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Abstract— We propose an empirical relative value learn-
ing (ERVL) algorithm for non-parametric MDPs with con-
tinuous state space and finite actions and average reward
criterion. The ERVL algorithm relies on function approx-
imation via nearest neighbors, and minibatch samples for
value function update. It is universal (will work for any
MDP), computationally quite simple and yet provides arbi-
trarily good approximation with high probability in finite
time. This is the first such algorithm for non-parametric
(and continuous state space) MDPs with average reward
criteria with these provable properties as far as we know.
Numerical evaluation on a benchmark problem of optimal
replacement suggests good performance.

I. INTRODUCTION

Real-time decision making in uncertain environments
are often modeled as Markov Decision Processes (MDPs)
[13]. For infinite-horizon MDPs, while there are many
reinforcement learning (RL) and approximate dynamic
programming (ADP) algorithms available [12] for the
discounted rewards criterion [3], the average rewards
criterion is harder. Indeed, MDPs with average reward
criterion are more difficult to analyze because establishing
the existence of stationary optimal policy itself requires
some restriction on the underlying Markov chains [1]. Ap-
proximate DP and RL for continuous state space MDPs is
even harder, and mostly an art form. Different techniques
(state space aggregation and function approximation [4])
and algorithms work for different problems but universal
algorithms that work for any problem are unavailable.
A popular RL algorithm for continuous MDPs is fitted
value iteration (FVI) [10] which is quite effective for
many problems but requires that we choose a set of
basis functions appropriate to the problem for good
approximation. Unfortunately, such a choice is an art-
form, and given the complexity of such problems in the
real world, we may not even be able to tell how well it
is working.
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The goal of this paper is to introduce an off-policy
empirical (or approximate), (relative) value learning algo-
rithm for computing optimal policies for non-parametric
MDPs with continuous state space and average reward
criterion. Specifically, we aim to design RL algorithms
that are universal (arbitrarily good approximation for
any MDP), computationally simple, easy to implement
and yet we would like to have non-asymptotic sample
complexity bounds, even if the guarantees are probabilis-
tic. We would also like such algorithms to work well
numerically.

The algorithm we propose is inspired by the empirical
dynamic programming (EDP) framework [7] - an off-
policy minibatch empirical value learning algorithm for
discounted MDPs with finite state and action space.
The key idea is to replace the expectation in the
Bellman operator with a sample average approximation
obtained from a mini-batch of samples of the next
state. Convergence analysis required a random operator
framework and construction of a Markov chain that
stochastically dominates the error introduced due to the
approximation. An ERVL algorithm for average reward
MDPs was proposed in [6] but for finite state space only.
Our problem is non-parametric and substantially harder.
The second inspiration is the work on non-parametric
function approximation [5], [2]. [5] provides an uniform
convergence of nearest neighbor regression under some
smoothness assumption of the regression function. This
enables us to plug in the function fitting part, and give
guarantees in the sup-norm.

In this paper, we combine both of the above ideas
to develop the ERVL algorithm for non-parametric,
average-reward MDPs with continuous state spaces. This
requires use of non-parametric regression techniques to
generalize the value iterates on a small set of sampled
states to the entire state space. We are able to provide
finite time sample complexity bounds for the algorithm
that is near-universal (requires only minimal asumptions
on the class of MDPs we can handle) and arbitrarily
good approximation with high probability. A kernel RL
algorithm was introduced earlier where the expectation
operator is approximated by local averagers [11].
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II. PRELIMINARIES

Consider an MDP with state space X’ and action space
A. We assume that X is a compact subset in R? and
A is finite. Let Cp(X) be the set of continuous and
bounded functions over &'. The transition probability
kernel is given by P(:|z,a), i.e., if action a is executed
in state z, the probability that the next state is in a Borel-
measurable set B is P(X¢41 € B|X: = x,a; = a). The
reward function is r : X x A — R. For a stationary
policy 7 : X x A, we are interested in maximizing the
long-run average expected reward defined as
T—1

Z r(xe, ap)

t=0

N |
J (m)—lﬁlogffE

Let J* = sup, J™(z). A policy 7* is said to be optimal
if for all = € X, it satisfies J™ () = J*. We make the
following assumptions.

Assumption IL1. (a) For every (z,a), |r(z,a)] <
Tmax and for every a, (-, a) is continuous.

(b) For every a, transition kernel P(-|x, a) is continuous
in x.

