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Abstract

Social sensing has emerged as a new sensing paradigm where humans (or
devices on their behalf) collectively report measurements about the physical
world. This paper focuses on a quality-cost-aware task allocation problem
in multi-attribute social sensing applications. The goal is to identify a task
allocation strategy (i.e., decide when and where to collect sensing data) to
achieve an optimized tradeoff between the data quality and the sensing cost.
While recent progress has been made to tackle similar problems, three im-
portant challenges have not been well addressed: (i) “online task allocation”:
the task allocation schemes need to respond quickly to the potentially large
dynamics of the measured variables in social sensing; (ii) “multi-attribute
constrained optimization”: minimizing the overall sensing error given the de-
pendencies and constraints of multiple attributes of the measured variables
is a non-trivial problem to solve; (iii) “nonuniform task allocation cost”:
the task allocation cost in social sensing often has a nonuniform distribution
which adds additional complexity to the optimized task allocation prob-
lem. This paper develops a Quality-Cost-Aware Online Task Allocation
(QCO-TA) scheme to address the above challenges using a principled on-
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line reinforcement learning framework. We evaluate the QCO-TA scheme
through a real-world social sensing application and the results show that
our scheme significantly outperforms the state-of-the-art baselines in terms
of both sensing accuracy and cost.
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1. Introduction

This paper presents an online reinforcement learning framework to solve
the quality-cost-aware task allocation problem in multi-attribute social sens-
ing applications. Social sensing has emerged as a new sensing paradigm in
pervasive and mobile computing applications where humans (or devices on
their behalf) collectively report measurements about the physical world [1,
2]. Examples of social sensing applications include air quality and envi-
ronment monitoring in smart cities using mobile devices [3], malfunctioning
urban infrastructures reporting using geotagging [4], and damage assess-
ment in disaster response using online social media [5]. In social sensing
applications, participants perform sensing tasks at assigned locations to col-
lect different attributes of the measured variables that are of interests to
the application [6]. For example, in an urban air quality sensing applica-
tion, participants are tasked to measure various air quality attributes (e.g.,
PMy 5, PMjg, CO2) at different locations of the city to estimate the overall
air quality and identity potential health risks. We refer to this category of
applications as multi-attribute social sensing applications.

In multi-attribute social sensing applications, there exists a fundamen-

tal tradeoff between data quality and sensing (task allocation) cost [3, 7).



In particular, it is essential to obtain comprehensive and accurate measure-
ments to ensure the desired data quality of the social sensing applications.
Such a dedicated data collection process often also encounters a high sens-
ing cost (e.g., more incentives to recruit participants to perform sensing
tasks) [3]. However, the high sensing cost may not always be affordable
to the applications with a finite budget [8]. Therefore, a key challenge for
social sensing applications is to find a task allocation strategy (i.e., decide
when and where to collect sensing data) that achieves an optimized trade-
off between the data quality and sensing cost. We refer to this problem
as the quality-cost-aware task allocation problem. The current solutions to
address this problem primarily focus on identifying an optimal set of sensing
locations (i.e., cells) to collect measurements to minimize the overall sensing
error [3, 9, 10, 11, 12, 13, 14, 15, 16]. However, these solutions cannot be di-
rectly adapted to solve our task allocation problem due to three challenges
that have not been fully addressed: online task allocation, multi-attribute
constrained optimization and nonuniform task allocation cost. We elaborate
them below.

Online Task Allocation. Many social sensing applications are delay sen-
sitive and require timely response to meet the application requirement [12].
For example, during a hurricane, it is crucial for the application to decide
when and where the data should be collected to provide real-time situa-
tion awareness about the disaster. However, online task allocation in social
sensing is challenging due to the large spatial-temporal dynamics of the mea-
sured variables and opportunistic nature of social sensing participants [12, 9].
This problem becomes more challenging in a multi-attribute sensing scenario
where the values of all attributes change simultaneously. Several task allo-

cation methods have been developed to address similar problems [3, 17].



However, a few important limitations exist. First, existing models largely
ignore the high dynamics of the social sensing applications and allocate the
sensing task to cells one by one until the data quality requirement is met [3].
Second, current solutions do not explicitly consider the correlation between
different attributes, thus leading to sub-optimal task allocation solutions.
Multi-attribute Constrained Optimization. We observe that different
sensing attributes often have different spatio-temporal distributions that
will affect the task allocation decisions [9]. For example, the local optimized
task allocation strategy for a particular sensing attribute may not be the
global optimized task allocation strategy for all attributes. Furthermore,
different sensing attributes may have inherent and complex dependencies.
For example, the PMs 5 and CO» are often found to be correlated in a social
sensing application that measures the air quality of a city [9]. It is not a
trivial job to design a task allocation strategy that can effectively identify
the optimal set of sensing cells that can minimize the sensing error across
multiple interdependent sensing attributes with diversified distributions.
Nonuniform Task Allocation Cost. The task allocation cost in social
sensing is often related to the incentives to motivate a participant to travel
from one sensing location to another [18]. Such task allocation cost often
has a non-uniform distribution (e.g., different travel distances will lead to
different amount of incentives), which adds additional complexity to the
optimized task allocation problem [19]. For example, in a social sensing
application as shown in Figure 1, a participant at location A may be assigned
to collect air quality readings at two possible locations: location B and C.
The sensing measurements collected at B will reduce the overall sensing
error more significantly. However, the task allocation cost at B is also higher

than C because the travel distance between A and B is larger than the one



between A and C (i.e., d2 > di). The question is which location we should
send participant to perform the sensing task. To answer this question, the
task allocation scheme needs to carefully explore the tradeoff between the

data quality and the nonuniform task allocation cost.
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Figure 1: Tradeoff Between Quality and Cost

In this paper, we develop a Quality-Cost-Aware Online Task Allocation
(QCO-TA) scheme to address above challenges under a principled online re-
inforcement learning framework. To address the online task allocation chal-
lenge, we develop an online learning algorithm that dynamically estimates
the priority of each sensing cell for different sensing attributes at each cy-
cle. To address the multi-attribute constrained optimization challenge, we
develop a Bayesian inference scheme that judiciously combines the prior-
ity estimations of all sensing attributes into a comprehensive priority score
that identifies the cells to effectively reduce the overall sensing error across
different sensing attributes. To address the nonuniform task allocation cost
challenge, we develop a principled reinforcement learning method to explic-
itly consider the nonuniform task allocation cost and learns the optimal
set of sensing cells for the task allocation. Finally, we evaluate the QCO-
TA scheme on a real-world social sensing dataset: Piemonte Air Quality
Dataset. The results show that our scheme significantly outperforms the

state-of-the-art baselines in both sensing accuracy and cost.



