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Abstract 6 

In recent years, emerging mobile devices and camera-equipped platforms have offered a great 7 

convenience to visually capture and constantly document the as-is status of construction sites. In 8 

this regard, visual data are regularly collected in the form of numerous photos or lengthy videos. 9 

However, massive amounts of visual data that are being collected from jobsites (e.g., data 10 

collection on daily or weekly bases by Unmanned Aerial Vehicles, UAVs) has provoked visual 11 

data overload as an inevitable problem to face. To address such data overload issue in the 12 

construction domain, this paper aims at proposing a new method to automatically retrieve photo-13 

worthy frames containing construction-related contents that are scattered in collected video 14 

footages or consecutive images. In the proposed method, the presence of objects of interest (i.e., 15 

construction-related contents) in given image frames are recognized by the semantic segmentation, 16 

and then scores of the image frames are computed based on the spatial composition of the identified 17 

objects. To improve the filtering performance, high-score image frames are further analyzed to 18 

estimate their likelihood to be intentionally taken. Case studies in two construction sites have 19 

revealed that the accuracy of the proposed method is close-to-human judgment in filtering visual 20 
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data to retrieve photo-worthy image frames containing construction-related contents. The 21 

performance metrics demonstrate around 91% of accuracy in the semantic segmentation, and we 22 

observed enhanced human-like judgment in filtering construction visual data comparing to prior 23 

works. It is expected that the proposed automated method enables practitioners to assess the as-is 24 

status of construction sites efficiently through selective visual data, thereby facilitating data-driven 25 

decision making at the right time. 26 

 27 

Keywords: Visual Sensing; Visual Data Filtering; UAV; Construction Monitoring  28 

   29 

1. INTRODUCTION 30 

With the increasing availability of camera-equipped devices such as smartphones, head-mounted 31 

cameras, and Unmanned Aerial Vehicles (UAVs), large numbers of high-quality images or video 32 

footages are constantly being collected to document the as-is status of construction jobsites. For 33 

instance, it was observed that for ~ 750,000 square feet of a construction jobsite, more than 400,000 34 

images are generally documented during the lifetime of the project [1]. In general, visual data on 35 

construction sites can be collected in two ways: 1) video recording; and 2) point-and-shoot [1]. 36 

The video recording refers to recording videos or taking pictures with a constant interval using 37 

camcorders, closed circuit televisions (CCTV), or UAVs. In this way, continuing changes in 38 

construction sites can be recorded. However, the volume of visual data would be rapidly increasing 39 

proportional to its recording time, therefore it is not trivial to process a large amount of visual data 40 

for generating useful information. The point-and-shoot represents taking pictures while a camera 41 

is purposefully pointed at an object or a region of interest. Since site personnel take pictures with 42 

the intention of documenting a certain situation at a construction site, preprocessing to select 43 
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meaningful image frame would be unnecessary in general. 44 

 Typically, the amount of image data could be significantly increased when recording high-45 

definition videos on a regular basis, involving laborious challenges for practitioners to overcome. 46 

It was observed that the average size of visual data per time instance of data collection for three 47 

construction sites amounts to 3.8 Gigabytes [1]. Furthermore, they reported that the collected 48 

visual data size could grow up to 43 Gigabytes after 3D dense point cloud reconstruction (proposed 49 

by [2]) using the collected images. Assuming weekly visual data collection for 144 weeks of 50 

construction, the size of collected visual data for a single construction project would approximately 51 

reach to 6.2 Terabytes, and the size of visual data may even reach to the scale of Petabytes, for a 52 

company managing multiple projects [1]. The large portion of such visual data captured via UAVs 53 

or head-mounted cameras may still include non-construction related contents or has been 54 

unintentionally taken during a walk-through (head-mounted cameras) or flying (UAVs). In this 55 

context, construction companies are struggling to reduce the size of recorded visual data for 56 

identifying handful of informative image frames that can better describe the as-is status of 57 

construction jobsites. Due to its huge amounts, handling large-scale visual data collected for a long 58 

period of time is not a trivial task. Filtering visual data to select meaningful frames is typically a 59 

time-consuming and labor-intensive process, which requires several hours of efforts [3,4]. In this 60 

sense, automated methods for retrieving relevant contents without human interventions has been 61 

considered as an essential task [5]. The authors have carried out preliminary experiments to 62 

estimate the time spent on manually identifying informative image frames in long-sequence video 63 

footages obtained from construction jobsites. We observed that around 1h 15m was spent by an 64 

experienced individual to select 234 informative image frames from a video footage with the size 65 

of 4.5 Gigabytes (total length of 2h 15m). This result implies that although a small portion over a 66 
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large-scale visual dataset would be sufficient to understand jobsite context, it is challenging and 67 

laborious to select meaningful image frames manually, even for a single video. The required time 68 

and effort in visual data filtering could be significantly increased for layperson or depending on 69 

the size of visual data. 70 

To address this issue, we propose a novel visual data filtering method to automatically 71 

retrieve photo-worthy image frames containing construction-related contents from a large-scale 72 

visual dataset from drones. The proposed method consists of two stages. At the first filtering stage, 73 

