GhostAR: A Time-space Editor for Embodied Authoring of
Human-Robot Collaborative Task with Augmented Reality

Yuanzhi Cao; Tianyi Wang; Xun Qian, Pawan S. Rao, Manav Wadhawan, Ke Huo, Karthik Ramani
School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 USA
[caol58, wang3259, gian85, rao81, mwadhawa, khuo, ramani] @purdue.edu

(3) > W) &h

Figure 1: GhostAR workflow. To author HRC tasks that achieve time-space coordination, (1) user first authors a human ghost by recording his body
movement, (2) then using the ghost as a visual reference, (3) author collaborative robot actions. (4) When acting the task, our system’s collaborative
model captures the body movement as input, maps it with the authored human motion, and outputs the corresponding collaborative robot motion.

ABSTRACT

We present GhostAR, a time-space editor for authoring and
acting Human-Robot-Collaborative (HRC) tasks in-situ. Our
system adopts an embodied authoring approach in Augmented
Reality (AR), for spatially editing the actions and program-
ming the robots through demonstrative role-playing. We pro-
pose a novel HRC workflow that externalizes user’s authoring
as demonstrative and editable AR ghost, allowing for spatially
situated visual referencing, realistic animated simulation, and
collaborative action guidance. We develop a dynamic time
warping (DTW) based collaboration model which takes the
real-time captured motion as inputs, maps it to the previously
authored human actions, and outputs the corresponding robot
actions to achieve adaptive collaboration. We emphasize an
in-situ authoring and rapid iterations of joint plans without an
offline training process. Further, we demonstrate and evaluate
the effectiveness of our workflow through HRC use cases and
a three-session user study.
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INTRODUCTION

Robotics has been extensively used to automate a large num-
ber of particular and repetitive tasks with high accuracy and
throughput in manufacturing environments. The tremendous
economic and social impacts projected by robotics will be
likely to expand in our future by infiltrating into broader fields
in both commercial and consumer markets [37]. Unlike tra-
ditional manufacturing environments, these new segments,
including medical, health care, and services, usually heavily
involve human activities in the working environments. Thus,
enabling robots to co-work with humans in collaborative tasks
has become a significant pillar of the next generation robotics
technology.

A typical human-robot-collaborative (HRC) task involves gen-
erating a joint intention, planning actions, and acting coop-
eratively [10]. In a human-centered task, the joint intention
usually aligns with humans’ implicit or explicit expressions.
Explicit communications such as speech and gestures have
been widely studied for commanding robots [20, 63]. How-
ever, using these modalities may cause inefficiencies and ambi-
guities in spatially and temporally coordinated collaborations
that require a comprehensive understanding of the contexts.
On the other hand, embodied demonstrations from humans di-
rectly convey the intentions to the robots. More importantly, to
avoid programming robots’ behaviors for the highly dynamic
human-robot interactions, researchers propose programming
by demonstrations (PbD) to generate task and action plans
for the robots [17]. Further, to safely and robustly execute
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the action plans in a coordinated manner, humans and robots
need to communicate with their status, actions, and intentions
timely [38]. To this end, we primarily endeavor to explore
the design of an embodied authoring workflow to support real-
time human motion inference, demonstrating example actions
to robots and creating joint plans.

The advents of mobile computing foster the evolution of au-
thoring workflows in an in-situ and ad-hoc fashion [42, 26].
However, existing workflows primarily target at pre-defined
and rigorous tasks where robots operate in isolation and inter-
act with the environment only. To enable novice user-friendly
PbD in the authoring workflows, we need to support human
motion capture and inference which traditionally involve a
motion capture system. Since a body-suit [7] or an external-
camera [3] based capture system requires heavy dependencies,
demonstrations are often only captured off-line [8]. More-
over, for ad-hoc tasks, demonstrating with users’ bodies is
preferable [17]. Recently, the emerging augmented/virtual
reality (AR/VR) technologies, e.g., head-mounted AR/VR
devices [1, 2], show a strong potential to enable embodied
authoring [35]. Further, in HRC tasks, robot partners are de-
sired to adapt to and coordinate with humans’ actions. Thus,
to create a joint action plan, the counterpart motions of the
robots can only be demonstrated with the humans’ part as
contexts. In this work, we promote a critical advantage of
using AR/VR authoring, namely externalizing the users’ body
asynchronously [41, 69]. This way, the users can always view,
manipulate, and edit their own recorded actions, and use them
as contexts when demonstrating the counterpart motions for
robots.

We promote an embodied authoring in AR for HRC tasks in
this work because of the following reasons: (i) realistic vi-
sualization with contextual and spatial awareness, enabling
creating, editing, and previewing the collaborative flow in-
tuitively; (ii) easy programming with natural embodied in-
teraction through real human demonstration via role-playing
to establish time-space correspondence; (iii) supporting real-
time motion inference, activity detection, and visual feedback
on robots’ intents when conducting the HRC. We present
GhostAR workflow which uses AR with body-tracking to en-
able visual, spatial, and embodied HRC tasking authoring, as
illustrated in Figure 1. A typical authoring session starts when
users role-play the human’s actions. We render the recordings
as AR ghost. Users can freely observe, edit, and infer the
actions and use it as a reference when role-playing the robot’s
counterpart actions. Then, users designate correspondences
between humans’ action plan and the demonstrated actions for
robots. Further, GhostAR provides visual preview with AR
simulation in-situ. When users act the HRC tasks, GhostAR
continues to capture the user’s motion and use it to derive the
robot’s motion plan. Also, users can refer to the next-step
guidance and the robot’s intentions with AR visual feedback.
In summary, we highlight our contribution as follows.

o A system workflow for authoring human-robot collabora-
tive task through AR ghost as contextual references and
role-playing with natural embodied interaction.

o A lead-assist collaboration model that achieves time-
space correlation for the human-lead-robot-assist adaptive
collaboration task based on dynamic time warping (DTW)
algorithm.

¢ An AR interface and interaction design for human-robot
ghost creation and visualization, editing, and manipulation,
previewing and simulation, and guidance throughout a suc-
cessful collaborative action.

