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Abstract—With the rapid growth of the Internet traffic and
the intensity of online transactions taking place, it is expected
that the current routing needs careful modifications and smart
innovations to ensure effective and reliable end-to-end packet
delivery. This involves new feature developments for handling
traffic with reduced latency to tackle routing scalability issues
in a more secure way and to offer new services at cheaper
cost. Considering the fact that prices of DRAM (Dynamic Ran-
dom Access Memory) or TCAM (Ternary Content-Addressable
Memory) in legacy routers are not necessarily decreasing at a
desired pace, cloud computing can be a great solution to manage
the increasing computation and memory complexity of routing
functions in a centralized manner with optimized expenses. Such
cloud integration to routing is becoming plausible as cloud
providers now offer various pricing schemes and provide large-
scale computing infrastructure to meet the users’ choice. Focusing
on the attributes associated with existing routing cost models
and by exploring a hybrid approach to SDN, we compare recent
trends in cloud pricing (for both storage and service) to evaluate
whether it would be economically beneficial to integrate cloud
services with legacy routing for improved cost-efficiency.

Index Terms—Network economics, Cloud computing, Cloud
pricing, SDN, Routing, Scalability

I. INTRODUCTION

HE Internet continues to witness a dramatic growth

(3.88 Billion end users in June 2017 [2]) in traffic as
people are more interested in diverse applications varying from
watching high-quality videos, streaming music and playing
online games to transferring bulk-data or making financial
transactions online. According to CISCO, by 2021, more than
81% of total bandwidth to be consumed by video traffic [3]
alone, which means the routers need to process more traffic
and forces ISPs to fit the ever-growing number of prefixes in
the existing routers in an efficient way.

Transition to IPv6 along with emerging Internet of Things
(IoT) applications contribute to the extra space requirement
in BGP routing tables. For example, IPv6 advertisements
consume almost double the space (16 Bytes) than IPv4 routes
in routing tables. Cisco Catalyst 6500 and 7600 series routers,
like WS-SUP720-3BXL, can support 1 Million IPv4 routes,
but only 512K IPv6 routes [4]. Research shows that BGP
routing table growth has already exceeded the 700K mark [5]
to ensure the network connectivity. Obvious measurement
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taken by ISPs, to cope up with the need for expanded FIB
(Forwarding Information Base) table, is installing additional
TCAMs or DRAMSs in routers. But still, it is questionable
how sustainable this approach will be in the future.

Moreover, configuration of traditional routers is tedious and
error-prone due to human involvement as manual coordination
between multiple of these routers require careful attention. To
alleviate the situation, Software-Defined Networking (SDN)
revolution became mainstream and data-centers embrace the
SDN architecture because of its programmability, vendor-
agnostic nature, and easier management. Flexibility to imple-
ment new innovations or patch a fix on the fly is another ad-
vantage of SDN as the forwarding plane is decoupled from the
control plane, and as a result, individual development of these
planes becomes natural as long as they are communicating
via a standardized protocol (like OpenFlow [6]). Despite its
benefits, concerns regarding SDN scalability [7] are uprising
mainly due to its orchestration of a centralized controller.

Nevertheless, most of the SDN research encompasses use
cases specific to data-centers, e.g., ElastiCon [8] deals with the
static mapping of a switch to the controller, Avalanche [9] was
developed to enable multicasting in switches, and a Network
Virtualization Platform [10] was proposed for enterprise-level
multi-tenant data-centers. The success of SDN in data-centers
motivates researchers to extend the software-defined approach
to find solutions in other scenarios like wide-area networks
(WANSs) that require high-end routers, firewalls, optimizers,
and complex configurations for consistent performance. Cen-
tralized control, following the SDN technique, in Software-
Defined WAN (SD-WAN) can exploit the holistic view of the
network for dynamic load-balancing, handle various types of
connectivity, and reduce complexity in management [11]. Yet,
economics and scalability of wider area SDN deployments as
in SD-WAN are not explored well.

From an economic perspective, ISPs’ routing business
model involves myriad items in the cost model that impact the
price of network services [12]— geo-location, traffic amount,
intellectual property or software licensing, and infrastructure
or operational expenses required in the process to name a few.
But, the primary contributing factor still remains the unit cost
of router memory which is not reducing in accordance with
Moore’s law [13] to keep the routing cost manageable while
BGP table size is constantly increasing.

