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ABSTRACT: Fluorinated polymers are an important class of functional
materials that exhibit unique properties such as high chemical resistance, thermal
stability, and low surface energy. Atom transfer radical polymerization (ATRP) of
semifluorinated monomers catalyzed by copper catalysts often requires j
development of special conditions to control the polymerization and prevent o#>o
side reactions such as base-catalyzed transesterification between the fluoro-
containing monomers and solvents. In this paper, photoinduced iron-catalyzed

Semi-fluorinated methacrylates

Iron catalysis
Blue light

ATRP was applied to the polymerization of a variety of semifluorinated

methacrylate monomers. Polymerizations were initiated by photochemical

generation of the Fe catalyst activator under blue light irradiation, enabling temporal control over the growth of polymer
chains, and were well-controlled in various solvents, including fluorinated and nonfluorinated solvents, without undergoing any
side reactions. Moreover, in situ chain extension and block copolymerization experiments demonstrated the preservation of
chain end functionality, enabling facile synthesis of well-controlled block copolymers.

luorinated polymers possess distinct chemical and physical

properties compared to their hydrogenated analogues."”
These materials are highly hydrophobic in nature and exhibit
excellent chemical and thermal stability and low refractive
indices. In particular, the low surface energy of fluorinated
materials, imparted by the unique properties of the C—F bond,
makes these polymers suitable for a wide range of applications
including fabrication of low friction, low adhesion, and low
energy surfaces and many other areas.”™”

Use of reversible deactivation radical polymerization
(RDRP) techniques gives access to the synthesis of well-
defined, fluorine-containing functional polymeric materi-
als.°” "' However, atom transfer radical polymerization
(ATRP)'>"* of semifluorinated monomers has often been
challenging and has required development of special reaction
conditions to control the polymerization. For example,
previous studies have reported that semifluorinated ligands'*
or solvents were required to both solubilize the catalytic
systems and control the polymerization. Furthermore, a
transesterification reaction between the fluorinated monomers
and solvents may be promoted in the presence of nitrogen-
containing ligands that can also act as a base to catalyze this
reaction. Consequently, in the presence of monomers and
protic solvents bearing different fluorinated alkyl chains, the
transesterification reaction resulted in inhomogeneity along the
polymer chains and therefore loss of control over molecular
weight.

Conducting polymerizations under acidic conditions was
reported to suppress the base-catalyzed transesterification
reaction of fluorinated monomers and solvents by the ligand."
Moreover, in a recent study, a tertiary fluorinated alcohol was
shown to act as a suitable solvent, which in contrast to primary
or secondary fluorinated alcohols did not undergo a trans-
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esterification reaction with the monomer.'® Therefore, photo-
induced ATRP of semifluorinated monomers was controlled
by generation of the activator Cu catalyst under UV light
irradiation. However, developing new polymerization platforms
that do not require special solvents or reaction conditions and
are also operational under mild, environmentally friendly
conditions would be advantageous in many aspects.

In this study, we sought to address this challenge by
developing Fe-catalyzed ATRP and also expand its utility to
include polymerization of functional monomers including
semifluorinated methacrylates. Fe-based complexes are a
robust and efficient class of ATRP catalysis for polymerization
of various monomers with high efficiency.'” ™' Notably, Fe is
an abundant metal, has low toxicity, and has important
biological and chemical functions that make it suitable for
mediating various chemical transformations.”” In Fe-catalyzed
ATRP, control over the growth of polymer chains is
established via a redox process between Fe'' and X—Fe'" (X:
Br or ClI) complexes that act as activator and deactivator
species, respectively.””>* Furthermore, the interaction of the
propagating radicals with Fe" complexes may contribute to
impart control over polymerization through an organometallic-
mediated radical polymerization pathway.”> Recent studies
have shown that Fe-catalyzed ATRP can be initiated and
controlled by external stimuli including visible light and
performed in simple catalytic platforms even without the need
for use of special ligands or other reagents.**™*’
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In this paper, Fe-catalyzed ATRP was applied to the
polymerization of semifluorinated methacrylate monomers.
Importantly, this Fe-based catalytic system was mediated under
blue light irradiation and resulted in controlling the polymer-
ization of different semifluorinated monomers in the presence
of fluorinated or nonfluorinated solvents (Scheme 1).