RELATED WORK

Human-Robot Collaboration Model

Many cognitive frameworks and computational architectures
have been proposed for enabling and supporting teamwork
between humans and robots [65]. One of the keywords in
human-robot collaboration (HRC) is adaption: a robot inter-
acting with people needs to reason over its uncertainty over
the human internal state, as well as over how this state may
change, as humans adapt to the robot [48]. While some previ-
ous work took the approach of human adapting to robot [49],
and human-robot mutual adaption [52], the largest body of
current HRC works have been focusing on a lead-assist collab-
oration type and empowering the robot to be an assistant and
to adapt to human actions. Researchers have presented various
mathematical models and formulations focusing on task alloca-
tion and communication via goal-oriented controller [61], im-
proving human-robot coordination through cross-training [51],
and efficient learning with human inference with joint-action
demonstrations [50]. Other researchers emphasized on robot
learning methods and frameworks and proposed interactive
primitive. Along this thread, a series of studies demonstrated
cooperative task learning with single [8] and multiple [22]
primitives. Further, probabilistic movement model has been in-
troduced to improve human-robot coordination [44] and action
recognition [43]. Other alternative authoring and planning-
based methods have been proposed to achieve similar goals.
For example, Koppula et al. developed a Markov Decision
Processes (MDP) based model for human-robot-collaboration
tasks in contextually rich environment [39], while Szafir et
al. designed three collaborative interfaces to support human-
flying robot collaboration [64]. These work primarily targeted
at general mathematical solutions and learning methods for
specific collaborative scenarios. However, it is still challenging
to achieve applicable human-robot collaboration in real-world
setups. Most of the HRC tasks were pre-defined and simplified
versions of intended scenarios [65]. Also, many of these work
require offline training with pre-capture data, which is not
desired for on-site HRC.

On the other hand, our system complements the previous
works by focusing on providing an in-situ HRC task authoring
tool. We exploit the initiative of human users and enhance their
capabilities with embodied interactions and AR interfaces. To
better support a smooth workflow and rapid iteration of task
plans, we adopt a real-time process for task authoring and col-
laboration acting without offline training. Taking advantages
of the AR interface, we also provide active visual feedback
with spatial and contextual reference so that human and robot
are always aware of each other during the collaboration.



Robot Programming by Demonstration

Robot programming by demonstration (PbD), also referred
to as imitation learning, has become a popular method for
programming and training robots. PbD reduces search space
complexity for learning, supports natural means of embodied
user interaction, thus enables flexible and user-friendly robot
programming and training [11]. A large body of works have
been done in developing methods and algorithms for learn-
ing individual motions [21, 62, 54] and compound motions
[47, 19], as well as incremental teaching methods [53, 58].
So far, PbD has shown great success in training individual
robots to do specific tasks with offline data captures. When ap-
plying PbD into collaborative scenarios, additional reference
is needed since the robot is no longer operating in isolation.
Instead, robots need to coordinate with the human partner,
whose uncertainty depends on human’s internal states upon
actions. To achieve PbD for HRC tasks, previous works pri-
marily relied on two people demonstrating the tasks where
one of them plays the robot’s role. The human demonstration
is captured with a motion tracking system offline and fed a
computational model to generate robot policy at runtime [8,
22, 44, 66, 67]. The above approach is intuitive to practice
and has been used in HRC task authoring, including object
handover and joint manipulation. However, this PbD approach
is limited to pre-determined and straightforward task author-
ing due to the lack of visual interface for sophisticated editing.
Moreover, as the offline demonstrations usually happened in
a controlled lab environment, the collaboration volume was
constrained, e.g., most of the presented collaboration tasks
were executed using a stationary robot arm.

GhostAR, on the other hand, exploits a visual interface and
displays the captured human motion as ghost images in the
AR scene. Using the AR ghost as time-space references, users
can author the HRC tasks by manipulating a virtual avatar
of the real robot collaborators. We emphasize instantiating
PbD by supporting embodied authoring in our workflow. Our
system allows for collaborative tasks authoring of robots with
various types of configurations. Further, when users perform
the collaborations with robots, we allow users to use the same
self-contained AR interface for motion inference.

Human-Robot Interaction through Augmented Reality

An AR interface is spatially and contextually aware of the
surrounding environment by its nature [12]. Thus, it serves
as an ideal media to bridge the digital interface and physical
reality. For example, it has been used for visual and spatial
interactions with robots [29, 14, 36, 15] and smart devices [31,
32]. AR for human-robot interaction has been widely explored
across industrial motion planning [23, 24, 18], mobile tele-
operation [30, 40, 29, 36], sequential task planning [45, 42,
34, 26, 56], and multi-robot controlling [25], analyzing [28],
and debugging [46]. Previous works primarily treated AR as a
control interface for robots operating in isolation. While AR
was explored to display robot’s intent for user visualization
to achieve better collaboration [27, 68, 59, 55, 9, 16], it has
not been proposed to empower the entire life-cycle of HRC,
from task authoring to collaboration acting. To the best of our
knowledge, GhostAR is the first system that achieves the incor-

poration of AR within a full HRC workflow, enabling naturally
embodied authoring with context-aware visual programming.

The key to HRC task authoring is to provide a reference of
the collaboration partner spatially and temporally during the
authoring process, which in turn ensures correct time-space
coordination when the HRC task is in action. By further
exploring into human-human scenarios, we have found sev-
eral exciting AR works that achieve augmented collaboration
through interactively reconstructing the surrounding environ-
ment [41], spatially visualizing the collaboration partners [33],
and demonstratively externalizing user’s body [69]. Informed
and inspired by these recent works, we introduce a novel ghost
visualization serving in a human-robot scenario for collabo-
ration reference, authoring, and editing, as well as simulation
and preview of authored joint action plans.

DESIGN GOALS

We have derived the following Design Goals (DG) from the
design rationale of our approach. The motivation for DGs
has been extensively discussed in the RELATED WORK. An
essential requisite for HRC is the adaption between the two
parties of the collaboration: the human and robot. We chose
the lead-assist type of HRC due to the scope of this work,
hence adapting the robot to the human (DG1). Program-by-
Demonstration (PbD) has been considered as one of the easiest
ways of programming robot behavior through natural body
movement with a shallow learning curve (DG2). AR can
supplement PbD with a digital interface, that is in-situ and spa-
tially situated. This enables us to create an authoring interface
with contextual awareness (DG3) and rich digital visualization
(DG4). The in-situ nature also promotes fast iteration with
real-time feedback (DGS5). Later we will describe how these
DGs guide the design of our system.

