2019 IEEE Security and Privacy Workshops (SPW)

A Study of Vulnerability Analysis of Popular Smart
Devices Through Their Companion Apps

Luis Melo
Federal University of
Pernambuco, Brazil
lhsm @cin.ufpe.br

Davino Mauro Junior
Federal University of
Pernambuco, Brazil
dmtsj@cin.ufpe.br

Abstract—Security of Internet of Things (IoT) devices is a well-
known concern as these devices come in increasing use in homes
and commercial environments. To better understand the extent
to which companies take security of the IoT devices seriously and
the methods they use to secure them, this paper presents findings
from a security analysis of 96 top-selling WiFi IoT devices on
Amazon. We found that we could carry out a significant portion
of the analysis by first analyzing the code of Android companion
apps responsible for controlling the devices. An interesting finding
was that these devices used only 32 unique companion apps;
we found instances of devices from same as well as different
brands sharing the same app, significantly reducing our work.
We analyzed the code of these companion apps to understand
how they communicated with the devices and the security of that
communication. We found security problems to be widespread:
50% of the apps corresponding to 38% of the devices did not
use proper encryption techniques; some even used well-known
weak ciphers such as Caesar cipher. We also purchased 5 devices
and confirmed the vulnerabilities found with exploits. In some
cases, we were able to bypass the pairing process and still control
the device. Finally, we comment on technical and non-technical
lessons learned from the study that have security implications.

Index Terms—Security; Internet of Things; Android Apps;
Companion Apps

I. INTRODUCTION

The number of Internet of Things (IoT) devices ! worldwide
is predicted to reach 20 billion by 2020 [1]. Their security is
a huge concern. As a concrete example, in October 2016, the
Mirai malware compromised millions of IoT devices around
the world and used them to launch the largest DDoS attack
ever recorded [2]. In the scenario of a smart-home, security
vulnerabilities in IoT devices could compromise safety [3] and
availability of systems.

IoT devices are often compatible with multiple cloud-
based software stacks (e.g., SmartApps in the SmartThings
cloud [4], Alexa Skills [5], etc.). Prior work has found security
vulnerabilities introduced by some of these stacks [6], [7].
Unfortunately, devices may have vulnerabilities out-of-the-box
that are independent of security of high-level software stacks.

This material is based upon work supported by RNP and the National
Science Foundation under Grant Nos. 1740897 and 1740916.

'We may refer to IoT devices as smart devices (or just devices) and the
apps that control these devices as companion apps (or just app).

© 2019, Davino Mauro Junior. Under license to IEEE.
DOI 10.1109/SPW.2019.00042

Hao Lu
University of
Michigan, USA
harveylu@umich.edu

181

Atul Prakash
University of
Michigan, USA
aprakash@umich.edu

Marcelo d’ Amorim
Federal University of
Pernambuco, Brazil
damorim@cin.ufpe.br

Given the attention that security of IoT devices has already
received, one would assume that vendors of popular devices
(and their customers) take security seriously. To assess how
vendors incorporate security in their loT products in the real-
world, this paper presents an emperical study of security of
96 popular smart devices on Amazon. To make the analysis
scalable, this paper uses an indirect way of assessing security
of IoT devices by analyzing their companion apps, i.e., apps
available for the Android platform that enable users to control
the devices directly from their smartphones. Our hypothesis
is that the analysis of these apps can throw substantial
light on potential vulnerabilities in devices and even help
security analysts develop proof-of-concept exploits to induce
the device manufacturers to verify the vulnerabilities and fix
them. To validate this hypothesis, we analyze multiple apps for
vulnerabilities and, from that, created proof-of-concept attacks.

An alternative technique for analyzing the security of these
devices would have been to purchase them, extract their
firmware and analyze it to understand their behavior and,
indeed, such techniques have been previously used [8], [9].
But, such techniques can be difficult to scale to a large number
of devices and require significant analysis of low-level systems.
We found that the indirect way of analyzing companion apps
provides a complementary security analysis technique that can
still offer interesting security insights even without analyzing
a device’s firmware.

