




and in 87.5% of the extracted video frames against
GTSRB-CNN.

4. To show the generality of our approach, we generate the
robust physical adversarial example by manipulating
general physical objects, such as a microwave. We show
that the pre-trained Inception-v3 classifier misclassifies
the microwave as “phone" by adding a single sticker.

Our work, thus, contributes to understanding the sus-
ceptibility of image classifiers to robust adversarial mod-
ifications of physical objects. These results provide a
case for the potential consequences of adversarial exam-
ples on deep learning models that interact with the physi-
cal world through vision. Our overarching goal with this
work is to inform research in building robust vision mod-
els and to raise awareness on the risks that future phys-
ical learning systems might face. We include more ex-
amples and videos of the drive-by tests on our webpage
https://iotsecurity.eecs.umich.edu/#roadsigns

2. Related Work

We survey the related work in generating adversarial ex-
amples. Specifically, given a classifier fθ(·) with parameters
θ and an input x with ground truth label y for x, an ad-
versarial example x′ is generated so that it is close to x in
terms of certain distance, such as Lp norm distance. x′ will
also cause the classifier to make an incorrect prediction as
fθ(x

′) 6= y (untargeted attacks), or fθ(x′) = y∗ (targeted
attacks) for a specific y∗ 6= y. We also discuss recent efforts
at understanding the space of physical adversarial examples.
Digital Adversarial Examples. Different methods have
been proposed to generate adversarial examples in the white-
box setting, where the adversary has full access to the classi-
fier [3,5,9,13,23,29,35]. We focus on the white-box setting
as well for two reasons: (1) In our chosen autonomous ve-
hicle domain, an attacker can obtain a close approximation
of the model by reverse engineering the vehicle’s systems
using model extraction attacks [37]. (2) To develop a foun-
dation for future defenses, we must assess the abilities of
powerful adversaries, and this can be done in a white-box
setting. Given that recent work has examined the black-box
transferability of digital adversarial examples [27], physical
black-box attacks may also be possible.

Goodfellow et al. proposed the fast gradient method that
applies a first-order approximation of the loss function to con-
struct adversarial samples [9]. Optimization based methods
have also been proposed to create adversarial perturbations
for targeted attacks [5, 18]. These methods contribute to
understanding digital adversarial examples. By contrast, our
work examines physical perturbations on real objects under
varying environmental conditions.
Physical Adversarial Examples. Kurakin et al. showed
that printed adversarial examples can be misclassified when

viewed through a smartphone camera [13]. Athalye and
Sutskever improved upon the work of Kurakin et al. and pre-
sented an attack algorithm that produces adversarial exam-
ples robust to a set of two-dimensional synthetic transforma-
tions [1]. These works do not modify physical objects—an
adversary prints out a digitally-perturbed image on paper.
However, there is value in studying the effectiveness of such
attacks when subject to environmental variability. Our object-
constrained poster printing attack is a reproduced version of
this type of attack, with the additional physical-world con-
straint of confining perturbations to the surface area of the
sign. Additionally, our work goes further and examines how
to effectively create adversarial examples where the object
itself is physically perturbed by placing stickers on it.

Concurrent to our work,1 Athalye et al. improved upon
their original attack, and created 3D-printed replicas of per-
turbed objects [2]. The main intellectual differences include:
(1) Athalye et al. only use a set of synthetic transforma-
tions during optimization, which can miss subtle physical
effects, while our work samples from a distribution modeling
both physical and synthetic transformations. (2) Our work
modifies existing true-sized objects. Athalye et al. 3D-print
small-scale replicas. (3) Our work simulates realistic testing
conditions appropriate to the use-case at hand.

Sharif et al. attacked face recognition systems by printing
adversarial perturbations on the frames of eyeglasses [32].
Their work demonstrated successful physical attacks in rela-
tively stable physical conditions with little variation in pose,
distance/angle from the camera, and lighting. This con-
tributes an interesting understanding of physical examples
in stable environments. However, environmental conditions
can vary widely in general and can contribute to reducing
the effectiveness of perturbations. Therefore, we choose the
inherently unconstrained environment of road-sign classifi-
cation. In our work, we explicitly design our perturbations
to be effective in the presence of diverse physical-world con-
ditions (specifically, large distances/angles and resolution
changes).

