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Automated Content-Based Filtering for Enhanced Vision-based Documentation in

Construction toward Exploiting Big Visual Data from Drones

Youngjib Ham?! and Mirsalar Kamari?

Abstract

In recent years, emerging mobile devices and camera-equipped platforms have offered a great
convenience to visually capture and constantly document the as-is status of construction sites. In
this regard, visual data are regularly collected in the form of numerous photos or lengthy videos.
However, massive amounts of visual data that are being collected from jobsites (e.g., data
collection on daily or weekly bases by Unmanned Aerial Vehicles, UAVs) has provoked visual
data overload as an inevitable problem to face. To address such data overload issue in the
construction domain, this paper aims at proposing a new method to automatically retrieve photo-
worthy frames containing construction-related contents that are scattered in collected video
footages or consecutive images. In the proposed method, the presence of objects of interest (i.e.,
construction-related contents) in given image frames are recognized by the semantic segmentation,
and then scores of the image frames are computed based on the spatial composition of the identified
objects. To improve the filtering performance, high-score image frames are further analyzed to
estimate their likelihood to be intentionally taken. Case studies in two construction sites have

revealed that the accuracy of the proposed method is close-to-human judgment in filtering visual
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data to retrieve photo-worthy image frames containing construction-related contents. The
performance metrics demonstrate around 91% of accuracy in the semantic segmentation, and we
observed enhanced human-like judgment in filtering construction visual data comparing to prior
works. It is expected that the proposed automated method enables practitioners to assess the as-is
status of construction sites efficiently through selective visual data, thereby facilitating data-driven

decision making at the right time.

Keywords: Visual Sensing; Visual Data Filtering; UAV; Construction Monitoring

1. INTRODUCTION

With the increasing availability of camera-equipped devices such as smartphones, head-mounted
cameras, and Unmanned Aerial Vehicles (UAVs), large numbers of high-quality images or video
footages are constantly being collected to document the as-is status of construction jobsites. For
instance, it was observed that for ~ 750,000 square feet of a construction jobsite, more than 400,000
images are generally documented during the lifetime of the project [1]. In general, visual data on
construction sites can be collected in two ways: 1) video recording; and 2) point-and-shoot [1].
The video recording refers to recording videos or taking pictures with a constant interval using
camcorders, closed circuit televisions (CCTV), or UAVs. In this way, continuing changes in
construction sites can be recorded. However, the volume of visual data would be rapidly increasing
proportional to its recording time, therefore it is not trivial to process a large amount of visual data
for generating useful information. The point-and-shoot represents taking pictures while a camera
is purposefully pointed at an object or a region of interest. Since site personnel take pictures with

the intention of documenting a certain situation at a construction site, preprocessing to select
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meaningful image frame would be unnecessary in general.

Typically, the amount of image data could be significantly increased when recording high-
definition videos on a regular basis, involving laborious challenges for practitioners to overcome.
It was observed that the average size of visual data per time instance of data collection for three
construction sites amounts to 3.8 Gigabytes [1]. Furthermore, they reported that the collected
visual data size could grow up to 43 Gigabytes after 3D dense point cloud reconstruction (proposed
by [2]) using the collected images. Assuming weekly visual data collection for 144 weeks of
construction, the size of collected visual data for a single construction project would approximately
reach to 6.2 Terabytes, and the size of visual data may even reach to the scale of Petabytes, for a
company managing multiple projects [1]. The large portion of such visual data captured via UAVs
or head-mounted cameras may still include non-construction related contents or has been
unintentionally taken during a walk-through (head-mounted cameras) or flying (UAVs). In this
context, construction companies are struggling to reduce the size of recorded visual data for
identifying handful of informative image frames that can better describe the as-is status of
construction jobsites. Due to its huge amounts, handling large-scale visual data collected for a long
period of time is not a trivial task. Filtering visual data to select meaningful frames is typically a
time-consuming and labor-intensive process, which requires several hours of efforts [3,4]. In this
sense, automated methods for retrieving relevant contents without human interventions has been
considered as an essential task [5]. The authors have carried out preliminary experiments to
estimate the time spent on manually identifying informative image frames in long-sequence video
footages obtained from construction jobsites. We observed that around 1h 15m was spent by an
experienced individual to select 234 informative image frames from a video footage with the size

of 4.5 Gigabytes (total length of 2h 15m). This result implies that although a small portion over a
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large-scale visual dataset would be sufficient to understand jobsite context, it is challenging and
laborious to select meaningful image frames manually, even for a single video. The required time
and effort in visual data filtering could be significantly increased for layperson or depending on
the size of visual data.