We choose the online and reinforcement learning framework to address
the quality-cost-aware task allocation problem in multi-attribute social sens-
ing applications for two main reasons. First, the sensing measurements in
social sensing applications are often collected in real time [20]. The online
learning technique is a great fit for such application scenarios because it
is capable of dynamically adjusting the task allocation decisions based on
the streaming sensing measurements. This is in contrast to the batch based
learning techniques which often require a large amount of high-quality train-
ing data a priori that are not available in our problem setting. Second,
our quality-cost-aware task allocation problem aims to find a task alloca-
tion strategy that achieves an optimized trade-off between data quality and
sensing cost given incomplete sensing measurements (i.e., due to a finite
sensing budget). The reinforcement learning technique is a goal-oriented
learning technique that fits nicely into our problem. In particular, it pro-
vides a data-driven solution that learns to achieve a complex objective (i.e.,
Equation (2)) given a set of partially available sensing measurements. The
reinforcement learning solution sharply contrasts with classical optimization
techniques (e.g., linear programming, dynamic programming) which often
require a complete set of sensing measurements to learn the optimized trade-
off between data quality and sensing cost. However, such a complete sensing
dataset is often not available due to limited sensing resources and coverage
in social sensing applications [3].

A preliminary version of this work was published in the [21]. We re-
fer to the scheme developed in the previous work as the online optimized
multi-attribute task allocation (OO-MTA) scheme. The current paper is a
significant extension of the previous work in the following aspects. First,

we extend our previous model by explicitly exploring the optimized tradeoff



between the data quality and sensing cost in multi-attribute social sensing
applications. In contrast, the OO-MTA only focuses on optimizing data
quality and does not take the sensing cost into consideration. Second, we
develop a novel reinforcement learning algorithm that explicitly addresses
the nonuniform task allocation cost challenge identified in this paper. Third,
we add a new set of experiments to explicitly evaluate the performance of all
compared schemes in terms of both data quality and sensing cost. Fourth,
we compare our scheme with more recent task allocation schemes including
OO-MTA and demonstrate the performance gains achieved by the QCO-TA
scheme compared to all baselines. Finally, we extend the related work by
adding a new discussion on the cost-aware task allocation schemes and the

difference between QCO-TA and those schemes (Section 2).

2. Background and Related Work

2.1. Social Sensing

Social sensing has emerged as a new application paradigm due to the
proliferation of portable devices and ubiquitous Internet connectivity [2]. A
recent survey of social sensing can be found in [1]. Social sensing has been
widely used in environment sensing [12], traffic monitoring [22], emergence
and disaster response [23], social sensor profiling [24], point-of-interest (POI)
identification [25], clickbait video detection [26], and abnormal event iden-
tification [27]. Quality-cost-aware optimal task allocation in social sensing
remains to be an open challenge that has not been fully addressed [3]. This
paper addresses the quality-cost-aware task allocation problem in a more
challenging scenario where the measured variables have multiple dependent

attributes and nonuniform sensing costs.



2.2. Task Allocation

Task allocation with sparse resources has been well studied in mobile
crowdsensing literature [3, 9, 10, 28, 29, 11, 12, 13, 14, 15, 30, 31]. Those
techniques can be classified into two main categories based on their primary
objectives: 1) Resource and Cost Reduction: For example, Wang et al. de-
veloped a data quality aware task allocation scheme that leverages active
learning and Bayesian inference techniques to allocate sensing tasks to a lim-
ited number of crowd sensors to reduce the overall sensing cost [3]. Zhang
et al. developed a bottom-up task allocation scheme where mobile sensors
bid for tasks to minimize energy cost using a game-theoretic approach [9].
Tong et al. proposed a two-phased-based online task allocation scheme to
reduce the task allocation cost in real-time crowdsourcing systems [10]. 2)
Quality-of-Service (QoS) Improvement: For example, Zhou et al. devel-
oped a budget-aware task allocation scheme that maximizes the quality of
sensing data under the constraints imposed by the physical distance between
tasks [11]. Hsieh et al. developed a greedy task allocation scheme to allocate
sensors to cells that would generate minimum entropy to improve the infer-
ence accuracy [12]. Zhang et al. proposed an expertise-aware task allocation
scheme to ensure the quality of the collected data in mobile crowdsourcing
systems by inferring the expertise of task participants through truth anal-
ysis [13]. There also exist a few solutions that explore both cost and QoS.
For example, Yu et al. proposed a quality and budget aware task allocation
scheme to improve the data quality for spatial crowdsourcing systems given
the application specific budget limitations [14]. Liu et al. developed an
information distribution aware task allocation framework to minimize the
task allocation cost of mobile crowdsourcing applications while ensuring the

social fairness (e.g., task load balancing) of each participant [15].