Finally, Lu et al. performed experiments with physical
adversarial examples of road sign images against detectors

and show current detectors cannot be attacked [19]. In this
work, we focus on classifiers to demonstrate the physical
attack effectiveness and to highlight their security vulnera-
bility in the real world. Attacking detectors are out of the
scope of this paper, though recent work has generated digital
adversarial examples against detection/segmentation algo-
rithms [6, 20, 38], and our recent work has extended RP2 to
attack the YOLO detector [7].

1This work appeared at arXiv on 30 Oct 2017.
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3. Adversarial Examples for Physical Objects

Our goal is to examine whether it is possible to create
robust physical perturbations for real-world objects that mis-
lead classifiers to make incorrect predictions even when
images are taken in a range of varying physical conditions.
We first present an analysis of environmental conditions that
physical learning systems might encounter, and then present
our algorithm to generate physical adversarial perturbations
taking these challenges into account.

3.1. Physical World Challenges

Physical attacks on an object must be able to survive
changing conditions and remain effective at fooling the clas-
sifier. We structure our discussion of these conditions around
the chosen example of road sign classification, which could
be potentially applied in autonomous vehicles and other
safety sensitive domains. A subset of these conditions can
also be applied to other types of physical learning systems
such as drones, and robots.
Environmental Conditions. The distance and angle of a
camera in an autonomous vehicle with respect to a road
sign varies continuously. The resulting images that are fed
into a classifier are taken at different distances and angles.
Therefore, any perturbation that an attacker physically adds
to a road sign must be able to survive these transformations
of the image. Other environmental factors include changes
in lighting/weather conditions, and the presence of debris on
the camera or on the road sign.
Spatial Constraints. Current algorithms focusing on digital
images add adversarial perturbations to all parts of the image,
including background imagery. However, for a physical road
sign, the attacker cannot manipulate background imagery.
Furthermore, the attacker cannot count on there being a
fixed background imagery as it will change depending on
the distance and angle of the viewing camera.
Physical Limits on Imperceptibility. An attractive feature
of current adversarial deep learning algorithms is that their
perturbations to a digital image are often so small in magni-
tude that they are almost imperceptible to the casual observer.
However, when transferring such minute perturbations to the
real world, we must ensure that a camera is able to perceive
the perturbations. Therefore, there are physical limits on
how imperceptible perturbations can be, and is dependent
on the sensing hardware.
Fabrication Error. To fabricate the computed perturbation,
all perturbation values must be valid colors that can be repro-
duced in the real world. Furthermore, even if a fabrication
device, such as a printer, can produce certain colors, there
will be some reproduction error [32].

In order to successfully physically attack deep learning
classifiers, an attacker should account for the above cate-
gories of physical world variations that can reduce the effec-
tiveness of perturbations.

3.2. Robust Physical Perturbation

We derive our algorithm starting with the optimization
method that generates a perturbation for a single image x,
without considering other physical conditions; then, we de-
scribe how to update the algorithm taking the physical chal-
lenges above into account. This single-image optimization
problem searches for perturbation δ to be added to the input
x, such that the perturbed instance x′ = x+δ is misclassified
by the target classifier fθ(·):

min H(x+ δ, x), s.t. fθ(x+ δ) = y∗

where H is a chosen distance function, and y∗ is the target
class.2 To solve the above constrained optimization problem
efficiently, we reformulate it in the Lagrangian-relaxed form
similar to prior work [5, 18].

argmin
δ

λ||δ||p + J(fθ(x+ δ), y∗) (1)

Here J(· , ·) is the loss function, which measures the dif-
ference between the model’s prediction and the target label
y∗. λ is a hyper-parameter that controls the regularization of
the distortion. We specify the distance function H as ||δ||p,
denoting the ℓp norm of δ.

Next, we will discuss how the objective function can be
modified to account for the environmental conditions. We
model the distribution of images containing object o under
both physical and digital transformations XV . We sample
different instances xi drawn from XV . A physical perturba-
tion can only be added to a specific object o within xi. In
the example of road sign classification, o is the stop sign that
we target to manipulate. Given images taken in the physical
world, we need to make sure that a single perturbation δ,
which is added to o, can fool the classifier under different
physical conditions. Concurrent work [2] only applies a
set of transformation functions to synthetically sample such
a distribution. However, modeling physical phenomena is
complex and such synthetic transformations may miss physi-
cal effects. Therefore, to better capture the effects of chang-
ing physical conditions, we sample instance xi from XV

by both generating experimental data that contains actual
physical condition variability as well as synthetic transfor-
mations. For road sign physical conditions, this involves
taking images of road signs under various conditions, such
as changing distances, angles, and lightning. This approach
aims to approximate physical world dynamics more closely.
For synthetic variations, we randomly crop the object within
the image, change the brightness, and add spatial transfor-
mations to simulate other possible conditions.