To address this issue, we propose a novel visual data filtering method to automatically
retrieve photo-worthy image frames containing construction-related contents from a large-scale
visual dataset from drones. The proposed method consists of two stages. At the first filtering stage,
the presence of objects of interest in images is identified by the semantic segmentation. This
information is then used to score each image frame based on the spatial composition of the
identified objects. The second filtering stage is to select intentionally-taken images among high-
score images based on their compositional information. Case studies were conducted to evaluate
the effectiveness of the proposed method, and the experimental results are compared with previous
methods. The contribution of this study can be summarized as two-fold: 1) proposing the effective
method of retrieving construction-related images based on the presence of construction-related
objects and their spatial composition through the semantic segmentation with the small number of
training images; and 2) demonstrating the way to select intentionally-taken photos containing
construction-related contents based on their compositional similarities with around 130,000
intentionally taken images in the SUN dataset. The significance of this work is to save time and
efforts for practitioners to obtain concise and yet useful images representing the as-is status of
construction jobsites in an automated manner, which enables the construction industry to reduce
visual data size efficiently. By being able to focus on selective visual data from jobsites,
practitioners can spend less time on browsing large amounts of visual data, rather spend more time

on visual analytics of various construction performance metrics using the selected dataset.
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2. RELATED WORKS
Analyzing large-scale visual data has been widely studied in the construction domain. For instance,
[1] demonstrated the potential of big visual data for monitoring construction performance. To
leverage the potential for an efficient visual data management, automated retrieval of the most
relevant contents from large-scale video footages is essential [6,7]. One of the earliest attempts
was to select key image frames to generate 3D point clouds using the Structure-from-Motion (SfM)
[8]. Since all image frames in a raw dataset are not necessarily used for generating 3D point cloud
models, a significant amount of time required for the 3D reconstruction could be saved with the
reduced numbers of images while maintaining the quality of the 3D reconstruction of built
environments. Despite the benefit of such early studies providing an encouraging proof-of-concept,
there have been limited attempts to research on key frame selection that is beneficial to
construction practitioners for enhancing situational awareness in jobsites. As the computational
efficiency of visual data filtering would be a burden due to the increasing volume of visual data
from jobsites, filtering methods should be carefully designed and implemented [5].

Visual data filtering has recently attracted much attention in the computer vision domain.
The types of visual data filtering techniques can be divided into three-fold [9]: 1) keyframe
selection, 2) video skimming, and 3) time-lapse. Previous studies on the keyframe selection have
mainly focused on selecting key video frames to represent the core content of videos [10-13]. The
main application of this technique is to automatically choose representative frames describing
overall video contents or to insert advertisements in between most important frames. The video
skimming summarizes a video to convey its main idea in a shortened video clip [14,15]. The time-

lapse (or hyper-lapse [16]) technique samples highly distinctive video frames and produces a
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shortened video while retaining the smooth transitions of camera perspectives to enable users to
have an immersive viewing experience. The fundamental challenge of the visual data filtering
techniques is to establish criteria to select certain visual contents considering visual characteristics
of videos, filtering context, and computational resources. In the construction domain, the keyframe
selection has the potential for minimizing redundant contents out of large-scale visual data, while
preserving valuable visual contents. Nonetheless, previous keyframe selection methods have not
been tested on construction image dataset that has distinct visual characteristics, thus, their
applicability for construction monitoring remains largely unknown. Particularly, as the increased
availability of UAVs has recently produced a large amount of visual data from construction sites,
there is an increasing need to extract the important visual contents of jobsites in an automated
manner.

Generally, the keyframe selection methods can be divided into two categories considering
the viewpoints of video recording: third-person and first-person viewpoints. Videos recorded by
the third-person viewpoint are intentionally taken in general, and the goal of the key frame
selection for such videos is generally to select video frames containing objects or scenes of interest
[17,18]. Contrarily, videos recorded by the first-person viewpoint through head-mounted or
wearable cameras are most likely to involve numerous frames that are not intentionally taken;
therefore, the keyframe selection purpose for this category is generally to eliminate such
unintentionally taken video frames from original videos. To do that, prior works such as [4]
leveraged great numbers of intentionally taken photos as the benchmark dataset and then computed
the compositional similarity between the benchmark dataset and testing images. Some studies
utilized large-scale training image datasets collected from the Amazon Mechanical Turk [19,20]

or automatic web mining [21,22] for visual data filtering. Nonetheless, in the construction domain,
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such large-scale training image datasets are relatively limited and hard to be collected as reported
in [1,23]. Such difficulty would hinder the direct implementation of existing filtering methods for
the construction domain. In addition, distinct visual characteristic of construction images needs to

be considered for effective visual data filtering in the construction domain.

