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Abstract
We consider global optimization of nonconvex problems whose factorable reformu-
lations contain a collection of multilinear equations of the form ze = ∏

v∈e zv , e ∈ E ,
where E denotes a set of subsets of cardinality at least two of a ground set. Important
special cases include multilinear and polynomial optimization problems. The multi-
linear polytope is the convex hull of the set of binary points z satisfying the system
of multilinear equations given above. Recently Del Pia and Khajavirad introduced
running intersection inequalities, a family of facet-defining inequalities for the mul-
tilinear polytope. In this paper we address the separation problem for this class of
inequalities. We first prove that separating flower inequalities, a subclass of running
intersection inequalities, is NP-hard. Subsequently, for multilinear polytopes of fixed
degree, we devise an efficient polynomial-time algorithm for separating running inter-
section inequalities and embed the proposed cutting-plane generation scheme at every
node of the branch-and-reduce global solver BARON. To evaluate the effectiveness
of the proposed method we consider two test sets: randomly generated multilinear
and polynomial optimization problems of degree three and four, and computer vision
instances from an image restoration problem Results show that running intersection
cuts significantly improve the performance of BARON and lead to an average CPU
time reduction of 50% for the random test set and of 63% for the image restoration
test set.
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1 Introduction

Constructing strong and cheap to compute convex relaxations is key to the effi-
ciency of global optimization algorithms. Factorable programming is a widely used
methodology in global optimization of mixed-integer nonlinear optimization prob-
lems (MINLPs) for bounding general nonconvex functions [24]. These techniques
iteratively decompose a factorable function, through the introduction of auxiliary vari-
ables and constraints for intermediate nonlinear expressions, until each intermediate
expression can be convexified effectively. General-purpose global solvers such as
BARON [22], COUENNE [5], SCIP [6], LindoGlobal [23], and ANTIGONE [27],
rely on factorable programming bounds. Hence, improving the quality of these relax-
ations has an immediate impact on our ability to solve nonconvex problems to global
optimality.

Multilinear sets and polytopes Factorable reformulations of many types of MINLPs,
such as mixed-integer polynomial optimization problems, contain a collection of mul-
tilinear equations of the form ze = ∏

v∈e zv , e ∈ E , where E denotes a set of subsets
of cardinality at least two of a ground set V . Let us define the set of points satisfying
all multilinear equations present in a factorable reformulation of a MINLP as

S̃ =
{

z ∈ R
V+E : ze =

∏

v∈e
zv ∀e ∈ E, zv ∈ [0, 1] ∀v ∈ V1, zv ∈ {0, 1} ∀v ∈ V2

}

,

(1)

where V1 and V2 form a partition of V and are the index sets corresponding to con-
tinuous and binary variables, respectively. Notice that, if the continuous variables are
defined over a general rectangular region, then one can obtain a set of the form S̃ after
some scaling and shifting of variables. It then follows that the convex hull of S̃ is a
polytope and the projection of its vertices onto the space of the variables zv , v ∈ V ,
is given by {0, 1}V (see for example [37]). Consequently, the facial structure of the
convex hull of S̃ can be equivalently studied by considering the following binary set:

{

z ∈ {0, 1}V+E : ze =
∏

v∈e
zv ∀e ∈ E

}

. (2)

There is a one-to-one correspondence between sets of form (2) and hypergraphs G =
(V , E) [12]. Henceforth we refer to (2) as themultilinear set ofG and denote it by SG ,
and refer to its convex hull as the multilinear polytope of G and denote it by MPG . If
all multilinear equations defining SG are bilinear, the multilinear polytope coincides
with the Boolean quadric polytope defined by Padberg [28] in the context of 0−1
quadratic optimization. Over the past three decades, a significant amount of research
has been devoted to studying the facial structure of the Boolean quadric polytope
and these theoretical findings have had a significant impact on the performance of
branch-and-cut based algorithms for mixed-integer quadratic optimization problems
(MIQCPs) [3,8,19,43]. In contrast, as we detail next, for higher degree multilinear
polytopes, similar polyhedral studies are rather scarce.
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The explicit characterization of the multilinear polytope of the complete hyper-
graph, that is, the hypergraph whose edge set consists of all subsets of nodes of
cardinality at least two, has been presented in several studies (see for example [35]). In
[12] the authors study the facial structure of the multilinear polytope of general hyper-
graphs and develop the theory of a number of lifting operations, giving rise to various
types of facet-defining inequalities. In [13], the authors study the decomposability
properties of the multilinear polytope. Namely, they derive necessary and sufficient
conditions under which we have MPG = ⋂

j∈J MPG j , where each hypergraph G j

has a much simpler structure than the original hypergraph G. In [14,15], the authors
study the complexity of the facet-description of themultilinear polytope in conjunction
with the acyclicity degree of the underlying hypergraph. Explicit characterizations of
the multilinear polytope of Berge-acyclic and γ -acyclic hypergraphs are provided in
[14]. Moreover, as a byproduct, [14] introduces flower inequalities, a family of valid
inequalities for the multilinear polytope, which generalize 2-link inequalities defined
in [11]. Subsequently, in [15], the authors introduce running intersection inequalities,
a significant generalization of flower inequalities and identify sufficient conditions
under which the proposed inequalities are facet-defining. Moreover, they show that
the polytope obtained by adding all running intersection inequalities to the standard
linearization of the multilinear set coincides with the multilinear polytope of a large
subclass of β-acyclic hypergraphs.

Quadratization approaches In order to capitalize on existing algorithms for 0−1
quadratic optimization, various techniques have been developed to reduce higher
degree binary polynomial optimization problems to quadratic ones, at the cost of
an increase in the number of variables. These methods are often referred to as quadra-
tization approaches. In [1], the authors perform a systematic study of the existing
quadratization techniques. They provide tight lower and upper bounds on the number
of added variables in the worst case. In particular, they show that, for each fixed degree
d, there are polynomials of n variables and of degree d for which every quadratization
must involve at least Ω(nd/2) added variables. In [17], the authors demonstrate the
usefulness of quadratization in some computer vision applications. In [9], the authors
propose a different type of quadratization scheme that is most effective when the orig-
inal multilinear set is reducible; that is, every set e ∈ E is a union of two other sets in
E . Otherwise, auxiliary variables are added to the model to make SG reducible.

Convex and concave envelopes of multilinear functions There has been a stream of
research in the global optimization literature on characterizing the convex/concave
envelope of a multilinear function defined as

∑
e∈E ce

∏
v∈e zv , where ce ∈ R\{0} for

all e ∈ E and zv ∈ [lv, uv] such that −∞ < lv < uv < ∞ for all v ∈ V . Since
multilinear functions are closed under scaling and shifting of variables, without loss
of generality one can assume that lv = 0 and uv = 1 for all v ∈ V . It then follows
that an extended formulation for the convex hull of a multilinear function (and hence
its convex and concave envelopes) is given by the image of the multilinear polytope
MPG under the linear mapping (zv, ze) → (zv,

∑
e∈E ceze). For a few classes of

structured multilinear functions, explicit characterizations of the envelopes are avail-
able. These results address trilinear terms over a box [25,26], special forms of bilinear
functions over the unit hypercube [30], special forms of multilinear functions over
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the unit hypercube and some discrete sets [34], bilinear and polynomial covering sets
with certain sign restrictions and no upper bounds on variables [38], and submodular
functions over various polyhedral subdivisions of a box [39].