To ensure that the perturbations are only applied to the
surface area of the target object o (considering the spatial

2For untargeted attacks, we can modify the objective function to max-
imize the distance between the model prediction and the true class. We
focus on targeted attacks in the rest of the paper.
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constraints and physical limits on imperceptibility), we in-
troduce a mask. This mask serves to project the computed
perturbations to a physical region on the surface of the object
(i.e. road sign). In addition to providing spatial locality, the
mask also helps generate perturbations that are visible but
inconspicuous to human observers. To do this, an attacker
can shape the mask to look like graffiti—commonplace van-
dalism on the street that most humans expect and ignore,
therefore hiding the perturbations “in the human psyche.”
Formally, the perturbation mask is a matrix Mx whose di-
mensions are the same as the size of input to the road sign
classifier. Mx contains zeroes in regions where no perturba-
tion is added, and ones in regions where the perturbation is
added during optimization.

In the course of our experiments, we empirically observed
that the position of the mask has an impact on the effective-
ness of an attack. We therefore hypothesize that objects
have strong and weak physical features from a classification
perspective, and we position masks to attack the weak areas.
Specifically, we use the following pipeline to discover mask
positions: (1) Compute perturbations using the L1 regular-
ization and with a mask that occupies the entire surface area
of the sign. L1 makes the optimizer favor a sparse pertur-
bation vector, therefore concentrating the perturbations on
regions that are most vulnerable. Visualizing the resulting
perturbation provides guidance on mask placement. (2) Re-
compute perturbations using L2 with a mask positioned on
the vulnerable regions identified from the earlier step.

To account for fabrication error, we add an additional
term to our objective function that models printer color repro-
duction errors. This term is based upon the Non-Printability
Score (NPS) by Sharif et al. [32]. See the supplemental
materials for a formal definition of NPS.

Based on the above discussion, our final robust spatially-
constrained perturbation is thus optimized as:

argmin
δ

λ||Mx · δ||p + NPS

+ Exi∼XV J(fθ(xi + Ti(Mx · δ)), y∗)
(2)

Here we use function Ti(·) to denote the alignment function
that maps transformations on the object to transformations on
the perturbation (e.g. if the object is rotated, the perturbation
is rotated as well).

Finally, an attacker will print out the optimization result
on paper, cut out the perturbation (Mx), and put it onto the
target object o. As our experiments demonstrate in the next
section, this kind of perturbation fools the classifier in a
variety of viewpoints.3

3For our attacks, we use the ADAM optimizer with the following pa-
rameters: β1 = 0.9, β2 = 0.999, ǫ = 10−8, η ∈ [10−4, 100]

4. Experiments

In this section, we will empirically evaluate the proposed
RP2. We first evaluate a safety sensitive example, Stop sign
recognition, to demonstrate the robustness of the proposed
physical perturbation. To demonstrate the generality of our
approach, we then attack Inception-v3 to misclassify a mi-
crowave as a phone.

4.1. Dataset and Classifiers

We built two classifiers based on a standard crop-resize-
then-classify pipeline for road sign classification as described
in [28, 31]. Our LISA-CNN uses LISA, a U.S. traffic sign
dataset containing 47 different road signs [21]. However, the
dataset is not well-balanced, resulting is large disparities in
representation for different signs. To alleviate this problem,
we chose the 17 most common signs based on the number
of training examples. LISA-CNN’s architecture is defined
in the Cleverhans library [26] and consists of three convolu-
tional layers and an FC layer. It has an accuracy of 91% on
the test set.

Our second classifier is GTSRB-CNN, that is trained
on the German Traffic Sign Recognition Benchmark (GT-
SRB) [33]. We use a publicly available implementation [39]
of a multi-scale CNN architecture that has been known to
perform well on road sign recognition [31]. Because we did
not have access to German Stop signs for our physical exper-
iments, we replaced the German Stop signs in the training,
validation, and test sets of GTSRB with the U.S. Stop sign
images in LISA. GTSRB-CNN achieves 95.7% accuracy on
the test set. When evaluating GTSRB-CNN on our own 181
stop sign images, it achieves 99.4% accuracy.