3. OVERVIEW OF THE METHOD

Texton Forest Pixel Prediction

Built Environments
under construction

3

Construction
Recourses

\ Relerei;cé‘i_
Image

g

Figure 1: An overview of the proposed method to filer visual data captured from jobsites.

Figure 1 outlines the overview of the proposed method to select key frames from construction
visual data. This paper aims to select key frames from large-scale aerial video footages captured

via UAVs around jobsites. We define the term “key frames” as “photo-worthy frames” that can
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provide valuable information regarding situational awareness in construction sites. In this study,
photo-worthy image frames should involve objects of interest (e.g., built environments under
construction or construction resources such as equipment or materials) appeared to be large in the
middle of the frames, in order to increase the chance of illustrating the as-is status of construction.

The proposed filtering method consists of two modules. The first filtering process retrieves
image frames containing objects of interest (i.e., construction-related contents) through the
semantic segmentation and then assigns a score to each frame based on the position of the
identified objects of interest in the frame; this process tightens the search space of large-scale
visual data, thereby increasing the chance to obtain construction-related photo-worthy images at
the second filtering process. The second filtering process investigates the quality of the retrieved
images in terms of their compositional similarities comparing with the SUN dataset, in order to
select intentionally-taken photos.

To detect objects of interest in the first filtering process, we semantically segment an image
into pixels by their categories through semantic texton forests building on [24] in which low level
texton features and decision trees are employed. This supervised method rapidly segments pixels
by their category with high accuracy [25], based on fewer numbers of training images compared
to deep learning approaches such as the deep convolutional encoder-decoder [26]. Building upon
the outcome of the semantic segmentation, we assign a score for each image frame based on the
position of objects of interest. The closer the specific objects of interest are to the center of an
image; the higher score is assigned. Then, we retrieve selective images based on a threshold for
the scores. The thresholding criterion is discussed in Section 5. In the second filtering process, the
compositional similarities of the retrieved images with the SUN dataset are calculated building on

five different visual features—Dense-SIFT, HOG, GIST, SSIM, and motion blur—to select
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intentionally-taken (i.e., snap point) images. To efficiently compare the feature spaces between the
two domains (i.e., the retrieved images and the SUN dataset images), the Principal Component
Analysis (PCA) [27] is employed to reduce the number of the feature dimensions. Next, the
similarities across the feature spaces are computed for each retrieved frame to select final images.
In the following sections, the algorithmic procedure of the proposed method is described in detail,

and the experimental results are then discussed.

4. RETRIEVAL OF OBJECTS OF INTEREST THROUGH THE SEMANTIC
SEGMENTATION

Conventional approaches to address image segmentation problems typically involve the extraction
of features from a training dataset to form a bag of visual words and train a classifier based on the
frequency of visual words in each image [28-30]. Other approaches involve the extraction of a
bank of descriptors and features from a training dataset and then train discriminative classifiers
based on their response [31-33]. Despite the benefit, they are computationally expensive in
extracting image descriptors and features for both training and testing domains. To initially filter
given visual data, we build upon the semantic texton forest to segment each image into numerous
regions with labels based on low-level texton features. The semantic texton forest is a low-level
visual feature, which enables computationally efficient semantic segmentation than algorithms that

need the expensive computation for constructing filter-bank responses or local descriptors [24].

4.1 Building Decision Trees
The semantic segmentation is the process of separating each image region by its category.

Specifically, the semantic segmentation assigns each pixel p to a category ¢ based on the visual
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information of surrounding pixels. Through the first level decision tree, the visual information of
image pixels is extracted in the form of semantic textons. They are used to create the visual feature
distribution of each pixel for determining a pixel category. The second level decision tree is used
to explore the layout and context of the semantic regions for better segmentation. Figure 2
represents examples of decision trees for different pixel categories such as buildings under
construction and soil grounds. The first level decision tree contains #» nodes and / leaf nodes. The
term leaf node corresponds to the last binary decision made in the branch of a tree. There is a
learned category distribution P(c|n) associated with each leaf node. Based on the class distributions
over the leaf nodes of all trees L(p) = ({1, I2, I3,..., I7), the final decision on the first decision tree is
made; this decision process is formulated as Eq. 1. The outcome of the first level decision tree is
a rough estimation of a pixel category. At the second decision tree, textural relations are studied
based on the semantic texton histogram and the bag of semantic texton region priors to generate

coherent segmentation results.

P(clL) = ) Plelt)P(®) (1)
t=1

10
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Alg] +Blg] < TH
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PP bk F PR
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Figure 2. Schematic overview of pixel labeling based on the first-level decision tree. The threshold
values of THi, THa, ..., TH, are obtained during the training process.