the presence of objects of interest in images is identified by the semantic segmentation. This 74 

information is then used to score each image frame based on the spatial composition of the 75 

identified objects. The second filtering stage is to select intentionally-taken images among high-76 

score images based on their compositional information. Case studies were conducted to evaluate 77 

the effectiveness of the proposed method, and the experimental results are compared with previous 78 

methods. The contribution of this study can be summarized as two-fold: 1) proposing the effective 79 

method of retrieving construction-related images based on the presence of construction-related 80 

objects and their spatial composition through the semantic segmentation with the small number of 81 

training images; and 2) demonstrating the way to select intentionally-taken photos containing 82 

construction-related contents based on their compositional similarities with around 130,000 83 

intentionally taken images in the SUN dataset. The significance of this work is to save time and 84 

efforts for practitioners to obtain concise and yet useful images representing the as-is status of 85 

construction jobsites in an automated manner, which enables the construction industry to reduce 86 

visual data size efficiently. By being able to focus on selective visual data from jobsites, 87 

practitioners can spend less time on browsing large amounts of visual data, rather spend more time 88 

on visual analytics of various construction performance metrics using the selected dataset. 89 
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 90 

2. RELATED WORKS 91 

Analyzing large-scale visual data has been widely studied in the construction domain. For instance, 92 

[1] demonstrated the potential of big visual data for monitoring construction performance. To 93 

leverage the potential for an efficient visual data management, automated retrieval of the most 94 

relevant contents from large-scale video footages is essential [6,7]. One of the earliest attempts 95 

was to select key image frames to generate 3D point clouds using the Structure-from-Motion (SfM) 96 

[8]. Since all image frames in a raw dataset are not necessarily used for generating 3D point cloud 97 

models, a significant amount of time required for the 3D reconstruction could be saved with the 98 

reduced numbers of images while maintaining the quality of the 3D reconstruction of built 99 

environments. Despite the benefit of such early studies providing an encouraging proof-of-concept, 100 

there have been limited attempts to research on key frame selection that is beneficial to 101 

construction practitioners for enhancing situational awareness in jobsites. As the computational 102 

efficiency of visual data filtering would be a burden due to the increasing volume of visual data 103 

from jobsites, filtering methods should be carefully designed and implemented [5].  104 

 Visual data filtering has recently attracted much attention in the computer vision domain. 105 

The types of visual data filtering techniques can be divided into three-fold [9]: 1) keyframe 106 

selection, 2) video skimming, and 3) time-lapse. Previous studies on the keyframe selection have 107 

mainly focused on selecting key video frames to represent the core content of videos [10-13]. The 108 

main application of this technique is to automatically choose representative frames describing 109 

overall video contents or to insert advertisements in between most important frames. The video 110 

skimming summarizes a video to convey its main idea in a shortened video clip [14,15]. The time-111 

lapse (or hyper-lapse [16]) technique samples highly distinctive video frames and produces a 112 
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shortened video while retaining the smooth transitions of camera perspectives to enable users to 113 

have an immersive viewing experience. The fundamental challenge of the visual data filtering 114 

techniques is to establish criteria to select certain visual contents considering visual characteristics 115 

of videos, filtering context, and computational resources. In the construction domain, the keyframe 116 

selection has the potential for minimizing redundant contents out of large-scale visual data, while 117 

preserving valuable visual contents. Nonetheless, previous keyframe selection methods have not 118 

been tested on construction image dataset that has distinct visual characteristics, thus, their 119 

applicability for construction monitoring remains largely unknown. Particularly, as the increased 120 

availability of UAVs has recently produced a large amount of visual data from construction sites, 121 

there is an increasing need to extract the important visual contents of jobsites in an automated 122 

manner. 123 

 Generally, the keyframe selection methods can be divided into two categories considering 124 

the viewpoints of video recording: third-person and first-person viewpoints. Videos recorded by 125 

the third-person viewpoint are intentionally taken in general, and the goal of the key frame 126 

selection for such videos is generally to select video frames containing objects or scenes of interest 127 

[17,18]. Contrarily, videos recorded by the first-person viewpoint through head-mounted or 128 

wearable cameras are most likely to involve numerous frames that are not intentionally taken; 129 

therefore, the keyframe selection purpose for this category is generally to eliminate such 130 

unintentionally taken video frames from original videos. To do that, prior works such as [4] 131 

leveraged great numbers of intentionally taken photos as the benchmark dataset and then computed 132 

the compositional similarity between the benchmark dataset and testing images. Some studies 133 

utilized large-scale training image datasets collected from the Amazon Mechanical Turk [19,20] 134 

or automatic web mining [21,22] for visual data filtering. Nonetheless, in the construction domain, 135 
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such large-scale training image datasets are relatively limited and hard to be collected as reported 136 

in [1,23]. Such difficulty would hinder the direct implementation of existing filtering methods for 137 

the construction domain. In addition, distinct visual characteristic of construction images needs to 138 

be considered for effective visual data filtering in the construction domain.  139 

 140 

3. OVERVIEW OF THE METHOD 141 

 142 

Figure 1: An overview of the proposed method to filer visual data captured from jobsites. 143 