(c) There exists o < 1 such that

sup ||P([z,a) = P(|’, a)|rv < 2a
)

(z,a),(z",a’
where || - ||Tv denotes the total variation norm.

Assumption II.1 (a) establishes that for every a,
r(-,a) € Cp(X), (b) implies that if v € Cp(X) then for
any action a, [v(y)P(dy|-,a) € Cg(X) and (c) implies
that under any stationary and deterministic policy, ¢-step
transition probability converges to a unique invariant
probability measure (over the state process {z;}) in
total variation norm, uniformly in x and at a geometric
rate. Under these assumptions, there exists (J*,v*) €
R x Cp(X) such that the following optimality equation
holds:

J* +v*(z) = sup {T(x, a) +/v*(z’)P(dx’|:c, a)} .

acA )
Define the Bellman operator T : Cp(X) — Cp(X) as
T = E, 1.
U(.I‘) I;'léz{ [7“(.%‘, CL) + K, ~P(~|az,a)v($ )]

Hence, J* = Tv* — v*. Note that v* is unique upto a
constant. The exact computation of the expectation in
the Bellman operator is computationally infeasible for
continuous state space for most problems. So we replace
this by a sample average approximation which leads us
to define an empirical Bellman operator T, as

To=x,a = 7T(£Ct)‘| .

where 2} ~ P(:|z,a) for i = 1,2,..., M. Note that
a} are i.i.d. It can clearly be seen that T); v is biased
estimator of T, i.e., By |Thsv # Tv.

Iteration on a Quotient Space.: Let us now define
the span semi-norm and the quotient space. For a function
f € Cp(X), span(f) = sup, f(z) — inf, f(2).
Clearly, this is a semi-norm and for the constant function
f, we have span(f) = 0. Let us now define an
equivalence relation ~ on Cp(X) defined by f ~ g
if and only if there exists a constant ¢ such that for all
x € X, f(x) —g(x) =c Let Cg(X) = Cp(X)/ ~ be
the quotient space. The following for the quotient space
then is not difficult to show.

Lemma IL.1. /6] ((?;(X)7 span) is a Banach space.

The proof is available in [6] and hence omitted.
Furthermore, we can show that the operator 7' is a
contraction in the span semi-norm. The next theorem is
from [8].

Theorem I1.2. [8] Suppose that Assumptions II.1 hold.
Then, operator T : Cp(X) — Cp(X) is a span-
contraction operator, i.e.,

span(Tvy — Tvs) < aspan(vy — va)

where v1,v9 € Cp(X) and « is defined in Assumption
IL1(c).

Now consider a v € Cp(X), and let ¥ be the corre-
sponding element in Cp(X) and T : Cp(X) — Cp(X)
defined as T'0 = Tw. Since T' is a span-contraction on
Cp(X), then T is a contraction on the Banach space
Cp(&X), which by Banach fixed point theorem implies
has a unique fixed point, which can be found by a simple
iterative procedure on the quotient space that is easy to
translate into an operation on the space Cp(X). Note
that the empirical Bellman operator 7 is not a span-
contraction since the contraction coefficient ap; in

span(val — vag) < aipy span(vy — va)

is random. But aps < 1 always, and intuitively, we
can expect that Ths probabilistically contract to a
probabilistic fixed point [7]. Indeed, we introduce the
following definition.

Definition IL1. A function v € Cp(X) is an (e, 0)-
weak probabilistic fixed point for a sequence of random
operators {G N p} with respect to a given norm || - ||
if there exist an No(e, ), My(e, ) and a Ky(e,d) such
that for all N > Ny(e,8), M > Moy(e,d) and all
k> KQ(G, (5),

P(||G% prvo — o] > €) < &
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for all vy € Cp(X).