DGI: Adapting robot behavior to human. Author human-
lead-robot-assist typed collaborative tasks that are initiated by
a human, where the robot always act adaptively to the human
partner’s actions.

DG2: Programming with natural interaction. Lower the
barrier for users to effectively program complex HRC tasks,
with natural body movement and intuitive interactions.

DG3: Authoring with contextual awareness. Provide spatial
and contextual awareness that is important for Human-Robot
task authoring. Both parties need to be aware of each other’s
position and status, as well as the surrounding environment.

DG4: Visualizing with realistic simulation. Give active and
accurate visual feedback about what the user has authored,
to ensure efficiency and correctness of the authoring through
realistic simulations.

DGS: Iterating with real-time feedback. Enable a real-time
process and rapid iterations from collaborative task authoring
to action, with no need for offline programming and testing.

GHOSTAR

Human-Robot Collaboration Model (lead-assist type)
It is important to first define the meaning of collaboration in
our work as it touches a wide range of aspects, even just for



tasks between humans and robots. In GhostAR, we essentially
present a robot programming tool that controls robots’ actions
based on its human partner’s body movement. In other words,
the robot collaborates with the human in the sense that it
must act adaptively according to its human partner (guided by
DG1). To achieve this, we present a collaboration model that
is dynamically generated based on the user’s authoring and is
able to output robot action corresponding to the input human
motion.

In a human-lead-robot-assist HRC task, we achieve motion
coordination by defining user’s action segments first. Our sys-
tem allows users to record their body movement as a Human
Motion Clip (a sequence of Motion Frames with different
timestamps) and to use it to create HRC tasks. Note that the
authored human motion could consist of several meaningful
movements, and the user can put them into Groups to author
HRC tasks correspondingly. For example, the human charac-
ter in Figure 2 records the following motion: he/she walks,
stops, and waves his/her hand, then walks for some distance
and waves again. The HRC task the user wishes to author is to
make the robot come over when he first waves, follow him and
shoot videos for him as he walks, and then leaves when he/she
waves hand again. To achieve this, the user needs to put the
two hand wavings and a walking into three Groups and author
the robot to behave as come over, follow and shoot videos,
and leave correspondingly in these three Groups. For each
Group of human motion, our system provides two types of col-
laborative tasks for the user to author. They are Synchronize
and Trigger tasks.

e A Synchronize task authors a robot action to take place ar
the same pace of the reference human group. In this type
of HRC task, robot and human will perform their own task,
but at the same speed or progress, i.e., if the human moves
faster, the robot will move faster to keep up, and vice versa.
This applies to HRC tasks such as joint object manipula-
tion, motion following for lighting or camera shooting, and
coordinated movements like hand-shaking, etc.

e A Trigger task authors a robot action to take place after
the human group. In this type, the robot starts executing
its authored task right after the human has completed the
reference group, i.e., human snaps his finger, and the robot
starts sweeping the floor. This applies to HRC scenarios
such as sequential joint assembly, and gesture signaling,
etc.
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Figure 2: Authoring collaborative robot actions using Groups. The user
first creates Human Motion Clip by acting out the human’s part in the
HRC tasks. Then, the Human Motion Clip is segmented into different
Groups to define robot collaboration for Trigger or Synchronize tasks.
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Figure 3: GhostAR collaboration model. The model consists of (1) a
user-generated HRC TaskSequence and (2) motion mapping algorithm
based on Dynamic Time Warping (DTW). During the collaborative ac-
tion, this model takes real-time human motion as input and outputs the
corresponding robot behavior based on DTW progress estimation.

GhostAR Collaboration Model

As for the example in Figure 2, the user will author the come
over and leave robot action as Trigger tasks for the two hand-
wave Groups, and author the follow and shoot video as a
Synchronize task for the walk Group.

So far, the user has been preparing the collaboration by cre-
ating the HRC TaskSequence. As shown in Figure 3, the
HRC TaskSequence is a list of Groups that represents the au-
thored task in an accessible and manageable manner. Note
that adjacent ungrouped human Motion Frames will be auto-
matically grouped as Empty Groups. The HRC TaskSequence
together with the Motion Mapping module, form the collab-
oration model of GhostAR. When the HRC action is started,
the user needs to repeat his authored motion in the sequential
order. Meanwhile, our system will activate the first Group and
start the motion mapping between the real-time captured hu-
man motion and the grouped Human Motion Clip. When the
mapping progress indicates the current Group is completed,
our system activates the next one and repeats this process un-
til all Groups in the HRC TaskSequence are completed. For
a Synchronize task, the system calculates the progress and
output robot behavior at the corresponding timestamp. For
Trigger task (which is generally shorter), the system focuses
on recognizing the completion of the human movement and
then issues commencement instructions for the authored robot
actions. Note that Empty Group will be treated the same way
as a Synchronize Group, for proper progress monitoring and
activation of the next Group.

Embodied Authoring with Augmented Reality

Our system’s interaction workflow is implemented as a state
machine, where a HRC task is authored with the following five
modes: Human Authoring Mode, Robot Authoring Mode,
Observation Mode, Preview Mode, and Action Mode. At the
beginning of a new task authoring session, a user is first asked
to choose the robot collaborator(s). Note that in the case of
simultaneously collaborating with multiple robots, each robot
will share the same Human Motion Clip but has its own HRC
TaskSequence. After initialization, the user will be promoted
to the Human Authoring Mode to create the first Human Mo-
tion Clip. After finishing the creation, the current tasks are
displayed as AR ghost for visualization and manipulation in
the Observation Mode. The user uses the cursor to perform a
Grouping operation, and authors robot tasks for the selected
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Figure 4: GhostAR system interface. (1) The user first acts out the human part of an HRC task in Human Authoring Mode via embodied movement. (2)
The human motion is captured and represented as AR ghosts for editing in Observation Mode. (3) Using the human ghosts as the time-space contextual
reference, the user then authors collaborative robot action in the Robot Authoring Mode. (4) During the Action Mode, the user plays out HRC task

while following the AR ghost to repeat his previously authored human motion.