 144 

Figure 1 outlines the overview of the proposed method to select key frames from construction 145 

visual data. This paper aims to select key frames from large-scale aerial video footages captured 146 

via UAVs around jobsites. We define the term “key frames” as “photo-worthy frames” that can 147 
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provide valuable information regarding situational awareness in construction sites. In this study, 148 

photo-worthy image frames should involve objects of interest (e.g., built environments under 149 

construction or construction resources such as equipment or materials) appeared to be large in the 150 

middle of the frames, in order to increase the chance of illustrating the as-is status of construction.  151 

The proposed filtering method consists of two modules. The first filtering process retrieves 152 

image frames containing objects of interest (i.e., construction-related contents) through the 153 

semantic segmentation and then assigns a score to each frame based on the position of the 154 

identified objects of interest in the frame; this process tightens the search space of large-scale 155 

visual data, thereby increasing the chance to obtain construction-related photo-worthy images at 156 

the second filtering process. The second filtering process investigates the quality of the retrieved 157 

images in terms of their compositional similarities comparing with the SUN dataset, in order to 158 

select intentionally-taken photos. 159 

To detect objects of interest in the first filtering process, we semantically segment an image 160 

into pixels by their categories through semantic texton forests building on [24] in which low level 161 

texton features and decision trees are employed. This supervised method rapidly segments pixels 162 

by their category with high accuracy [25], based on fewer numbers of training images compared 163 

to deep learning approaches such as the deep convolutional encoder-decoder [26]. Building upon 164 

the outcome of the semantic segmentation, we assign a score for each image frame based on the 165 

position of objects of interest. The closer the specific objects of interest are to the center of an 166 

image; the higher score is assigned. Then, we retrieve selective images based on a threshold for 167 

the scores. The thresholding criterion is discussed in Section 5. In the second filtering process, the 168 

compositional similarities of the retrieved images with the SUN dataset are calculated building on 169 

five different visual features—Dense-SIFT, HOG, GIST, SSIM, and motion blur—to select 170 
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intentionally-taken (i.e., snap point) images. To efficiently compare the feature spaces between the 171 

two domains (i.e., the retrieved images and the SUN dataset images), the Principal Component 172 

Analysis (PCA) [27] is employed to reduce the number of the feature dimensions. Next, the 173 

similarities across the feature spaces are computed for each retrieved frame to select final images. 174 

In the following sections, the algorithmic procedure of the proposed method is described in detail, 175 

and the experimental results are then discussed. 176 

 177 

4. RETRIEVAL OF OBJECTS OF INTEREST THROUGH THE SEMANTIC 178 

SEGMENTATION 179 

Conventional approaches to address image segmentation problems typically involve the extraction 180 

of features from a training dataset to form a bag of visual words and train a classifier based on the 181 

frequency of visual words in each image [28-30]. Other approaches involve the extraction of a 182 

bank of descriptors and features from a training dataset and then train discriminative classifiers 183 

based on their response [31-33]. Despite the benefit, they are computationally expensive in 184 

extracting image descriptors and features for both training and testing domains. To initially filter 185 

given visual data, we build upon the semantic texton forest to segment each image into numerous 186 

regions with labels based on low-level texton features. The semantic texton forest is a low-level 187 

visual feature, which enables computationally efficient semantic segmentation than algorithms that 188 

need the expensive computation for constructing filter-bank responses or local descriptors [24].  189 

 190 

4.1 Building Decision Trees  191 

The semantic segmentation is the process of separating each image region by its category. 192 

Specifically, the semantic segmentation assigns each pixel p to a category c based on the visual 193 
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information of surrounding pixels. Through the first level decision tree, the visual information of 194 

image pixels is extracted in the form of semantic textons. They are used to create the visual feature 195 

distribution of each pixel for determining a pixel category. The second level decision tree is used 196 

to explore the layout and context of the semantic regions for better segmentation. Figure 2 197 

represents examples of decision trees for different pixel categories such as buildings under 198 

construction and soil grounds. The first level decision tree contains n nodes and l leaf nodes. The 199 

term leaf node corresponds to the last binary decision made in the branch of a tree. There is a 200 

learned category distribution P(c|n) associated with each leaf node. Based on the class distributions 201 

over the leaf nodes of all trees L(p) = (l1, l2, l3,…, lT), the final decision on the first decision tree is 202 

made; this decision process is formulated as Eq. 1. The outcome of the first level decision tree is 203 

a rough estimation of a pixel category. At the second decision tree, textural relations are studied 204 

based on the semantic texton histogram and the bag of semantic texton region priors to generate 205 

coherent segmentation results. 206 

 207 

𝑃(𝑐|𝐿(𝑝)) = ∑ 𝑃(𝑐|𝑙𝑡 )𝑃(𝑡)

𝑇

𝑡=1

  (1) 

 208 
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 209 

Figure 2. Schematic overview of pixel labeling based on the first-level decision tree. The threshold 210 
values of TH1, TH2, …, THn are obtained during the training process. 211 