Let us now define a function space G = {f : X — R}.
Let H]g\' be the projection operator (why indexed by N
will be clear later) which projects a function onto the
space G. While various non-parametric function spaces
can be considered, we will choose nearest neighbors for
function approximation (other non-parametric function
approximation methods for e.g., kernel regression, etc.
will also work). In each case, we can show that the
composition operator HgN Ty is a contraction with
respect to the span semi-norm. We can also establish
a probabilistic bound on the one-step error for each
such method. Furthermore, note that for any function f,

span(f) < 2| f|oc-

III. THE ALGORITHM AND MAIN RESULT

We now present the Empirical Relative Value Learning
(ERVL) algorithm, a mini-batch off-policy algorithm for
non-parametric MDPs with continuous state space. It is
an ‘empirical’ or mini-batch variant of the relative value
iteration algorithm for continuous state space MDPs. Note
that if « is the contraction parameter, then span(v*) <
L—‘g = Umax- SiNce it is not possible to argue that the
iterates of relative Q-value iteration are bounded, we
introduce the truncation operator I,

r
v—minv, if span(v) < . S
I'v:= : -
v — minv ,
—  , otherwise.
span(v)

The operator I' Ty maintains the contraction property of
Ty as I is just a projection operator[6]. With slight abuse
of notation, we will denote T, as the empirical Bellman
operator with truncation in the subsequent sections. Let
us denote the composed operator by G NM = Hg TM
Algorlthrn 1 will iterate the random operator G N,M. 1.€.,

Vg1 = GN MUE = va A00- Note that this operator
depends on the sample sizes N and M. Note that TM
probabilistically contracts, i.e., with high probability it
is a contraction. Further, we will argue that ngv is non-
expansive, which will imply the random operator G N,M
also probabilistically contracts.

Function Approximation using nearest neighbors:
k—NN is a powerful yet simple approach in non-
parametric regression. In this case, we first fix z € X
and reorder the samples {x1,x,... 2N} according to
increasing distance of z; from z. Let the reordered
samples be {z(;} for 1 < i < N. Now we pick k

nearest neighbors and estimate the function as

v(s) = % z_: 5(1))

It is worthwhile to mention that for smoother average of
the outputs, one could use kernel regression which also
scale better with dimension.

Now, we specify the ERVL algorithm. We first sample
N points from X uniformly (or according to another
probability measure). Then, perform an ‘empirical’ value
iteration step on these sampled points by obtaining mini-
batches of next states. Then, we truncate the function
at these points to ensure boundedness. Then, we do
function-fitting using nearest neighbors, which gives us
the next iterate of the value function.

Algorithm 1 ERVL
Input: sample sizes N > 1 ;
total iterations K > 1.
Fork=1,..., K

1) Sample {xn}gzl from X’ uniformly

2) Value iteration: v}, (z,) < Tavve_1 for n =

1,2,...,N

3) Truncation: v (-) = I'v(+)

4) Function fitting: vy, < ngv V.

5) Increment k <— k + 1 and return to Step 1.

M > 1; initial seed Qo;

We can now establish that the iterates of the algorithm,
) are an (e, 6) weak probabilitic fixed of the operator
G NM = Hg TM and hence a good approximation to v*
the fixed point of 7" in the span semi-norm with hlgh
probability if N, M and k are large enough.

Theorem IIL.1. Given ¢,6 > 0, choose 61,02 > 0 such
that 51 + 265 < 0. Let k* = P”%W and [y IS given
by

{iamim, = TN {5f*, (1-81), (1—61)dy, - - , (1—51)5f*—1}.

Then for any k 2 IOg (62mel )’ N 2
2d
]_6 VUmax C 2 32 Umax C
9 [ —mex log -+ dlog ——— and
€ 1)
v 16 |A|vmax
M > TOOE log ( . ), we have

P(span(vi, —v*) >¢€) <.

IV. ANALYSIS: PROOF OF THEOREM III.1

We now prove Theorem III.1. The analysis will
proceed in three steps. First, we will bound the function
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approximation error, next we bound the one-step error of
the algorithm by viewing each iteration as a random op-
erator, and then we use a stochastic dominance argument
to argue convergence and get rate of convergence.

Error Analysis: Function Approximation with near-
est neighbors.: We first define the regression function
fv X - Rvia

| M
fu(x) 2 E lmafg{r(x, a)+ i Z v(mm)}

ae

2

m=1
where x,, are the next generated given x and a. It is
the expected value of our empirical estimator of 7'v. As
expected, fy — Tv as M — oco. We note that fj; is
not necessarily equal to T'v by Jensen’s inequality.

In the next lemma we show that we can make the bias
between the regression function fj; and the Bellman
update T'v arbitrarily small uniformly over x € X
through the choice of M > 1.