This study makes the following contributions:

1) We analyzed smartphone apps for 96 top-selling WiFi
devices on Amazon. We found that companion app
analysis can be a useful step in uncovering potential
vulnerabilities. Somewhat to our surprise, we found that
not just one vendor but different vendors sometimes
shared the same app to control the devices; for 96
devices, we found only 32 unique Android companion
apps. For example, during our analysis we found that
devices from eWeLink, Tuya, and YI all used the same
app. We found security problems to be widespread among
these popular devices and their companion apps: 50% of
the apps corresponding to 38% of the devices did some
critical communication without using proper encryption

L Pairing, .

loT devices

WiFi @ \/\, —
Bluetooth Router/HUB
EXXXIXI

Z-Wave
Figure 1: Example of IoT setup.

techniques; some even used well-known weak ciphers
such as Caesar cipher.

We did a detailed analysis of companion apps responsible
for controlling 5 of the devices that we purchased from
Amazon. These confirmed the findings from the compan-
ion app analysis using dynamic tests and allowed us to
test potential exploits. We confirmed, for example, that an
Amazon top-seller smart plug from TP-Link [10] shares
the same hard-coded encryption key for all the devices of
a given product line and that the initial configuration of
the device is established through the app without proper
authentication. Using this information, we were able to
create a spoofing attack to gain control of this device.
A video illustrating a counterfeit app in action can be
found here [11]. We found that the attack also worked a
different TP-Link device that shared the same app.

We discuss the lessons learned. We expected to find
some vulnerabilities, but the extent of prevalence of
vulnerabilities in devices that are top-selling suggest larger
challenges around inadequacy of customer awareness and
transparency of vendor disclosures related to security
risks. We also found some devices that are designed with
better security and discuss two strategies used in them for
securing communication, as they may offer some guidance
towards developing design patterns for vendors to better
secure their IoT devices and companion apps.

2)

3)

II. CONTEXT, GOAL, AND QUESTIONS

A. Context

Most manufacturers of IoT devices provide a smartphone
application and cloud services to monitor and control their
devices. Communication between the device and its companion
app is often established over the local network using some
wireless protocol such as Zigbee and Z-Wave [12]. Some
WiFi-enabled devices we analyzed require password-protected
WiFi networks as a security measure. Unfortunately, password-
protected WiFi networks alone are not an adequate defense.
For example, WiFi passwords are often shared and users may
also inadvertently download malicious programs or scripts that
can send packets on the same network. It is thus important to
analyze whether the communication between a companion app
and the device is properly secured.

182

One method for such communication is via the cloud 2. An
IoT app sends the message intended for a device to the cloud
server and the cloud server relays the message to the device.
Similarly, a message from a device can be relayed to the IoT
app through the cloud. Figure 1 illustrates an example setup
involving a router/hub and the cloud. Another method is to use
local communication. In this context, pairing is the process of
establishing a communication channel between an app and a
device. A reasonable assumption that a customer should be
able to make is, once paired, such a channel is secure. Part of
our work tests this assumption.

B. Goal and Questions

To help analyze the security of app-device communication,
we analyzed the companion apps with the following initial
questions to help guide a deeper security analysis:

Q1) Are encryption key(s) hardcoded? A malicious developer
could counterfeit messages if she has access to secret keys. In
some case, those keys could be mined from code (even when
it is obfuscated) and then used to control the device without
pairing with it.

Q2) Does the app use local communication? When the IoT
app and the corresponding device are in the same network, local
communication may be used. Unfortunately, we found potential
problems in that scenario. For example, local communication is
often implemented with protocols such as UDP over broadcast,
enabling an attacker to eavesdrop communication and possibly
replaying packets using the same packet structure. In contrast,
cloud communication usually involves HTTPS/SSL certificates.
Consequently, an attacker would have to make a bigger effort
to forge certificates of the parties involved.