For bounding a general multilinear function, however, a common practice is to
utilize a termwise scheme in which each multilinear term is relaxed by a recursive
applicationof bilinear envelopes [24,31,40].This termwise factorable scheme is simple
to implement and has been deployed in all general-purpose global solvers; however,
in general, it leads to very poor bounds. As a notable exception, in [2], the authors
propose a cutting plane generation framework in which certain facets corresponding to
the convex hull of a multilinear function are generated by solving a linear optimization
problem (LP) and are added at every node of the global solver BARON. However, the
size of this LP grows exponentially with the number of variables in the multilinear
function. To control the size of the LP, the authors present a decomposition algorithm to
break down a multilinear function into a collection of lower-dimensional multilinear
functions. In addition, they devise a customized simplex algorithm for solving the
separation problem that outperforms the state-of-the-art LP solvers by several orders
ofmagnitude. Their computational study on various sets ofmultilinear and polynomial
optimization problems show that the proposed cuts lead to significant reductions in
CPU time and enable BARON to solve many more problems to global optimality.

Our contribution In this paper, we study the separation problem for running inter-
section inequalities [15], a family of valid inequalities for the multilinear polytope.
In [14] the authors consider flower inequalities, a subclass of running intersection
inequalities, and show that, over γ -acyclic hypergraphs, the separation problem can
be solved in strongly polynomial-time; i.e., in a number of iterations bounded by a
polynomial in |V | and |E |. They also mention that, over balanced hypergraphs, a gen-
eralization of γ -acyclic hypergraphs, separation of flower inequalities can be done
in polynomial-time by solving an LP. However, we are not aware of any applica-
tion in which the corresponding hypergraph is balanced. In this paper, we prove that
the separation problem for flower inequalities over general hypergraphs is NP-hard.
Subsequently, we consider hypergraphs with a fixed rank, where the rank r of G is
defined as the maximum cardinality of an edge in E . This assumption is based on
the observation that, for the multilinear sets that appear in MINLPs, we often have
r � |V |. In fact, for all practical purposes we can assume that r ≤ 5 and therefore
it is reasonable to assume that r is a fixed parameter. We then show that if G has a
fixed rank, the separation problem for running intersection inequalities can be solved
in O(|E |2) operations.

To exploit the local information regarding bounds on variables for cut genera-
tion, as well as to utilize running intersection inequalities for local feasibility-based
and optimality-based range reductions, we devise an efficient implementation of the
separation algorithm within a branch-and-cut framework. Our proposed cut genera-
tion algorithm is embedded at every node of BARON’s branch-and-reduce algorithm.
Extensive computational results are presented for globally solving multilinear and
polynomial optimization problems of degree three and four. We consider two types of
test problems. The first one consists of randomly generated instances taken from [2],
while the second one contains computer vision instances from an image restoration
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problem [11]. Results for the test problems show that the incorporation of running
intersection cuts in BARON reduces the average CPU time and number of nodes in
the search tree by 50% and 75% for the random test set, and by 63% and 42% for the
image restoration test set.

Organization In Sect. 2, we provide a brief overview of running intersection and flower
inequalities. In Sect. 3, we show that the separation problem for flower inequalities
over general hypergraphs is NP-hard. Subsequently, in Sect. 4, we consider fixed-
rank hypergraphs and present an efficient polynomial-time separation algorithm for
running intersection inequalities. With the objective of embedding the proposed sep-
aration algorithm in a branch-and-cut framework, in Sect. 5, we present an enhanced
implementation that conducts most of the expensive computations at the root node.
Finally, computational results on a variety of multilinear and polynomial optimization
problems are presented in Sect. 6.

2 Running intersection inequalities

In [15] the authors introduce running intersection inequalities, a class of valid inequal-
ities for the multilinear polytope. For a self-contained exposition, in the following we
briefly review some of the key concepts related to these inequalities which will be
used for the subsequent developments.

To define running intersection inequalities, we make use of the notion of running
intersection property. This concept was first introduced in the database community to
study acyclic databases [4] and has close connections to the notion of tree-width in
intersection graphs which has been used, for example in [7], to study the complexity of
polynomial optimization problems. A set F of subsets of a finite set V has the running
intersection property if there exists an ordering p1, p2, . . . , pm of the sets in F such
that

for each k = 2, . . . ,m, there exists j < k such that pk ∩
(

⋃

i<k

pi

)

⊆ p j . (3)

Throughout the paper, we refer to an ordering p1, p2, . . . , pm satisfying (3) as a
running intersection orderingof F . Each running intersection ordering p1, p2, . . . , pm
of F induces a collection of sets

N (p1) := ∅, N (pk) := pk ∩
(

⋃

i<k

pi

)

for k = 2, . . . ,m. (4)

Definition 1 Consider a hypergraph G = (V , E). Let e0 ∈ E and let ek , k ∈ K , be a
collection of edges in E satisfying the following conditions:

(i) |e0 ∩ ek | ≥ 2 for all k ∈ K ,
(ii) e0 ∩ ek � e0 ∩ ek′ for any k, k′ ∈ K ,
(iii) the set Ẽ := {e0 ∩ ek : k ∈ K } has the running intersection property.
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Consider a running intersection ordering of Ẽ with the corresponding sets N (e0 ∩ ek),
for k ∈ K , as defined in (4). For each k ∈ K with N (e0 ∩ ek) = ∅, let wk be a node
in N (e0 ∩ ek). We define a running intersection inequality as

−
∑

k∈K :N (e0∩ek) =∅
zwk +

∑

v∈e0\⋃
k∈K ek

zv +
∑

k∈K
zek − ze0 ≤ ω − 1, (5)

where

ω =
∣
∣
∣
∣
∣
e0\

⋃

k∈K
ek

∣
∣
∣
∣
∣
+

∣
∣
∣k ∈ K : N (e0 ∩ ek) = ∅

∣
∣
∣.

We refer to e0 as the center and to ek , k ∈ K , as the neighbors.

The above definition for running intersection inequalities depends on a running
intersection ordering of the set Ẽ defined in condition (iii). It can be shown that such
an ordering is, in general, not unique. However, in [12], the authors prove that the
system of all running intersection inequalities centered at e0 with neighbors ek , k ∈ K ,
is independent of the running intersection ordering. Moreover, they present conditions
under which running intersection inequalities define facets of the multilinear polytope
MPG .