Group in the Robot Authoring Mode. Our system adopts robot
authoring via manipulating a virtual AR robot, as opposed
to a real robot. This approach enables easy programming of
a mobile robot with spatial movement and object interaction
while using the human ghost as a time-space reference. The
authored robot behavior will then be displayed as robot ghosts,
together with human ghosts. The human-robot ghosts form an
expressive and editable HRC. In the Observation Mode, user
can choose to enter Preview Mode to visualize the entire HRC
task simulation with AR ghost animation. Once the user is
satisfied with the authored task, he/she can act out the authored
HRC tasks by entering the Action Mode. The system utilizes
the dynamically generated collaboration model to derive the
corresponding robot behaviors based on the user’s real-time
motions.

Human Authoring Mode. The Human Motion Clip is the
baseline of the HRC task authoring. It contains the human
motion that the robot will collaborate with, as well as the
movement that the user needs to repeat during the Action
Mode. Guided by DG2, the authoring of the Human Motion
Clip is achieved through natural embodied movement, where
the system records the user’s body motion by tracking the
position and orientation of the AR headset and two hand-held
controllers. Then the Human Motion Clip will be represented
by segmented ghost avatars and displayed in the user’s AR
view, as illustrated in Figure 4-(1). The ghost avatar also plays
the authored human movement repeatedly as an animation in
real-time scale for review. To extend the Human Motion Clip,
the user first needs to trigger the last pose in the recorded clip
and then act new human motion, which will automatically be
tailed to the end of the current Human Motion Clip.

Robot Authoring Mode. Once the Human Motion Clip is
created, user can pick a segment from it and generate a Group,
then author a Synchronize or Trigger robot task for it. For each
selected robot collaborator, there exists a virtual robot avatar
in GhostAR that mimics the behavior of the real robot. User
can control the virtual robot, with the hand-held controllers
and physical movements, to facilitate the robot motion author-
ing. Guided by DG3, we establish the time-space correlation
between the robot and the human by utilizing the human ghost
as the contextual reference. For a Synchronize task, the time-
length of the robot clip is equal to that of the human group. As
the user is authoring robot and progressing, the human ghost
with the same timestamp will be displayed as AR reference
to assist the user, as illustrated in Figure 4-(3). The user can
pause/resume and walk around anytime during the authoring
process in order to observe and operate the robot avatar from
the optimal perspective. In terms of a Trigger task, the user
authors robot actions independently which will be placed af-
ter the Trigger Group. Once robot authoring is finished, the
authored HRC task will be animating repeatedly, with both
human and robot ghosts, to visualize and preview the task
before the user decides to accept or redo (guided by DG4).

Ghost Visualization and Manipulation. Our system pro-
vides in-situ authoring experience by exploiting the advantage
of AR interfaces, thus promotes rapid iteration without of-
fline preparation (guided by DGS). In the Action Mode, the
authored tasks are displayed as AR ghosts for the user to
preview and manipulate. The ungrouped raw human ghosts
are displayed as transparent segmented snapshots while the
grouped ghosts are displayed with Start/End Motion Frames
with a uniquely assigned color and a floating 3D icon indi-
cating its collaboration type, as illustrated in Figure 4-(2).
Using the interactive cursor, user can edit the Human Motion



Clip and perform operations such as Grouping, unGrouping,
‘trimming’, etc. If the cursor is pointing at any unGrouped
raw human ghost, the pointed ghost Human Frame will be
highlighted. Otherwise, if the cursor is inside a Group, the
Human-Robot task of that group will animate repeatedly until
the cursor is moved outside. Note that the user can also enter
the Preview Mode and visualize the entire task as a continuous
simulated AR ghost animation.

Action Mode. The Action Mode is where the user carries out
the collaboration tasks. In this Mode, the system captures the
real-time movement of the user and maps it with the recorded
Human Motion Clip, then issues corresponding instructions
to drive the robot and perform the collaborative task. To help
the user repeat his authored motion and alleviate the mental
burden of memorization, the system provides numerous AR
guidance to assist the user. As illustrated in Figure 4-(4), our
system not only projects a dotted trail for the user to follow,
but also plays the next-to-act Group’s animation to refresh
the user’s memory. Therefore, the user only needs to focus
on the current task, and the system is guiding him/her step-
by-step. Besides, our system also provides numeric progress
information for the user to keep track of him/herself as well
as the robot’s working status.

Motion Mapping using Dynamic Time Warping

We describe how our system achieves motion mapping for
both Synchronize and Trigger tasks. Essentially, in order to
recognize the user’s status, we rely on positions of the user’s
head and both hands which are provided by our AR interface.
We then introduce DTW to infer the user’s activities using
the nine degree-of-freedom (DOF) inputs. At the time #;, the
user’s state is represented by a R vector:

_ 1 head _head _head _left _left _left _right _right _right1T
Vli_[xt,- Vi 0% Xy sV %y Xy Yy 5%y ]

In this manner, each Human Motion Clip derives a R curve
as: Lyecora = [V1,V2,V3,++,VnN]. And we denote the human
motion in Group G; as lg, which is a continuous segment
within L,.corq-

To reduce the DOF of the inputs and to keep the most relevant
information from the raw gesture data I, we apply principal
component analysis (PCA) [13] to project this R? curve onto
a R? plane. A projected curve f¢, and a projection matrix
Fg, are derived as well as in Algorithm 1. For each activated
Group G;, the real time data v, is projected by P, and then
compared with the f, to acquire the corresponding progress
in G,‘.