To train the first level decision tree, training images consisting of P sets of pixels are
sampled. First, locations of sampling points are determined such that they are laid out in a grid
pattern on the image. Grid sampling enables to reduce the computational time to generate decision
trees. Patches with the size of wxw are then formed at each sampling location. For the patches,
test splits are produced and randomly selected to categorize image pixels (Figure 3). Z0 and Z1
correspond to one of red, green, and blue channels, selected at random. For two randomly selected
pixels A and B within the patch, A[Zo] and B[Z] are intensity values at a corresponding color
channel ranging from 0 to 255. Decision trees in a patch are constructed through dividing pixels
recursively into Pyue and Praise, Where Piye 1s a set of pixels that satisfy the decision rule of a node

and Prise 1s a set that does not satisfy it. Among randomly selected test splits for each node, a single

11
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test split that maximizes the information gain at a node is selected as the decision rule of the node

[24,34]. An information gain at each node is calculated by the following equation:

_ |Ptrue|

AE =
P

P
E(Perye) — | l;;lls6| E(Pfalse) (2)

Test Split ID_ | Test Split Description €--- " —=->
1 AlZo] A
Log(A[Zo]) |
AlZo] + B[Z4]
AlZo] - B[Z4]
abs(A[Zs] - B[Z4])
A[Zs] * Log(B[Z4))
AlZs] = B[Z4]
A[Zs] / B[24]

W

00 =~ O U B W N

!
I
\4

Figure 3. Test splits used as low-level features (left). A patch containing sample pixels (right).

A first-level decision forest containing 5 decision trees with the depth of 10 is constructed
using 400 test splits at node levels; patches of 15 by 15 pixels are generated with the center-to-
center distance of 5 pixels. The contribution of test splits at each node are examined in the decision
forest, and those with high contribution are used to construct the final decision trees. In our case
studies, it was observed that the elimination of the test splits with minor contributions reduce the
training time from 253 to 177 mins by selectively focusing on highly contributed test split
candidates for each decision node. In this paper, the test splits with the IDs of 1, 3, 4, and 5 are
chosen for decision tree generation (Figure 3) as they show a great contribution on forming
decision trees. To prevent the overfitting problem, the decision trees are trained in a randomized
fashion. This randomization in the training phase is satisfied through two main criteria: (1) a subset

of the training pixels for each category is randomly selected; and (2) candidate decision nodes are

12
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selected at random from numerous test splits to branch out the split nodes. The minimal size of
decision trees is selected under a predefined measure to assure that the data are thoroughly split in
an optimized fashion [25]. Parameters that affect the construction and performance of the decision
trees are: (1) a type of the split tests (Figure 3) which has a significant role in training the decision
trees and its performance; (2) the number of the decision trees in the forest, relevant to a trade-off
between precision and computational cost; (3) the color channels of images and how different
channels are chosen to construct the tree; (4) the maximum depth of the trees (the deeper trees can
differentiate more detailed visual clues but they are likely to overfit to a training dataset); and (5)
the size of the patch studied around each pixel. As the hyper parameters rely upon the characteristic
of the training dataset, we have performed trial and error tests to empirically determine the
parameters leading to high semantic segmentation accuracy.

We build the second-level decision trees based on the rectangular-based Haar features [35],
and the rectangular sum features [36] to obtain accurate boundaries of objects of interest. In this
study, we consider construction resources (e.g., equipment or materials) and built environments
under construction as objects of interest in jobsites. In addition, sky, soil and vegetation are

considered as environmental objects that are not relevant to construction monitoring.

4.2 Scoring the Outcome of the Semantic Segmentation

Once the semantic segmentation algorithm is trained, we score the identified objects based on their
locations in the frames (i.e., a higher score is assigned when an object is closer to the center of a
frame). For this propose, we construct a 2D filter (Figure 5d) that has the same size of the original
image with higher pixel intensities in the center and lower intensities at the corners. The

algorithmic structure is shown in Figure 4. We then binarize the outcome of the semantic
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segmentation by assigning 1 to pixels representing objects of interest and 0 for the rest (Figure 5c).
The binarization and the convolution with the 2D filter is performed to calculate an image score.
Such score is normalized with respect to the summation of all pixel intensities in the 2D filter.
These operations assure (1) assigning higher scores to the image frames containing objects of
interest in the middle; and (2) the independence of the scoring system with respect to the image

size through the normalization.

Input: Image dimension: n;x;, m;x;

Qutput: Gray scale filter: Z

1 Z < create a zero array with the dimension of (n X m)

2 npm~x1) < create a column vector for n evenly spaced points between -50 and 50.

3 mp=m) <— create a row vector for m evenly spaced points between -50 and 50.

