are used to approximate the
dynamics via density estimation. To generalize over state
space, we use nearest neighbor function approximation. The
proposed algorithm is viewed as iteration of random operator,
a composition of approximate Bellman operator and nearest
neighbor approximation. The analysis is through stochastic
dominance argument which in turn gives us a convergence
in probability.
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