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Abstract—Wearable and implantable medical devices ranging
from wellness monitors to deep brain stimulators are becoming
increasingly vital and ubiquitous. Such devices continuously take
measurements, which consumes battery. The power consumption
is proportional to the amount of information collected and
with the frequency of data collection. High power consumption
leads to rapid discharging of battery limiting the usage of
these devices. These signals are often transmitted wirelessly for
analysis, as well as to keep track of the user’s record, which also
significantly increases power consumption. In this project, we
evaluated adaptively modifying the rate of data collection on these
devices, in other words, the sampling rate, for electrophysiological
monitoring as the relevance of the signal changes in time.
We carried out these tests using a proof-of-concept prototype
developed for this project. In particular, we reviewed the effects
of such adaptive sampling on intracellular potentials, and motor
unit action potentials (MUAPs). By doing so, we were able to
reduce the amount of data by 48.95% and power by 41.50%
for the MUAPs with an 8% sample loss within MUAPs, and by
69.20% and 57.14% for intracellular potentials with a 6.75%
sample loss.

Index Terms—Analog-to-digital converters, electrophysiologi-
cal signal monitoring, wearable devices, implantable devices, low-
power.

I. INTRODUCTION

Wearable and implantable medical devices continuously col-
lect electrophysiological data. The extend of their functionality
and in the case of many implantable devices — their life span
— is dictated by the capacity of their battery. Hence, designing
power-efficient components for these devices is at utmost
importance for maximizing their functionality and useful life.
As these devices become more connected for telemetry, their
power consumption becomes even more critical.

The power consumption of typical components of these
devices such as signal processing algorithms or transmitters
are usually proportional to the size of the input. Once an elec-
trophysiological signal is sensed via a sensor and conditioned
with an analog front-end, which typically consists of amplifi-
cation and filtering circuits, the analog signal is digitized via
an Analog-to-Digital Converter (ADC). The ADC ultimately
determines the size of the input for the components in the
processing chain such as signal processing, machine learning,
and transmission via its sampling rate and bit resolution [1].

In most cases, some parts of the electrophysiological signal
are more relavant than others. For instance, detecting the shape
and timing of action potentials in a Brain-Computer Interface
(BCI) is critical. Thus, it is beneficial to BCI applications
to acquire the action potentials as accurately as possible, so
sampling at the full capabilities of the ADC makes sense.
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Fig. 1. (a) Amplified Motor Unit Action Potential signal at the input of the
ADC. (b) Uniformly sampled ADC. (c) Adaptively sampled MUAP.

Other parts of the signal may not be immediately interesting
such as noise. However, these still need to be sampled to
determine the noise level, which varies in time. The noise level
helps identify which parts of the signal is considered an action
potential. In uniform sampling there is no distinction between
different parts of the signal, and the entire signal is sampled
at the same rate, leading to unnecessary power consumption
for sections of the signal that can be read at a lower rate.
Previous work has shown different approaches on how
modifications to ADC can reduce power consumption. For
instance, Chiang et al. [2] proposed the Tracking Successive
Approximation Register (SAR)-ADC in which the unnecessary
discharging and charging on the most significant bit (MSb)
capacitor are avoided when consecutive samples have the same
MSb. As the electrophysiological signals are bandlimited, it is
expected that the consecutive samples are close to each other
and likely have the same MSD, thus this approach reduces
power consumption. Wood et al. [3] proposed predicting ADC,
where upcoming sample values are predicted from previous
samples using a first order difference equation. As a result,
number of comparisons needed to converge to the final sample
value is reduced leading to lower power consumption. Chen et
al. further improved the prediction methods by self-adjusting
the precision of the prediction [4]. Architectures based on
level-crossing sampling [5], [6] have successfully been used
for biomedical applications [7], where the ADC takes a
sample only when one of the predetermined thresholds is



crossed. Level-crossing sampling helps reducing the number
of samples, thus the total consumption by avoiding sampling
if the variation in the signal is low. Compressed sensing is
also a very popular general approach to reduce the amount
of data [8], however, the asymmetric processing requirement
between the transmitter, and receiver affects its complexity [9].
In [10], authors presented simulation results for a signal-
adaptive ADC for electrocardiography (ECG). Their approach
does not consider the noise level, thus susceptible to variations
in noise. Chen et al. proposed a design that defines a range of
sampling frequencies of the ADC according to the change in
amplitude of the signal. In order to achieve a further decrease
of transmission power consumption, the sampled data is then
compressed using a lossless data compression technique. How-
ever, this technique lacks the telemetry approach proposed on
this paper, which allows real-time data monitoring [11].