In the special case where N (e0 ∩ ek) = ∅ for all k ∈ K ; i.e., e0 ∩ ek ∩ ek′ = ∅ for
all distinct k, k′ ∈ K , running intersection inequalities simplify to flower inequalities
introduced in [14]. The flower inequality centered at e0 with the neighbors ek , k ∈ K
is given by:

∑

v∈e0\⋃
k∈K ek

zv +
∑

k∈K
zek − ze0 ≤

∣
∣
∣
∣
∣
e0\

⋃

k∈K
ek

∣
∣
∣
∣
∣
+ |K | − 1. (6)

In this paper, we are interested in utilizing running intersection inequalities in a
branch-and-cut framework. As we detailed in Sect. 1, given a collection of multilinear
terms corresponding to a factorable reformulation of a MINLP, one can obtain a set
of the form (1) after possibly scaling and shifting some of the continuous variables.
In a branch-and-cut framework, the variables bounds change in different parts of the
tree. Clearly, running intersection cuts corresponding to the variable bounds at the
root node remain valid throughout the search tree. However, for cut generation, it is
highly beneficial to exploit tighter variable bounds at each node of the tree. To this
end, at each node, one can construct the set S̃ defined by (1) using local bounds on
variables and generate cutting planes accordingly. However, such an approach is fairly
expensive as the structure of the hypergraph may change as a result of each branching
or range reduction. Hence, to address this trade-off, in this paper, we pursue a different
alternative. Define

Sb
G =

{

z ∈ R
V+E : ze =

∏

v∈e
zv ∀e ∈ E, zv ∈ [lv, uv],∀v ∈ V

}

,
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where 0 ≤ lv < uv < ∞ for all v ∈ V . Define z̃v = zv/uv for all v ∈ V and
z̃e = ∏

v∈e z̃v for all e ∈ E . Let ue = ∏
v∈e uv . It then follows that z̃e = ze/ue for all

e ∈ E . Hence, the following inequality is valid for Sb
G :

−
∑

k∈K :N (e0∩ek) =∅

zwk

uwk

+
∑

v∈e0\⋃
k∈K ek

zv
uv

+
∑

k∈K

zek
uek

− ze0
ue0

≤ ω − 1, (7)

where ω is as defined in (5).

3 Separation of flower inequalities over general hypergraphs

In [14] the authors consider flower inequalities as defined in (6) and show that, over
γ -acyclic hypergraphs, the separation problem can be solved in strongly polynomial-
time. They also mention that over balanced hypergraphs, a generalization of γ -acyclic
hypergraphs, separation of flower inequalities can be done in polynomial-time by
solving an LP. In this section, we prove that separating flower inequalities over general
hypergraphs is NP-hard. First, we formally define the separation problem for a general
family of inequalities (see [33] for more details).

The separation problemGiven a hypergraphG = (V , E), a family of inequalities valid
for MPG , and a vector z̄ ∈ [0, 1]V+E , decide whether z̄ satisfies all the inequalities in
the family or not, and in the latter case, find an inequality in the family that is violated
by z̄.

Before stating our main result, let us recall a widely-used polyhedral relaxation of
SG that is obtained by replacing each multilinear term ze = ∏

v∈e zv , by its convex
hull over the unit hypercube:

MPLPG =
{
z : zv ≤ 1, ∀v ∈ V ,

ze ≥ 0, ze ≥
∑

v∈e
zv − |e| + 1, ∀e ∈ E,

ze ≤ zv,∀v ∈ e, ∀e ∈ E
}
. (8)

The above relaxation is often referred to as the standard linearization of themultilinear
set [10]. For a rank-r hypergraph G = (V , E), the system defining MPLPG has at
most |V | + r |E | inequalities. Hence, for our computational complexity analysis, it is
reasonable to assume that the point z̄ is present in MPLPG , as otherwise, one can easily
identify an inequality in system (8) that is violated by z̄.

To prove the next theorem, we need to give some definitions. A matching in a
hypergraph G = (V , E) is a subset M of E with the property that e ∩ f = ∅ for all
e, f ∈ M with e = f . Amatching inG is called perfect if each node in V is contained
in exactly one edge of the matching. We say that a hypergraph G is 3-uniform if each
edge contains exactly three nodes.
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Theorem 1 Given a hypergraph Ḡ and a vector z̄ ∈ MPLP
Ḡ
, the following problems

are NP-hard:

(P1) Is there a flower inequality for Ḡ centered at an edge e0 of E(Ḡ) violated by
z̄?
(P2) Is there a flower inequality for Ḡ violated by z̄?

Proof In order to show that Problems (P1) and (P2) are NP-hard, we give polynomial
reductions from the 3-Dimensional Matching Problem (3-DMP). We refer the reader
to [21] for the definition and NP-hardness of the 3-DMP. The 3-DMP is a special case
of the following problem, which is therefore NP-hard as well.

(P3) Given a 3-uniform hypergraph G = (V , E), is there a matching M of G with
|M | = |V |

3 ?

Let G = (V , E) be a 3-uniform hypergraph with a number of nodes divisible by 3
and let n := |V |.
Reduction to perfectmatchingwith costsWedefine the set of loops L := {{v} : v ∈ V },
and let G̃ := (V , E ∪ L). In the following, for ease of notation, we often identify a
loop {v} with the node v. Let α := 3

n+1 . Since n ≥ 3, α satisfies 0 < α < 1. We

define the cost of each element of E(G̃) as

we := α ∀e ∈ E

wv := α ∀v ∈ L.

Accordingly, we define the cost of each subset M̃ of E ∪ L as

c(M̃) :=
∑

v∈M̃∩L

cv +
∑

e∈M̃∩E

ce = α|M̃|.

We now show that Problem (P3) is equivalent to the following problem:

(P4) Is there a perfect matching M̃ of G̃ of cost c(M̃) < 1?

There is a natural bijection between matchings in G and perfect matchings in G̃.
Namely, given a perfect matching M̃ of G̃, the set M obtained from M̃ by deleting
all loops is a matching of G. Conversely, given a matching M of G, the set M̃ :=
M ∪ {{v} : v /∈ ⋃

e∈M e} is a perfect matching of G̃. Since all edges of G contain
three nodes, for a matching M of G and its corresponding perfect matching M̃ of G̃
we have

|M̃| = |M | + (n − 3|M |) = n − 2|M |.

Hence,

c(M̃) = α|M̃| = α(n − 2|M |).
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This implies that |M | = n
3 if and only if c(M̃) = α(n − 2 n

3 ) = n
n+1 , where we used

the definition of α. Now consider a matching M of G that satisfies |M | < n
3 . Then

|M | ≤ n−3
3 and this happens if and only if c(M̃) ≥ α(n − 2 n−3

3 ) = n+6
n+1 . This shows

that there is a matching M ofG with |M | = n
3 if and only if there is a perfect matching

M̃ of G̃ of cost c(M̃) < 1.

Reduction to problem (P1) Let Ḡ := (V , E ∪ e0), where e0 := V . We define the
vector z̄ ∈ [0, 1]V∪E(Ḡ) as follows:

z̄e0 := 0

z̄e := 1 − α ∀e ∈ E

z̄v := 1 − α ∀v ∈ V .

First, we show that the vector z̄ is in the standard linearizaton MPLP
Ḡ
. Using the

definition of z̄, we can rewrite the inequalities in the definition of MPLP
Ḡ

with z = z̄.

The inequalities corresponding to the nodes of Ḡ are:

α ≥ 0 ∀v ∈ V . (9)

The inequalities corresponding to an edge e ∈ E are:

α ≤ 1 ∀e ∈ E (10)

α ≤
∑

v∈e
α ∀e ∈ E (11)

α ≥ α ∀v ∈ e, ∀e ∈ E . (12)

Finally, the inequalities corresponding to edge e0 are:

1 ≤ 1 (13)

1 ≤
∑

v∈V
α (14)

1 ≥ α ∀v ∈ V . (15)

We now show that all inequalities (9)–(15) are satisfied. Clearly, inequalities (12)
and (13) are satisfied. Since 0 < α < 1, it follows that (9), (10), and (15) are also
satisfied. Since each edge e ∈ E contains three nodes, we have

∑
v∈e α = 3α > α,

implying (11) is satisfied. Finally,
∑

v∈V α = nα = 3n
n+1 > 1, and thus (14) also is

satisfied.
We now prove that Problem (P4) is equivalent to Problem (P1) with the defined Ḡ,

e0, and z̄. To this end, we show that there exists a flower inequality for Ḡ centered at
e0 violated by z̄ if and only if there is a perfect matching M̃ of G̃ of cost c(M̃) < 1.