4 npcmxm) < concatenate m number of np array to form an array with the dimension of (n x m)
5 mpcmxm) < concatenate n number of mp array to form an array with the dimension of (rn x m)

6 S« (npc ® npc + mpc @ mpc)®3

Tforp=1to5

8 for each element in S array located at i'th row and j 'th column.

9 E « get value of i'th row and j 'th column of S array

10 ifE<50-p x5

11 add value of 0.2 to the value of i'th row and j 'th column of Z array
12 end if

13  end for

14 end for

15 Return Z array

The symbol @ is an element-wise operation between two arrays

Figure 4: Algorithmic structure to generate the 2D filter for pixelwise multiplication.
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Figure 5: (a) Original image frame; (b) the sematic segmentation of the image frame; (c) Isolation
of the segmented objects of interest in the binary domain; (d) 2D digital filter for pixel-wise
multiplication between (c) and (d).

5. COMPOSITIONAL SIMILARITY-BASED ESTIMATION OF SNAP POINT
LIKELIHOOD

For the image frames selected through the previous section, the probability of whether they were
intentionally taken or not is estimated to improve the performance of visual data filtering by
retrieving more meaningful image frames in the context of construction documentation. Detection
of intentionally taken (or snap point) photos involves challenges to overcome. First, general snap
point images do not share specific visual shapes or contents. Therefore, contents of such snap point
images involve a great number of objects which demands massive dataset to carry out the training.
Obtaining such training dataset is not trivial, requiring human judgment to manually select snap
point images scattered throughout given visual dataset. Second, snap point images could be taken
from numerous perspectives. For instance, they could be either ground-level, aerial oblique or

aerial nadir images. This variety in perspective would cause poor matches between images of

15
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training and testing domains in case that each is taken from different perspectives. Third, testing
and training domains may not necessarily involve images with the same quality. The training
dataset for keyframe selection techniques needs to cover large sets of objects and categories, and
with this reason, such datasets have been primarily collected from the internet. However, such
images are mostly resized or compressed to be quickly uploaded in the web, and thus they typically
have limited quality. The quality difference between images would reduce the matching accuracy
across the two domains. To address these challenges, building upon the snap point detection of
[4], we investigate the quality of the retrieved image frames in terms of their compositional
similarities comparing with the SUN dataset (~130,000 snap point images captured from various
perspectives), in order to select intentionally-taken photos for construction documentation. Our
contribution is as follows: (1) analyzing the effect of visual features in the snap point detection
that could be effective for filtering construction visual data from aerial perspective; (2) tuning
hyper-parameters to achieve optimal numbers of eigenvectors in the concatenation array by
performing the principal component analysis on the feature space; and (3) testing the filtering
performance with different threshold values to robustly filter large-scale visual data taken from
jobsites. The following sections elaborate the algorithmic enhancement to select photo-worthy

image frames collected from construction sites.

5.1 Feature Extraction for Snap Point Detection

To compare the similarities between discriminative features, we extract Dense-SIFT [37], HOG
[38], GIST [39], SSIM [40], and motion blur features for each image, with the dimensions of 4000,
6300, 512, 6300, and 1, respectively. Since most construction images collected from aerial
perspective lack a visible horizon line [41] as shown in Figure 6, we do not use the horizon line

feature that may reduce the accuracy of the algorithm in this research, as opposed to the previous
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work [4]. After extracting features, their variances in the feature space are measured through the
Principal Component Analysis (PCA) to form eigenvectors for selecting the important feature
dimensions that represent the input data. The PCA is a statistical operation to convert correlated
variables into sets of uncorrelated variables called principal components [27,42,43]. These
principal components correspond to the eigenvectors that have largest eigenvalues in dimension.
The PCA reduces the size of features and thus speeds up the calculations. After obtaining the
eigenvectors, a group of them showing higher variances are selected and concatenated for each
type of feature to form a concatenation array. The overall accuracy of the algorithm is highly
affected by the number of eigenvectors of each feature type in the concatenation array. We have
empirically selected the number of eigenvectors through multiple trials. At each trial, a precision-
recall curve was plotted, and the number of eigenvectors that yield the best performance were

selected.

Figure 6: Absence of a horizon line in aerial visual data (bottom) obtained from construction sites.

To determine whether an image was intentionally taken or not (i.e., the intentionality of
photographing), we leverage the SUN dataset [44] as the benchmark dataset, which contains

~130,000 intentionally taken images for 4,479 object categories. The role of the SUN dataset is to
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provide the filtering criteria. After extracting features and applying the PCA for visual data from
construction sites and the SUN dataset, the compositional similarities across the two domains are

computed. The similarity computation is discussed in the following sections with more details.