In this context, to circumvent the scalability issues aroused
from SDN implementation, and help ISPs maintain a pleasant
economic outlook, cloud computing acts as a harbinger who
brings a new opportunity by offering its computational power
to handle complex and time-consuming tasks by relaxing the
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resource constraints, sometimes practically eliminating them.
The proliferation of cloud paves an excellent way [14] for
expanding businesses by sharing and multiplexing resources
statistically among its tenants to increase utilization without
actually hurting the performance customers are receiving from
the cloud at any given instant. On-demand self-service, capa-
bility of rapid provisioning and release, precise measurement
of usage [15] make cloud a low-cost, programmable alternative
to expensive routers for provisioning network connectivity
and services that an SD-WAN adopter enterprise can opt
for, allowing them to scale up as the demand increases [16].
Startups like VeloCloud, Aryaka are providing this capability
to the enterprises and according to Juniper, communication
service providers confirm that “SD-WAN is strongly aligned
with the criteria for cloud success on many levels” [17].

While router hardware price is not declining constantly, the
price of entry-level average public cloud services has been
reduced to a staggering 66% during the period of 2014 to
November 2015 and the price is expected to fall by 14%
more by 2020 [18]. Although the price is dropping rapidly,
it is expected to become stable soon as the market evolves
and gains substantial maturity. Competitors will be encouraged
to enhance their pool of resources by adding more high-end
machines for no extra charge [19].

In this paper, we explore the economics of wider area SDN
designs and characterize how sustainable SDN solutions can be
at longer distances than inside of a data-center. In particular,
we study how beneficial it may be to utilize cloud services
for solving the increasing memory complexity of routers.
We formulate the overall concept as “Cloud-Assisted Rout-
ing” (CAR), a potential solution to the scalability concerns of
wider area SDN and compare it with legacy routing. The key
question we aim to answer is that can the partial placement
of control and data plane routing functions to a remote cloud,
reachable only via public Internet transit, be economically
viable? Major contributions of our work include:

o More than 30 years of DRAM price data showing the
trend in router memory price (Section IV-A).

o A detailed empirical analysis and modeling of cloud
storage and service prices for the last 8 years to audit
the inclination of cloud related services’ prices (Sec-
tion IV-B, IV-C).

« Cost models for legacy routing and CAR to compare the
effect of memory price vs. modified routing design with
cheaper alternatives (Section III-A).

o Characterization of FIB size needed, with respect to the
legacy routing, at a local router to attain a target cost
reduction in CAR framework (Section V). This FIB size
threshold outlines the region of operation where the CAR
architecture is quantifiably cost effective.

o Understanding of the peering influence on the sustain-
ability of wider area SDN concepts like CAR and future
routing scalability under two extreme scenarios: no peer-
ing at all vs. complete peering (Section VI).

A preliminary economic analysis was presented in [1] and
the architectural discussion was detailed in [20]. This paper
extends by a) adding more data for DRAM and cloud prices,
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b) introducing the idea of Plutus point (optimum FIB cache
size and associated maximum savings in CAR), c) stating the
remarks on the ratio of total incoming traffic and FIB size for
long-term savings, and d) commenting on what-if conditions
based on heavy and light peering scenarios. Prior to delving
into details, our paper elaborates the motivation and related
works in Section II. We also describe CAR architecture in
Section III followed by a detailed price comparison analysis
for all variables associated with the cost models in Section IV.
Next, we show the break-even points and compute the CAR
savings in Section V. Section VI investigates the impact of
peering decisions between two ISPs on CAR. Finally, we
conclude the paper in Section VII with our observations and
suggestions for the future optimizations.

II. MOTIVATION AND RELATED WORK

Access time in Static Random-Access Memory (SRAM) is
very small (~ 4 ns) compared to DRAM (~ 40 ns), which
makes SRAM a perfect choice for router memory. Due to
SRAMs power-hungriness and overheated nature, its usage
is stringent (few Megabytes) and additional DRAMs (CISCO
4400 Series has 2-8 Gigabytes) [21] are being introduced to
store routing tables. Again, on-chip memory (CPU cache or
FPGA block RAM) usage has not increased as well because
of being very expensive with respect to conventional off-
chip memory (DRAM) [22]. As a result, research in this
area mainly focuses on developing memory-management algo-
rithms (e.g., SMALTA [23], FIFA [24]) to optimize IP lookup
time by aggregating FIB [25].

Multibit-trie architectures such as Tree Bitmap [26] have
attained much popularity in high-end routers (e.g, Cisco CRS-
1 Multishelf System [27]) because of its faster updates and
searching capability. But, this approach requires more memory
and thus other tree-based architectures (e.g., FlashTrie [28],
PopTrie [29]) have been explored to overcome the short-
comings. Another effort was taken by Rétvari et al. [30]
that demonstrated whether it was possible to guarantee IP
lookup performance by squeezing the existing router hardware
memory to facilitate the ever-expanding FIB table.