 212 

 To train the first level decision tree, training images consisting of P sets of pixels are 213 

sampled. First, locations of sampling points are determined such that they are laid out in a grid 214 

pattern on the image. Grid sampling enables to reduce the computational time to generate decision 215 

trees. Patches with the size of w×w are then formed at each sampling location. For the patches, 216 

test splits are produced and randomly selected to categorize image pixels (Figure 3). Z0 and Z1 217 

correspond to one of red, green, and blue channels, selected at random. For two randomly selected 218 

pixels A and B within the patch, A[Z0] and B[Z1] are intensity values at a corresponding color 219 

channel ranging from 0 to 255. Decision trees in a patch are constructed through dividing pixels 220 

recursively into Ptrue and Pfalse, where Ptrue is a set of pixels that satisfy the decision rule of a node 221 

and Pfalse is a set that does not satisfy it. Among randomly selected test splits for each node, a single 222 
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test split that maximizes the information gain at a node is selected as the decision rule of the node 223 

[24,34]. An information gain at each node is calculated by the following equation: 224 

 225 

ΔE = − 
|𝑃𝑡𝑟𝑢𝑒|

|𝑃|
𝐸(𝑃𝑡𝑟𝑢𝑒) −  

|𝑃𝑓𝑎𝑙𝑠𝑒|

|𝑃|
𝐸(𝑃𝑓𝑎𝑙𝑠𝑒)  (2) 

 226 

 227 

Figure 3. Test splits used as low-level features (left). A patch containing sample pixels (right). 228 
 229 

 A first-level decision forest containing 5 decision trees with the depth of 10 is constructed 230 

using 400 test splits at node levels; patches of 15 by 15 pixels are generated with the center-to-231 

center distance of 5 pixels. The contribution of test splits at each node are examined in the decision 232 

forest, and those with high contribution are used to construct the final decision trees. In our case 233 

studies, it was observed that the elimination of the test splits with minor contributions reduce the 234 

training time from 253 to 177 mins by selectively focusing on highly contributed test split 235 

candidates for each decision node. In this paper, the test splits with the IDs of 1, 3, 4, and 5 are 236 

chosen for decision tree generation (Figure 3) as they show a great contribution on forming 237 

decision trees. To prevent the overfitting problem, the decision trees are trained in a randomized 238 

fashion. This randomization in the training phase is satisfied through two main criteria: (1) a subset 239 

of the training pixels for each category is randomly selected; and (2) candidate decision nodes are 240 
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selected at random from numerous test splits to branch out the split nodes. The minimal size of 241 

decision trees is selected under a predefined measure to assure that the data are thoroughly split in 242 

an optimized fashion [25]. Parameters that affect the construction and performance of the decision 243 

trees are: (1) a type of the split tests (Figure 3) which has a significant role in training the decision 244 

trees and its performance; (2) the number of the decision trees in the forest, relevant to a trade-off 245 

between precision and computational cost; (3) the color channels of images and how different 246 

channels are chosen to construct the tree; (4) the maximum depth of the trees (the deeper trees can 247 

differentiate more detailed visual clues but they are likely to overfit to a training dataset); and (5) 248 

the size of the patch studied around each pixel. As the hyper parameters rely upon the characteristic 249 

of the training dataset, we have performed trial and error tests to empirically determine the 250 

parameters leading to high semantic segmentation accuracy.  251 

We build the second-level decision trees based on the rectangular-based Haar features [35], 252 

and the rectangular sum features [36] to obtain accurate boundaries of objects of interest. In this 253 

study, we consider construction resources (e.g., equipment or materials) and built environments 254 

under construction as objects of interest in jobsites. In addition, sky, soil and vegetation are 255 

considered as environmental objects that are not relevant to construction monitoring. 256 

 257 

4.2 Scoring the Outcome of the Semantic Segmentation 258 

Once the semantic segmentation algorithm is trained, we score the identified objects based on their 259 

locations in the frames (i.e., a higher score is assigned when an object is closer to the center of a 260 

frame). For this propose, we construct a 2D filter (Figure 5d) that has the same size of the original 261 

image with higher pixel intensities in the center and lower intensities at the corners. The 262 

algorithmic structure is shown in Figure 4. We then binarize the outcome of the semantic 263 
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segmentation by assigning 1 to pixels representing objects of interest and 0 for the rest (Figure 5c). 264 

The binarization and the convolution with the 2D filter is performed to calculate an image score. 265 

Such score is normalized with respect to the summation of all pixel intensities in the 2D filter. 266 

These operations assure (1) assigning higher scores to the image frames containing objects of 267 

interest in the middle; and (2) the independence of the scoring system with respect to the image 268 

size through the normalization.  269 

 270 

 271 

Figure 4: Algorithmic structure to generate the 2D filter for pixelwise multiplication. 272 

 273 

Input: Image dimension: n1×1, m1×1 

Output: Gray scale filter: Z 

1 Z ←  create a zero array with the dimension of (n × m) 

2 np(n×1) ← create a column vector for n evenly spaced points between -50 and 50. 

3 mp(1×m) ← create a row vector for m evenly spaced points between -50 and 50. 