Every edge e ∈ E is adjacent to e0 and satisfies |e0 ∩ e| = 3 ≥ 2. Therefore, there
exists a flower inequality for Ḡ centered at e0 violated by z̄ if and only if there exist

123



A. Del Pia et al.

a nonempty collection of edges ek , k ∈ K , in E with ek ∩ ek′ = ∅ for all distinct
k, k′ ∈ K , such that

∑

v∈e0\⋃
k∈K ek

z̄v +
∑

k∈K
z̄ek − z̄e0 >

∣
∣
∣e0\

⋃

k∈K
ek

∣
∣
∣ + |K | − 1,

or, equivalently,

∑

v∈e0\⋃
k∈K ek

(1 − z̄v) +
∑

k∈K
(1 − z̄ek ) < 1 − z̄e0 .

Using the definition of z̄ and c, the latter reduces to

∑

v∈e0\⋃
e∈K e

cv +
∑

e∈K
ce < 1. (16)

Assume now that there exists a nonempty collection of edges ek , k ∈ K , with
ek ∩ ek′ = ∅ for all distinct k, k′ ∈ K , that satisfies (16). Define M̃ := K ∪ {{v} : v /∈⋃

k∈K ek}. Then M̃ is a perfect matching of G̃ with c(M̃) < 1. Conversely, assume
that M̃ is a perfect matching of G̃ with c(M̃) < 1. Then, the set ek , k ∈ K , obtained
from M̃ by deleting all loops is a nonempty collection of edges with ek ∩ ek′ = ∅ for
all distinct k, k′ ∈ K , that satisfies (16).

This completes the proof that Problem (P1) is NP-hard.

Reduction to Problem (P2) Consider a flower inequality for Ḡ centered at an edge
e ∈ E . We show that this flower inequality is always valid at z = z̄. Note that we must
have |K | = 1, thus we denote by k the only index in K . There are two possibilities:
either ek is an edge in E with |e∩ek | = 2, or ek = e0. In the first case, the corresponding
flower inequality is

zv + zek − ze ≤ 1,

where v is the unique node in e\ek . Such an inequality is always satisfied by z̄ because
z̄v = z̄ek = z̄e = α, andα < 1. In the second case, the corresponding flower inequality
is

ze0 − ze ≤ 0.

This inequality is always satisfied at z̄ since z̄e0 = 0, z̄e = α, and α > 0.
This implies that there exists a flower inequality for Ḡ violated by z̄ if and only

if there exists a flower inequality for Ḡ centered at e0 violated by z̄. This shows that
Problem (P2) is NP-hard as well. ��
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4 Separation of running intersection inequalities over fixed-rank
hypergraphs

TheNP-hardness results of Sect. 3 are based on the assumption that, given amultilinear
set SG , the rank r of the hypergraph G = (V , E) is a problem input. However, for
multilinear sets that appear in MINLPs we often have r � |V |. More precisely, in
a polynomial optimization problem, |V | corresponds to the number of variables, r
corresponds to the highest degree of the polynomial involved, and |E | corresponds
to the number of distinct monomial terms. In most nontrivial MINLPs that appear in
applications we have at least a few hundreds of variables and many more multilinear
terms, while the degree of the multilinear set is often quite low. Indeed, we often have
r ≤ 5. See for example test libraries in [32]. That is, for these problems, we have r �
|V | and |E | � 2r . Therefore it is reasonable to assume that r is a fixedparameter. In this
section, we consider the separation problem over all running intersection inequalities.
As we detail in the following, if r is fixed, this separation problem can be solved in
strongly polynomial-time, i.e., in a number of iterations bounded by a polynomial in
|V | and |E |.

For a general hypergraph G = (V , E), the number of all running intersection
inequalities is often very large. In the following, we a describe a preprocessing step
for our separation algorithm that enables us to solve the separation problemover a small
subset of running intersection inequalities. In the sequel,we refer to such inequalities as
the separation system. As we detail later, this step is an essential part of our separation
algorithm as it significantly reduces both time and memory requirements. Let z̄ ∈
[0, 1]V+E . Let e0 denote an edge in E , and denote by Ee0 the subset of E containing,
for every f ⊆ e0 with | f | ≥ 2, among all the edges e ∈ E\{e0} with e0 ∩ e = f , only
one that maximizes z̄e. The set Ie0 is then defined as the set of running intersection
inequalities with center e0, and neighbors ek ∈ Ee0 , for k ∈ K , such that for each
k ∈ K , the node wk is chosen as one in N (e0 ∩ ek) that minimizes z̄wk . Finally,
the separation system I is defined as I := ⋃

e0∈E Ie0 . Given a running intersection
inequality (5) and a vector z̄ ∈ [0, 1]V+E , we define the violation of the inequality by
z̄ as the difference between the left-hand side of (5) evaluated in z̄ and its right-hand
side. The following proposition establishes the key property of running intersection
inequalities that are present in the separation system.

Proposition 1 Let G = (V , E) be a hypergraph and let z̄ ∈ [0, 1]V+E . Consider a
running intersection inequality centered at e0 with neighbors ek , k ∈ K. Then Ie0
contains a running intersection inequality centered at e0 with neighbors e′

k , k ∈ K,
such that e0 ∩ ek = e0 ∩ e′

k for all k ∈ K whose violation by z̄ is at least as large as
the violation of the original inequality by z̄.

Proof Consider a running intersection inequality (5) centered at e0 with neighbors ek ,
k ∈ K . For each k ∈ K with N (e0 ∩ ek) = ∅, let wk be the node selected from
N (e0 ∩ ek) to construct this inequality. For each k ∈ K , we define the new neighbor
e′
k as an edge e that maximizes z̄e among all edges in e ∈ E with e0 ∩ e = e0 ∩ ek .
By construction, such an edge e′

k is always present in Ee0 . For each k ∈ K with
N (e0 ∩ ek) = ∅, we define the node u′

k as a node u in N (e0 ∩ ek) that minimizes z̄u .
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Wenowobtain a new running intersection inequality from the original one by replacing
each neighbor ek with the corresponding e′

k and by replacing each node wk with the
corresponding u′

k . The new inequality is a running intersection inequality as for each
edge k ∈ K we have e0 ∩ ek = e0 ∩ e′

k , implying N (e0 ∩ ek) = N (e0 ∩ e′
k). Moreover,

from the definition of the separation system it follows that this inequality is present in
Ie0 . Clearly, the left-hand side of the new inequality evaluated at z̄ is not smaller than
the left-hand side of the original running intersection inequality evaluated at z̄. Since
the two inequalities have the same right-hand side, it follows that the violation of the
new inequality by z̄ is at least as large as the violation of the original inequality by z̄.

��
Proposition 1 implies that the separation problem over all running intersection

inequalities can be equivalently solved over the separation system I. More precisely,
if there exists a running intersection inequality that is violated by z̄ in the original
system, then there also exists an inequality in the separation system that is violated
by z̄. We say that a running intersection inequality is maximally violated by z̄ if the
violationof the inequality by z̄ ismaximumamongall running intersection inequalities.
Then, Proposition 1 implies that the separation system contains a running intersection
inequality that is maximally violated by z̄. As we detail later, the computational cost
of the separation problem over all running intersection inequalities depends on the
maximumnumber of neighbours present in running intersection inequalities. Hence, to
control the cost of the separation algorithm,we now consider the problem of separating
z̄ over all running intersection inequalities with at most q neighbors. We refer to this
restricted separation problem as the q-separation problem.