Algorithm 1 Calculate Projected Curve and Projection Matrix

1: procedure PCAPROJECTION(Ig,[1L...n])
2 lGi <—(ZlGl)/(9*}’l)
3: V (lGi_lGi>(lGi_lGi)T
4 Let vy and v, be two eigen vectors associated with the
largest eigen values of V.
output Pg, < [v1,v2]”
output f. < Prlr,

AN

Algorithm 2 Calculate DTW Distance Matrix

1: procedure DTWDISTANCEMATRIX(S[1 ...n],t[1...m])

2: D «+ array[0...n,0...m|

3: fori < 1,ndo D[i,0] +

4: for i < 1,m do D[0,i] + oo

5 fori< 1,ndo

6 for j < 1,mdo

7 Dlij] < |l —j)ll +min(D[i — 1,j].D[i -
17] - l}vD[lv.]_ 1})

return D

o

Trigger Task Detection. Assume that an activated Group
G; is a trigger Group and we want to determine whether
the user has finished performing the human motion /g;. We
first collect the motion that the user has just performed:
Licattime = Wiypw—n+15" s Vipow—1,Vine,] Where n is the length
of [,. Then, we get the projected curve f,,.1ime = PGiLrealtime
and compare it with f . This method is close to a conven-
tional human action recognition problem [60]. We use Dy-
namic Time Warping (DTW) algorithm [57] to calculate the
similarity. DTW is an algorithm to find the alignment between
two time series data. Given two time series § = [s1,52, -, y]
and t = [t],t2, -+ ,1,y] With length n and m, a distance matrix
D is calculated using Algorithm 2. Each element D[i, j] in the
distance matrix D is the distance between s[1 : ] and ¢[1 : j]
with best alignment. And we define D[n,m| as DTW dis-
tance between s and ¢, note as < s,¢ >. In our specific case, if
< f reatrimes f 6; > reaches its global minimum, we assume that
the user finishes performing G; at the current time. However,
the future behavior of the user is unavailable, so it is hard to
identify when the global minimum is achieved. To this end,
we use a threshold € to conclude a global minimum given the
existing behaviors of the user. Basically, if < f,.q1imes f ;5>
reaches a local minimum and this minimum value is smaller
than €, we assume that this minimum value is the global value
and report to the system that G; is triggered by the user. To
adapt this threshold for different f; with various lengths, we
set € = a*n where a is a fixed coefficient.

Synchronize Task Progress Estimation.

If an activated Group G; is a Synchronize task, we need the
user’s progress (0% ~ 100%) in order to temporally coordinate
the robots’ motions. We propose to compare the the real time
data Lieaitime = [Vigans " * s Vigow—15 Vinore) With the sub-sequences
of lg;: Ig,[1], Ig,[1:2], -+, lg,[1 : n], where ty4, is the time
when G; is activated. And we derive the user’s progress as
n* /n if the sub-sequences I, [1 : n*| approximates I,,4sime the
most. In other words, we first project Leaitime t0 f roqizime USING
Pg, and calculate the DTW distances between f,,,;i,.. and the
sub-sequences of fi.: fc.[1], f,[1:2], -, fg,[1:n], noted
as dy,dy, -+ ,d,. And find n* = argmin, ;.,(d;). However,
we note that the scale of d; is influenced by the length of the
sub-sequence f,[1:i]. To eliminate this influence, a modified
DTW distance d! =d;/ /i (i=1,2,--- ,n) is introduced. Then
we determine a sub-sequence f [1 : n*] that is best aligned
with f,.qime While n* is given by n* = argmin; ;,(d}), and



thus the user’s progress is n* /n. Recall the property of DTW
distance matrix D, dy,d>, - ,d, are actually the last row of
D, so in practice, we use Algorithm 3 to calculate D and n*
iteratively.

Algorithm 3 Progress Estimation Using DTW

d,jg  array[0...n], dpey, < array[0...n]
for i < 0,n do d,4[i,0] < o
for i < 0,n do d,.,,[i,0] < O
while Synchronized Task S; has started do
if v;,,,, is updated then
Tnow — PSivtnow
fori <+ 1,ndo
dnewli] <+ HfSi [{] = fruonll + min(dpew[i —
1]7d01d[i_ 1];dnew[i])
9: n* < argmin, <, (dyewli]/ Vi)

10: dyg < dpey
11: output progress < n* / n

B AN AR S >

IMPLEMENTATION

System Setup and Development

We build our see-through AR platform by attaching a stere-
ocamera (ZED Dual 4MP Camera (720p)) in front of a VR
headset (Oculus Rift). Four external Oculus IR-LED Sensors
track the human body motion with an active working area of
Smx5m. Two Oculus Touch Controllers enable interactions
used in the system. The major part of GhostAR software sys-
tem is developed with Unity3D engine and Robot Operating
System (ROS)[5], including the AR interface and embodied
interaction, motion recording, and DTW calculation, etc. The
authored Human Motion Clip and robot clips are recorded at
the rate of 90Hz. It is worth to note that this prototyped AR
platform still relies on external tracking and tethered computer,
which limits the interaction volume. However, with the newly
developed mobile AR/VR technologies, e.g., Hololens [1] and
Oculus Quest [2], we believe that implementing GhostAR
with stand-alone devices would not involve much effort.

Arduino
Braccio

Jetson
SBC™<

Figure 5: Robot implementation workflow with ROS-Gazebo for realis-
tic back-end simulation and Unity for front-end interaction and visual-
ization.

Robot Simulation and Prototyping

We have prototyped several robots, including three physical
robots (GripperBot, CamBot, Armbot) and a virtual robot
drone, for use case demonstration and studying the effective-
ness of robot authoring user interaction. The CamBot is an

omni-mobile robot with a camera mounted. The ArmBot is
a fixed 6-DOF robot arm (Arduino Tinkerkit Braccio). The
GripperBot is an omni-mobile robot with the 6-DOF robot
arm sitting on top of it. As is illustrated in Figure 5, the mobile
robot base is powered by 3 DC motors (locally controlled by
Arduino) driven by omni wheels that are capable of moving
towards any direction while rotating. The robot is equipped
with an NVIDIA Jetson TX1 Development Kit running ROS
as the robot’s central controller and with a SICK TiM 561 2D
LIDAR for SLAM navigation. The robot is powered by four
LiPo batteries (11.1V, 5000mAh for each battery). During
the Robot Authoring Mode, in order to deliver realistic vir-
tual robot simulation that closely resembles the dynamics and
physical behavior of the real robot, we adopt ROS-Gazebo [4]
as back-end robot simulator, the workflow is illustrated in Fig-
ure 5. In detail, the controller inputs are sent to ROS-Gazebo
using ROS#-Unity protocol[6] via WiFi communication. ROS-
Gazebo then simulates the motion of the robot under dynamic
and physical constraints (maximum torque, speed, accelera-
tion, etc). Meanwhile, it simultaneously pushes the real-time
robot status back to Unity3D where the virtual robot is then
rendered accordingly in the user’s AR view. In this way, users
can experience realistic robot manipulation and visualization
with virtual robot avatars. Within the Action Mode, our collab-
oration model derives the corresponding robot behavior into
ROS-Gazebo, which then instructs the physical robot to act
accordingly.