Lemma IV.1. For any ¢ > 0 and M > 1,

—2 M €2
HfM *TU”oo < |:€+2A|”Umax exp <2>:| .

max

Proof. For any z € X, we compute

|far () — T (x) ]

1 M
<Elgar {00+ 57 S 0ol
— I(?ea‘i({r (Z, a) +Ex’~P(~|;c,a) [U (l‘/)]} H

M

1 ,
<E |max |M Z v (25" = Epap(|z,a) [V(2)] |1

a€A

m=1

—2Me?
< |:6 + 2 |A| Vmax €xp (E)}

Umax?

where the third one is due to Hoeffding’s inequality. [

Let us denote the number of nearest neighbors as
kn since k denotes the iteration number. We can easily
establish that H]gv in this case is a non-expansive mapping:

Mg 01 = TG V2]|oc < [[01 = V2|oo- 3)

Note that in the above equation if min?; = min v, = 0
then it also holds in span norm. The next lemma is from
[5] which presents the rate of convergence in sup-norm
for k—NN with an additional assumption of Lipschitz
continuity.

Lemma IV.2. If for any v € C(X), f is Lipschitz with

d

N €
constant C, then for 0,¢ > 0, ky = —
4vyax C

2

and

so. O\ 2 (16vmn O\
N2 Nole,§) =2 [ Z22 ) log - ( —s
€

€

then R
P(|Gnpv — furlloo =€) <0

The following lemma provides a probabilistic bound
on the function approximation error.

Lemma IV.3. Given v € Cp(X), € > 0, and § €
(0, 1). Also choose N > Ny(e€,6) and M > My(e) =
2

Umax 1o 8 |A[vmax
2(c/4)% 08 p

), Then we have

P(||Gnar v — Tolloo > €) < 6.
Proof. By the triangle inequality,
G v=T vlloo < [|Gn,ar 0= Falloo+|Lf3r =T vlloo-

Note that G ~,m Minimizes the empirical loss over
random samples. From lemma IV.2, if N > Ny(e/2,4)
then with probability 1 — ¢

IGnarv = farlloo < €/2.

From Lemma IV.1, if

2 A
M 2 Umax y IOg (8| Umax) ’
2 (¢/4) €

then || far — T v]|oo < €/2. Hence HéN,M V=T 0|l <€

with probability at least 1 — 0 if N and M are chosen
appropriately. O

One-step error analysis of the random operator.: We
now analyze iteration of the random operator Gy =
Hg fM to bound the error in one iteration. In particular,
we are interested in analyzing the stochastic process

{span(vi — v*) }k>o0.
span(vg — v*) < span(aNvak,l —Tvk_1)
+ span(Tvgp_1 — Tv")
< Span(aN,ka—l —Tvk_1)
+ aspan(vg—1 —v")
As mentioned earlier, the composed operator G N,M 1S a
probabilistic contraction in span norm. Let
p(e, N, M) £ P (span (Gn v —Tv) <e), Yv € Cp(X),
“4)
For compact notation, let us rewrite p(e, N, M) as

pn,m. Note that if span(vgy_1 — v*) = ne and if
span(GN,ka_l —Tuk_1) < ¢, then using the previous
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decomposition, we have span(vi, —v*) < (an+1)e with
probability py 7. Now let us define

n* 2 min{n e N:Jan+1] <n} = ’7120;‘
Now, to track the progress of the error process, we
construct a Markov chain which stochastically dominates
this process. The one-step probability of this chain
depends on py s as it will be clear in the following
section.
Let us now define the concept of stochastic dominance.

Definition IV.1. Let X and Y be two random variables,
then Y stochastically dominates X, written X <, Y ,
when P(X > 6) <P (Y > 0), for all 0 in the support
of Y.

The iterates of Algorithm 1 are bounded in span-norm
by ¥Umax. Choose € > 0 and let k* = [2""%] Define
the error process { Xy }x>0 as follows:

n if  ne < span(vy —v*) < (n+ 1)e
X = .
0 if span(vy—v*)=0

Next, we construct a Markov chain which stochastically
dominates the process { Xy, },>o. Similar to [7], we define
the Markov chain as follows:

*

Y. = maX{Yk_l —1,"7*} Ww.p. PN,M
e =
K 1—pN M

Note that the choice of py s is governed by the
underlying function space and the samples N and M.
Next we establish the stochastic dominance of the Markov
chain {Y}}x>0 over the error process { X} } >0 provided
that both of these stochastic processes have the same
initial state.