4.2. Experimental Design

To the best of our knowledge, there is currently no stan-
dardized methodology of evaluating physical adversarial
perturbations. Based on our discussion from Section 3.1,
we focus on angles and distances because they are the most
rapidly changing elements for our use case. A camera in
a vehicle approaching a sign will take a series of images
at regular intervals. These images will be taken at differ-
ent angles and distances, therefore changing the amount of
detail present in any given image. Any successful physi-
cal perturbation must cause targeted misclassification in a
range of distances and angles because a vehicle will likely
perform voting on a set of frames (images) from a video
before issuing a controller action. Our current experiments
do not explicitly control ambient light, and as is evident from
experimental data (Section 4), lighting varied from indoor
lighting to outdoor lighting.

Drawing on standard practice in the physical sciences, our
experimental design encapsulates the above physical factors
into a two-stage evaluation consisting of controlled lab tests
and field tests.
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Stationary (Lab) Tests. This involves classifying images
of objects from stationary, fixed positions.

1. Obtain a set of clean images C and a set of adversar-
ially perturbed images ({A (c)}, ∀c ∈ C) at varying
distances d ∈ D, and varying angles g ∈ G. We use
cd,g here to denote the image taken from distance d and
angle g. The camera’s vertical elevation should be kept
approximately constant. Changes in the camera angle
relative the the sign will normally occur when the car
is turning, changing lanes, or following a curved road.

2. Compute the attack success rate of the physical pertur-
bation using the following formula:

∑

c∈C

✶
{fθ(A(cd,g))=y∗ ∧fθ(cd,g)=y}

∑

c∈C

✶
{fθ(cd,g)=y}

(3)

where d and g denote the camera distance and angle for
the image, y is the ground truth, and y∗ is the targeted
attacking class.4

Note that an image A (c) that causes misclassification is
considered as a successful attack only if the original image
c with the same camera distance and angle is correctly clas-
sified, which ensures that the misclassification is caused by
the added perturbation instead of other factors.
Drive-By (Field) Tests. We place a camera on a moving
platform, and obtain data at realistic driving speeds. For our
experiments, we use a smartphone camera mounted on a car.

1. Begin recording video at approximately 250 ft away
from the sign. Our driving track was straight without
curves. Drive toward the sign at normal driving speeds
and stop recording once the vehicle passes the sign. In
our experiments, our speed varied between 0 mph and
20 mph. This simulates a human driver approaching a
sign in a large city.

2. Perform video recording as above for a “clean” sign and
for a sign with perturbations applied, and then apply
similar formula as Eq. 3 to calculate the attack success
rate, where C here represents the sampled frames.

An autonomous vehicle will likely not run classification
on every frame due to performance constraints, but rather,
would classify every j-th frame, and then perform simple
majority voting. Hence, an open question is to determine
whether the choice of frame (j) affects attack accuracy. In
our experiments, we use j = 10. We also tried j = 15 and
did not observe any significant change in the attack success
rates. If both types of tests produce high success rates, the
attack is likely to be successful in commonly experienced
physical conditions for cars.

4For untargeted adversarial perturbations, change fθ(e
d,g) = y∗ to

fθ(e
d,g) 6= y.

4.3. Results for LISA­CNN

We evaluate the effectiveness of our algorithm by gen-
erating three types of adversarial examples on LISA-CNN
(91% accuracy on test-set). For all types, we observe high
attack success rates with high confidence. Table 1 summa-
rizes a sampling of stationary attack images. In all testing
conditions, our baseline of unperturbed road signs achieves
a 100% classification rate into the true class.
Object-Constrained Poster-Printing Attacks. This in-
volves reproducing the attack of Kurakin et al. [13]. The
crucial difference is that in our attack, the perturbations
are confined to the surface area of the sign excluding the
background, and are robust against large angle and distance
variations. The Stop sign is misclassified into the attack’s
target class of Speed Limit 45 in 100% of the images taken
according to our evaluation methodology. The average con-
fidence of predicting the manipulated sign as the target class
is 80.51% (second column of Table 2).