USE CASE SCENARIOS

Figure 6 illustrates four use case scenarios of GhostAR. Fig-
ure 6-(1) demonstrates our primary use case, involving the
human user simultaneously collaborating with two robots for
both Synchronize and Trigger tasks. In this use case, the hu-
man walks towards the table with a red object in his hand to be
put onto the table in the designated area. His body motion of
‘bending over and place the object’ is authored as a Trigger for
the robot arm to grab the red object and place it into the basket.
Meanwhile, the human motion when he is walking towards
the table is authored as a Synchronize task for the CamBot to
follow and videotape the whole process, in order to get the best
shooting angle. Figure 6-(2) demonstrates a joint assembly
task with the ArmBot where the user provides the bottom part
of the assembly, and the ArmBot grabs the top part and assem-
bles them. The task is authored as a Trigger action and can be
performed repeatedly. Figure 6-(3) demonstrates a scenario
where a drone is providing spotlight for the user while he/she
walks towards the couch, sits down, and puts the round object
into the container. The entire HRC action is authored as one
Synchronize task. Figure 6-(4) demonstrates a Synchronize
hand-shaking scenario where the robot reaches out its gripper
at the same pace as the human reaches out his/her hand, e.g.,
it pauses if the human pauses, and proceeds when the human
proceeds.

USER STUDY

To evaluate our collaboration model accuracy, robot authoring
interactivity, and overall usability of our system, we invited 12
users (11 male, age ranging from 19 to 31) to our three-session
preliminary user study, with 10 of them from engineering back-
ground and the other 2 from management background. Eight
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Figure 6: Use cases. (1) Object handover with CamBot videotaping and
following. (2) Joint assembly with ArmBot. (3) Object manipulation
with drone providing spotlight. (4) Handshaking with GripperBot.

users had VR experience while five had AR experience. None
of the users had prior experiences with our system. The study
was conducted in a Smx5m area using only virtual robots (the
GripperBot and the Drone) for safety concerns. The study
for each user cost about 2 hours cumulatively and each user
was paid 20 dollars for compensation. The entire process was
video recorded for post-study analysis. Each user was given a
15 min tutorial about the background of the project before pro-
ceeding to the task in session 1. After each session, each user
was given a survey to answer objective Likert-type questions.
Each Likert-type item is graded by users from 1 to 5, on the
usefulness of the feature and the level of agreement. After all
the sessions, a conversation-style interview was conducted to
acquire subjective feedback and a standard System Usability
Scale (SUS) questionnaire was also given to each user. (P =
participant)

Session 1: Human Authoring and Motion Mapping

One of the core features of GhostAR is to recognize the user’s
body gestures and map it with the previous authoring to output
the corresponding robot behavior. This is achieved by our
in-situ generated collaboration model using DTW based algo-
rithm. The first session of the study is designed to evaluate
this with novice users.

Synchronize, zSynchronize o (1)

=
pick up GripperBot pick
@) B
)) IS
i Rl

a
l'!
\\
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yn,chromze Navigation (2) Joint Assembly
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Figure 7: User study setup. (1) Session 1: Human authoring and motion
mapping. (2) Session 2: Robot authoring interactivity. (3) Session 3:
System usability evaluation.

Procedure. Users were asked to perform a continuous motion
in the Human Authoring Mode that included six regular ges-
tures (Figure 7-(1)): stand up from a chair (Gy), wave hand
(G»), pick up a virtual item (G3), walk to another place and put
down the virtual item (G4), bow and reach out to the handles
of a chair (Gs), push the chair a short distance and stand up
straight (Gg). The whole motion series took approximately
30 seconds. The users then forwarded into the Observation
Mode and put each of the above gesture into a Trigger Group
T;,(i=1,---,6). Also, the object-moving motion between G3
and Gy, and the chair pushing motion between Gs and Gg are
Grouped as two Synchronize tasks S;, (i = 1,2), respectively.
Each user repeated the above process 4 times and all data
set were recorded for a cross validation: using 1 set of data
as authoring and 1 set as acting, to acquire large amount of
evaluation results. For each Trigger task T;, we collected the
detection time from the collaboration model, 7. For each
Synchronize task §;, we collect the estimated progress at time
t by the collaboration model instead, noted as Pg"(r). The

end time, tf of each Trigger gesture G;, as well as the start

time 75" and end time te"d of each Synchronize task S; were
manually labeled as ground truth.

Evaluation of Trigger task detection accuracy. Figure 8-
(top) shows an example of the DTW distance values of a user
(P4) in the Action Mode. All 12 users authored 846 valid Trig-
ger tasks in total (6 gestures x 12 comparisons x 12 users),

Trigger task detection
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Figure 8: Trigger task detection test. Top: DTW distance example from
P4. Bottom: The distributions of Trigger tasks detection time error.
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Figure 9: Synchronize task progress estimation. Left: A progress estima-
tion example from P4. Right: The distributions of estimation error.

840 of which were successfully detected (99.3%). For the 840
detected Trigger tasks, we calculated the error of detection
time |tg — 17| and display its distribution in Figure 8-(Bottom).
The average of the detection error is 414.8ms (SD. 1052.2ms)
and 803 Trigger tasks (95.6%) were detected within 1 second
before or after the user had completed that gesture. To better
illustrate the Trigger detection accuracy that is associated with
different gestures, we calculate the 80% medians, which re-
veals the time within which most (> 80%) of the triggers were
detected: Gy : 375ms, G, : 358ms,G3 : 857ms, G4 : 685ms, Gs :
642ms,Gg : 517ms. We observed that the accuracy of detect-
ing the pick-up (G3) and put-down (G4) gesture was lower
than that of the stand-up (G;) and wave-hand (G»). This is be-
cause of the motion involved in G3 and G4 has less amplitude,
with only one hand moving in the relatively smaller distance,
resulting in lower detection accuracy.