03) Does the app send broadcast messages? Broadcast
messages are frequently used in IoT setups to discover devices
and to enable direct app-device communication when there
is no hub/gateway in the setup. Their use, unfortunately, can
put a smart home at risk. Adversaries can, for instance, sniff>
the response of devices to broadcast messages, which often
include sensitive data such as the internal state of the device.

Q4) Does the app use
any well-known protocol
with vulnerabilities ? Differ-

Table I: CVE vulnerabilities in
major [oT protocols implemen-

: tations.
ent protocols tailored to IoT
deployments exist and some Protocol ~ # Vuln. Example
of these protocols are known MQTT 13 CVE-2017-9868
SIP 59 CVE-2018-0332
to be vulnerable. Table I UPnP 316 CVE2016.6255
shows the number of re- sspp 17 CVE-2017-5042

ported issues and the ID of
an example CVE issue on four highly-vulnerable protocols. For
instance, the UPnP vulnerability CVE-2016-6255 allows remote
attackers to write arbitrary files to the device file system [14].

2Tuya Smart [13] is an example framework where the companion app can
only communicate with the device through the cloud.
3This ability to sniff WiFi messages depends on the distance to the router.

III. FINDING AND CONFIRMING VULNERABILITIES

This section details the process of discovering and confirming
vulnerabilities in IoT apps.

A. App Selection Criterion

We started with the top-100 most popular smart hubless
devices from the Amazon website and then restricted the
resulting set to devices that use WiFi for communication. We
found 96 such devices. We then restricted them to devices
from the categories smart plugs, bulbs, or IR controllers that
use Wi-Fi. The rationale is affordability and because Wi-Fi is
popular and provides a potential attack surface if an attacker
executes code anywhere on the same network (e.g., using an
app or downloaded executable code as attack vector). A total
of 54 devices satisfied this criterion. From these 54 devices, we
randomly selected (and purchased) 5 devices to run our analysis.
We found that two of the devices we selected use exactly the
same app (both devices belonged to the same manufacturer,
TP-Link).

We first present results from vulnerability analysis of these
four companion apps. Analysis suggested vulnerabilities in
each. We confirmed the vulnerabilities with proof-of-concept
exploits on the 5 devices, thus validating that analysis of
companion apps can offer significant insights into security
of corresponding devices. We then present findings from the
analysis of entire set of companion apps corresponding to the
96 devices.

B. Vulnerability Analysis

This section describes the method we used to analyze
vulnerabilities. We first analyzed each app with respect to
Section II-B’s questions. Then, for each app, we looked for a
potential attack path and confirmed it by creating a proof-of-
concept exploit. We detail this process below.

1) Basic toolset functionality: We used a toolset to help
answering the questions from Section II-B. The key components
of the toolset are described next.

Encryption Discovery. The encryption discovery compo-
nent looks for functions in the app that encrypt or decrypt the
data exchanged with the smart device. Those functions can
be the first line of attack for adversaries [15] and could be
used to infer the layout of the messages and send unauthorized
commands to the device. This component uses two comple-
mentary heuristics to discover these encryption functions. The
first heuristic applies to the case where developers use existing
Java encryption APIs. The second heuristic covers the case
where developers implement custom crypto functions instead
of building on existing ones; similar to previous work [16],
[17], this component detects custom encryption functions by
computing, for every function declared in the app, the ratio
between the number of arithmetic and bitwise operations over
the total number of instructions.

Network Protocol Discovery. This component extracts
information about the smart device-companion app commu-
nication protocol. It looks for calls to functions related to
communication protocols. For example, for UDP, it looks for

183

Table II: Potential Threats to Selected Apps.