Scheme 1. Polymerization of Semifluorinated Methacrylate
Monomers by Photoinduced Fe-Catalyzed ATRP
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The efficiency of Fe-catalyzed ATRP was initially demon-
strated by the polymerization of 2,2,2-trifluoroethyl meth-
acrylate (TFEMA) in a variety of solvents that resulted in well-
controlled polymerizations (Table 1). The polymerizations

Table 1. Results of Fe-Catalyzed ATRP of TFEMA in
Different Solvents”

entry solvent conv. (%) M, M, b
1 toluene 91 7900 6500 2.31
2 DMF 94 8200 11100 1.78
3 anisole 94 8200 8600 1.17
4 MeCN 92 8000 8300 1.21
S TFEY 920 7800 7900 1.16

“Reactions conditions: [TFEMA]/[EBPA]/[FeBr;]/[TBABr] = 50/
1/0.04/0.08 in 50 vol % solvent, irradiated under blue light (465 nm,
12 mW/cm?) for 24 h. ®10 vol % anisole was used to dissolve the
catalyst (TFE/anisole = 9/1).

were conducted using iron(III) bromide (FeBr;) catalyst in the
; . 41,42

presence of tetrabutylammonium bromide (TBABr), and

ethyl a-bromophenylacetate (EBPA) as the initiator and

irradiated under blue light (465 nm) for 24 h. The generation
of FeBr, activator catalyst was triggered under blue light. The
Fe catalyst was only partially soluble in polymerizations run in
toluene as a solvent, and that resulted in poor control over the
polymerization of TFEMA (entry 1, Table 1).

In the presence of N,N-dimethylformamide (DMF), the
polymerization reached high monomer conversion but showed
a relatively high dispersity (P) of 1.78 (entry 2, Table 1).
However, use of anisole, acetonitrile (MeCN), or 2,2,2-
trifluoroethanol (TFE) as solvent resulted in well-controlled
polymerizations reaching high monomer conversions (>90%),
providing low D and molecular weights that were in agreement
with theoretical values (entries 3—S, Table 1).

Synthesis of polymers targeting different degrees of
polymerization (DP) was also performed. As shown in Table
S1 and Figure S2, polymerization of TFEMA can be controlled
while targeting DPs in the 25—400 range, reaching high
monomer conversion under blue light irradiation. At higher
DPs (200 and 400), molecular weights appeared to be lower
than theoretical values, which might be a result of the
formation of new initiating chains due to photoreduction of
the FeBr; species.”®*"

Fe-catalyzed ATRP was successful in controlling the
polymerization of various semifluorinated methacrylates.
Monomers containing 3—8 fluorine atoms include TFEMA,
tetrafluoropropyl methacrylate (TFPMA), pentafluoropropyl
methacrylate (PFPMA), hexafluoroisopropyl methacrylate
(HFPMA), hexafluorobutyl methacrylate (HFBMA), and
octafluoropentyl methacrylate (OFPMA). The monomers
were successfully polymerized by photoinduced Fe-catalyzed
ATRP reaching high monomer conversions (>90%) and
displaying molecular weights close to theoretical values with
low D (Figure 1). Size exclusion chromatography (SEC) traces
of these polymers presented in Figure S3 show a narrow,
monomodal distribution of molecular weights. SEC measure-
ments were performed using THF or DMF as an eluent.
Polymers containing 4 or less fluorine atoms per monomer
unit showed a positive peak in THF, while polymers with more
than 4 fluorine atoms per repeat unit showed negative signals
in the SEC measurements in THF or DMF, due to their lower
refractive index than the eluent (npyr = 1.404, npye = 1.427).
Interestingly, analysis of PHFBMA and POFPMA in DMF
SEC gave molecular weights in agreement with the theoretical

e
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Figure 1. Results of Fe-catalyzed ATRP of methacrylate monomers containing different fluoroalkyl groups. Reaction conditions: [M]/[EBPA]/
[FeBr,]/[TBABr] = 50/1/0.04/0.08 in 50 vol % solvent (TFE/anisole = 9/1), irradiated under blue LEDs for 24 h.
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Figure 2. SEC traces of in situ chain extension of PTFEMA in different solvents showing high chain end functionality in Fe-catalyzed photoinduced
ATRP. Reaction conditions for the first block: [TFEMA]/[EBPA]/[FeBr,]/[TBABr] = 33/1/0.04/0.08, in SO vol % solvent irradiated under blue
light (465 nm, 12 mW/cm?) for 24 h. A degassed solution of TFEMA in respective solvents was added, and reactions were allowed to run for 24 h

under blue light.

values, whereas the THF SEC gave molecular weights lower
than expected values for these samples. Moreover, polymer-
ization of these monomers was successfully conducted and
controlled in different solvents (Table S2).

Chain extension experiments performed upon sequential
addition of the monomer demonstrated high chain end
functionality obtained in the polymerizations conducted in
different solvents. Polymerization of TFEMA was initially
performed in the presence of TFE, anisole, or MeCN as
solvents. Upon completion of the polymerizations, a second
batch of TFEMA monomer in respective solvents was added,
and the reactions were allowed to continue polymerization
under blue light irradiation. SEC results showed a shift toward
higher molecular weights, indicating a successful chain
extension that resulted in well-defined polymer chains with
low D and monomodal molecular weight distributions in all
solvents (Figure 2).