Our work is clearly different from the above solutions in several impor-
tant aspects. First, we explicitly consider the multi-attribute sensing prob-
lem which is more challenging than the single attribute problem addressed
in the above literature. In the multi-attribute sensing problem, different
sensing attributes often have different and correlated spatial-temporal dis-
tributions that can lead to inconsistent or even conflicting task allocation
decisions [32]. For example, the sensing measurements that can significantly
improve the estimation accuracy of a specific sensing attribute may not be
equally helpful for other sensing attributes. Moreover, it is not a trivial task
to model the complex dependencies between different sensing attributes and
understand how such dependencies would affect the global optimized task
allocation solution. Second, the goal of our solution is to achieve a com-
plex optimization objective (i.e., jointly optimize the trade-off between the
nonuniform task allocation cost and the sensing data quality). The above
objective becomes more challenging when we consider the incomplete sensing
measurements introduced by a finite sensing budget in our problem. Such
incomplete sensing measurements often provide inadequate evidence to ex-
plore the aforementioned trade-off between the data quality and sensing cost

in multiple-attribute social sensing applications.

2.8. Online Learning

Our work is also related to online learning techniques which have been
applied in solving decision making problems in social sensing applications [33,
34, 35, 36, 37, 38]. In particular, online learning learns to make sequen-
tial decisions to achieve the desired quality-of-service of an application and
dynamically adjust the learning process based on the streaming data re-

ceived at each step. For example, Rajan et al. developed an online learning



task scheduling scheme that coordinates the real-time execution of crowd
tasks through the learning of crowd performance [35]. Feng et al. devel-
oped an online learning algorithm to detect abnormal behavior patterns in
crowds using the online self-organization mapping technique [33]. Zhang
et al. proposed an online learning framework to improve the efficiency of
competence-based knowledge compression in machine learning [34]. Xu et
al. developed an efficient online learning algorithm for dynamic workload
offloading (to the centralized cloud) to minimize the system delay and op-
eration cost [37]. To the best of our knowledge, the QCO-TA scheme is one
of the first approaches to leverage online learning techniques to address the

quality-cost-aware multi-attribute task allocation problem in social sensing.

2.4. Reinforcement Learning

Finally, our work also bears some relevance with the reinforcement learn-
ing techniques that have been applied in recommendation systems, intelli-
gent transportation systems, computer vision, natural language processing,
and control theory [39, 40, 41, 42, 43]. In particular, reinforcement learn-
ing learns to optimize the desired objective of an application by maximiz-
ing the cumulative reward received from the environment when exploring
the application-specific search space. For instance, Zhang et al. devel-
oped a scholar collaboration and recommendation system via competitive
multi-agent reinforcement learning [39]. Xu et al. applied a deep reinforce-
ment learning approach in intelligent transportation systems to improve the
control robustness for autonomous driving vehicles [40]. Supancic III et
al. presented a reinforcement learning based decision making framework
to continuously track the objects in streaming videos [41]. Branavan et al.

developed a new reinforcement learning approach to effectively map natural
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language instructions to executable actions [42]. Abbeel et al. proposed
a reinforcement learning based autonomous helicopter flight control system
using differential dynamic programming [43]. To the best of our knowledge,
the QCO-TA scheme is among the first frameworks to leverage reinforcement
learning techniques to explore the optimized tradeoff between the data qual-

ity and sensing cost in multi-attribute social sensing applications.

3. Problem Statement

In this section, we formulate the problem of quality-cost-aware task al-
location in multi-attribute social sensing applications. We first define a few

terms that will be used in the problem statement.

Definition 1. Sensing Cell: We divide the target area for multi-attribute
social sensing task into disjoint cells where each cell represents a subarea of
interest. In particular, we define S to represent the set of sensing cells in
the target area, X to be the total number of sensing cells, and x to be the

zt sensing cell in the target area.

Definition 2. Sensing Cycle: A sensing cycle is a period of time where
participants perform one round of the sensing tasks. We define Y to be the

total number of sensing cycles, and y to be the y™"* sensing cycle.

Definition 3. Sensing Attribute: In social sensing applications, the mea-
sured variables often have multiple sensing attributes. We define A to be the

total number of sensing attributes, and a to be the a® attribute.

Consider a social sensing application where the goal is to monitor the

air quality index of a city by tasking people to collect sensing measurements
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at different locations. In this case, a sensing cell is a neighborhood where
the sensing values stay relatively stable spatially [3]. A sensing cycle reflects
the frequency of sensing data updates (e.g., hourly, daily). In order to
estimate the air quality index, participants collect a set of sensing attributes
(e.g., NO2, CO, PM2.5 and PM10) that are associated with the measured

variables (i.e., the air quality index at different cells).

Definition 4. Real Sensing Value (RS): We define the RS matriz to
represent the ground-truth sensing value of measured variables. In particu-
lar, RS® is the ground truth sensing value of attribute a, and RSg , is the

ground truth sensing value of attribute a in cell T at cycle y.

Definition 5. Collected Sensing Value (CS): We define a CS matrix
to represent the collected sensing values of measured variables. In particular,
CS“ is the collected sensing values of attribute a, and CSg , is the collected

sensing value of attribute a in cell x at cycle y.

Definition 6. Inferred Sensing Value (I1S): We define an IS matriz to
represent the inferred sensing values of measured variables from the inference
algorithms by leveraging the collected sensing value. In particular, IS* is the
inferred sensing value of attribule a, and ISy, is the inferred sensing value

of attribute a in cell x at cycle y.

Definition 7. Sensing Error (SE): we define the Sensing Error to be the
mean absolute error between the inferred sensing value and the real sensing

value. In particular, we have SE = |ISg, — RSy |, where SEg  is the

b

inference error of attribute a in cell x at cycle y.
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Definition 8. Number of Participants (P): we define P to be the total
number of participants that can be assigned for task allocation in the applica-
tion. In social sensing, we observe that the number of available participants
s often much smaller than the number of sensing cells X due to the budget
and resource limitations [3], i.e., P << X. We denote p as the p partic-
ipant. In addition, we assume the participants in our multi-attribute social
sensing applications to be collaborative, i.e., participants agree to perform
all assigned task during the application period as long as compensation is

provided.