For the Right Turn warning sign, we choose a mask that
covers only the arrow since we intend to generate subtle per-
turbations. In order to achieve this goal, we increase the reg-
ularization parameter λ in equation (2) to demonstrate small
magnitude perturbations. We achieve a 73.33% targeted-
attack success rate (Table 1). Out of 15 distance/angle con-
figurations, four instances were not classified into the target.
However, they were still misclassified into other classes that
were not the true label (Yield, Added Lane). Three of these
four instances were an Added Lane sign—a different type
of warning. We hypothesize that given the similar appear-
ance of warning signs, small perturbations are sufficient to
confuse the classifier.
Sticker Attacks. Next, we demonstrate how effective it is
to generate physical perturbations in the form of stickers, by
constraining the modifications to a region resembling graffiti
or art. The fourth and fifth columns of Table 1 show a sample
of images, and Table 2 (columns 4 and 6) shows detailed
success rates with confidences. In the stationary setting, we
achieve a 66.67% targeted-attack success rate for the graffiti
sticker attack and a 100% targeted-attack success rate for the
sticker camouflage art attack. Some region mismatches may
lead to the lower performance of the LOVE-HATE graffiti.
Drive-By Testing. Per our evaluation methodology, we con-
duct drive-by testing for the perturbation of a Stop sign. In
our baseline test we record two consecutive videos of a clean
Stop sign from a moving vehicle, perform frame grabs at
k = 10, and crop the sign. We observe that the Stop sign
is correctly classified in all frames. We similarly test subtle
and abstract art perturbations for LISA-CNN using k = 10.
Our attack achieves a targeted-attack success rate of 100%
for the subtle poster attack, and a targeted-attack success
rate of 84.8% for the camouflage abstract art attack. See the
supplemental materials for sample frames from the drive-by
video.
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Table 1: Sample of physical adversarial examples against LISA-CNN and GTSRB-CNN.

Distance/Angle Subtle Poster
Subtle Poster
Right Turn

Camouflage
Graffiti

Camouflage Art
(LISA-CNN)

Camouflage Art
(GTSRB-CNN)

5’ 0◦

5’ 15◦

10’ 0◦

10’ 30◦

40’ 0◦

Targeted-Attack Success 100% 73.33% 66.67% 100% 80%

Table 2: Targeted physical perturbation experiment results on LISA-CNN using a poster-printed Stop sign (subtle attacks) and
a real Stop sign (camouflage graffiti attacks, camouflage art attacks). For each image, the top two labels and their associated
confidence values are shown. The misclassification target was Speed Limit 45. See Table 1 for example images of each attack.
Legend: SL45 = Speed Limit 45, STP = Stop, YLD = Yield, ADL = Added Lane, SA = Signal Ahead, LE = Lane Ends.

Distance & Angle Poster-Printing Sticker

Subtle Camouflage–Graffiti Camouflage–Art

5’ 0◦ SL45 (0.86) ADL (0.03) STP (0.40) SL45 (0.27) SL45 (0.64) LE (0.11)
5’ 15◦ SL45 (0.86) ADL (0.02) STP (0.40) YLD (0.26) SL45 (0.39) STP (0.30)
5’ 30◦ SL45 (0.57) STP (0.18) SL45 (0.25) SA (0.18) SL45 (0.43) STP (0.29)
5’ 45◦ SL45 (0.80) STP (0.09) YLD (0.21) STP (0.20) SL45 (0.37) STP (0.31)
5’ 60◦ SL45 (0.61) STP (0.19) STP (0.39) YLD (0.19) SL45 (0.53) STP (0.16)

10’ 0◦ SL45 (0.86) ADL (0.02) SL45 (0.48) STP (0.23) SL45 (0.77) LE (0.04)
10’ 15◦ SL45 (0.90) STP (0.02) SL45 (0.58) STP (0.21) SL45 (0.71) STP (0.08)
10’ 30◦ SL45 (0.93) STP (0.01) STP (0.34) SL45 (0.26) SL45 (0.47) STP (0.30)

15’ 0◦ SL45 (0.81) LE (0.05) SL45 (0.54) STP (0.22) SL45 (0.79) STP (0.05)
15’ 15◦ SL45 (0.92) ADL (0.01) SL45 (0.67) STP (0.15) SL45 (0.79) STP (0.06)

20’ 0◦ SL45 (0.83) ADL (0.03) SL45 (0.62) STP (0.18) SL45 (0.68) STP (0.12)
20’ 15◦ SL45 (0.88) STP (0.02) SL45 (0.70) STP (0.08) SL45 (0.67) STP (0.11)

25’ 0◦ SL45 (0.76) STP (0.04) SL45 (0.58) STP (0.17) SL45 (0.67) STP (0.08)
30’ 0◦ SL45 (0.71) STP (0.07) SL45 (0.60) STP (0.19) SL45 (0.76) STP (0.10)
40’ 0◦ SL45 (0.78) LE (0.04) SL45 (0.54) STP (0.21) SL45 (0.68) STP (0.14)
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