In this paper, we present a proof-of-concept discrete pro-
totype (Fig. 2) for adaptive sampling of electrophysiological
signals. We evaluated the reductions in power consumption
for action potentials taken from hippocampus neurons [12],
[13], and motor units[14]. The adaptive sampling approach
evaluated in this paper is based on [15] and illustrated with an
example in Fig. 1 using motor unit action potential (MUAP).
MUAPs are electrical potentials in muscles during their con-
traction, representing muscular activities [16]. Fig. 1(a) shows
the original MUAP as a continuous signal, where the MUAP
appears between time 40 and 80 milliseconds. In this example,
the MUAP is identified as the portions of the signal above
a predetermined voltage threshold (dotted horizontal line).
Fig. 1(b) shows the same signal digitized after a conventional
analog-to-digital conversion with uniform sampling, where the
samples are taken periodically at fixed time intervals. In the
digitized signal the MUAP appears approximately between
sample 40 and 78, spanning 39 samples. The regions around
the MUAP only consists of noise and useful for determining
the threshold value as the threshold value varies in time and
is typically taken as the function of the variance of noise for
a given time period [17]. However, sampling the noise at the
same rate as the MUAPSs is unnecessary. Yet, uniform sampling
makes no distinction between the noise and MUAPs, causing
noise to be sampled at a high rate. This results in higher
number of samples and increases the power consumption of
ADC, signal processing, and transmission. Fig 1(c) illustrates
the proposed approach, where the signal is sampled at a
reduced rate when there is no MUAP, and only sampled at
full rate when there is an MUAP (between samples 19 and
58). In the example the total number of samples is reduced
from 122 to 83, saving a third of the samples while digitizing
the MUAP with the exact number of samples as the uniform
sampling. The selection of when to use the full rate or the
reduced rate depends on the application. We provide a proof-
of-concept method for this selection in Section II. In Section
III, the performance of our prototype is summarized. Section
IV concludes the paper.

Fig. 2. Experimental Setup.

II. ADAPTIVE SAMPLING FOR ACTION POTENTIALS
A. Adaptive ADC

To reduce unnecessary sampling, we first need to determine
if a sample belongs to a relevant part of the signal. On a well-
designed acquisition system action potentials have peak ampli-
tudes above the noise level. Thus, a thresholding mechanism
can be sufficient to distinguish the action potential (relevant
signal) from the background noise (less relevant signal).

In our previous work [17], we developed a custom action
potential (i.e., spike) detector circuit which can distinguish the
spikes from the noise by means of a spike detection threshold.
In the current work, we propose and implemented a similar
detector in embedded software, by defining a threshold in the
microcontroller of our data acquisition system, and reducing
the sampling rate of the ADC when the signal is below
the threshold. We use a spike detection threshold typically
two standard deviations above the noise level. However, as
the noise level changes, the threshold calculations should be
repeated to avoid missing spikes. This dynamic threshold
calculation is left as future work. When the instantaneous value
of the incoming signal is above a threshold, it will indicate
that there is an Action Potential (relevant signal), thus it will
adapt the Analog-To-Digital converter to operate at its full
sampling speed. This means the ADC will take a sample next
at the time as if it is a uniform ADC. However, if the current
sample is below the threshold (less relevant), the sampling rate
is reduced by the proposed system. This effectively is similar
to skipping one or more samples following the current sample,
if a uniform sampling ADC was used. This reduced sampling
rate is still useful to determine the variations in noise level.
Fig. 3 shows a flowchart of this sample rate adaptation process.