From Proposition 1, it follows that the q-separation problem can be equivalently
solved over inequalitieswith atmostq neighbors that are present the separation system.
We refer to the set of all such inequalities as the q-separation system. Throughout
this section, we assume that a rank-r hypergraph G = (V , E) is represented by an
incidence-list in which edges are stored as objects, and every edge stores the vertices
it contains. In order to use efficient search algorithms, we assume that the vertex list
for each edge is sorted. Otherwise, such a sorted data structure can be obtained in
O(r |E |) operations by using some integer sorting algorithm such as counting sort.

Proposition 2 Given a rank-r hypergraph G = (V , E) and a vector z̄ ∈ [0, 1]V+E ,
there exists an algorithm that solves the q-separation problem in O(|E |(r2r |E | +
2rqq2r)) operations.

Proof Let e0 be an edge in E . We show how to solve the separation problem over
all inequalities in the q-separation system that are centered at e0. By applying the
algorithm |E | times, we can then solve the q-separation problem.

Let the sets Ie0 and Ee0 be as defined before. Denote by Iq
e0 the set of all inequalities

in Ie0 with at most q neighbors. By Proposition 1, to solve the q-separation problem,
it suffices to consider inequalities in Iq

e0 . In our separation algorithm, we explicitly
generate all running intersection inequalities in Iq

e0 . First we construct the set Ee0 .
For a rank-r hypergraph G, the number of edges in Ee0 is at most 2r − r − 1. This
follows from condition (i) of Definition 1. By assigning a unique key to each subset
of e0, and using the fact that the vertex list for each edge of G is sorted, it can be
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shown that the set Ee0 can be constructed in O(r2r |E |) operations. The total number
of possible sets of neighbors of cardinality at most q is given by Nq = ∑q

i=1

(2r−r−1
i

)

and it is well-known that Nq ≤ (2r − r)q . For each possible set of t neighbors for
some t ≤ q, we can check the validity of condition (ii) of Definition 1, in O(t2r)
operations. Moreover, we can check if the set Ẽ defined in condition (iii) has the
running intersection property in O(r + t) operations [36]. Finally, for each valid set
of neighbors, we generate the corresponding unique running intersection inequality in
Iq
e0 which can be done in O(tr) operations. Therefore, the total running time of the

separation algorithm is given by O(|E |(r2r |E | + 2rqq2r)). ��
To analyze the worst-case running time of the separation problem over all running

intersection inequalities, an upper bound on the number of neighbours is needed. The
following lemma provides such a bound.

Lemma 1 Let G be a hypergraph and let e0 ∈ E(G). Then a running intersection
inequality centered at e0 has at most |e0| − 1 neighbors.

Proof To prove the statement, we show that each running intersection inequality cen-
tered at e0 has at most t − 1 neighbors, where t is the number of nodes in e0 that are
present in at least one neighbor. The lemma then follows since t ≤ |e0|.

By definition of a running intersection inequality, we have t ≥ 2. Thus, the base
case is t = 2. If t = 2, by conditions (i) and (ii) in definition of running intersection
inequalities, we can have only one neighbor and thus the claim follows. For the induc-
tion step, we assume that t ≥ 3. Consider a running intersection inequality centered
at e0 and let e1, . . . , ek be a running intersection ordering of the neighbors. If k = 1,
then the proof is trivial. Henceforth, suppose that k ≥ 2. We define a new running
intersection inequality centered at e0 and with neighbors e1, . . . , ek−1. There exists at
least one node in e0 ∩ ek that is in not contained in any other neighbor e1, . . . , ek−1,
as otherwise there would be an edge ek′ among them with e0 ∩ ek ⊆ e0 ∩ ek′ and
this contradicts the definition of a running intersection inequality. It then follows that
e0 ∩ (

⋃k−1
i=1 ei ) ⊂ e0 ∩ (

⋃k
i=1 ei ), and hence by the induction hypothesis the new run-

ning intersection inequality has at most t − 2 neighbors. This implies that our original
running intersection inequality has at most t − 1 neighbors. ��

The next result follows from Proposition 2 and Lemma 1.

Corollary 1 Given a rank-r hypergraph G = (V , E) and a vector z̄ ∈ [0, 1]V+E , there
exists an algorithm that solves the separation problem over all running intersection
inequalities in O(|E |(r2r |E | + 2r

2
r3)) operations.

Corollary 1 implies that, for a fixed-rank hypergraph G = (V , E), there exists an
algorithm that solves the separation problem over all running intersection inequalities
inO(|E |2)operations.Before proceeding further, let us comment on the significance of
the separation system by considering the use of explicit enumeration instead. Employ-
ing a similar line of analysis as in the proof of Proposition 2, we obtain an algorithm
whose running time is O(r3|E |r ). It is important to note that, in almost all multilinear
sets that appear in nontrivial MINLPs, we have |E | � 2r ; in fact, in many problems

123



A. Del Pia et al.

we have |E | = Θ(nr ). Hence, in such cases, by employing the separation system,
we reduce the complexity of the separation algorithms from O(nr

2
) to O(n2r ). In

addition, as we detail in the next section, the costly step associated with constructing
the separation system is independent of z̄, and hence when incorporated in a branch-
and-bound algorithm, can be performed only once at the root node. Therefore, all
subsequent cut generations at each node of the search tree can be carried out very
efficiently.

5 Implementation in a branch-and-cut algorithm

In this section,we describe an efficient implementation of running intersection inequal-
ities in a branch-and-cut framework. Our implementation is incorporated within the
global solver BARON [22]. Our starting point is the separation algorithm described
in Sect. 4. We enhance the performance of this algorithm for a branch-and-cut based
solver by performing most of the expensive computations only once at the root node.
More precisely, we employ the following two-step approach to generate running inter-
section inequalities at each node in the branch-and-cut tree:

Recognition Prior to the initialization of the branch-and-cut tree, we mark and classify
all collections of multilinear equations for which running intersection inequalities can
be generated later in the tree. To this end, we first identify all multilinear terms that
are present in the original problem, as well as intermediate multilinear terms that
are introduced via a factorable reformulation. See [2] for a formal description of the
factorable reformulator in BARON. Let us demonstrate the reformulation approach by
a simple example. Consider the polynomial

f (z) = z21z2z3 + z21z
2
2z3 + z1z

2
2z3.

Obviously, this function does not contain any multilinear terms. However, a factorable
reformulation of f (z) is given by f (z) = z234 + z345 + z135, where z234 = z4z2z3,
z345 = z4z5z3, z135 = z1z5z3, z4 = z21 and, z5 = z22. Hence, in this lifted space, we can
identify a multilinear set of the hypergraph G = (V , E) with V = {v1, . . . , v5} and
E = {{v2, v3, v4}, {v3, v4, v5}, {v1, v3, v5}}. Since factorable relaxations are already
built in the lifted space, generating strong cuts for intermediate relations can signif-
icantly enhance the convergence rate of a branch-and-cut algorithm. Indeed, as we
demonstrate in the next section, running intersection cuts for these lifted multilinears
are quite effective for polynomial optimization problems.