4 npc(n×m) ← concatenate m number of np array to form an array with the dimension of (n × m) 

5 mpc(n×m) ← concatenate n number of mp array to form an array with the dimension of (n × m) 

6 S ← (npc ⊗ npc + mpc ⊗ mpc)0.5 

7 for p = 1 to 5 

8     for each element in S array located at i'th row and j’th column. 

9          E ← get value of i'th row and j’th column of S array 

10           if E < 50 – p ×5 

11             add value of 0.2 to the value of i'th row and j’th column of Z array 

12         end if  

13    end for  

14 end for  

15 Return Z array  
The symbol ⊗ is an element-wise operation between two arrays  
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 274 

Figure 5: (a) Original image frame; (b) the sematic segmentation of the image frame; (c) Isolation 275 
of the segmented objects of interest in the binary domain; (d) 2D digital filter for pixel-wise 276 
multiplication between (c) and (d). 277 
 278 

5. COMPOSITIONAL SIMILARITY-BASED ESTIMATION OF SNAP POINT 279 

LIKELIHOOD 280 

For the image frames selected through the previous section, the probability of whether they were 281 

intentionally taken or not is estimated to improve the performance of visual data filtering by 282 

retrieving more meaningful image frames in the context of construction documentation. Detection 283 

of intentionally taken (or snap point) photos involves challenges to overcome. First, general snap 284 

point images do not share specific visual shapes or contents. Therefore, contents of such snap point 285 

images involve a great number of objects which demands massive dataset to carry out the training. 286 

Obtaining such training dataset is not trivial, requiring human judgment to manually select snap 287 

point images scattered throughout given visual dataset. Second, snap point images could be taken 288 

from numerous perspectives. For instance, they could be either ground-level, aerial oblique or 289 

aerial nadir images. This variety in perspective would cause poor matches between images of 290 
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training and testing domains in case that each is taken from different perspectives. Third, testing 291 

and training domains may not necessarily involve images with the same quality. The training 292 

dataset for keyframe selection techniques needs to cover large sets of objects and categories, and 293 

with this reason, such datasets have been primarily collected from the internet. However, such 294 

images are mostly resized or compressed to be quickly uploaded in the web, and thus they typically 295 

have limited quality. The quality difference between images would reduce the matching accuracy 296 

across the two domains. To address these challenges, building upon the snap point detection of 297 

[4], we investigate the quality of the retrieved image frames in terms of their compositional 298 

similarities comparing with the SUN dataset (~130,000 snap point images captured from various 299 

perspectives), in order to select intentionally-taken photos for construction documentation. Our 300 

contribution is as follows: (1) analyzing the effect of visual features in the snap point detection 301 

that could be effective for filtering construction visual data from aerial perspective; (2) tuning 302 

hyper-parameters to achieve optimal numbers of eigenvectors in the concatenation array by 303 

performing the principal component analysis on the feature space; and (3) testing the filtering 304 

performance with different threshold values to robustly filter large-scale visual data taken from 305 

jobsites. The following sections elaborate the algorithmic enhancement to select photo-worthy 306 

image frames collected from construction sites. 307 

 308 

5.1 Feature Extraction for Snap Point Detection 309 

To compare the similarities between discriminative features, we extract Dense-SIFT [37], HOG 310 

[38], GIST [39], SSIM [40], and motion blur features for each image, with the dimensions of 4000, 311 

6300, 512, 6300, and 1, respectively. Since most construction images collected from aerial 312 

perspective lack a visible horizon line [41] as shown in Figure 6, we do not use the horizon line 313 

feature that may reduce the accuracy of the algorithm in this research, as opposed to the previous 314 
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work [4]. After extracting features, their variances in the feature space are measured through the 315 

Principal Component Analysis (PCA) to form eigenvectors for selecting the important feature 316 

dimensions that represent the input data. The PCA is a statistical operation to convert correlated 317 

variables into sets of uncorrelated variables called principal components [27,42,43]. These 318 

principal components correspond to the eigenvectors that have largest eigenvalues in dimension. 319 

The PCA reduces the size of features and thus speeds up the calculations. After obtaining the 320 

eigenvectors, a group of them showing higher variances are selected and concatenated for each 321 

type of feature to form a concatenation array. The overall accuracy of the algorithm is highly 322 

affected by the number of eigenvectors of each feature type in the concatenation array. We have 323 

empirically selected the number of eigenvectors through multiple trials. At each trial, a precision-324 

recall curve was plotted, and the number of eigenvectors that yield the best performance were 325 

selected. 326 

 327 

 328 

Figure 6: Absence of a horizon line in aerial visual data (bottom) obtained from construction sites. 329 
 330 

 To determine whether an image was intentionally taken or not (i.e., the intentionality of 331 

photographing), we leverage the SUN dataset [44] as the benchmark dataset, which contains 332 

~130,000 intentionally taken images for 4,479 object categories. The role of the SUN dataset is to 333 
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provide the filtering criteria. After extracting features and applying the PCA for visual data from 334 

construction sites and the SUN dataset, the compositional similarities across the two domains are 335 

computed. The similarity computation is discussed in the following sections with more details.  336 