Keeping technical complexity in FIB memory management
aside, from pure business perspective alone, ISPs tend to
form bilateral (zero-dollar) peering settlements or customer-
provider relationships without considering the global view
when it comes to maximizing their profit. These service level
agreements (SLAs) sometimes result in inefficient routing
because of prioritization [31], impose unnecessary network in-
stability [32] due to conflict in peering policies, and thus, have
adverse impact on overall Internet ecosystem and ultimately
less aggregated market profit.

Network economics aims to explore strategies to minimize
the Capital Expenditures (CapEx) and Operational Expen-
ditures (OpEx) to maximize ISPs’ profit. Ma et al. have
investigated a game theoretic approach [33] to achieve an
efficient, fair and optimal routing among a group of profit-
sharing ISPs. A Cost-Aware (CoA) caching [34] scheme has
also been proposed to see the feasibility of cost minimization
that contradicts popular cache algorithms with fundamental in-
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tention of attaining maximum hit-ratio, and rather emphasizes
specifically to reduce cost and offers economic incentives.

However, most of the network economics analysis are lim-
ited to either peering business relationship between multiple
ISPs or how to shape the traffic to conciliate individual ISP
budget for reducing the cost. Having said that, Motiwala
et al. [35] present a cost model which considers the total
volume of traffic flow and the cost of carrying them through
the network, offering the operators an opportunity for traffic
engineering in path selection by identifying the most expensive
flows and routing them through an alternate, less-utilized and
more economical transit. This is the closest to our proposed
model. Indeed, they classify the main cost contributors into
two categories, namely Interconnect costs that comprises
transit fees, port costs or some fixed costs and Backhaul
costs which represent circuit, capital, and operational costs
altogether. We are interested in one of the components of
Backhaul costs, i.e., router cost, to be precise.

Recent observations [36] on the cloud being cheaper, closer
and higher quality (cloud challenges are reducing) attract net-
working community for a longer term. Cloud service providers
are not only reducing the price but also they are investing
more to offer newer feature sets and innovative services by
developing their high-computation infrastructure that is capa-
ble of supporting a wide range of new applications. Features
like load-balancing and auto-scaling have already become
a common practice by the major providers like Amazon,
Microsoft, or VMWare. Vendors are shifting towards per-
second from per-hour billing schemes to provide more precise
and detailed billing, which benefits enterprises with much
flexibility [37]. Offerings of additional discount (up to 75%),
albeit the requirement of a committed usage over the period
of one to three years, make the cloud a lucrative choice to
include while designing a cost-effective architecture.

Since the emergence of cloud computing, Amazon leads the
industry with Amazon Web Services (AWS), while other big
companies like Google and Microsoft have branded their own
services as Google Cloud Platform and Microsoft Azure. All
three provide file storage capability (Simple Storage Service
(S3) by Amazon, Google Drive by Google, OneDrive by
Microsoft) as well as facilitate services like Software as a
Service (SaaS), Platform as a Service (Paas) or Infrastructure
as a Service (laaS) and charge users accordingly. Being the
dominant player in cloud computing market, Amazon sets the
tune by continuously slashing cloud service price by 16% to
28% (varies by region and services) [38], [39] which, in turn,
impels other competitors to follow the trend.

Customers like Netflix has already migrated to AWS to
handle its 1000x growth in monthly streaming hours [40]. All
of its video contents, business logic, data analysis and service
availability is now hosted on Amazon. AirBnb, Adobe are also
housed in AWS and are using EC2 (Elastic Compute Cloud)
with other services for load balancing, simplified auto-scaling
or efficient supervising purposes [41], [42].

Google cloud customers like Snapchat uses storage service
for storing images, compute engine for image processing, and
BigQuery for data analysis [43]. Spotify also uses BigQuery to
analyze users’ listening patterns to provide a better experience
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while Best Buy is using Google App Engine to reduce main-
tenance overhead for quick development and scalability [44].

Armbrust et al. [45] discuss the elasticity of the cloud
system by showing an example of pay-per-use pricing for the
cloud. In business, it is beneficial to have the ability to add
or remove resources at any time. Methods of cloud pricing
are always an issue between the user and cloud system [46].
But, earlier works primarily accentuate the computational
expenses caused by distributed systems on the cloud instead
of evaluating the storage price.

In addition to analyzing the router hardware cost in our
model, we also need to understand the future cost-effectiveness
of this trend of delegation to cloud. Our study investigates
this issue and, specifically, we look at the consequences of
delegating routing (network layer) functionality, partially, to
cloud with a focus on FIB table caching and its causation
of data packet delegation to cloud. In this regard, we also
consider the transit cost incurred due to the packets delegated
towards cloud using physical infrastructure. To augment our
cost model, we use data transmission cost model based on the
quality of service, proposed by Fishburn [47].