Now suppose that the multilinear set SG associated with a factorable reformulation
of the MINLP is identified. As we detail next, at each node of the branch-and-cut tree,
we solve a variant of the q-separation problem for some q ∈ {1, . . . , r − 1}. In order
to efficiently generate the q-separation system at each node of the search tree, we
construct the following data structure at the root node. Let e0 ∈ E . For each f ⊆ e0
with | f | ≥ 2, we store the list of edges e in E\{e0} with e ∩ e0 = f and denote this
list by L f

e0 . Define Le0 = {( f ,L f
e0) : L f

e0 = ∅}. From the proof of Proposition 2, it
follows that, for a rank-r hypergraph, Le0 can be generated in O(r2r |E |) operations.
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For each set of subsets of e0 with ( f ,L f
e0) ∈ Le0 and of cardinality at most q, we

check the validity of condition (ii) in Definition 1. We store all such sets of subsets in
Ne0 . It can be checked that Ne0 can be constructed in O(rq22rq) operations. Notice
that it suffices to check condition (ii) only once at the root of the branch-and-cut tree.
Now consider a collection of edges e0, ek , k ∈ K , that do not satisfy condition (iii) at
the root node. Suppose that, later in the tree, a number of variables corresponding to a
subset V ′ of nodes of G get fixed due to branching or range reduction operations; i.e.,
z̃v = 1 for all v ∈ V ′, where z̃v = zv/uv as defined in inequality (7). It is then possible
that the collection e0\V ′, ek\V ′, k ∈ K satisfy condition (iii). Hence, to minimize
the overall computational cost, we employ the following approach. At the root node,
for each set F inNe0 , we check whether it has the running intersection property and,
if so, we mark it so that no such a check is performed later in the tree. Otherwise,
as we detail in the following, at certain nodes in the search tree, we check if F has
the running intersection property. Again, by the proof of Proposition 2, this running
intersection check at the root node can be performed in O((r + q)2rq) operations.
Hence, the total cost of the recognition step is given by O(|E |(r2r |E | + rq22rq)).

Cut generation At each node in the branch-and-cut tree, we first construct and solve
a crude outer-approximation of the problem based on the conventional factorable
reformulation. Subsequently, various classes of cutting planes are generated and added
to the current relaxation at multiple rounds, only if they violate the relaxation solution
(see [41] for details). We do not add any of the running intersection inequalities to the
initial outer-approximation but utilize them in the iterative cut generation scheme.

Let z̄ denote the relaxation solution at a given cut generation round. For each e0 ∈ E
and for each set of subsets F in Ne0 , if needed, we first test if F has the running
intersection property in O(|e0| + t) operations [36]. That is, this test is performed
only if (i) F does not have running intersection property at the root node and (ii) at
the current node, at least one variable corresponding to a node contained in an edge
in F gets fixed as a result of branching or range reduction operations. Subsequently,
we generate the corresponding running intersection inequality that is present in the
separation system.Namely, for each f ∈ F , amongall edges e ∈ L f

e0 ,we select an edge
ē that minimizes z̄e/ue, where ue is the upper bound on ze at the current node. This step
can be performed in O(|E |) operations. Furthermore, among all nodes v ∈ N (e∩ e0),
we select the node that minimizes z̄v/uv , where again uv is an upper bound on zv
at the current node; this can be done in O(q|e0|) operations. We then compute the
violation of this inequality by z̄, and if the violation is larger than a preselected positive
threshold, the inequality is added to BARON’s cut pool. The total cost of cut generation
at each round is O(2rq(|E | + rq)).

To control the size of the LP relaxation and hence avoid any performance degra-
dations, BARON’s cut pool maintains a certain percentage of running intersection cuts
with largest violation values and adds them to the relaxation of the problem at the end
of each round of cut generation.

For a fixed-rank hypergraph, by employing the above two-step approach, we obtain
a separation algorithm with the running time of O(|E |2) at the root node and O(|E |)
at each round of cut generation. As the number of cut generation rounds is often
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large even for moderate-sized problems, this approach leads to significant speed ups
in comparison to applying the algorithm from scratch at each node of the search tree.

Finally,we should point out that for large scale problems, i.e., at the time of thiswrit-
ing, for problems with more than few thousands variables, the proposed recognition
and cut generation schemes are quite expensive. For such problems BARON automat-
ically deactivates its expensive cut generation routines, including the one proposed in
this paper.

6 Numerical experiments

In this section, we demonstrate the computational benefits of incorporating running
intersection cuts at every node of the branch-and-reduce global solver BARON [22,41].
To this end, we consider two sets of test problems. The first set contains randomly
generated instances containing multilinear and polynomial optimization problems
of degree three and four. The second set contains the so-called vision instances
which are from an image restoration problem, a popular application in the field
of computer vision. Throughout this section, all experiments are performed with
GAMS 25.1.1 on a 64-bit Intel Xeon X5650 2.66 Ghz processor; all implemen-
tations are single-threaded. In addition, all problems are solved with relative/absolute
optimality tolerance of 10−6, and a CPU time limit of 500 s. Other algorithmic param-
eters are set to the default settings of the GAMS distribution for all solvers. When
comparing the performance of different algorithms, we call a problem trivial if all
algorithms take less than half a second to solve it to optimality. All tests were per-
formed with a development version of BARON 18.6.19 that uses CPLEX 12.8
[20] as the default solver for LP and MIP subproblems and performs dynamic local
search using a variety of NLP solvers (see [22] for details).

6.1 Random instances

We consider a polynomial optimization problem of the form:

(PL) min f0(x)

s.t. fi (x) ≤ bi , ∀i = 1, . . . , g

x ∈ [0, 1]n,

where for each i ∈ {0, 1, . . . , g}, bi ∈ R
g and fi (x) is a multivariate polynomial

fi (x) =
∑

T∈Ωi

cT
∏

j∈T
x
a j
j ,

Ωi is a collection of subsets of {1, . . . , n}, while cT , T ∈ Ωi are nonzero real-valued
coefficients, and the exponents a j , j ∈ T are positive integers. By convention, the
degree of a monomial

∏
j∈T x

a j
j is the sum of its exponents, and the degree a polyno-

mial function fi (x) is the largest degree of its monomials, i.e., di = maxT
∑

j∈T a j .
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Similarly, the degree of the polynomial optimization problem (PL) is defined as the
largest degree of its polynomials d = maxi di , i = {0, 1, . . . , g}. By letting g = 0,
we obtain a box-constrained optimization problem. In the following, we assume that
di > 1 for all i ∈ {0, 1, . . . , g}.

For a polynomial fi with n variables and degree di , it can be shown that the max-
imum number of monomial terms is given by Wi = ∑di

k=1

(di
k

)(n
k

)
, where

(n
k

)
is zero

if n < k. Denote by wi the number of nonlinear monomials in fi . We associate a
density with each polynomial fi defined as νi = wi/(Wi − n). Accordingly, when
νi = ν for all i ∈ {0, 1, . . . , g}, we say that the density of Problem (PL) is given by
ν. Throughout this section, we characterize a polynomial optimization problem by its
degree (d), number of variables (n), number of constraints (g), and density (ν). We
also consider multilinear optimization problems that can be obtained by replacing the
polynomial functions of Problem (PL) by multilinear functions; i.e., a j = 1 for all j .
For multilinear problems, we adapt the terminology defined above for polynomials,
by noting that in this case we have Wi = ∑di

k=2

(n
k

)
. For the numerical experiments,

we consider the following randomly generated test sets:

Set 1. Multilinear optimization problems of degree three with

(n, ν) ∈ {(10, 1.0), (15, 0.5), (20, 0.15), (20, 0.1), (25, 0.05), (30, 0.02)},

and polynomial optimization problems of degree three with

(n, ν) ∈ {(10, 0.75), (15, 0.25), (15, 0.15), (20, 0.1), (20, 0.05)}.