Definition 9. Task Allocation Cost (C)': we define the task allocation
cost to be the compensation to cover the cost of a participant to travel from
one sensing cell to another. We consider the cost to be proportional to the

travel distance of a participant in this paper. In particular, we have
C o< Distancel) (1)

where Cyj and Distancel) are the task allocation cost and travel distance of
participant p at sensing cycle y. In this paper, we choose the above simplified
cost model, however, we observe that the above cost function can be readily
extended by considering additional cost/incentive design and mobility model-
ing [44] to accommodate specific requirements of a social sensing application.
For example, we can extend the Equation (1) by modeling the diversified re-
sponse time and transportation expense of different sensing participants, e.g.,
participants may choose different means of transportation (e.g., walk, bike,
drive, bus) to travel between different sensing cells depending on personal

preference or availability of different transportation options.

"We use the term task allocation cost and sensing cost interchangeably in the paper.
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The goal of our online quality-cost-aware task allocation in multi-attribute
social sensing applications is to make real-time task allocation decisions
that optimize the tradeoff between the overall sensing error for all sensing
attributes of the measure variables and the task allocation costs over all

participants. Formally our problem is defined as:

select Sy from S, V1 <y <Y,

A | Yo X
minimize ;(FG(YC . Z X ;SEiy))

y=1

NI RO pA
minimize v ;(P . ;Cy)

where [S,| <P
where Y, denotes the total number of sensing cycles of interest, and S,
represents the cells that are allocated to the participants for sensing tasks
at cycle y. Considering that different sensing attributes have different ranges
of values, we define I, as the normalization function to normalize the sensing

error for attribute a.

The above problem is NP-hard since each of its two objectives (i.e.,
minimizing sensing error or minimizing sensing cost) can be reduced to the
Knapsack problem ( i.e., one of the Karp’s 21 NP-hard problems) 2 [45].
In this paper, we develop a QCO-TA scheme that judiciously explores the
tradeoff between the data quality and sensing cost and identifies an opti-
mized task allocation strategy to jointly optimize the sensing error and cost.

The details of the QCO-TA scheme are discussed in the next section.

2The detailed proof of NP-hardness of the proposed optimization problem can be found

in the Appendix.
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4. Solution

In this section, we present the Quality-Cost-Aware Online Task Alloca-
tion (QCO-TA) scheme to address the problem formulated in the previous
section using a principled online reinforcement learning framework. The
QCO-TA scheme consists of three modules: 1) a Single-Attribute Priority
Estimation (SPE) module, 2) a Multi-Attribute Priority Integration (MPI)
module, and 3) a Nonuniform-Cost-Aware Task Selection (NTS) module.

The overall architecture of the QCO-TA scheme is shown in Figure 2.
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Figure 2: Overview of QCO-TA Scheme

4.1. Single-Attribute Priority Estimation (SPE)

In this subsection, we present the single-attribute priority estimation
module that addresses the online task allocation challenge discussed in the

introduction. We first define a few terms that will be used in this module.

Definition 10. Task Priority: We define the task priority as the order

in which the sensing cells are selected for task allocation given a particular
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sensing attribute 3. A task with the highest priority will be selected first.

Definition 11. Priority Score: We further define the priority score as a
scalar to quantify the task priority defined above.

In particular, the SPE module estimates the priority score of each cell for
a given sensing attribute and dynamically updates the estimations based on
the collected sensing values from the previous cycles using an online learning
algorithm. To compute the task priority of each cell for a given attribute
in real time, we need to know which cell’s sensing value, if collected, would
be the most helpful one to reduce the sensing error. This problem has been
proven to be an NP-hard without knowing the real sensing value of cells in
advance [3]. To solve this problem, we develop an efficient approximation
algorithm that considers two factors directly related to the sensing error of
a cell: 1) uncertainty: the estimation confidence of the sensing values in a
cell from a given inference algorithm (e.g., KNN, SVR) [3]; 2) representa-
tiveness: how accurately the sensing value of the target cell can be used to
represent the values of its neighboring cells [46]. In QCO-TA, we use tempo-
ral entropy and spatial mutual information to estimate the uncertainty and
representativeness of a sensing cell, respectively.

Temporal Entropy (TE): We define temporal entropy to quantify the

uncertainty of the inferred sensing value of a sensing cell as follows:

where TE7 , is the temporal entropy of cell = at cycle y for attribute a. 157

is the inferred sensing value of cell x at cycle y for attribute a (defined in

3Since each task is associated with a particular sensing cell, we use task and cell priority

interchangeably in the rest of the paper.
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Definition 6). A is the distribution (e.g., normal distribution) of the inferred
sensing value I.57 . ©, is the function to calculate the differential entropy
for the distribution A [47]. Intuitively, a high temporal entropy of a cell
indicates that the inference algorithm is uncertain about its inferred sensing
values of that cell and vice versa.

Spatial Mutual Information (SMI): We define the spatial mutual infor-
mation of a sensing cell to be the aggregated mutual information between
the target cell and the rest of cells:

X
SMIS, = > I({IS8,,1S%,.. 158 }; {188, 15%.. 15}, })  (4)
i=1,i#x

where SMI7  represents the spatial mutual information of cell x at cy-
cle y for attribute a. I is the function to calculate the mutual informa-
tion of inferred sensing values between different cells [48]. In particular,
I({153 1,185 .- 1S3, }s {1571, 1575...157,}) is the mutual information be-
tween cell x and i. Intuitively, a high spatial mutual information of a cell
indicates that the sensing values of the cell, if selected, can be used to reduce
the inference error significantly.

We then combine the temporal entropy (T'E) and spatial mutual infor-
mation (SM1I) to compute the priority score (PS) that determines the task

priority of each sensing cell to be selected for task allocation as follows:
PS;, = &g TE;, + o SMIz, (5)

where PS7 represents the priority score of cell x at sensing cycle y given
sensing attribute a. o and of,,,; are the weights for temporal entropy
and spatial mutual information at cycle y, respectively. The values of of:/p B

and a% a7 are tuned based on the requirements of specific applications.