App Avoid Hardcoded Avoid Local ~ Avoid Broadcast Secure
Keys? Communication? Messages? Protocol?
Kasa Mobile no no no yes
LIFX no encryption no no yes
WeMo no encryption no yes no
e-Control no encryption no no yes

calls to functions from the class java.net .DatagramSocket
and, for TCP, it looks for «calls to functions from
java.net.Socket. The output of this component consists
of a mapping from app classes to protocols.

2) Answering the questions: The method used to answer
each of the questions from Section II-B is described next.

Q1) Are encryption key(s) hardcoded? The search for
hardcoded keys initiates from the output of the encryption
discovery component, which reports function likely related to
encryption. When using standard encryption libraries, we are
able to automate the search for secret keys by looking for
javax.crypto.SecretKey, which is the class denoting a
key in the Java standard API. For custom encryption, however,
we manually inspect each method returned by the encryption
discovery, checking if the key is present inside the method
body or in uses of the method. Q2) Does the app use local
communication? In this case, the protocol discovery component
acts as guidance for manual analysis. Based on the function
calls and protocol report, we inspect the code to find whether
or not the app uses local communication. Q3) Does the
app send broadcast messages? Identifying whether broadcast
messages are sent from the app to the smart device is done
by inspecting the classes responsible for making network
calls and looking for well-known broadcast addresses, e.g.,
255.255.255.255. Q4) Does the app use any well-known
protocol with vulnerabilities? Using the network protocol
discovery component, we can also check if the app uses some
vulnerable protocol from the CVE database [18].

Results. Table II shows the answers to these questions for
the four selected apps. For each question, we used the labels
yes or no to indicate a positive answer or a negative answer,
and no encryption for the first question when the app uses no
encryption. The label yes indicates good practice whereas the
labels no and no encryption indicate a potential vulnerability. To
sum up, all four apps are found to use local communication with
the device and three of the apps use broadcast communication.
Three out of the four apps do not use any encryption to secure
communication. One of the selected apps (WeMo) uses an
insecure version of a protocol and does not use encryption.

C. Exploits

To create exploits, we first look for a vulnerable path in the
code and then try to materialize that path. Below, we detail
how we looked for paths and show the exploit created for the
“Kasa for Mobile” app. For space reasons, we do not show
exploits for the other apps. A technical report describes those
exploits, including other devices, in more detail 4.

4http://arxiv.org/abs/1901.10062

UI call

‘TPUDPClienLa() }—S{AhsSmanDevice.invoke()

/ \ Network call

‘TPClientUlils,encode() ‘ ‘UDPCliem.b() }—»‘Dalagramsend() ‘

Encryption call

Figure 2: Path (simplified) from UI function to a network call.

1| public static byte[] encode (byte[] data) {

2 byte seed = (byte) -85;

3 for (int i = 0; i < data.length; i++) {

4 datal[i] = (byte) (data[i] ~ seed); seed = datalil;
5 } return data; }

Listing 1: TP-Link Kasa encryption function.

1) Finding Vulnerable Paths: To craft the exploit, we need
to find a path i.e., a sequence of function calls that connects
an UI call (the source) to a sink, e.g., a network method call.
Figure 2 illustrates a vulnerable path for the Kasa app. To
find this vulnerable path, we start by analyzing the output of
our toolset, i.e., classes and functions related to encryption,
authentication and network protocols. These elements are
potential sources of vulnerabilities. Considering the Kasa app,
for example, we start by inspecting the classes containing
usages of the UDP protocol (related to Q3). We discover that the
UDPClient class declares the network-related method b, which
calls datagramPacket .send (), a method from the standard
Java API to send UDP packets. As the method b includes
a network call, it could be flagged as a sink. Our analysis
shows that this class contains usages of broadcast addresses,
representing a potential attack surface. Then, we analyze the call
chain leading to this function looking for an UI method. In the
process, we found that another method present in the output of
our toolset (related to Q1), TPClientUtils.encode, contains
hardcoded keys that could also be exploited. We also identify
the function TPUDPCLient.a, responsible for building the
UDP packet. This function, while not showing a vulnerability
by itself, is responsible for building the UDP packet to be sent
and reveals the structure of the message. Finally, we discover
the calls to the UI obfuscated method c . a, which is the starting
point of this path. That is possible because of the programming
conventions of Android. More specifically, class c declares
several (button-related) event callback methods.