Evaluation of Synchronize task progress estimation. We
used the timestamp values ¢ to characterize a user’s progress
in the Synchronize task. The actual progress is defined as
PE () = (1 —189) /(e — 1) (18" <t <1§"). Figure 9-
(Left) shows an example of the P§" (¢) - P§" (t) curve. For each
Synchronize task S;, we uniformly selected 100 data points
from the ng’ (¢) - Pff‘ (t) curve (Pgi“ (1) =1%,2%,--- ,100%)
and calculate the estimation error [P (#) — P (¢)]. All 12
users contributed 14400 data points (2 Synchronize tasks X
100 data points x 6 comparison X 12 users) in total. The
distributions of the estimation errors are shown in Figure 9-
(Right). The average of the progress estimation error is 7.31%
(SD. 7.61%). The 80% medians are 12.24% (object moving)
and 11.73% (chair pushing), which implies that in most of
the time (> 80%), the robot will not surpass or fall behind
a user for more than 1 second considering the fact that the
Synchronized tasks last between 4 to 7 seconds long. Based
on our observation during the user study, we suspect that the
error may come from the minor inconsistency (e.g. irregular
pause) of the user’s behavior during some of the motions.

Session 2: Robot Authoring Interactivity

Another highlighted feature of GhostAR is to author spatially
and temporally synchronized robot motion with the human
reference. In this session, we tested the robot interactivity and
system interface towards authoring a Synchronize HRC task.

Procedure. A user first defined the human motion ghost by
traveling through two routes: a straight-line and a circular
path within the 5mx5m arena. Then we asked the user to
author two virtual robots to travel alone with the human ghost
while trying to coincide with the footprint (for the GripperBot)
and the head position (for the Drone) of the human ghost, as

Synchronize robot error

52%
40%39% " 44% 44%

o 27%
12% 24% 440, ° 22% 23%  23% !

GripperBot-Line Drone - Line GripperBot-Circle Drone - Circle
=(0,10] (10,20] (20,30] (30,40] = (40,] (cm)

25 Average error
20
15
10

l

13.9 6.7 16.0 9.1 16.2 101 17.5 125

GripperBot-Line Drone-Line Drone-Circle

Novice Users

GripperBot-Circle
Experienced User

Figure 10: Robot authoring interactivity. Top: The distributions of the
error. Bottom: Average error of novice users and an experienced user.

illustrated in Figure 7-(2). The authoring data was recorded for
accuracy analysis, and each user repeated the process twice.

Result and Discussion. In general, users were able to under-
stand the robot authoring interaction quickly, and all users suc-
cessfully authored the described task. Many users frequently
use the “pause/resume” feature to adjust themselves for better
observing and maneuvering perspective during the authoring.
The histogram in Figure 10-(Top) shows the distributions of
the robot authoring errors. The average of authoring errors are
13.9cm (SD. 9.2cm) for the GripperBot moving along straight
line, 16.0cm (SD. 8.2cm) for the drone moving along straight
line, 16.1cm (SD. 8.7cm) for the GripperBot moving along a
circle and 17.5¢m (SD. 9.3cm) for the drone moving along a
circle. Since the users used the robot’s body as reference, and
the GripperBot and the Drone both have a radius of 25c¢m, we
consider that the human ghost and the robot are aligned if the
captured distance is shorter than 25c¢m. Based on these criteria,
we calculated an alignment rate which is defined by the per-
centage of errors which are smaller than 25¢m. The values of
alignment rate are 89.57% (the GripperBot following a line),
86.87% (the Drone following a line), 84.29% (the GripperBot
followed a circle) and 81.46% (the Drone following a circle).
This result indicates that most of the time (> 80%), the users
were able to author the robot to be precisely aligned with the
human ghost for this Synchronize task.

By observing the study and analyzing the results, we find that
keeping the error below 10cm was generally a hard task for
regular users, especially for the Drone which has one added
DOF than the GripperBot. We believe this is mainly because
the users were not familiar with the kinetic mechanism of the
robots. Restricted by the physical principals, the robots had
large inertia and could not strictly follow the users’ authoring
behaviors as assumed. So that many users tended to overshoot
while controlling the robots. Additionally, the Drone is always
swinging due to its aerodynamics properties (simulated by
ROS-Gazebo), which makes it even harder for maneuvering.
Besides, the circular route evidently produced more error than
the straight-line, which we assume is caused by the lack of
next-position reference and users could not anticipate the time
when the Ghost made a turn. We also compare the novice
users with an experienced user who had practiced the author-
ing process five times. And display their average error in
Figure 10-(Bottom). The result shows that the experienced
user achieved much better accuracy result than the novice
users. This indicates that the proposed robot interaction can be



easily mastered with a few rounds of practice, and therefore
better Synchronize performance can be achieved.

Session 3: System Usability Evaluation
Here we evaluated the overall usability of our system by asking
users to author an HRC task, then act out the collaboration.

Procedure. The users were asked to complete a joint assem-
bly task with the GripperBot, during which the user and the
robot each picked up one part and met in the middle to put
assemble. The HRC task consists of a Synchronize action and
two Trigger actions. As illustrated in Figure 7-(3), the collabo-
ration scenario is described as follow: the users picked up his
green part, Triggering the robot to pick up the red part; then
they traveled towards the middle workstation at a Synchronize
pace; when met, the users put down their parts first, Triggering
the robot to place its red object and complete the assembly.

Result and Discussion. All participants were able to success-
fully act out the collaboration task with our system issuing the
correct robot behavior according to the authoring. The average
task authoring time for task completion is 2 min 16 s.

The system feature related Likert-type results collected from
the 3-session study are shown in Figure 11. After the tutorial,
participants were generally confident to author the HRC task
and agreed on the smoothness of our system workflow (Q9:
avg = 4.25, sd = 0.62). “It’s fast and easy to plan a task,
just role-plays your action and use the ghost reference to
play the robot part. (P2)” The timely authoring process and
rapid iteration were appreciated by the users. “I like how fast
it is from planning the task to acting it out, encourages me
to try more. (P4)” We believe the feedbacks indicate that
our system enables real-time and in-situ authoring, meeting
our DGS. Users are also impressed with the motion mapping
accuracy and robustness of our system during the Action Mode.
“I thought my acting was not that consistent with multiple
pauses, but surprisingly your system recognized it and issues
the correct robot behaviors. (P3)” This comment indicates
that we have achieved robot collaborative adaption in terms of
coping with human partner’s uncertainty (DG1).