Set 2. Multilinear optimization problems of degree four with

(n, ν) ∈ {(10, 1.0), (15, 0.15), (20, 0.02), (20, 0.01), , (25, 0.01), (25, 0.005)},

and polynomial optimization problems of degree four with

(n, ν) ∈ {(10, 0.25), (10, 0.15), (15, 0.05), (15, 0.02), (20, 0.01)}.

In both test sets, we let g ∈ {0, n/5, n/2, n}. For each combination of {d, n, g, ν}, we
generated five problem instances, where the problem data were randomly generated
from uniform distributions: the polynomial coefficients cT were generated in the range
[−1, 1], while the right-hand side values bi were generated in the range [0, 100].
Overall, our test set contains 220 multilinear and polynomial optimization problems
of degree three, and 220 multilinear and polynomial optimization problems of degree
four. This collection is obtained by adding new test problems to the test set considered
in [2]. The new instances are problems with more variables and/or lower density.
This augmented test set is designed to examine the effect of running intersection cuts
on problems with different sparsity characteristics, ranging from boxed-constrained
problem to those that are highly constrained. The test problems can be obtained from
[42].
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6.2 Vision instances

The vision instances are from an image restoration problem, which is widely studied
in computer vision. Images are often degraded during the data acquisition process.
The degradation may involve blurring, information loss due to sampling, quantization
effects, and various sources of noise. The purpose of image restoration is to estimate
the original image from the degraded data. We adapt the problem formulation as
described in [11]. An image is a rectangle consisting of l × h pixels and it is modeled
as a matrix of the same dimension where each element represents a pixel which takes
value 0 or 1. An input blurred image is constructed by considering a base image and
by applying a perturbation to it, that is, by changing the value of each pixel with a
given probability. The image restoration model associated with a blurred image is
defined as an objective function f (x) = H(x) + L(x) that must be minimized. The
variables xi j for all i ∈ {1, . . . , l} and j ∈ {1, . . . , h} denote the value assigned to each
pixel in the output image. H(x) is the linear part and models similarity between the
input blurred image and the output. L(x) is a multilinear function of degree four and
models smoothness. See [11] for a complete description of these instances. This test
set consists of 45 unconstrained binary polynomial optimization problems of degree
four associated with images sizes {10 × 10}, {10 × 15}, {15× 15} with various types
of base images and perturbation models.

6.3 Comparisons with the existing relaxations in BARON

We solve the test sets described in Sects. 6.1 and 6.2 to global optimality usingBARON,
with and without running intersection cuts. For these nonconvex problems, BARON’s
factorable bounds consist of supporting hyperplanes and affine envelopes for uni-
variate monomials, along with a recursive application of bilinear envelopes to bound
multilinear terms. In addition, BARON generates multilinear cutting planes [2] cor-
responding to certain facets of the convex hull of a multilinear function defined as
L(z) = ∑

e∈E ′ ce
∏

v∈e zv , where ce ∈ R\{0} for all e ∈ E ′ and zv ∈ [lv, uv] such
that −∞ < lv < uv < ∞ for all v ∈ V ′. The corresponding separation problem is
an LP whose size grows exponentially with the number of variables of the multilin-
ear function. To cope with this growth, the authors of [2] propose a decomposition
technique that exploits the structure of a multilinear function to decompose it to lower-
dimensional components, for which the aforementioned LP can be solved efficiently
by employing a customized simplex algorithm.

To further strengthenBARON’s relaxation constructor, we employ the cut generation
scheme of Sect. 5 to incorporate running intersection inequalities at every node of
BARON’s search tree. For multilinear optimization problems, these cuts correspond
to multilinear terms present in the original formulation. For polynomial optimization
problems, running intersection cuts are generated for intermediate multilinears in the
lifted space. In our implementation, we solve the q-separation problem described in
the previous section by letting q = min{r , 4}. Clearly, for our test sets this implies
that we are solving the separation problem over all running intersection inequalities,
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as we have r = 3 and r = 4, in Set 1 and Set 2 of random instances, respectively, and
r = 4 in vision instances.

Mathematically, the advantages of running intersection cuts over multilinear cuts
are twofold. First, multilinear cuts correspond to facets of the convex hull of a multi-
linear function that appears in the objective function or a single constraint. However,
running intersection cuts correspond to facets of multilinear polytopes where the cor-
responding multilinear terms may appear in multiple constraints. Hence, these cuts
are particularly beneficial for constrained polynomial optimization problems. Sec-
ond, the separation algorithm for multilinear cuts is significantly more expensive than
that of the running intersection cuts. Hence, multilinear cuts are only generated for
rather low-dimensional multilinear functions and this task is performed by heuris-
tically decomposing the multilinear function into a collection of lower-dimensional
functions. On the other hand, to generate multilinear cuts, no assumption on the struc-
ture of the underlying hypergraph is required whereas for running intersection cuts the
corresponding hypergraph must satisfy conditions (i)–(iii) of Definition 1. Interest-
ingly, as we demonstrate in the next sections, these two types of cutting planes have a
complementary impact on the performance of BARON and the best results are obtained
by employing a combination of the two cut generation algorithms.

To compare the performance of BARONwithout and with running intersection cuts,
we consider the following factors: (i) execution time, (ii) total number of nodes in the
branch-and-bound tree (iterations), (iii) maximum number of nodes stored in memory
(nodes), and (iv) largest amount ofmemory utilized byBARON (memory). Thememory
peaks are reported in megabytes and account for all arrays allocated by BARON during
the run.

6.3.1 Random instances

We first consider multilinear and polynomial optimization problems of degree three.
Computational results are depicted in Fig. 1. For this test set, the number of problems
that are solved to global optimality without and with running intersection cuts are 208
and 216, respectively. For a meaningful comparison, we eliminated trivial problems
from the test set (35 instances). For those nontrivial problems that are solvable within
500 s by at least one of the two algorithms (181 instances), incorporating running
intersection cuts in BARON results in average reductions of 60% in CPU time, 78% in
number of iterations, and 70% in maximum number of nodes in memory. Finally, due
to the storage of the running-intersection data structure at the recognition step, there
is a modest increase in memory requirements.

The results of Fig. 1 are analyzed in Table 1a to further quantify the effect of
incorporating the running intersection cuts. The first line of Table 1a provides the
percentage of nontrivial problems for which running intersection cuts lead to at least a
factor of two improvement with respect to CPU time, number of iterations, and number
of nodes in memory. The subsequent lines of the table provides similar statistics for
problems for which the algorithm was improved by at least 30% but no more than
50%, problems for which there was no significant performance change after addition
of cutting planes, and problems for which there was some deterioration in performance
because of cutting planes. As can be seen from Table 1a, for about two third of the
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Fig. 1 Performance of BARON with and without running intersection cuts for 220 third-degree multilinear
and polynomial optimization problems. In these figures, nontrivial problems that are solved in less than
500 s are compared with respect to a CPU time, b number of iterations, c maximum number of nodes in
memory and, d largest amount of memory allocated

test problems, running intersection cuts reduce the CPU time of the global solver by
at least a factor of two. Similar improvements are observed with respect to the total
number and maximum number of nodes in the branch-and-cut tree. We observe minor
performance degradations for about 3% of the test problems, most of which are due to
solving more expensive LP relaxations obtained as a result of the addition of running
intersection cuts.

