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ABSTRACT
With the rapid development of Software-Defined Networking (SDN)
advocating a centralized view of networks, efficient and reliable
Distributed Denial of Service (DDoS) defenses are necessary to
protect the centralized SDN controller. In this work, we explore the
robustness of DL-based DDoS defenses in SDN against adversarial
learning attacks. First, we investigate generic off-the-shelf adversar-
ial attacks to test the robustness of DDoS defenses in SDN. Then, we
propose Flow-Merge for realistic adversarial flows while achieving
a high evasion rate. The evaluation shows that the proposed Flow-
Merge is able to force the DL-based DDoS defenses to misclassify
100% of benign flows as malicious.
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1 INTRODUCTION
Software Defined Networking (SDN) overcomes scalability chal-
lenges in network management by a centralized view of a network
with many components. A programmable controller in SDN can see
all switches and endpoints in a network and manage flows between
them, providing a better and easier network monitoring and enhanc-
ing security compared to traditional networks [7]. On the other hand,
it has been shown that SDNs are vulnerable to Distributed Denial of
Service (DDoS) attacks, which target the centralized controller [3].
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Those attacks flood services with malicious or undesirable traffic,
disallowing them from processing legitimate requests. Moreover,
adversarial attacks are on the rise, an adversary can make the model
misclassify by applying small perturbations to the input, resulting
in adversarial examples (AEs) [1, 4, 6]. The crafted AEs are very
similar to the original ones, and are not necessarily outside of the
training data manifold, making them hard to be distinguished from
legitimate ones. In the context of IDSs in SDN, the failure of the
anomaly detector may result in disastrous consequences, such as
the failure of the entire network since a successful DDoS on the
centralized controller effectively brings all the switches down.
Contributions. 1) We investigated applying generic adversarial
learning methods on DL-based IDS in SDN. Our experiments demon-
strate that although these methods can achieve high evasion rate, the
generated adversarial flows are not realistic, precluding the appli-
cability of generic approaches to DL-based IDSs in SDN. 2) We
propose Flow-Merge, an approach specifically designed to fool DL-
based IDSs in SDN, while maintaining the characteristics of original
flows. Flow-Merge is able to achieve targeted and untargeted attacks.

2 APPROACH
Generic Adversarial Attacks. Generic adversarial attacks were de-
veloped for image misclassification by small perturbation to the
input, leading to incorrect model output. In this study, we utilize five
adversarial attack algorithms: Carlini & Wanger (C&W), Elastic-
Net, DeepFool, Momentum Iterative Method (MIM), and Projected
Gradient Decent (PGD) to generate AEs by applying a small pertur-
bation to the input, leading to incorrect model output. Although the
aforementioned methods excel on images, they were not designed to
consider feature dependencies. These methods focus on misclassifi-
cation, regardless of the functionality, i.e., a malicious adversarial
flow may be misclassified as benign with a feature space representing
zero packets, resulting in functionality preserving issues.
Flow-Merge. In this approach, the features of the original and the
mask flows are combined using one of two approaches: accumu-
lating or averaging. The count-based features, such as the number
of incoming/outgoing TCP flows, are accumulated, while the ratio-
based features, such as the fraction of TCP flows over the total
number of incoming/outgoing flows, are averaged in a weighted
form. The weights for each ratio-based feature are protocol-specific.
For instance, the number of incoming TCP flows determines the
weight of the fraction of TCP flows with the SYN flag set. At the
feature level, let X = {x1, . . . , xk } be the features of the original
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Table 1: Per-class flow records distribution.

Class types
# of records

Train Test
Normal (C0) 49,179 21,076

DDoS attacks

TCP (C1) 5,471 2,344
UDP (C2) 5,273 2,260
ICMP (C3) 1,602 686
TCP & UDP (C4) 4,694 2,011
TCP & ICMP (C5) 4,739 2,031
UDP & ICMP (C6) 4,437 1,902
All (TCP & UDP & ICMP) (C7) 5,615 2,407

Total 81,010 34,717

Table 2: Misclassification rate against adversarial attacks. Acc
is the accuracy of the baseline model, EN is ElasticNet method,
D. Conf. refers to the detection model., and C. Conf. refers to
the classification model.