 337 

5.2 Domain Adaptation and Computing Similarity 338 

We seek a domain invariant feature space to increase the probability of a valid match between the 339 

benchmark and the testing datasets. We build an infinite dimensional geodesic path to connect the 340 

two domains through common feature subspaces. This path would substantially decrease the 341 

number of mismatches caused by camera resolutions and differences between the two domains 342 

[42]. The geodesic path can be expressed as follows: 343 

𝐾𝐺𝐹𝐾(𝑥𝑖 , 𝑥𝑗) =  (𝑧𝑖
∞, 𝑧𝑗

∞) = ∫ (Ф(𝑡)𝑇𝑥𝑖)𝑇(Ф(𝑡)𝑇𝑥𝑗)𝑑𝑡
1

0

 (3) 

 344 

 The subspaces along the geodesic path is denoted by Ф(𝑡). 𝑥𝑖 , 𝑥𝑗  , which represent the 345 

visual features of the benchmark and testing datasets respectively. 𝑧𝑖
∞, 𝑧𝑗

∞ denote the infinite 346 

dimension containing all of projections of 𝑥𝑖 , 𝑥𝑗   along the geodesic path. The distance of 347 

projections which transfers from the benchmark domain to the testing domain is denoted by 𝑡. 348 

Once the geodesic path is calculated, indefinite sets of projections are generated via Geodesic Flow 349 

Kernel (GFK).  350 

 351 

5.3 Snap Point Prediction 352 

A set of images in the benchmark dataset could be retrieved for any testing images that have a 353 

higher similarity, and particularly those that have higher GFK values. Let’s assume that we retrieve 354 

k number of photos in the training domain with the highest GFK values.  355 
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𝑆(𝑥𝑒) = ∑ 𝐾𝐺𝐹𝐾(𝑥𝑒 ,  𝑥𝑤
𝑗)

𝑘

𝑗=1

 (4) 

 356 

 where, 𝑥𝑒𝑎𝑛𝑑  𝑥𝑤   denotes image descriptors for a testing image and a benchmark image, 357 

respectively. 𝑘 is the number of the retrieved similar images from the benchmark data set, and 358 

𝑆(𝑥𝑒) serves as the confidence of snap points of the testing image frame. The higher values of 359 

𝑆(𝑥𝑒) indicates the higher chance of a testing frame taken intentionally. With all these parameters, 360 

we predict snap point frames for any given footages. For each image, 𝑆(𝑥𝑒) is derived and images 361 

are sorted out from the lowest score to the highest one. In this paper, we categorize images in three 362 

groups depending on the extent to which the photos were taken intentionally. To achieve this 363 

categorization, as a proof of concept, we leveraged two reference images to serve as discriminative 364 

boundaries between three groups of images. These two images (each with a different level of 365 

photo-worthy strength) were taken from a construction site using a UAV. They are manually 366 

selected and used for two purposes: 1) to act as discriminative boundaries between different groups 367 

of images; and 2) to serve as the scoring reference while obtaining the ground truth scores for the 368 

testing images. We derive scores for these two reference images as we did for all testing images. 369 

Then, testing images with lower scores than the first reference image are considered as the first 370 

group, images within the range of scores of the two reference images are given to the second group, 371 

and the remaining images with higher scores than the score of the second reference image are 372 

assigned to the last group. Scores for all of testing images are assigned depending on their snap 373 

point confidence index 𝑆(𝑥𝑒). 374 

 375 
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6. CASE STUDIES AND EVALUATIONS 376 

6.1. Experimental Setup (ground-truth data) 377 

The training images for the semantic segmentation were collected using a UAV from different 378 

stages of multiple construction sites; those images taken from various viewpoints contain built 379 

environments under construction, construction resources, sky and ground soil, and vegetation. The 380 

collected images had dimensions that varies from 852 × 450 to 4384 × 3288. They were resized to 381 

600 pixels in width, and the height was proportionally adjusted, while preserving the original 382 

aspect ratio. We used 90 images for training, and 29 images for testing the performance of the 383 

semantic segmentation. To obtain labeled pixel level classes, we have manually annotated the 384 

boundaries of different categories within the training and testing images (Figure 7). The outcome 385 

of pixel-level labeling is an image in which each class is separated by each region with a specific 386 

color. The semantic categories of target objects were built environment under construction 387 

(orange), construction resources (green), and environmental objects (purple). The black (NULL) 388 

category shown in the training images represents unlabeled regions, and therefore those regions 389 

were not used during the evaluation of the proposed method. 390 

 391 

 392 
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Figure 7: Examples of annotated categories in images used as ground truth for training and testing. 393 

 394 

 To obtain the ground truth data for assessing the performance of the proposed method, 395 

participants were invited to assign scores to the given testing images. Scoring the photo-worthiness 396 

to images is an inevitably subjective task since there is no absolute standard in terms of the 397 

worthiness. In this respect, the photo-worthiness of construction site images is a relatively 398 

conceptual and empirical value from individual to individual by nature. Here, people are likely to 399 

share the similar point of view when they evaluate the quality of images with respect to a particular 400 

application. For example, construction practitioners can judge which image frames are valuable 401 

and which are not based on their reasoning process, and some image frames can be acknowledged 402 

as valuable by most construction practitioners for a certain purpose of project management. Based 403 

on this fact, in our case studies, the ground truth data were obtained by different participants who 404 

have professional experiences in the construction domain, and multiple scoring results were 405 

averaged to obtain consistent scores over the entire testing data. To obtain reliable scores for the 406 

images, two strategies were implemented: 1) similar to the previous work of snap point detection 407 