2) The “Kasa for Mobile” exploit: TP-Link Kasa is the
official app for controlling TP-Link-manufactured devices from
the Kasa smart home product line [19]. Our exploit consists of
arogue app that enables an attacker to take control of a TP-Link
smart plug as well as other TP-Link devices. Albeit the app
targets a smart plug, it can control all devices from TP-Link
given that they are on the same network as the smartphone.

Answering the questions. Q1) Are encryption key(s) hard-
coded? The Kasa app uses a custom encryption function,
Caesar cipher [20], that is known to be easy to break. Listing 1
shows this function as it appears in the app. Line 2 shows the
hardcoded seed to encrypt the data. Identifying the encryption
function and its hardcoded seed gave us hope of replicating
the function in a rogue app on the same network to control
the device arbitrarily. Q2) Does the app use local communica-
tion? By using the network discovery component and manually
inspecting the code, we identified classes containing calls to

184

UDP-related methods and confirmed that the methods that make
these calls are involved in the discovery and control of the
TP-Link devices on the local network. For instance, Listing 2
exhibits the function that discovers TP-Link devices in the local
network. O3) Does the app send broadcast messages? During
our analysis, we found the Kasa app uses broadcast messages to
discover and control the TP-Link devices. Line 1 from Listing 2
declares a constant variable holding a well-known broadcast
IPv4 address. This variable is then used in Line 4 to discover
TP-Link devices on the network. Q4) Does the app use any
well-known protocol with vulnerabilities? For this case, we did
not find uses of protocols with documented vulnerabilities.

public static final String UDP_ADDRESS="255.255.255.255";
public void discoverLocal () {
String requestId = DiscoveryUtils.a();
tpDiscovery.broadcastDiscovery (..., UDP_ADDRESS, ...);
-}

woE W o —

Listing 2: TP-Link Kasa function (simplified) used to
discover devices on the local network.

Confirming Vulnerabilities. We designed a proof-of-
concept exploit to confirm vulnerabilities; the exploit consists
of a rogue app running on the same network. To create the
attack we followed these steps: 1) find a vulnerable path and
encryption function, 2) discover the structure of exchanged
messages, 3) discover what protocol is used to exchange
messages, and 4) implement pairing.

From a vulnerable path of the Kasa app, we obtained access
to the app’s encryption function. We created a test script that
trivially broke the cipher and monitored the network traffic,
reading the contents of messages, extracting their structure,
and the IP addresses used. We also found that broadcasting
was used through a single address. Finally, it was necessary
to analyze the pairing process. To our surprise, we found by
inspection that a pairing process was only used to maintain the
profile of users on TP-Link devices, but not for their control.

Monitoring the Network. We used the popular traffic
analyzer Wireshark [21] to monitor the packets exchanged
between the Kasa app and the device. As the traffic was
encrypted we needed to implement a script to decrypt the
monitored messages; the script uses the symmetric cipher
function from Listing 1. This monitoring tool was used in two
important stages: (i) during the app-device pairing process and
(ii) while the app interacted with the device, e.g., turning
the plug “on” and “off”. During the pairing process, we
found that broadcast messages were exchanged while the app
was connected to the hotspot created by the device. We also
monitored the network when interacting with the device through
the app’s Ul Specifically, we repeated the “Turn Off” and
“Turn On” operation multiple times, observing that the contents
of the network packets did not change, confirming the use of
a hardcoded key (with a poor encryption method). We also
observed the use of broadcast messages during device usage
after pairing. We also found that the app uses the following
message to discover and obtain the current status of the device—
{"system":{"get_sysinfo":}{}}. Likewise, we found

that {"system":{"set_relay_state":{"state":0}}}

was the message used to turn the device on/off.