Furthermore, in situ block copolymerization experiments
were successfully performed upon sequential addition of
monomers to synthesize well-defined block copolymers. For
example, TFEMA was polymerized to high monomer
conversion in TFE solvent (>90%, M, = 8200, b = 1.18),
and subsequently a degassed solution of TFPMA in TFE was
injected into the reaction. Irradiation of the solution resulted in
increasing the molecular weight of the polymer to 22 000 with
a b of 1.33 (Figure 3A). Similarly, block copolymerization with
butyl methacrylate (BMA) resulted in a well-controlled block
copolymer (M,, = 19 000, D = 1.34) containing fluorinated and
nonfluorinated segments (Figure 3B). SEC results showed a
shift to higher molecular weights while retaining narrow,
monomodal molecular weight distributions as presented in
Figure 3.

Temporal control was successfully demonstrated in Fe-
catalyzed ATRP of TFEMA by switching the light on/off.
Irradiation of the reaction under blue light started the
polymerization by generation of the Fe' activator. Removal
of the light significantly decreased the rate of the polymer-
ization with only minimal monomer conversion observed in
the dark periods. Therefore, the polymerization was success-
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Figure 3. Block copolymers synthesized by in situ chain extension
upon sequential addition of monomers in Fe-catalyzed ATRP.

fully switched multiple times between on and off states upon
applying or removal of the light (Figure 4). Importantly,
control over the polymerization was maintained throughout
temporal control with molecular weights in agreement with
theoretical values and polymers showing low D < 1.2.
Moreover, keeping the polymerization in the dark for longer
times showed minimal chain growth only in the early stages,
and the polymerization stopped afterward (Figure SS). Re-
exposing the reaction to light restarted the polymerization as a
result of the photochemical generation of Fe' activator
catalyst. These observations suggest that the Fe' activator
was present in very low concentrations and was quickly
consumed as a result of radical termination, and consequently
polymerizations stopped in the dark.*> Accordingly, decreasing
the concentration of the catalyst from 4 to 2 mol % (with
respect to initiator) resulted in perfect temporal control with
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Figure 4. Temporal control in photoinduced Fe-catalyzed ATRP of TFEMA. (A) Kinetics of temporal control and (B) number-average molecular
weight (M, solid points) and dispersity (D, open points) as a function of monomer conversion. Reaction conditions: [TFEMA]/[EBPA]/[FeBr;]/
[TBABr] = 50/1/0.04/0.08 in 50 vol % solvent (TFE/anisole = 9/1).

no monomer conversion in the off periods (Figures S4 and
SS). These results verify a well-controlled polymerization
catalyzed by Fe that can be photochemically controlled to
mediate the growth of polymer chains in a temporal manner.

The versatility of the Fe-based catalytic system allowed for
use of different solvents from fluorinated to nonfluorinated
solvents for the polymerization of semifluorinated monomers.
Importantly, no side reactions were observed when using a
semifluorinated monomer in the presence of a fluorinated
solvent, each bearing different fluoroalkyl groups. In Cu-
catalyzed ATRP systems, amine-based ligands may induce a
base-catalyzed transesterification reaction between the fluori-
nated monomer and solvent. Therefore, special reaction
conditions or special solvents were required to control the
polymerization and prevent such side reactions.'® However,
under Fe-catalyzed ATRP conditions, polymerizations were
well-controlled in a variety of fluorinated and traditional
solvents without undergoing any side reactions. A control
experiment using PFPMA monomer and TFE solvent was
performed to further demonstrate the lack of side reactions
between the monomer and solvent in the presence of FeBr;/
TBABr. NMR analysis of the solution showed no change in the
respective shifts of the reagents after 24 h, indicating that no
transesterification reaction was promoted between the
fluorinated monomer and solvent under Fe-catalyzed ATRP
conditions, as presented in Figure S6. Therefore, different
semifluorinated monomers were successfully polymerized
using TFE or other solvents.

In summary, ATRP of semifluorinated methacrylate
monomers was successfully initiated and controlled by Fe
catalysis under visible-light irradiation. The versatility of the Fe
catalyst allowed the polymerizations to be carried out in a
variety of solvents without any side reactions. In situ chain
extension and block copolymerization experiments proved the
preservation of chain end functionality, allowing the synthesis
of well-defined block copolymers.

Fe is a ubiquitous and environmentally friendly catalyst that
can be photochemically activated under visible-light irradiation
and provides a green catalytic approach for catalyzing ATRP
processes. Future studies will focus on developing new Fe-
based catalysts and study their catalytic efficiency in the
polymerization of various functional monomers and the
architecture of polymeric materials.
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