III. A COMPARATIVE MODEL

An architectural view of hybrid “CAR router” is illustrated
in Figure 2. It is to be noted, CAR aims to find a middle
ground where it can exploit both the local hardware to scale
router performance and a completely cloud-based approach
for a highly flexible routing service. Following the basic
SDN architecture presented in Figure 1, wider area SDN
deployments will require southbound API protocols to be
implemented over longer distances. CAR is looking at the
case when the southbound API may need to be implemented
over public transit. Similar to how virtual memory systems
use secondary storage to maintain full content, CAR uses the
cloud to implement the full functionality of Router X (RX) and
keeps RX as ‘active’ while Proxy Router X (PRX) as ‘passive’.
CAR follows a homogeneous approach of RouteFlow [48],
previously known as QuagFlow. The differences are, in CAR,
a) the controller sits on the cloud, and both RX and PRX
can act as separate entities, and b) RX and PRX are capable
of establishing BGP peering with others by themselves. CAR
designers should follow these two principles [20]:

1) Computationally intensive but not-so-urgent tasks (e.g.,
BGP table exchange during peering establishment,
shortest-path calculations, spanning all entries) should
be offloaded to cloud as much as possible. It is PRX’s
responsibility to store the full FIB table and in an unlikely
event of RX’s failure to handle data and control plane
functions, PRX should act as the default point of service.
Checking the drop packet statistics in RX, periodically or
after a certain time interval, PRX should send updated
FIB information to RX.

2) Keep data plane mostly at the RX while some of the
control plane operations such as on-demand route com-
putations due to failures, collection of flow-level simple
statistics or request for updated routing table will still
be done at RX. However, CAR should orchestrate heavy
routing optimizations at PRX.
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Fig. 1. Basic SDN architecture

Even though PRX can be designed to keep only the re-
maining not-so-popular prefixes that RX does not store, such
implementation is not advisable since this will generate a
higher volume of exchanged CAR messages between the proxy
and the active routers. During every single route update phase,
RX has to share its partial FIB with the cloud so that PRX can
populate a new list of popular prefixes combining its own table
and the table it received from RX. While in “full list stored in
PRX” case, RX can refrain from sending its FIB table to PRX
and reduce the CAR message size.

Due to the Internet’s best effort nature blended with het-
erogeneity of cloud service configurations, it is impossible
to guarantee the latency and reliability of optimal cloud
services, and therefore, related challenges need to be addressed
before migrating routing functions to the cloud. CAR providers
may incorporate multiple clouds in the design and use an
intermediary, similar to CloudCmp [49] or Smicloud [50], to
select the “best” public cloud provider based on RX’s location,
response time and provider’s service cost. With a strategic
selection of the PRX, latency degradation can be compensated.

Empirical evaluation shows that the background load (gen-
erated by multiple tenants) of a cloud provider may interfere
with the perceived performance of latency-sensitive tasks [51],
and already existing real-time multimedia applications such
as cloud gaming are the worst sufferers from such incidents.
However, dynamic utilization of the datacenters located near
to end-users improves the latency dramatically, and, by pre-
venting the tenants to go beyond their allowance (in the static
reservation), services like Silo [52] can offer predictable la-
tency. CAR can also capitalize on such techniques to minimize
the latency caused by offloading routing service to the cloud.

As far as the ISPs’ CapEx and OpEx is concerned, utilizing
multiple cloud vendors will be effective to achieve cost sav-
ings. With CAR attaining enough momentum and more ISPs
embracing its design, it is possible to observe such scenario
where i) multiple routers of an ISP and/or ii) multiple ISPs
are being served by the same cloud vendor. In both of these
cases, CAR architecture will not only help ISPs to save money
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Fig. 2. CAR architecture
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in OpEx as well as CapEx but also will be able to perform
intra- and inter-domain routing optimizations.

There is a tradeoff between the offloading cost and per-
formance degradation. In general, as the routing functions are
moved towards the cloud, the delay between the router and the
full routing functionality increases but the offloaded functions
relieve the router. Having a “fog computing” support closer to
the routers will certainly help to add another level of caching
to the routing functions. A key potential gain is to perform
centralized optimizations and control tasks at the cloud [20],
and implementing traffic engineering decisions there. Thus, the
CAR designer’s decision here is to fine tune this tradeoff by
choosing the right number of caching levels and their distances
to the router(s), and the amount of resources at each level.