17



4.2. Multi-Attributes Priority Integration (MPI)

In this subsection, we describe the Multi-Attribute Priority Integration
(MPI) module to address the multi-attribute constrained optimization chal-

lenge. First, we formally define a comprehensive ranking score as follows.

Definition 12. Unified Priority Score (UPS): We define the UPS to
be the weighted summation of the priority score PS of all sensing attributes

generated by the SPE module as follows:

A
UPSyy = > wi-PS%, (6)

a=1

where UPS, ,, is the unified priority score for cell x at cycle y and A is the

a

y i the weight for attribute a in cycle y.

number of sensing attributes. w

PSg , is the priority score of cell x at cycle y for attribute a.

The key question is how to dynamically compute the weights for all
attributes at each cycle so that the aggregated sensing error (defined in
Equation (2)) can be minimized by exploiting the dependencies between
attributes. To solve this problem, we develop an exponential weighted online
learning algorithm that dynamically updates the weights for all attributes
based on collected sensing values in real time. In particular, we have the

following updating rule for the weight:

Wiy = w - exp(—n - ((IS%, RSS) (7)

a

where wy

and wy, are the weights for attribute a at cycle y and y + 1,
respectively. 7 is the learning rate parameter that directly controls the scale
of the weight assigned to each sensing attribute. ((ISj, RSy) is the loss

function that measures the sensing error between the inferred sensing value

18



(1Sy, defined in Definition 6) and the real sensing value (RSy, defined in
Definition 4) in the current cycle y. The intuition of this weight updat-
ing function is that it increases the weights of the sensing attributes that
contribute less sensing error.

The challenging part of computing the above weight updating function
is how to calculate the loss function since we do not have the real sensing
value for all cells due to the budget limitation. To address this problem, we

apply Bayesian inference to estimate the loss function as follows:
LISy, RSy) = L(1Sy, RSy|1Sy, CSy) = P, () (8)

where ((1Sy, RS;|1Sy,CSy) is the estimated loss given the collected sens-
ing values C'Sy and inferred sensing values 1.5y. @ is the inverse of the
cumulative distribution function given the distribution N,. N, is the dis-
tribution of the mean absolute error (MAE) between CSy and IS) for
attribute a in current cycle y (i.e., OS] — ISg]). We assume N, follows the
normal distribution, which is a common assumption for MAE in social sens-
ing applications [3]. In addition, § is a probability threshold to determine
the level of approximation between the loss £(15}, RSy) and estimated loss

((ISy, RS;|IS,,CSy). Tt is usually set to be higher than 0.95.

4.8.  Nonuniform-Cost-Aware Task Allocation (NTS)

In this subsection, we describe the Nonuniform-Cost-Aware Task Alloca-
tion (NTS) module to address the nonuniform task allocation cost challenge.
In particular, the NTS module judiciously integrates the nonuniform task
allocation costs with the unified ranking score generated by the MPI module
to explore the optimized tradeoff between the data quality and sensing cost
through a principled reinforcement learning framework. We first define a

quality-cost-aware ranking score as follows.
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Definition 13. Quality-Cost-Aware Ranking Score (QRS): We de-
fine the QRS to be the overall ranking score that jointly considers both
UPS score (defined in Definition 12) generated by the MPI module and the

nonuniform sensing cost (defined in Definition 9) as follows:
QRS y =T(UPS:y,Cla 2]y) (9)

where QRS , is the quality-cost-aware ranking score for cell = at cycle y.
UPSy,y is the unified priority score of cell z at cycle y. Cjpr 4, is the cost
for participants to move from current cell 2’ to cell x to perform the sensing
task at cycle y. I' is the mapping function that integrates the UPS score
and nonuniform sensing cost. Intuitively, a high QRS value indicates that a
cell, if selected, would most likely to reduce the overall sensing errors with
the minimal sensing costs, and vice versa.

The key challenge now is how to design an effective mapping function I'
to compute the QRS score so that the aggregated sensing error and overall
sensing cost can be jointly optimized as indicated in Equation (2). To solve
this problem, we develop a principled reinforcement learning algorithm that
iteratively explores the optimal tradeoff between the data quality and the
cost for task allocation. We first define a few key terms that will be used in

our reinforcement learning framework.

Definition 14. State (S): We define a state (S;) as a sensing cell (i.e.,
S = x) that is considered as a candidate for task allocation. FEach state
carries a state value (V), which indicates the priority of the corresponding
cell to be selected for a sensing task allocation. In particular, we define Vi

to be the state value for state S, at sensing cycle y.

We initiate the state value for each sensing cell with the UPS score generated
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by MPI at each sensing cycle (i.e., V¥ = UPSY). The state value will be
dynamically updated by our reinforcement learning algorithm to explicitly
consider the nonuniform task allocation cost, which will be elaborated in

this subsection.

Definition 15. Action (A): We define an action Ajy . as the move of
a participant p who travels from the sensing cell ¥’ to x” to perform the

assigned sensing task in two consecutive sensing cycles.

A participant can take an action to move from current cell 2’ to a new cells
a2’ or stay at current cell 2 (i.e., 2" = 2’) to perform the sensing task. The
goal of our reinforcement learning algorithm is to learn the optimal action
for each participant so the aggregated sensing error and overall sensing cost

can be jointly optimized.

Definition 16. Reward (R): We define the reward Rig am for action
A[xlyx//] to be inversely proportional to the task allocation cost (i.e., travel

distance Distancep .1 between the two cells) defined in Definition 9 as:

1

Distancepys 4m

R[r’,x”] =" (]_0)

where v s the scaling parameter, the value of v is tuned based on the specific
requirements of the applications. The rewards will be used to dynamically

update the state values in our reinforcement learning algorithm.