Model
Baseline Model(%) Attack Misclassification Rate (%)
Acc FNR FPR C&W EN DF MIM PGD

D. Conf. 99.83 0.05 0.34 98.92 99.84 62.78 93.65 99.76
C. Conf. 96.05 8.18 0.54 95.24 97.13 47.14 88.57 99.26

flow, and Y = {y1, . . . ,yk } be the features of the mask flow. A fea-
ture vector of the masked flow (modified one) is then calculated as
Z = {z1, . . . , zk } such that zi = [n/(n+m)]xi +[m/(n+m)]yi , where
n is the number of packets associated with the studied protocol in the
first flow, andm is the number of packets associated with the same
protocol in the second flow. The count-based features are simply
accumulated (i.e., zi = xi + yi ).

3 EVALUATION
Dataset. For benchmarking, we use the dataset provided by Niyaz et
al. [5] to evaluate the performance of the methods in this study. The
dataset consists of 68 statistical features, divided into TCP-related
features (34), UDP-related features (20), and ICMP-related features
(14). The per-class distribution of the dataset is shown in table 1.
Intrusion Detection System. We trained two CNN-based mod-
els for detection (two-class classification) and classification (eight-
classes classification) of intrusion attacks. The detection and classifi-
cation models achieved a remarkable accuracy rates of 99.83% and
96.05%, respectively.
Adversarial Attacks Configuration. To investigate the robustness
of the utilized models against adversarial attacks, we generate AEs
based on five different off-the-shelf methods: C&W, ElasticNet,
DeepFool, MIM, and PGD. The misclassification results are reported
in table 2, we achieved an overall misclassification rate of up to
99.84% using ElasticNet.
Flow-Merge. The experiments are carried out for both detection and
classification. For detection, the goal is to misclassify the malicious
flow into benign and vice versa. Table 3 shows the detailed results of
misdetection rates using Flow-Merge for each dominant flow. The
results show that the adversary can forge a malicious flow classified
as a benign flow for all three dominant flows. For misclassification,
we achieved a 100% misclassification rate from all attack classes
to benign. The detailed results of benign targeted misclassification
attack is provided in Table 4.

Table 3: Flow-Merge misdetection rates. Columns and rows are
the original and predicted labels.

Flow type Benign Malicious

TCP
Benign 0.003 0.986

Malicious 0.997 0.014

UDP
Benign 0.888 0.818

Malicious 0.112 0.182

ICMP
Benign 0.892 0.939

Malicious 0.108 0.061

Table 4: Misclassification to benign using TCP, UDP, and ICMP
dominant flows. Columns refer to the original label and rows
refer to the predicted classes.

Flow type C0 C1 C2 C3 C4 C5 C6 C7

TCP
C0 1 1 1 1 1 1 1 1

C1–C7 0 0 0 0 0 0 0 0

UDP

C0 1 1 1 1 0.989 0.996 1 0.999
C1 0 0 0 0 0 0 0 0
C2 0 0 0 0 0.004 0 0 0.001
C3 0 0 0 0 0.004 0 0 0

C4–C5 0 0 0 0 0 0 0 0
C6 0 0 0 0 0.001 0.004 0 0
C7 0 0 0 0 0.002 0 0 0

ICMP
C0 1 1 1 1 0.999 1 1 1

C1–C6 0 0 0 0 0 0 0 0
C7 0 0 0 0 0.001 0 0 0

4 CONCLUSION
This work investigated the robustness of DL-based DDoS defenses
in SDN against adversarial attacks. Flow-Merge utilizes a weighted
merging technique over ratio-based features to craft the AEs. The
evaluation results show a misclassification rate of 99.84% using
generic adversarial attacks. Moreover, Flow-Merge produces real-
istic adversarial flows for targeted misclassification with a success
rate of 100%, misclassifying all malicious flows into benign. The
extended version of this work can be found in [2].
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