Based on the info we collected, we created a rogue app to
control the TP-Link smart plug. To sum up, static analysis
assisted in the discovery of vulnerable paths whereas dynamic
analysis helped in understanding the communication protocol
and the messages exchanged. Recall that, during our analysis,
we noticed that the pairing process was not needed to control
the device. This is a severe flaw as the user would not even be
aware of an attack—the official app would still work as intended
even with a rogue app controlling the device simultaneously.
A video demonstrating the exploit is available online [11].

Vulnerability disclosure. We disclosed the vulnerabilities,
along with scripts for exploits, to the manufacturers of the five
devices exploited in October 2018. All of them acknowledged
the disclosures but, to the best of our knowledge, have not
released patches to address the disclosures.

D. Vulnerability Analysis on a Larger Set of Apps

This section describes findings from the study of all the apps
corresponding to the 96 devices we have originally identified,
as discussed at the beginning of Section III-A. In this case,
we did not purchase devices, so these findings are indicative
of the potential extent of vulnerabilities, but require further
confirmation. IoT devices included cameras, locks, and alarms.
including the 5 devices that we previously purchased and
analyzed in Section III-A. These 96 devices only correspond
to 32 companion apps, saving us significant analysis effort
compared to analysis of devices themselves.

Figure 3 shows, as pie charts, the distribution of answers
to the questions for the apps analyzed. Of the 32 apps, we
found only 4 apps using encryption without hardcoded keys,
not using local communication, not using broadcasts, and not
using known insecure protocols. All their communication was
via the cloud service, likely over SSL. The four apps include
the popular Nest app. With respect to attacks considered in this
paper, this is a relatively secure way to communicate. But it
does have a privacy tradeoff in that the cloud service has access
to the commands and data sent to the device. Consequently,
a potential long-range privacy and security risk exists if the
cloud service is ever compromised [22].

IV. LIMITATIONS OF OUR STUDY

Both static and dynamic analysis techniques are funda-
mentally limited. They could have failed to detect use of
encryption that is obfuscated in some way, for example, a
custom Java implementation or implemented in native libraries
(JNI). We did look for both custom implementations and calls
to crypto functions via JNI when inspecting the code manually
along potentially vulnerable paths to the extent feasible. The
custom crypto implementations were generally worrisome — the
ones we found were implementing weak ciphers, for example,
the Caesar cipher. We found 5 of the apps that appeared to
invoke encryption functions via JNI. Further analysis would
be required to determine if those encryption functions were
used properly and what exactly they did.

185

44%

B No Encryption (10/32)
[0 Hardcoded Keys (6/32)
[No Hardcoded Keys (16/32)

I Local Communication (14/32)
Avoids Local
Communication (18/32)

(a) By encryption. (b) By local communication.

81%

I Broadcast Messages (15/32)
Avoids Broadcast
Messages (17/32)

I Insecure Protocols (6/32)
3 Secure Protocols (26/32)

(c) By broadcast messages. (d) By security in protocols.

Figure 3: Distributions of apps by features.

V. DISCUSSION AND LESSONS LEARNED

We were somewhat surprised to find the extent to which
insecure devices were among top selling IoT devices. For
example, at the time of our analysis, TP-Link’s smart plug was
a top-seller with over 12K customer reviews on Amazon [23]
and a rating of 4.4 out of 5 stars.

It is apparent that consumers do not have a good way to
shop for devices based on security considerations. Kasa Smart
Plug does require a password-protected WiFi network, but one
customer commented on that on Amazon: “Forced to use a
password on WiFi router. Live in the middle of nowhere and
no need for this security. No reason for this manufacturer
to force this security.” We clearly have a long road ahead in
securing IoT systems — not just technically but also in creating
user awareness around security and in developing appropriate
disclosure policies for vendors to follow.