Using the above definitions, we leverage a Bellman optimality equa-
tion [49] to integrate the nonuniform task allocation cost with the unified

ranking score generated by MPI as follows:

Vl«/ = max E[ﬂ . (Vx//) + R[x’,x”] ’S = Sm/, A= A[x/,:t”]] (11)

[a/ /"]
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where Aps ) is the action of moving from the sensing cell 2’ to z” for
a sensing task at sensing cell z”. Ry 4 1s the reward for the action.
is the discount parameter to control the updating rate of the state values,
which is usually set to be a small value (i.e., less than 1) to ensure a desired
performance of the reinforcement learning algorithm. The intuition of the
above equation is to assign a higher priority score (i.e., state value) to a cell
that leads to lower overall sensing error with minimal sensing cost.

Using the Bellman optimality equation, we can learn the optimized state
value V¥ for each sensing cell x by iteratively updating each state value V,

until all state values are converged as follows:

abs(V, = V;) <O Vl<z <X
(12)

Vi=V,,Vli<z< X
where V! is the state value for sensing cell x in the previous iteration, and
V. is the updated state value for sensing cell = in the current iteration. © is
the threshold to stop the learning process, which is usually set to be a small
value (e.g., less than 0.1) to ensure the convergence of the learning process
and the accuracy of the learned model. We take the learned optimized state
value V¥ as the overall ranking score QRSY for a sensing cell z at the sensing

cycle y as follows:

QRS;y =V, Vl<z <X (13)

Finally, each participant is allocated to move from the current cell 2’ to

the new cell 2" that leads to the highest ORS,» , value as follows:

arg max(ORSyy | A = A[x/,x”}»l"” ¢ Sy)
2! (14)
add 2z to S,

where Sy is set of sensing cells that has been allocated to the participants

in the current sensing cycle.
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5. Evaluation

In this section, we evaluate the performance of the QCO-TA scheme
through a real world social sensing application. We compare the perfor-
mance of QCO-TA with state-of-the-art task allocation baselines. The eval-
uation results show that QCO-TA significantly outperforms the baselines in

terms of both sensing accuracy and task allocation cost.

5.1. Datasets

Piemonte Air Quality Dataset: In our evaluation, we use a social
sensing dataset published by Blangiardo et al. [50] 4. This dataset consists of
daily air quality measurements across 24 locations (i.e., cells) in Piemonte,
Italy (as shown in Figure 3(a)). The measurements include the following
air quality related attributes: wind speed, temperature, emission rates of
primary aerosols, and particulate matter (PM) 10. We choose this dataset
because i) it contains multiple sensing attributes of the measured variable
(i.e., the air quality); ii) the measurements have large spatial-temporal dy-
namics (Figure 3(b)), which make our problem more challenging to solve.

The sensing cycle is set to be one day for this application.

5.2. Inference Algorithm

In the experiment, we select the following inference algorithms to work
with the task allocation schemes to estimate the sensing values of the cells

that are not selected for sensing in each cycle.

“https://sites.google.com/a/r-inla.org/stbook/datasets
5The dark colors in each horizontal line indicate larger temporal dynamics and the

various color patterns across different lines indicate large spatial variations.
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Figure 3: Piemonte Air Quality Dataset

1. K-Nearest Neighbour (KNN): KNN estimates the missing value
of a cell by averaging the collected sensing values from the & nearest
cells of the target cell.

2. Inverse Distance Weighting (IDW): IDW estimates the missing
value of a cell by calculating the weighted average value of the col-
lected sensing values from its n closest neighbors, where the weights
are proportional to the reciprocal of the spatial distances between the
target cell and its neighbors.

3. Support Vector Regression (SVR): SVR first establishes a pre-
diction model with the collected sensing values from the selected cells
using a support vector machine and then applies the prediction model

to infer the missing value of the target cell [51].

5.8. Baseline algorithms

We choose several representative task allocation schemes as the baselines.

1. OO-MTA: OO-MTA scheme is a simplified version of QCO-TA scheme

that selects the sensing cells solely based on the unified priority score
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(defined in Definition 12) from our previous work [21]. The OO-MTA
scheme does not consider the nonuniform task allocation cost.

2. GPS-TA: GPS-TA (Greedy Priority Selection Task Allocation) is a
greedy task allocation algorithm that selects the d cells with highest
priorities for each sensing attribute for task allocation [12]. d is equal
to the number of participants divided by the number of attributes.

3. EWA-TA: EWA-TA (Equal Weighted Aggregation Task Allocation)
is a task allocation scheme that generates the overall priority of a cell
by calculating the mean of the priorities of the cell across all sensing
attributes and then selects the top P ranked cells for task allocation.

4. UNS-TA: UNS-TA (Uniform Sampling Task Allocation) is a task
allocation scheme that uniformly samples P cells from all cells for
sensing task allocation in each cycle, where each cell has an equal

probability to be selected for task allocation [52].

5.4. PBwvaluation Metrics

In our evaluation, we define the following metrics to evaluate the task

allocation performance of all compared schemes.

e Aggregated Sensing Error (¢): We define Aggregated Sensing Er-
ror (€) to be the aggregated sensing errors for all the sensing attributes
of the measured variable. Specifically, we define:

A X

Y
c= 3l S SosEs,) (15)

a=1 y=1 =1
where A is the number of the sensing attributes, X is the number
of sensing cells, and Y is the the number of sensing cycles. SE7 , is

the sensing error for attribute a of cell x at cycle y as we defined in
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Definition 7. 'y is the normalization function to normalize the sensing

error for attribute a as we defined in Equation (2).

e Average Task Allocation Cost (p): We define Average Task Al-

location Cost () as follows:

1 1 &

p= V(Y (16)
y=1 p=1

where P is the number of participants and Cj is the task allocation

cost for participant p at sensing cycle y as we defined in Definition 9.

In our evaluation, the task allocation cost is measured by the physical

distance between the source and destination cells a participant travels.