B. Hardware Implementation

We implemented the proposed adaptive data acquisition
system using an ESP32-WROOM-32D microcontroller with
integrated WiFi and dual-mode Bluetooth [18] and a 12-bit
external ADC (Analog Devices AD74746A on a Digilent
Pmod AD1) [19]. The microcontroller is configured to run
at a clock rate of 240 MHz, with a 4 MB Flash memory
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Fig. 3. Adaptation Block.
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Fig. 4. A signal sampled with and without adaptive ADC. (a) MUAP signal
sampled with a conventional ADC at full rate. (b) Same signal sampled with
adaptive ADC at half rate when signal is below threshold. (c) The signal with
adaptive ADC at 1/4 rate. (d) Same signal with adaptive ADC at 1/8 rate.

running at 80 MHz, and a 520 KB SRAM. The microcontroller
communicates with the ADC via a Serial Peripheral Interface
(SPI). The external ADC is clocked with a 20 MHz SPI clock
and has a reference voltage of 5V.

The firmware for the microcontroller is developed using the
Arduino IDE, and it consists of three main components: (1)
Data acquisition, (2) adaptation block and, (3) transmission.
The data acquisition component consists of ADC configuration
function, and interrupt routines for sampling the data. For
the purpose of the current work, as a proof-of-concept, the
adaptation block simply compares the current sample with a
threshold and determines how long to wait before the next
sample. The acquired data is transmitted through Wi-Fi using
User Datagram Protocol (UDP) packets to a server for further
analysis. Multiple samples are transmitted within each packet,
specifically, 32 samples per UDP packet.

III. PERFORMANCE

Here, we present the results from our proof-of-concept
prototype. We evaluated data and power savings, and signal
quality for representative MUAP and intracellular signals.

A. Reduction in Number of Sampling Process

1) MUAP: We have compared our proposed adaptive ADC
with a conventional ADC, as shown in Fig. 4. For both ADCs,
the same input signal is applied by replaying the MUAP
signals [14] with an arbitrary waveform generator. The original
input signal consists of 4096 samples sampled at 500 Hz
corresponding to a 30 seconds of recording. The input signal
is already amplified. With the conventional ADC running at
5kS/s, the input is sampled using a total of 153,000 samples.
Our proposed ADC, with sampling rate of 5kS/s, which drops
to 2.5kS/s (i.e., half rate as the adaptive sampling rate) for
epochs deemed less important (e.g., noise) reduced the total
number of samples to 78,100. Further reduction in the adaptive
sampling rate to 1/4 and 1/8, decreased the total number of
samples to 42,200 and 23,000, respectively. Thus, for adaptive
sampling rate at 1/2, 1/4, and 1/8 of the original sampling
rate, there is a reduction by 48.95%, 72.42%, and 84.97% in
number of samples, respectively. The overall savings will be
a function of the density of action potentials in the signal.
However, this example is representative of the general case.

2) Intracellular Potentials: Similarly, we have compared
our proposed adaptive ADC with a conventional ADC when
sampling intracellular potentials [12], [13]. The input signal
is applied same as before, by replaying the intracellular
potentials with an arbitrary waveform generator, consisting
of 4096 samples sampled at 500 Hz corresponding to a 30
seconds of recording. Note that due to the limitations of our
signal generator, we reduce the speed of the signal. The same
conventional ADC (5 kS/s) sampled the input signal using a
total of 150,000 samples. Our proposed ADC, with adaptive
sampling rate of 1/2, 1/4, and 1/8 reduced the total number of
samples to 81,500 (reduction of 45.67% ), 46,200 (reduction
of 69.20%) and 26,100 (reduction of 82.6%), respectively.

3) Signal Quality: We evaluated our proposed approach for
signal quality loss, where we define this loss as percentage of
samples that belong to a relevant part of the signal (e.g., part
of a spike), which are missed due to adaptation. Our proposed
ADC when sampling MUAP signals, with adaptive sampling
rate of 1/2, gives us a signal quality loss of 8%. Further
reduction in the adaptive sampling to 1/4 and 1/8, increases
this loss to 11.7% and 23.5%, respectively. When sampling
intracellular potentials, the signal quality loss is 0.84% at 1/2
rate, 6.75% at 1/4 rate and 27% at 1/8 adaptive rate. This
shows that especially at higher adaptive rates (e.g. 1/2 for
both or 1/4 for intracellular potentials) the loss is acceptable
and can be traded off for power reduction.