[4], the score of each image was averaged by scores given by different participants; and 2) two 408 

reference images (each with a score) were provided to the participants to assist their scoring tasks. 409 

Specifically, we provided two reference images taken from jobsites to the participants; the 410 

characteristics of the two images were as follows: 1) the first image with the score of 50 partially 411 

contains the objects of interest and was relatively intentionally taken; and 2) the second image with 412 

the score of 80 was intentionally taken and the middle of the image was mainly occupied by 413 

construction-related contents.   414 

 415 
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6.2. Tuning Hyperparameters and Training 416 

For constructing the first level decision trees, the hyper parameters of the semantic random forest, 417 

such as the number of decision trees, the number of test splits at each node, and the depth of 418 

decision trees, were studied to obtain the high accuracy and computational efficiency (Figure 8). 419 

The computational efficiency for the semantic segmentation was measured with a consumer-level 420 

engineering workstation composed of an i7 CPU and an NVIDA GeForce GT 550M graphic card. 421 

The global accuracy for each image was measured in the form of the percentage of pixels correctly 422 

classified in the semantic segmentation. 423 

 424 

 425 

Figure 8: The effect of semantic segmentation parameters on accuracy and computational cost 426 

 427 

 As can be seen in Figure 8, it was observed that increasing the number and the depth of 428 

decision trees entails the additional computational cost but did not lead to a significant accuracy 429 

improvement. Furthermore, in our case studies, we observed 400 test splits have yielded the 430 

highest accuracy with almost the same computational cost comparing to 200 and 600 test splits. 431 

We have deployed five sets of decision trees to perform the decision splits for a square patch with 432 

the size of 15 by 15 pixels. The distance between patches was set to 5 pixels. To calculate test 433 

splits at each node, 400 scenarios were set at each patch and the depth of trees were set to 10 in 434 
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our case studies. 435 

 436 

6.3. Experimental Results and Discussion  437 

In order to evaluate the performance of the proposed method in the real-world and to facilitate the 438 

transfer of high-quality evidence from our research into practice, we have conducted the case 439 

studies. We have collected visual data from two real-world construction sites where construction 440 

projects were being progressed (Case #1: a student housing building construction project in 441 

Illinois, with 800 regularly sampled images; and Case #2: an instructional facility construction 442 

project in Maryland, with 304 regularly sampled images). The reason why we selected the specific 443 

cases above is that the two cases represent typical mid-scale construction projects and provide 444 

general scenes of building construction as shown in Figure 7. Aerial visual data from such 445 

representative cases will provide an excellent opportunity to test the proposed method in terms of 446 

broad applicability. The collected visual dataset using drones was composed of photo-worthy 447 

images reflecting the as-is status of the jobsites and accidentally taken images which most scenes 448 

are occupied by ground or sky other than the jobsites. To reduce the computational cost for visual 449 

data filtering, we resized the images to be 600 pixels wide, and regularly sampled a frame in every 450 

0.2 to 1.5 seconds in the entire videos based on the similarity level between adjacent video frames. 451 

The confusion matrix was generated to report the segmentation accuracy (Figure 9). In the 452 

experiments, the average accuracy for three classification categories was 90.1%. Figure 10 shows 453 

examples of the semantic segmentation regarding the two case studies (Orange: built environment 454 

under construction, Green: construction resource, Purple: environmental objects consisting of sky, 455 

ground soil, and vegetation). We observed that there was a relatively high confusion between 456 

‘Construction Resources’ and ‘Environmental Objects’ categories as shown in Figure11. 457 
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 458 

 459 

Figure 9: Confusion matrix of the semantic segmentation in our case study. 460 

 461 

 462 

Figure 10: Examples of sematic segmentation for different construction jobsites. 463 

 464 
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 465 

Figure 11: Examples of poor segmentation between semantic categories. 466 
 467 

 Through the semantic segmentation stage, image frames involving objects of interest that 468 

appear in the middle of the image frame were given high scores. The scores were normalized, and 469 

the images with the score of 80 or more were retrieved in our case studies. Then, in the second 470 

filtering step, snap point values (i.e., photo-worthiness) of testing images were obtained and 471 

normalized, and those with score of 80 or more were considered as photo-worthy images. The 472 

performance of the proposed method was compared with the snap point detection method [4] that 473 

retrieves intentionally-taken photos, and the saliency method [3,45] that investigates the presence 474 

of objects aesthetically showing good quality. For the comparison, a precision-recall curve was 475 

obtained to evaluate the overall performance of visual data filtering with different threshold values 476 

at each filtering process. To obtain precision and recall values, True Positive (TP), False Positive 477 

(FP) and False Negative (FN) values were calculated at each threshold. TP is the number of images 478 

that are correctly classified as photo-worthy, FP is the number of images that are incorrectly 479 

classified as photo-worthy, and FN is the number of photo-worthy images that are not classified 480 

as photo-worthy. Precision and recall values are calculated as follows:  481 

 482 
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Precision =  
TP

TP + FP
 (5) 