5.5. Evaluation Results

In this subsection, we present the results of our QCO-TA scheme and
the compared baselines on the real world social sensing dataset. In the ex-
periment, we evaluate the performance of all compared schemes by varying
the number of sensing attributes of the measured variable. In particular,
we change the number of of attributes from two to four in our experiment
based on the number of attributes available in the dataset (i.e., we have four
attributes in total). For a given number of sensing attributes, we evaluate
the performance of all compared schemes using the aggregated sensing error
and average task allocation cost metrics defined in Equation (15) and Equa-
tion (16), respectively. In our experiment, we evaluate the performance of
all schemes by changing the number of participants. Specifically, we vary the
number of participants P from 8 to 14 by considering the number of sensing

cells in our dataset (i.e., X=24).
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Table 1: Evaluation Results on Aggregated Sensing Error

H ‘ 2 Sensing Attributes 3 Sensing Attributes 4 Sensing Attributes

TA-Scheme | P-Num | KNN  IDW  SVR | KNN IDW  SVR | KNN IDW  SVR

P=8 0.153 0.149 0.141 0.184 0.180 0.172 0.232 0.228 0.217
QCO-TA P=10 0.139 0.138 0.134 0.170 0.171 0.166 0.214 0.215 0.211
P=12 0.133 0.131 0.130 0.164 0.163 0.161 0.210 0.209 0.207
P=14 0.129 0.128 0.127 || 0.160 0.159 0.158 0.207 0.206 0.204

P=8 0.201 0.197 0.175 0.329 0.321 0.263 0.245 0.244 0.231
OO-MTA P=10 0.173 0.170 0.163 0.257 0.252 0.234 0.230 0.230 0.222
P=12 0.163 0.162 0.158 0.230 0.230 0.221 0.226 0.225 0.221
P=14 0.160 0.164 0.159 0.221 0.220 0.214 0.222 0.224 0.219

P=8 0.239 0.240 0.221 0.231 0.241 0.226 0.293 0.286 0.275
GPS-TA P=10 0.229 0.232 0.223 0.227 0.228 0.224 0.275 0.275 0.273
P=12 0.235 0.242 0.229 0.228 0.232 0.227 0.274 0.277 0.276
P=14 0.238 0.245 0.234 0.232 0.234 0.230 0.276 0.276 0.277

P=8 0.292 0.275 0.245 0.344 0.333 0.289 0.377 0.376 0.334
EWA-TA P=10 0.239 0.234 0.227 0.291 0.290 0.271 0.335 0.335 0.319
P=12 0.234 0.226 0.223 0.268 0.264 0.251 0.319 0.318 0.306
P=14 0.216 0.210 0.202 0.245 0.240 0.232 0.301 0.299 0.290

P=8 0.245 0.246 0.223 0.248 0.249 0.229 0.320 0.312 0.288
UPS-TA P=10 0.230 0.232 0.223 0.238 0.242 0.232 0.294 0.298 0.289
P=12 0.227 0.229 0.224 0.236 0.239 0.234 0.292 0.294 0.289
P=14 0.226 0.226 0.222 0.235 0.237 0.233 0.292 0.293 0.290

5.5.1. Ewvaluation Results on Data Quality

The results on aggregated sensing error are shown in Table 1. We ob-
serve that the QCO-TA scheme outperforms all of the baselines by achieving
the smallest sensing error. The performance gain achieved by the QCO-TA
scheme is consistent over different inference algorithms and different num-
bers of sensing attributes. The performance gain achieved by QCO-TA
compared to the best performing baseline on P=8, P=10, P=12, P=14 are
4.8%, 4.4%, 3.0%, 3.1% under the KNN inference algorithm when the num-
ber of sensing attributes is 2. Such performance gains are achieved by two

key designs in the proposed QCO-TA scheme. First, the SPE module (de-
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scribed in Section 4.1) judiciously uses temporal entropy and spatial mutual
information to estimate the priority of cells for different sensing attributes.
Two types of sensing cells are often selected for sensing tasks to reduce the
overall sensing error: i) the sensing cells with the high uncertainty of their
inferred sensing values, and ii) the representative sensing cells whose sens-
ing value can be used to represent the sensing values of their neighboring
cells. Second, the MPI module (described in Section 4.2) unitizes principled
exponential weighted online learning to integrate the priority estimations of
different sensing attributes. In particular, the MPI module explicitly ex-
ploits the dependencies between the attributes and carefully increases the
weights of the sensing attributes that contribute less to the overall sensing
error. Additionally, we observe that the sensing error of all schemes gener-
ally decreases when the number of participants increases. This is because
a larger number of participants allow the schemes to collect sensing values
from more cells, which reduces the errors of the inference algorithms of all
compared schemes. These results demonstrate that the QCO-TA scheme
can minimize the sensing error of social sensing applications with multiple

sensing attributes in comparison with the state-of-the-art baselines.

5.5.2. Evaluation Results on Task Allocation Cost

The results on average task allocation cost are shown in Table 2. We
observe that the QCO-TA scheme outperforms all baselines by achieving
the lowest task allocation cost. The performance gain achieved by QCO-TA
compared to the best performing baseline on P=8, P=10, P=12, P=14 are
6.458 km, 3.645 km, 2.633 km, 6.279 km in terms of travel distance under the
KNN inference algorithm when the number of sensing attributes is 2. Similar

performance gains are also observed for different inference algorithms and
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Table 2: Evaluation Results on Average Task Allocation Cost (Unit: km)

H ‘ 2 Sensing Attributes 3 Sensing Attributes 4 Sensing Attributes

TA-Scheme | P-Num | KNN  1DW  SVR | KNN  1DW  SVR | KNN  IDW  SVR

P=8 2.872 1.551 5.528 3.043 2.136 6.918 5.696 5.846 6.751
QCO-TA P=10 2.978 5.615 3.136 4.619 4.056 3.787 4.235 5.671  6.008
P=12 3.924 3.789 2.471 3.114 2.779  2.226 3.620 4.259 4.863
P=14 3.281 3.401 2.798 2.563 2.759 3.139 3.116  3.324 4.283