The embodied authoring and interaction method (referred to
as ‘role-playing’) is receptive to our participants, for both
human ghost authoring (Q1: avg =4.17, sd = 0.94) and robot
avatar control (Q7: avg =4.08, sd = 0.79). “Moving a virtual
robot in AR space was much easier than I thought. (P4)”
These comments have reflected positively to our DG2. The
visualization accuracy of the ghost in terms of time-space
reference is high according to (Q3: avg = 4.5, sd = 0.67).
Further, the realistic robot simulation used for robot avatar
interaction and visualization is also generally appreciated (Q6:
avg = 3.83, sd = 0.94). “That drone was kind of difficult to
control. But I think the interaction method you provide is super
realistic. The robot didn’t move to where you were pointing
to, it moved slowly to the target like a real robot. And for
the drone, it was swinging and tilting when moving. (P7)”
We believe these comments confirm the necessity of adopting
a professional robotics engine (ROS-Gazebo) with realistic
simulation to enhance the experience, meeting our DG4.

Quick and easy to author human ghost (Q1)

Ghost animation is illustrative to help me
decide whether to accept the authoring (Q2)
Ghost visualization is accurate

spatially and temporally (Q3)

It's intuitive to represent my movement
with transparent ghost snapshots (Q4)
The group visualization for Synchronize
and Trigger task is clear and intuitive (Q5)
The robot visualization and movement
are realistic (Q6)

The robot control and operation is
intuitive and effective (Q7)

The system helps me author synchronize
task with human ghost as reference (Q8) |
GhostAR interaction workflow

is smooth and intuitive (Q9)

Preview Mode is helpful to visualize
and simulate the overall task (Q10)
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Figure 11: Likert-type result after the three-session study.

Survey responses were positive about the AR ghost to display
the authored task in a spatially situated manner (Q4: avg =
4.5, sd = 0.52) with intuitive visual representation (Q5: avg =
4, sd = 0.85). The ghost images are welcomed as a time-space
context for authoring collaborative robot task (Q8: avg = 4.33,
sd = 0.78), as well as a visual guidance during the Action
Mode for successful collaboration execution (Q11: avg = 4.08,
sd = 1.24) “It’s very interesting like Sci-Fi, when I'm able to
see what I have done with ghosts. (P3)” The most popular
feature of our system is the animation preview for the newly
authored ghost (Q2: avg =4.25, sd = 0.62) and the entire HRC
task before action (Q10: avg = 4.58, sd = 0.51). “The ghost
animation is definitely my favorite part of the system, I can see
so many potential applications for this technique. (P12)” We
believe the feedback matches our goal of providing contextual
aware authoring experience (DG3). The standard SUS survey
result for the entire study is 80 with a standard deviation of
6.75, indicating high usability of the system.

DISCUSSION AND FUTURE WORK

While users all appreciated the usefulness of AR ghost in
terms of contextual visualization and task simulation, they
have almost unanimously raised one interestingly conflicting
problem. 6 out of 12 users have mentioned in one way or an-
other that, the AR ghosts can occasionally become distracting
and obtrusive. “There are too many ghosts in front of me when
I am trying to see and act. (P10)” This feedback emerges
that after the users get familiar with the system and they start
feeling not needing the AR guidance all the time. This finding
brings out an important question when designing such sys-
tems: how shall we balance between demonstrative ghost
reference and clear authoring view, and provide both for
the user? While this may be a research question for the future
endeavor, we have some initial thoughts. A quick fix could be
giving the user the ability to toggle all the AR ghost manually.
However, if the user only wants to hide some of the ghost
images, the added interaction could increase the cognitive load
of the user. Another potential solution involves intelligently
detecting the user’s intention and only display the most rele-
vant and needed ghost. For example, during the Action Mode,
the ghost appears only when the user is about to go off-track.

In this work, we prototyped our system with see-through HMD
AR and achieved body externalization with IR-based tracking



device. The current hardware setup provides only 3-joints
tracking (head and two hands), and we utilized only the po-
sition value, resulting in a 9-dimensional input data for our
collaboration model. Note that this setup is largely limited
by the currently available hardware platform, and is likely to
change. For example, future AR-based body tracking tech-
nique is expected to have multiple-joints and provides more
realistic humanoid ghost. Furthermore, with additional sen-
sory input embedded, such as tactile force feedback, we can
achieve force-sensitive collaborative authoring with our sys-
tem, such as joint object carrying.

Although the GhostAR system can detect the user’s motion
status with fair accuracy, the DTW algorithm we are currently
using largely relies on user’s consistency in order to achieve
satisfying performance. As a result, the user in Action Mode
is constrained to the previously authored motions and has
very limited flexibility. To tackle this problem in the future,
our initial guess could be utilizing the state-of-the-art human
action recognition approaches, such as probabilistic methods
and deep neural networks, to capture the critical features in
the user’s motion. Thus granting more freedom to the user
and enabling for intuitive authoring and acting behavior while
maintaining collaborative accuracy.

It is worth emphasizing that GhostAR is an HRC task authoring
and acting platform designed as a complimenting workflow
for the more advanced human-robot-collaborative learning
frameworks, as discussed in the Related Work section. Our
system can be applied to many other HRC models specializing
in different applications, to achieve a higher level of collab-
orative intelligence while empowering users with real-time,
spatially situated visual task authoring capability.

CONCLUSION

We have presented GhostAR, a human-robot-collaborative task
authoring system featuring role-playing embodied interaction
and contextually situated visual editing. In this paper, we
have demonstrated how an AR interface can be synergistically
integrated with embodied authoring to create elevated HRC
experience. We have proposed essential guidelines for HRC
authoring system design, highlighting 1) robust motion adap-
tion, 2) natural embodied interaction, 3) contextual authoring
reference, 4) realistic visual simulation, and 5) fluid real-time
iteration. Our three-session system evaluation received posi-
tive results, indicating that the proposed system has reached
the design goals, while also unveiling the potential directions
for future endeavors. GhostAR has created a brand new per-
spective to solve the balancing problem between sophisticated
functionality and intuitive interaction in an adaptive collabora-
tion context, thus offering future inspirations to the HCI and
HRI community.
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