5.2 Domain Adaptation and Computing Similarity

We seek a domain invariant feature space to increase the probability of a valid match between the
benchmark and the testing datasets. We build an infinite dimensional geodesic path to connect the
two domains through common feature subspaces. This path would substantially decrease the
number of mismatches caused by camera resolutions and differences between the two domains

[42]. The geodesic path can be expressed as follows:

1
Korx(xi,%)) = (@%,2,%) = f (O x)T (7)) dt 3)
0

The subspaces along the geodesic path is denoted by ®(¢). x;,x; , which represent the
visual features of the benchmark and testing datasets respectively. z;°, z;* denote the infinite
dimension containing all of projections of x;,x; along the geodesic path. The distance of

projections which transfers from the benchmark domain to the testing domain is denoted by .
Once the geodesic path is calculated, indefinite sets of projections are generated via Geodesic Flow

Kernel (GFK).

5.3 Snap Point Prediction
A set of images in the benchmark dataset could be retrieved for any testing images that have a
higher similarity, and particularly those that have higher GFK values. Let’s assume that we retrieve

k number of photos in the training domain with the highest GFK values.
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K
Sx) = Z KGFK(xe' ij) “4)
j=1

where, x¢and x" denotes image descriptors for a testing image and a benchmark image,
respectively. k is the number of the retrieved similar images from the benchmark data set, and
S(x®) serves as the confidence of snap points of the testing image frame. The higher values of
S(x®) indicates the higher chance of a testing frame taken intentionally. With all these parameters,
we predict snap point frames for any given footages. For each image, S(x€) is derived and images
are sorted out from the lowest score to the highest one. In this paper, we categorize images in three
groups depending on the extent to which the photos were taken intentionally. To achieve this
categorization, as a proof of concept, we leveraged two reference images to serve as discriminative
boundaries between three groups of images. These two images (each with a different level of
photo-worthy strength) were taken from a construction site using a UAV. They are manually
selected and used for two purposes: 1) to act as discriminative boundaries between different groups
of images; and 2) to serve as the scoring reference while obtaining the ground truth scores for the
testing images. We derive scores for these two reference images as we did for all testing images.
Then, testing images with lower scores than the first reference image are considered as the first
group, images within the range of scores of the two reference images are given to the second group,
and the remaining images with higher scores than the score of the second reference image are
assigned to the last group. Scores for all of testing images are assigned depending on their snap

point confidence index S(x€).
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6. CASE STUDIES AND EVALUATIONS

6.1. Experimental Setup (ground-truth data)

The training images for the semantic segmentation were collected using a UAV from different
stages of multiple construction sites; those images taken from various viewpoints contain built
environments under construction, construction resources, sky and ground soil, and vegetation. The
collected images had dimensions that varies from 852 x 450 to 4384 x 3288. They were resized to
600 pixels in width, and the height was proportionally adjusted, while preserving the original
aspect ratio. We used 90 images for training, and 29 images for testing the performance of the
semantic segmentation. To obtain labeled pixel level classes, we have manually annotated the
boundaries of different categories within the training and testing images (Figure 7). The outcome
of pixel-level labeling is an image in which each class is separated by each region with a specific
color. The semantic categories of target objects were built environment under construction
(orange), construction resources (green), and environmental objects (purple). The black (NULL)

category shown in the training images represents unlabeled regions, and therefore those regions

were not used during the evaluation of the proposed method.
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Figure 7: Examples of annotated categories in images used as ground truth for training and testing.

To obtain the ground truth data for assessing the performance of the proposed method,
participants were invited to assign scores to the given testing images. Scoring the photo-worthiness
to images is an inevitably subjective task since there is no absolute standard in terms of the
worthiness. In this respect, the photo-worthiness of construction site images is a relatively
conceptual and empirical value from individual to individual by nature. Here, people are likely to
share the similar point of view when they evaluate the quality of images with respect to a particular
application. For example, construction practitioners can judge which image frames are valuable
and which are not based on their reasoning process, and some image frames can be acknowledged
as valuable by most construction practitioners for a certain purpose of project management. Based
on this fact, in our case studies, the ground truth data were obtained by different participants who
have professional experiences in the construction domain, and multiple scoring results were
averaged to obtain consistent scores over the entire testing data. To obtain reliable scores for the
images, two strategies were implemented: 1) similar to the previous work of snap point detection
[4], the score of each image was averaged by scores given by different participants; and 2) two
reference images (each with a score) were provided to the participants to assist their scoring tasks.
Specifically, we provided two reference images taken from jobsites to the participants; the
characteristics of the two images were as follows: 1) the first image with the score of 50 partially
contains the objects of interest and was relatively intentionally taken; and 2) the second image with
the score of 80 was intentionally taken and the middle of the image was mainly occupied by

construction-related contents.
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6.2. Tuning Hyperparameters and Training

For constructing the first level decision trees, the hyper parameters of the semantic random forest,
such as the number of decision trees, the number of test splits at each node, and the depth of
decision trees, were studied to obtain the high accuracy and computational efficiency (Figure 8).
The computational efficiency for the semantic segmentation was measured with a consumer-level
engineering workstation composed of an 17 CPU and an NVIDA GeForce GT 550M graphic card.
The global accuracy for each image was measured in the form of the percentage of pixels correctly
classified in the semantic segmentation.