B. Power Consumption
1) MUAP: The power consumption of the ADC when

sampling MUAP signals is shown in Table I. The baseline
power consumption for the microcontroller without the ADC



TABLE I
POWER CONSUMPTION OF THE ADC AND WIFI FROM A 5V POWER
SUPPLY WHEN SAMPLING MUAP SIGNAL

Normal ADC 1/2 Rate 1/4 Rate 1/8 Rate
No Wi-Fi 10.6 mA 6.2 mA 5.2 mA 4 mA
ADC-only power 4150%  50.94%  62.26%
reduction (%)
Wi-Fi 280 mA 242 mA 190 mA 153 mA
‘Wi-Fi power
reduction (%) 19% 45% 63.5%
TABLE II

POWER CONSUMPTION OF THE ADC AND WI-FI FROM A 5V POWER
SUPPLY WHEN SAMPLING INTRACELLULAR POTENTIALS.

Normal ADC 1/2 Rate 1/4 Rate 1/8 Rate

No Wi-Fi 10.5 mA 56mA  45mA 3.7 mA

ADC-only power 46.67%  5714%  64.76%
reduction (%)

Wi-Fi 278 mA 233 mA 177 mA 147 mA

Wi-Fi power 1619%  3633%  47.12%

reduction (%)

and no Wi-Fi transmission is 80 mA@5V (400 mW). With
the conventional ADC without data transmission the power
consumption is 90.6 mA@5V (the conventional ADC con-
sumes 10.6 mA @5V in addition to the 80 mA @5V baseline).
When the adaptive rate is used, the ADC power consumption
is reduced to as low as 4 mA @5V, when the adaptive sampling
rate is at 1/8, which is an ADC power reduction of 62.26%.
When, the Wi-Fi transmission of the data is also considered,
the reduction in power consumption by using the adaptive rate
is as high as %63.50 compared to a traditional ADC.

2) Intracellular Potentials: When sampling intracellular
potentials, the ADC power is reduced to as low as 3.7
mA, when the adaptive sampling rate is at 1/8, which is an
ADC power reduction of 64.76%. When transmitting the data
over Wi-Fi the reduction in power consumption by using the
adaptive rate is up to 47.12% compared to a traditional ADC.

IV. CONCLUSION

In this work, we have implemented an adaptive Analog-
to-Digital Converter that reduces the sampling rate when it
detects that the input signal is not of relevance according to
its application. With this approach, we were able to reduce
the amount of data collected and transmitted as well as power
consumption while keeping the signal quality similar to the
uniform sampling. For our future work, we will develop our
adaptation approach further to improve the trade-off between
the power and data savings and signal quality.

ACKNOWLEDGEMENTS

This project is funded by National Science Foundation
Grant No. 1852316 and by an NYIT Institutional Support of
Research and Creativity (ISRC) Grant to N. S. Artan.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

REFERENCES

N. S. Artan, “Signal-adaptive analog-to-digital converters for ULP
wearable and implantable medical devices: a survey,” in Design and
Modeling of Low Power VLSI Systems. 1GI Global, 2016, pp. 199—
228.

K. C.-H. Chiang, N. S. Artan, and H. J. Chao, “A signal-specific ap-
proach for reducing SAR-ADC power consumption,” in IEEE Biomedi-
cal Circuits and Systems Conference (BioCAS 2013), Rotterdam, Nether-
lands, Oct.-Nov. 2013.

N. Wood and N. Sun, “Predicting ADC: A new approach for low power
ADC design,” in 2014 IEEE Dallas Circuits and Systems Conference
(DCAS), Oct 2014, pp. 1-4.

B. Chen, F. Yaul, Z. Tan, and L. Fernando, “An adaptive SAR ADC for
DC to Nyquist rate signals,” in 2018 IEEE International Symposium on
Circuits and Systems (ISCAS). 1EEE, 2018, pp. 1-5.

J. Mark and T. Todd, “A nonuniform sampling approach to data
compression,” IEEE Transactions on Communications, vol. 29, no. 1,
pp. 24-32, Jan 1981.