The app-device communication strategies that survived our
checks may offer some guidance. Nest thermostat’s companion
app does not talk directly to the device; instead, the user creates
a free account on the Next cloud service and then signs into
that using the companion app over SSL. Furthermore, the
thermostat and the cloud service can also mutually authenticate
each other and establish a shared secure link. No shared keys
between the companion app and the thermostat are required
since, from then on, the communication between the companion
app and the thermostat happens over SSL links to the cloud
service. The EZVIZ uses a different strategy. Unlike Nest, it
supports local communication between the companion app and
the device over the local network. The shared encryption key
is enclosed in the box in the form of a QR code and must be
scanned by the companion app. This strategy is better than

hardcoded keys provided the key in the QR code is of sufficient
length, random, and strong crypto library is used.

VI. RELATED WORK

Denning et al. [3] presented potential security attacks against
smart home devices, pointing that common attacks to traditional
computing platforms, like denial-of-service and eavesdropping
on network, could also be used in a smart home context.
Komninos et al. [24] also analyzed smart home devices,
presenting a survey that categorized potential threats in this
domain, e.g., device impersonation.

Focusing on IoT platforms, Fernandes et al. [6] analyzed
over 499 apps on SmartThings and found out that 55% of those
are over-privileged largely due to design flaws in the privilege
model of the platform. The authors also demonstrated how to
take advantage of this with four proof-of-concept attacks, both
remote and local. Jia et al. proposed a context-based permission
system for appified [oT platforms with fine-grained context
identification and runtime prompts [25].

Android apps have been analyzed for a variety of security-
related issues, such as cryptographic misuse [15], [26]. For
example, Egele et al. [15] analyzed the violation of six rules
including the use of ECB mode and constant keys. Wei et
al. [26] designed a static analysis tool for security vetting of
Android apps and used it to detect the use of the weak ECB
mode for encryption; the analysis is intra-procedural and thus
limited in scope.

In 2015, the Veracode team published a white paper on secu-
rity analysis of six [oT devices to examine vulnerabilities such
as non-use of cryptography and lack of strong passwords [27].
They used both network monitoring and reverse engineering
techniques. Our work differs in that it focuses on a different set
of vulnerabilities, presenting a detailed analysis of companion
apps to show how such vulnerabilities can be discovered.

VII. CONCLUSIONS

Securing communication between IoT devices and the mobile
apps responsible for controlling them is crucial for security
and even safety, depending on the types of IoT devices
on a network. In this study, we showed that analyzing the
smartphone companion apps that are released for the device
can provide important clues for potential vulnerabilities in the
devices. We analyzed 32 companion apps corresponding to
96 popular IoT devices to assess whether the communication
between the devices and their communication app is properly
secured. We found significant concerns. For instance, we found
that 31% of the apps do not appear to use any crypto to protect
the device-app communication and that 19% use hardcoded
keys. We also purchased five devices. From insights offered
by analysis of their companion apps, we were successful in
creating exploits for all five devices and able to control them.
The study suggests that there may be a long road ahead in
securing IoT systems — issues are not just technical but also non-
technical, such as creating mechanisms for consumer awareness
of security features and risks when they purchase IoT devices.

186

[17]

[18]
[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

REFERENCES

Gartner Group, “Gartner says 8.4 billion connected "things" will be
in use in 2017, up 31 percent from 2016,” 2016. [Online]. Available:
https://www.gartner.com/newsroom/id/3598917

J. Scott and D. Spaniel, “Rise of the Machines,” http://icitech.org/
wp-content/uploads/2016/12/ICIT-Brief-Rise-of-the-Machines.pdf, In-
stitute for Critical Infrastructure Technology (ICIT), 2017.