Accuracy & Computational Time VS # of Trees Accuracy & Computational Time VS # of Test Split Samples Accuracy & Computational Time VS Depth of Trees
DepthOfTees = 10, NoOfSamples = 400 DepthOfTees = 10, NoOfTrees = 5 - NoOfSamples = 400, NoOfTrees = 5
20

=@~ Global Accuracy =@~ Global Accuracy

=@ Global Accuracy

9 = Campulational Time ~® = Camputational Time| | |, ~® = Camputational Time| | 100

Global Accuracy %
\
A
Computational Time (s}

Global Accuracy %
\
\
Computational Ti mé is]

Global Accuracy %
Computational Time (s]

1 3 5 7 9 200 400 600 5 10 13
Number of Trees Number of Test Split Sampels Depth of Trees

Figure 8: The effect of semantic segmentation parameters on accuracy and computational cost

As can be seen in Figure 8, it was observed that increasing the number and the depth of
decision trees entails the additional computational cost but did not lead to a significant accuracy
improvement. Furthermore, in our case studies, we observed 400 test splits have yielded the
highest accuracy with almost the same computational cost comparing to 200 and 600 test splits.
We have deployed five sets of decision trees to perform the decision splits for a square patch with
the size of 15 by 15 pixels. The distance between patches was set to 5 pixels. To calculate test

splits at each node, 400 scenarios were set at each patch and the depth of trees were set to 10 in
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our case studies.

6.3. Experimental Results and Discussion

In order to evaluate the performance of the proposed method in the real-world and to facilitate the
transfer of high-quality evidence from our research into practice, we have conducted the case
studies. We have collected visual data from two real-world construction sites where construction
projects were being progressed (Case #1: a student housing building construction project in
Ilinois, with 800 regularly sampled images; and Case #2: an instructional facility construction
project in Maryland, with 304 regularly sampled images). The reason why we selected the specific
cases above is that the two cases represent typical mid-scale construction projects and provide
general scenes of building construction as shown in Figure 7. Aerial visual data from such
representative cases will provide an excellent opportunity to test the proposed method in terms of
broad applicability. The collected visual dataset using drones was composed of photo-worthy
images reflecting the as-is status of the jobsites and accidentally taken images which most scenes
are occupied by ground or sky other than the jobsites. To reduce the computational cost for visual
data filtering, we resized the images to be 600 pixels wide, and regularly sampled a frame in every
0.2 to 1.5 seconds in the entire videos based on the similarity level between adjacent video frames.
The confusion matrix was generated to report the segmentation accuracy (Figure 9). In the
experiments, the average accuracy for three classification categories was 90.1%. Figure 10 shows
examples of the semantic segmentation regarding the two case studies (Orange: built environment
under construction, Green: construction resource, Purple: environmental objects consisting of sky,
ground soil, and vegetation). We observed that there was a relatively high confusion between

‘Construction Resources’ and ‘Environmental Objects’ categories as shown in Figurel 1.
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458

459

460 Figure 9: Confusion matrix of the semantic segmentation in our case study.

461

462

463 Figure 10: Examples of sematic segmentation for different construction jobsites.

464
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Figure 11: Examples of poor segmentation between semantic categories.

Through the semantic segmentation stage, image frames involving objects of interest that
appear in the middle of the image frame were given high scores. The scores were normalized, and
the images with the score of 80 or more were retrieved in our case studies. Then, in the second
filtering step, snap point values (i.e., photo-worthiness) of testing images were obtained and
normalized, and those with score of 80 or more were considered as photo-worthy images. The
performance of the proposed method was compared with the snap point detection method [4] that
retrieves intentionally-taken photos, and the saliency method [3,45] that investigates the presence
of objects aesthetically showing good quality. For the comparison, a precision-recall curve was
obtained to evaluate the overall performance of visual data filtering with different threshold values
at each filtering process. To obtain precision and recall values, True Positive (TP), False Positive
(FP) and False Negative (FN) values were calculated at each threshold. TP is the number of images
that are correctly classified as photo-worthy, FP is the number of images that are incorrectly
classified as photo-worthy, and FN is the number of photo-worthy images that are not classified

as photo-worthy. Precision and recall values are calculated as follows:
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Precision = L (%)
TP + FP
483
TP
Recall = TP+ FN (6)
484
485 In our case studies, a threshold value at the second filtering process was fixed as 80 in the