C. Weltin-Wu and Y. Tsividis, “An event-driven clockless level-crossing
ADC with signal-dependent adaptive resolution,” IEEE Journal of Solid-
State Circuits, vol. 48, no. 9, pp. 2180-2190, Sep. 2013.

Y. Li, D. Zhao, and W. A. Serdijn, “A sub-microwatt asynchronous
level-crossing ADC for biomedical applications,” IEEE Transactions on
Biomedical Circuits and Systems, vol. 7, no. 2, pp. 149-157, April 2013.
A. M. R. Dixon, E. G. Allstot, D. Gangopadhyay, and D. J. Allstot,
“Compressed sensing system considerations for ECG and EMG wireless
biosensors,” IEEE Transactions on Biomedical Circuits and Systems,
vol. 6, no. 2, pp. 156-166, April 2012.

V. R. Pamula, C. Van Hoof, and M. Verhelst, “An ultra-low power,
robust photoplethysmographic readout exploiting compressive sampling,
artifact reduction, and sensor fusion,” in Hybrid ADCs, Smart Sensors for
the IoT, and Sub-1V & Advanced Node Analog Circuit Design. Springer,
2018, pp. 145-163.

M. Zaare, H. Sepehrian, and M. Maymandi-Nejad, “A new non-uniform
adaptive-sampling successive approximation adc for biomedical sparse
signals,” Analog Integrated Circuits and Signal Processing, vol. 74,
no. 2, p. 317-330, Jul 2012.

S.-L. Chen, J. F. Villaverde, H.-Y. Lee, D. W.-Y. Chung, T.-L. Lin,
C.-H. Tseng, and K.-A. Lo, “A power-efficient mixed-signal smart adc
design with adaptive resolution and variable sampling rate for low-power
applications,” IEEE Sensors Journal, vol. 17, no. 11, p. 3461-3469, Jan
2017.

D. A. Henze, Z. Borhegyi, J. Csicsvari, A. Mamiya, K. D. Harris, and
G. Buzsaki, “Intracellular features predicted by extracellular recordings
in the hippocampus in vivo,” Journal of neurophysiology, vol. 84, no. 1,
pp- 390-400, 2000.

D. A. Henze, K. D. Harris, Z. Borhegyi, J. Csicsvari, A. Mamiya,
H. Hirase, S. A., and G. Buzsaki, “Simultaneous intracellular and
extracellular recordings from hippocampus region CAl of anesthetized
rats.” http://crens.org/data-sets/hc/he-1/, Accessed: 2019-08-08.

A. Goldberger, L. Amaral, L. Glass, and J. Hausdorff, “Examples of
electromyograms,” Sep 2009. [Online]. Available: https://physionet.org/
content/emgdb/1.0.0/

N. S. Artan, X. Xu, W. Shi, and H. J. Chao, “Optimizing Analog-
To-Digital Converters for Sampling Extracellular Potentials,” in 34th
Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC 2012), San Diego, CA, Aug-Sep 2012.

S. H. Nawab, S.-S. Chang, and C. J. D. Luca, “High-yield decomposition
of surface EMG signals.” Clinical neurophysiology : official journal of
the International Federation of Clinical Neurophysiology, vol. 121 10,
pp. 1602-15, 2010.

N. S. Artan, X. Xu, and H. J. Chao, “A low-cost reliable online noise
level estimation for accurate spike detection in extracellular recordings,”
in IEEE Biomedical Circuits and Systems Conference (BioCAS 2012),
Hsinchu, Taiwan, Nov. 2012.

“Espressif Systems Modules,” https://www.espressif.com/en/products/
hardware/modules, Accessed: 2019-08-07.

“The Digilent Pmod AD1,” https://store.digilentinc.com/
pmod-ad1-two- 12-bit-a-d-inputs/, Accessed: 2019-08-07.


http://crcns.org/data-sets/hc/hc-1/
https://physionet.org/content/emgdb/1.0.0/
https://physionet.org/content/emgdb/1.0.0/
https://www.espressif.com/en/products/hardware/modules
https://www.espressif.com/en/products/hardware/modules
https://store.digilentinc.com/pmod-ad1-two-12-bit-a-d-inputs/
https://store.digilentinc.com/pmod-ad1-two-12-bit-a-d-inputs/