T. Denning, T. Kohno, and H. M. Levy, “Computer security and the
modern home,” Commun. ACM, vol. 56, no. 1, pp. 94-103, Jan. 2013.
“SmartThings website.” [Online]. Available: https://www.smartthings.
com/

“Echo & Alexa - Amazon Devices - Amazon Official Site.” [Online].
Available: https://www.amazon.com/Amazon-Echo- And-Alexa-Devices/
b?ie=UTF8&node=9818047011

E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerging
smart home applications,” in 2016 IEEE Symposium on Security and
Privacy (SP), May 2016, pp. 636-654.

X. Lei, G. Tu, A. X. Liu, C. Li, and T. Xie, “The Insecurity of Home
Digital Voice Assistants - Amazon Alexa as a Case Study,” CoRR, vol.
abs/1712.03327, 2017.

VERACODE, “Use Veracode to secure the applications you build, buy,
& manage,” https://www.veracode.com, 2018.

“Reverse Engineering the TP-Link HS110,” https://www.softscheck.com/
en/reverse-engineering-tp-link-hs110/, SoftScheck GMBH, 2018.
TP-Link, “WiFi Networking Equipment for Home & Business -
TP-Link.” [Online]. Available: https://www.tp-link.com

D. Mauro Junior and L. Melo, “Kasa video exploit,” 2018. [Online].
Available: https:/figshare.com/s/d5bc439a7527df358f5f

T. Ambient, “Zigbee vs Z-Wave: Two big smart home standards explored,”
https://www.the-ambient.com/guides/zigbee- vs-z-wave-298, 2018.
“Tuya Smart - World’s leading IoT platform.” [Online]. Available:
http://www.tuya.com/

CERT, 2013. [Online]. Available: https://www.us-cert.gov/ncas/
current-activity/2013/01/29/CERT-Releases- UPnP-Security- Advisory
M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An Empirical
Study of Cryptographic Misuse in Android Applications,” in CCS, 2013,
pp. 73-84.

J. Caballero, P. Poosankam, C. Kreibich, and D. Song, “Dispatcher:
Enabling Active Botnet Infiltration Using Automatic Protocol Reverse-
engineering,” in CCS, 2009, pp. 621-634.

Z. Wang, X. Jiang, W. Cui, X. Wang, and M. Grace, ‘“ReFormat:
Automatic Reverse Engineering of Encrypted Messages,” in Computer
Security — ESORICS, 20009.

MITRE, “CVE - Common Vulnerabilities and Exposures.” [Online].
Available: https://cve.mitre.org/

TP-Link, “Kasa smart home products.” [Online]. Available: https:
/Iwww.tp-link.com/us/kasa-smart/kasa.html

W. Chapman, “Caesar cipher.” [Online]. Available: https://courses.
physics.illinois.edu/cs125/su2017/mp3_caesarcipher.php

“Wireshark ego deep.” Wireshark Foundation. [Online]. Available:
https://www.wireshark.org

E. Fernandes, A. Rahmati, J. Jung, and A. Prakash, “Decentralized
Action Integrity for Trigger-Action IoT Platforms,” in 22nd Network and
Distributed Security Symposium (NDSS 2018), Feb. 2018.

“Kasa Smart Wi-Fi Plug by TP-Link.” [Online]. Available:
https://www.amazon.com/Kasa- Smart- Wi- Fi-Plug-TP- Link/dp/
B0178IC7347keywords=tp-link&qid=1539182867&sr=8-7&ref=
sr_1_7#customerReviews

N. Komninos, E. Philippou, and A. Pitsillides, “Survey in smart grid and
smart home security,” IEEE Communications Surveys Tutorials, vol. 16,
no. 4, pp. 1933-1954, 2014.

Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M.
Mao, A. Prakash, and S. J. Unviersity, “ContexIoT: Towards providing
contextual integrity to appified IoT platforms,” in NDSS, 2017.

F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A precise and general
inter-component data flow analysis ramework for security vetting of
Android apps,” in CCS, 2014, pp. 1329-1341.

Veracode, “The Internet of Things: Security Research Study,”
https://www.veracode.com/sites/default/files/Resources/Whitepapers/
internet-of- things- whitepaper.pdf.