 483 

Recall =  
TP

TP + FN
 (6) 

 484 

 In our case studies, a threshold value at the second filtering process was fixed as 80 in the 485 

comparison study, and then different precision and recall values were obtained by changing a 486 

threshold value at the semantic segmentation stage from 0 to 100. Likewise, the precision-recall 487 

curves of the prior works of the snap point detection [4] and the saliency method [3,45] were 488 

obtained by changing threshold values of their scores to select photo-worthy images. Figure 12 489 

shows the obtained precision-recall curves. 490 

 491 

 492 

Figure 12: Precision-recall curves of our method (red), (Xiong and Grauman 2014) (blue), and 493 

(Dhar et al 2011) (black) for filtering raw video footages taken from aerial perspective in 494 

construction jobsites (Left: Case#1, Right: Case #2). 495 

 496 

 In our experiments, we observed that the proposed method delivers a close-to-human 497 

judgment for photo selection from raw video footages in the context of construction 498 
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documentation, as shown in Figure 13. There are two possible reasons why it was observed that 499 

the proposed method performed better than the prior works, in the context of construction 500 

documentation. First, the proposed method employed the semantic segmentation at the first 501 

filtering process to filter out images without construction-related objects. Moreover, the 502 

composition of visual contents was also considered to evaluate the photo-worthiness based on the 503 

locations of construction related-objects in an image frame. We believe that this strategy militated 504 

in favor of the selection of construction-related photo-worthy images. Second, we have 505 

investigated and used the highly influential visual features in the context of construction 506 

documentation at the second filtering stage, which is different from others in the context of daily 507 

life [4]. Such feature engineering was found to be helpful for improving the filtering performance 508 

in the context of construction site monitoring. 509 

 510 

 511 

Figure 13: Examples of the experimental results of the proposed method. Top: unlikely snap 512 
points, and Bottom: ‘photo-worthy’ frames. 513 
 514 

 Deploying computational methods to perform visual data filtering for achieving a higher 515 

level of accuracy (especially, the part of semantic segmentation) generally require additional 516 
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computational cost as well as a large number of semantically labeled images as a training dataset. 517 

Rather, we have mainly focused on algorithmic improvement for filtering construction-related 518 

large-scale visual data building upon reasonably fast and yet robust methods that can be performed 519 

with the typical computation power of consumer-level computers possessed by practitioners. In 520 

this regard, we built upon low-level features to perform faster both in the training and testing 521 

phases and tuned hyper parameters in a way that the computational cost can be reduced while the 522 

algorithm performs with a reasonable range of accuracy. Overall, through our case studies, we 523 

could observe that the proposed method promises the potential of selecting photo-worthy image 524 

frames related to construction projects from raw visual data. 525 

 526 

7. CONCLUSION 527 

The proliferation of affordable camera-equipped devices that can record high quality video 528 

footages promotes visual monitoring of construction sites. As a result, large-scale visual data in 529 

the form of numerous still images or long-sequence video sequences are being collected from 530 

construction sites on daily, weekly or monthly bases. In this regard, the visual data overload is 531 

regarded as a major issue in visual monitoring of construction projects. To address such challenge, 532 

this paper presents a new method to filter construction visual data building upon (1) semantically 533 

segmenting contents of images to investigate the presence of objects of interest and its spatial 534 

composition; and (2) estimating and assessing the likelihood of the image frames to be 535 

intentionally taken. In our two case studies, the proposed method has shown the high accuracy in 536 

identifying photo-worthy image frames from large-scale raw visual dataset for construction 537 

monitoring purposes that is close to visual data analytics based on human judgment. The main 538 

contribution of this work is to automate construction visual data filtering, retrieving images that 539 
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are valuable for documenting the as-is status of construction jobsites from video footages captured 540 

via UAVs. Such automation will save time and effort of practitioners who should manually select 541 

and document informative image frames to report or assess various construction performance 542 

metrics (e.g., construction progress or safety). While this work has demonstrated the potential to 543 

convert large-scale visual dataset into concise visual photologs in the construction domain, open 544 

research challenges still exist: (1) as a proof of concept, limited numbers of object categories were 545 

studied in the semantic segmentation process of our case studies. Segmentation with more 546 

categories will retrieve more distinct objects from given visual dataset, but require larger training 547 

dataset that would be computationally expensive. Further study needs to investigate such trade-off 548 

for robust visual data filtering in the construction domain; and (2) to minimize the overlap among 549 

filtered image frames, raw video frames were sampled based on the sampling frequency that was 550 

empirically determined in our case studies. Here, the high sampling frequency may need to be 551 

considered for particular locations in construction sites that requires rigorous monitoring and 552 

documentation. In this case, it would be better to set an adaptive sampling frequency for visual 553 

dataset representing those areas, and thus more research needs to be conducted to study such 554 

dynamic sampling rate with respect to image contents for effective construction documentation. 555 

All these issues are currently being explored as part of our ongoing research. 556 

 557 
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