P=8 9.338 5.920 11.758 || 13.810  8.673 7.261 8.310 10.321 8.045
OO-MTA P=10 6.234 6.111 6.572 4.916 4.389 8.969 6.585 7.634 6.394
P=12 6.557 6.041 5.073 6.303 5.587 6.536 7.378 4.683 5.876
P=14 9.560 5.284 4.290 5.571 5.602 5.790 5.619 4.473 4.632

P=8 16.798 17.436  32.693 || 29.173 23.686 39.436 || 20.151 18.421 31.053
GPS-TA P=10 13.847 11.883  27.726 16.796  13.283  27.182 || 20.879 18.253  37.555
P=12 10.527  8.250  21.368 14.060 15.727 20.971 17.964 13.922 23.505
P=14 7.196 9.840 19.905 15.128  20.066  19.356 13.139  11.631 22.636

P=8 11.939  14.584  35.633 14.345 7.202  31.720 15.190 15.925 35.674
EWA-TA P=10 9.061 11.515  28.204 10.146  8.822  23.193 10.557 11.685  30.714
P=12 6.244 8.726  21.129 5.944 5.577 16.901 8.068 7.868  24.725
P=14 7.069 5.664 14.829 5.920 4.226 12.756 5.773 7.736 18.110

P=8 39.036  36.221  38.862 || 39.256 36.996  35.553 || 35.346 35.450 36.655
UPS-TA P=10 33.646  32.604 31.180 || 34.079 31.568 31.678 || 31.699  35.127 31.713
P=12 28.999  28.256  28.083 || 30.627 30.966 28.356 || 28.650 28.392  31.266
P=14 24.816  23.877 25.082 || 23.430 25.758  24.251 || 25.179 25.890 25.301

different numbers of sensing attributes. Such performance gains of the QCO-
TA scheme are achieved by the key design in the principled reinforcement
learning framework (NT'S module as described in Section 4.3), which directly
learns to achieve the optimized tradeoff between the data quality and the
nonuniform task allocation cost. In particular, the NTS module iteratively
updates the proposed Bellman optimality equation (defined in Equation 11)
to assign a higher priority score to the cell that leads to a lower overall
sensing error with the minimal sensing cost. The reinforcement learning
process ensures that the QCO-TA scheme always selects the sensing cells

which lead to the lowest sensing cost under the premise of sensing quality
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assurance. In summary, the above results demonstrate the capability of
QCO-TA to achieve the goal of quality-cost-aware task allocation (defined
in Equation 2). We also would like to acknowledge that we only consider the
task allocation cost to be the travel distances of participants to perform the
sensing tasks in our evaluation. However, in real-world applications, there
can be additional factors that affect the task allocation cost (e.g., the time
consumed by the participants and the way of commute). We plan to further
validate our QCO-TA scheme with a more complex and comprehensive cost

model in our future work.

5.5.8. Affordability of QCO-TA scheme

Finally, we study the affordability of the QCO-TA scheme by examin-
ing the performance of QCO-TA scheme over multiple sensing cycles. The
performance of QCO-TA scheme is shown in Figure 4. We observe that
the QCO-TA scheme only requires a small number of sensing cycles at the
beginning to quickly learn the optimal task allocation strategy that opti-
mizes the performance of the system (in terms of data quality). The results
demonstrate that our scheme can efficiently learn the optimal task allocation

strategy within a limited number of sensing cycles.
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Figure 4: Affordability of QCO-TA Scheme
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6. Conclusion

This paper develops a QCO-TA scheme to solve the quality-cost-aware
task allocation problem in multi-attribute social sensing applications. In the
QCO-TA scheme, we develop a single-attribute priority estimation module
to estimate the priority score of each cell for a given sensing attribute, a
multi-attribute priority integration module to integrate the priority scores
from all sensing attributes into a unified ranking score for the task alloca-
tion, and a task-cost-aware task allocation module to explore the optimized
tradeoff between the data quality and sensing cost. The evaluation results
on a real-world data trace demonstrate that the QCO-TA scheme achieves
significant performance gains in terms of both data quality and sensing cost

compared to the state-of-the-art baselines in various application scenarios.
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7. Appendix

7.1.

The proof of NP-hardness of proposed task allocation problem

We use the reduction technique to prove the quality-cost-aware task allo-

cation problem is NP-hard by reducing it to a well-known NP-hard problem,

i.e, the bounded knapsack problem. Let us consider a simplified problem

of the quality-cost-aware task allocation problem, where the goal is to only

optimize the overall sensing error (given the predefined task allocation cost

constraint).
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The proof of NP-hard: Bounded Knapsack problem is a known NP-

complete problem [45]. We do the transformation as follows:

1. For a bounded knapsack problem with a set of M items, each item
m comes with a weight of w™ and a value of v"™. The goal is to
select a subset of at most N items from the M items (i.e., N < M) to
maximize the overall value of the selected items Zfi o v* while ensuring
the overall weight of the selected items is under the knapsack’s weight
capacity Zz’]\io Wi < © (where O is the knapsack’s weight capacity).

2. Let us covert the bounded knapsack problem to the simplified task
allocation problem as follows: considering a set of M sensing cells,
selecting each sensing cell m requires a sensing cost of w™ and reduces
the sensing error by v™. The goal is to select a subset of at most
N sensing cells from the M sensing cells to maximize the reduced
sensing error vaz 0 v® while ensuring the overall sensing cost is under
the predefined threshold Zfi ow' < O.

3. By solving the task allocation problem, we can get the answer for the
bounded knapsack problem. In particular, if we can allocate N sensing
cells to maximize the reduced sensing error while ensuring the overall
sensing cost is under the predefined threshold, then we must be able
to find IV items in the bounded knapsack problem so that the overall
value can be maximized while ensuring the overall weight is under the

knapsack’s weight capacity.

The above reduction process proves that the simplified task allocation prob-
lem is NP-hard. In other words, we know that the simplified task allocation
problem is at least as hard as all problems in NP, so our proposed quality-

cost-aware task allocation problem is also at least as hard as all problems
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in NP. Therefore, our proposed quality-cost-aware task allocation problem

is NP-hard.
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