Lemma IV4. [7, Theorem 4.1] For all k > 0, X <4
Yy if Xo = Yo

Furthermore, process {Yj}x>o is a finite state and
irreducible Markov chain and hence there exists a
steady state distribution. The state space of this chain is
{n*,n* 4+ 1,n* +2,...,k*}. Let u denotes the steady
state distribution of the Markov chain {Y}},>o. The
steady state distribution can be computed as follows:

W) =5, p(k)=1-081, pG)=(1- 0685

V 0<i<k*and let pmi, = ming<i<px (7).

We are now ready to prove the main theorem which re-
lies on analyzing the dominating Markov chain {Y}}x>0
and its mixing time.

Proof. First recall that span(f) < 2||f||c. Since the one-
step error is bounded for Ny(e/2,01) and My(e/2) , we
construct our Markov chain {Y}, } x>0 with py s = 1—07.
Note that in (4), we defined py s for a deterministic
action-value function. But now, after iteration k, v, is
a random function. But because the samples generated
are independent across iterations, one could use (4) to
randomized functions. Let us denote the transition matrix
for {Yi}rx>0 as Py given as follows:

5 0 0 ... 0 1-6
5 0 0 ... 0 1-6
Py — 0 6 0 ... 0 1-6
0 0 O 0 1—0,

The eigenvalues of Py are 0 and 1. Then, from [9,
Theorem 12.3], we can bound the mixing time for any

do >0 as
1
; <1 .
tmz$(62) = <Og 52u*>

Using theorem 3.1 from [7], we conclude the theorem.
O

V. NUMERICAL PERFORMANCE

We now show numerical performance on a benchmark
problem of machine replacement. This problem has been
studied for discounted setting [10]. We work out the
details under average reward criterion. In this problem,
the state space is non-negative real numbers and two
actions are available in each state; keep the machine
or replace it. Let the action of keeping the machine
be denoted as 0 and replacement as 1. The transition
dynamics are given as follows:

P( /| O) ﬂexp (75(8/ - S))7 if s >s
s'ls,0) = .
0, otherwise.
Bexp(—Bs), if >0

0, otherwise.

P(s'|s,1) = {

If we decide the keep the machine, we need to pay
the maintenance cost which increases with state and for
replacement, we need to pay a fixed amount. Hence,
the reward function is given by r(s,0) = —as and
r(s,1) =—C.

The optimality equation is given as follows:

J* +v*(s) = max (Ty, T1)

where

To = —as+ /00 Bexp (—B(s" — s))v*(s')ds
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and
T, = fC+/ Bexp (—Bs") v*(s')ds’
0

One could guess that the optimal policy will be a
threshold policy, i.e., there exists a 5 such that following
holds:

0, if s<s

1, otherwise.

For s € [0, 5],

J* 4+ v(s) = —as + / " Bexp (—B(y — 5)) v (5)dy

Differentiating both sides, we have

(v*)'(s) = —a + B exp(Bs) /Oc exp (—By) v* (y)dy

— Bu*(s)
=—a+afs+ pBJ".

Recall that for s > 5, the value function does not depend
on s. Hence for s = 5, we have

J* 4+ 0"(8) = —as + f / " exp (—Bly — ) v (W)dy
= —as+ v*(3).

Hence, J* = —as. To compute 5, we need to solve the
following equation:

/SB %BS2 —as(1+ 85) | exp(—Bs)ds
0
L N

(6%
+2a§+76§2—020

For our experiments, we use § = 2/3,a = 3,C = 15.
This gives the optimality policy as 7*(s) = 0 if s <=
2.654 ,otherwise 1 and J* = —7.962. Note that one
could use any reference state instead of minimum of the
function. For each iteration k£ one can compute 7, which
is a greedy policy with respect to (). We used Gaussian
kernel K (z,y) = exp (—v(x — y)?). Fig. 1 presents the
error |J™+ — J*| against iteration kernel regression with
regularization for N = 200.

VI. CONCLUSIONS

In this paper, we proposed an empirical relative
value learning (ERVL) algorithm combined with non-
parametric function approximation. In particular, we
focused on nearest neighbors regression. The framework

——

2 4 6 8 10 12 14
Iterations

Fig. 1: Optimal replacement with nearest neighbors

developed in this paper can be extended to any non-
parametric setting as long as the function approximation
is non-expansion and convergence to regression function
can be established in sup-norm. Then, one can bound the
one-step error and use the stochastic dominance argument
to establish convergence.
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