486  comparison study, and then different precision and recall values were obtained by changing a
487  threshold value at the semantic segmentation stage from 0 to 100. Likewise, the precision-recall
488  curves of the prior works of the snap point detection [4] and the saliency method [3,45] were
489  obtained by changing threshold values of their scores to select photo-worthy images. Figure 12

490  shows the obtained precision-recall curves.
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493  Figure 12: Precision-recall curves of our method (red), (Xiong and Grauman 2014) (blue), and
494  (Dhar et al 2011) (black) for filtering raw video footages taken from aerial perspective in
495  construction jobsites (Left: Case#1, Right: Case #2).

496

497 In our experiments, we observed that the proposed method delivers a close-to-human

498  judgment for photo selection from raw video footages in the context of construction
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documentation, as shown in Figure 13. There are two possible reasons why it was observed that
the proposed method performed better than the prior works, in the context of construction
documentation. First, the proposed method employed the semantic segmentation at the first
filtering process to filter out images without construction-related objects. Moreover, the
composition of visual contents was also considered to evaluate the photo-worthiness based on the
locations of construction related-objects in an image frame. We believe that this strategy militated
in favor of the selection of construction-related photo-worthy images. Second, we have
investigated and used the highly influential visual features in the context of construction
documentation at the second filtering stage, which is different from others in the context of daily
life [4]. Such feature engineering was found to be helpful for improving the filtering performance

in the context of construction site monitoring.

Figure 13: Examples of the experimental results of the proposed method. Top: unlikely snap
points, and Bottom: ‘photo-worthy’ frames.

Deploying computational methods to perform visual data filtering for achieving a higher

level of accuracy (especially, the part of semantic segmentation) generally require additional
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computational cost as well as a large number of semantically labeled images as a training dataset.
Rather, we have mainly focused on algorithmic improvement for filtering construction-related
large-scale visual data building upon reasonably fast and yet robust methods that can be performed
with the typical computation power of consumer-level computers possessed by practitioners. In
this regard, we built upon low-level features to perform faster both in the training and testing
phases and tuned hyper parameters in a way that the computational cost can be reduced while the
algorithm performs with a reasonable range of accuracy. Overall, through our case studies, we
could observe that the proposed method promises the potential of selecting photo-worthy image

frames related to construction projects from raw visual data.

7. CONCLUSION

The proliferation of affordable camera-equipped devices that can record high quality video
footages promotes visual monitoring of construction sites. As a result, large-scale visual data in
the form of numerous still images or long-sequence video sequences are being collected from
construction sites on daily, weekly or monthly bases. In this regard, the visual data overload is
regarded as a major issue in visual monitoring of construction projects. To address such challenge,
this paper presents a new method to filter construction visual data building upon (1) semantically
segmenting contents of images to investigate the presence of objects of interest and its spatial
composition; and (2) estimating and assessing the likelihood of the image frames to be
intentionally taken. In our two case studies, the proposed method has shown the high accuracy in
identifying photo-worthy image frames from large-scale raw visual dataset for construction
monitoring purposes that is close to visual data analytics based on human judgment. The main

contribution of this work is to automate construction visual data filtering, retrieving images that
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are valuable for documenting the as-is status of construction jobsites from video footages captured
via UAVs. Such automation will save time and effort of practitioners who should manually select
and document informative image frames to report or assess various construction performance
metrics (e.g., construction progress or safety). While this work has demonstrated the potential to
convert large-scale visual dataset into concise visual photologs in the construction domain, open
research challenges still exist: (1) as a proof of concept, limited numbers of object categories were
studied in the semantic segmentation process of our case studies. Segmentation with more
categories will retrieve more distinct objects from given visual dataset, but require larger training
dataset that would be computationally expensive. Further study needs to investigate such trade-off
for robust visual data filtering in the construction domain; and (2) to minimize the overlap among
filtered image frames, raw video frames were sampled based on the sampling frequency that was
empirically determined in our case studies. Here, the high sampling frequency may need to be
considered for particular locations in construction sites that requires rigorous monitoring and
documentation. In this case, it would be better to set an adaptive sampling frequency for visual
dataset representing those areas, and thus more research needs to be conducted to study such
dynamic sampling rate with respect to image contents for effective construction documentation.

All these issues are currently being explored as part of our ongoing research.
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