Next, we examine the impact of running intersection cuts on multilinear and poly-
nomial optimization problems of degree four. Out of 220 problems, 181 instances
are solved to global optimality within 500 s by at least one of the two algorithms,
22 of which are trivial. The number of solvable problems to global optimality with-
out and with running intersection cuts are 168 and 180, respectively. As can be seen
from Fig. 2 and Table 1b, the proposed cuts significantly improve the performance
of BARON for this test set. Specifically, we obtain average reductions of 43% in CPU
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Table 1 Effect of adding running intersection cuts to BARON for random instances

Effect of adding cuts CPU time Iterations Nodes

(a) Third-degree multilinear and polynomial optimization problems

Better by a factor at least 2 113 (62%) 130 (72%) 129 (71%)

Between 30% and 100% better 21 (12%) 18 (10%) 14 (8 %)

Difference smaller than 30% 42 (23%) 31 (17%) 36 (20%)

Between 30% and 100% worse 5 (3%) 2 (1%) 2 (1%)

Worse by a factor of at least 2 0 (0%) 0 (0%) 0 (0%)

(b) Fourth-degree multilinear and polynomial optimization problems

Better by a factor at least 2 55 (35%) 114 (72%) 113 (71%)

Between 30% and 100% better 19 (12%) 16 (10%) 16 (10%)

Difference smaller than 30% 59 (37%) 25 (16%) 27 (17%)

Between 30% and 100% worse 16 (10%) 0 (0%) 0 (0%)

Worse by a factor of at least 2 10 (6%) 4 (2%) 3 (2%)

time, 76% in number of iterations, and 72% in maximum number of nodes in memory.
For this test set, the increase in the largest amount of allocated memory is more sig-
nificant as the size of the data structure allocated in the recognition step is increasing
in the degree of the multilinear set. Table 1b indicates that, thanks to the running
intersection cuts, for more than one third of the problems, the execution time is
improved by at least a factor of two. However, we also observe some notable per-
formance degradations for about 6% of the problems. Again, this adverse effect is
due to the increase in the size of the LP relaxations. For higher degree problems,
many more running intersection inequalities can be generated and while these cuts
improve the quality of the lower bounds in general, they may increase the overall cost
of the branch-and-bound tree as the resulting LPs are often much more expensive to
solve.

6.3.2 Vision instances

This test set contains 45 optimization problems none of which are solved trivially
and only one instance cannot be solved to global optimality within 500 s by either
of the two algorithms. The number of solvable problems to global optimality with-
out and with running intersection cuts are 37 and 44, respectively. By employing
the proposed cutting planes we obtain average reductions of 63% in CPU time, 42%
in number of iterations, and 30% in maximum number of nodes in memory. The
computational benefits of running intersection cuts on vision instances are further
detailed in Table 2. As can be seen from this table, thanks to the running intersection
cuts, for about 40% of the problems, the execution time is improved by at least a
factor of two. In fact, by employing the proposed cutting planes, BARON is able to
solve all 44 vision instances at the root node of the branch-and-bound tree. Moreover,
for this test set, the increase in the largest amount of allocated memory is negligi-
ble.
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Fig. 2 Performance of BARONwith and without running intersection cuts for 220 fourth-degree multilinear
and polynomial optimization problems. In these figures, nontrivial problems that are solved in less than
500 s are compared with respect to a CPU time, b number of iterations, c maximum number of nodes in
memory and, d largest amount of memory allocated

Table 2 Effect of adding running intersection cuts to BARON for vision instances

Effect of adding cuts CPU time Iterations Nodes

Better by a factor at least 2 17 (38%) 10 (23%) 10 (23%)

Between 30% and 100% better 13 (30%) 0 (0%) 0 (0%)

Difference smaller than 30% 14 (32%) 34 (77%) 34 (77%)

Between 30% and 100% worse 0 (0%) 0 (0%) 0 (0%)

Worse by a factor of at least 2 0 (0%) 0 (0%) 0 (0%)
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Fig. 3 Impact of different cut
generation strategies on BARON
for a 220 randomly generated
multilinear and polynomial
optimization problems of degree
three, b 220 randomly generated
multilinear and polynomial
optimization problems of degree
four, and c 45 computer vision
problems
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Table 3 Comparison of CPU times (geometric means) using different cut generation schemes

Test set BarBasic BarMult BarRI BarBoth

Third degree 12.75 6.60 3.42 3.02

Fourth degree 77.49 23.36 30.55 15.25

Computer vision 495.65 8.97 5.04 3.36

6.4 Relative impact of multilinear cuts versus running intersection cuts

The only other type of cutting planes in BARON which are generated for multilinear
sets are multilinear cuts, as introduced in [2]. In this section, we examine the relative
impact of multilinear cuts and running intersection cuts. Results in [2] indicate that
multilinear cuts significantly enhance the performance of BARON. In the previous
section, we demonstrated that the addition of running intersection cuts leads to further
improvements. The purpose of this section is to understand the relative impact of the
two cut generation strategies on different problem types. To this end, we consider the
following four versions of BARON:

1. BarBasic No multilinear cuts or running intersection cuts are generated; in this
version, for our test sets, BARON’s relaxation constructor is essentially a conven-
tional term-wise factorable scheme [41].

2. BarMultMultilinear cuts are generated but no running intersection cut is gener-
ated.

3. BarRI Running intersection cuts are generated but no multilinear cuts are gener-
ated.

4. BarBoth Both multilinear cuts and running intersection cuts are generated.

To evaluate the performance of BARON with different cut generation strategies,
we make use of performance profiles [16]. The performance profile of a solver is a
(cumulative) distribution function for a performance metric. Throughout this section,
we use the ratio of the time that an algorithm takes to solve a problem versus the
best time of all algorithms as the performance metric. For the purpose of constructing
performance profiles, by solve we imply that the algorithm finds the best solution
among all solvers for a given problem within the time limit. We utilize the GAMS
performance tools [18] to construct all performance profiles. To account for trivial
problems as we described in the previous section, we set resmin= 0.5 s. As defined
by the GAMS performance tools manual, resmin is the minimum resource time
threshold. That is, if a solver reports a resource time belowresmin, then it is increased
to resmin before being used in ratio calculations.

Figure 3 shows the performance profiles of the four variants of BARON for all test
sets.As canbe seen from this figure, for all test setsBarBoth is the best solverwhereas
BarBasic is the worst. The relative performance of BarMult and BarRI however
changes in the two random test sets. For the computer vision test set, the relative
impact of running intersection cuts is more significant than that of the multilinear cuts.
In Table 3, for each cut generation strategy, we report the geometric mean of the CPU
time taken over each test; for all test tests, BarBoth is on average the fastest solver.
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Hence, we conclude that the combination of multilinear cuts and running intersection
cuts outperforms either of the two cut generation schemes in isolation.

Weconclude by acknowledging that for a general polynomial optimization problem,
the impact of running intersection cuts on the convergence rate of the branch-and-
bound tree highly depends on the structure of the underlying hypergraph. In particular,
we have observed that for problems corresponding to highly dense hypergraphs, the
proposed cuts may not lead to any visible improvements. See for example the auto-
correlation test set presented in [29].
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