Akin to already mentioned key contributors of ISPs CapEx
and OpEx in Section I and Section II each cloud provider
identifies their own cost factors, therefore it may vary, but the
most common ones [53] include i) server cost (per GigaByte
data storage, RAM size), ii) computing cost (running Virtual
Machine hours per vCPU), and iii) data transfer and network
cost (upload/ download bandwidth, IPv4 or IPv6, number
of VLANS). In the following sections, we shall particularly
explore the cost models involving these factors and see how
much they have evolved over the course of time.

A. CAR vs. No CAR Cost Models

To begin our analysis, first of all, we have constructed a very
naive cost model for CAR and traditional routing system based
on DRAM price, transit cost, cloud storage, and service price.
However, infrastructure costs like laying a sub-sea cable and
equipment purchase for running the business or administrative
overhead of technical staffs are ignored in this study as we
are focusing on long-term consideration and these costs will
eventually be distributed over time. For instance, we do not
consider the fact that in 2016, US broadband providers in-
vested approximately $76 Billion in network infrastructure and
the total expenditure from 1996 to 2016 was $1.6 Trillion [54].
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Fig. 3. IP prefix count vs. flow count

Let, d and ¢ be the $/bit cost of storage at the local DRAM
and the cloud, respectively. Considering, F' (in bits) as FIB
size and [ be the percentage of FIB that needs to be stored at
the local router (basically, size of FIB cache) to sustain an ac-
ceptable average delay of forwarding time for packets towards
the cloud. Here, “acceptable” means the new forwarding delay
should be very close to the traditional router lookup delay.
Assuming z (in $/bit) being the delegated packets transmission
cost to the cloud, models for the operational cost of traditional
router C and CAR router C can be formulated as follows:

C =dF (Eq. 1)
C =dFl +cF + zp(l) (Eq. 2)

where p(l) is the amount of traffic delegated to the cloud
and follows a Log-normal decay distribution function of /
due to the significant locality in traffic. We have analyzed the
Anonymized Internet Traces collected by CAIDA’s EQUINIX-
NYC monitor [55] during December, 2018 and observed the
spatial (few popular prefixes) locality behavior (see Figure 3)
displayed by the traffic. The analysis shows that 8.63% of
destination IP addresses account for 95% of traffic flows at
this major traffic exchange. Previous studies also support this
claim of very high locality (10% prefixes account for 97% of
the total traffic [56]) in the prefix lookups at a router. Assuming
Y and w be the two constants for such temporal dynamics of
traffic destination in routers and being the total incoming traffic
towards RX, we can express p as:

p() =[1 =y In(l) - w]T (Eq. 3)

The more FIB entries we store, as [ increases, the more
bits will be needed at the local DRAM and less traffic, p(/)
will be delegated to the cloud. According to Figure 3, it is
reasonable to expect that / < 10% will be enough to support
most of the traffic locally and a very small amount of traffic
will be delegated. Since the transit cost depends on the amount
of delegated traffic, it will hence stay low as long as [ is
small, e.g., for [ < 10% less than 5% of the traffic will incur
transit cost. Thus, the transmission cost (third term in C‘) of
the delegated traffic will be fairly low due to its lower volume.
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In the following sections we use exponential decay to model
the cloud storage and transit costs as historical pricing data
shows that these services are becoming a commodity. This is
inline with the overall trend of bulk storage and communi-
cation prices declining exponentially in terms of the per unit
price (e.g., $/bit). This does not mean that the providers will
give them for free as the volume of the services customers
needs is also increasing. Given this, our analysis aims to reveal
which one of the three terms in Eq. 2 will be the dominant
factor in regulating a CAR router cost. In that sense, since
the last two terms have exponentially decaying per unit prices
¢ and z, they will not be the key factors in the overall CAR
router cost as long as their multipliers F and p(/) are under
control. Since F also exists in the first term, the second term
will not be the determining factor in comparison to the first
term. As for the third term, we observe in Figure 3 that p(/)
decays according to a Log-normal distribution. An exponential
decay would mean a faster decay, but the delegated traffic can
still be kept small by properly exploiting the locality in the
traffic as seen in Eq. 3 and Figure 3. As such, the Log-normal
distribution of the delegated traffic decays very fast, and once
a small portion of the FIB is cached, p(I) will be kept small.

Therefore, the driving factor will be the first term, dFI,
which is less than C. Thus, as long as / is managed properly
via good prefix replacement algorithms (i.e., FIB caching
algorithms), CAR routers will always be more cost-effective.
It is worth noting that C will likely to have more terms in
addition to dF due to the shifting of control planes tasks to
remote platforms. Also, note that compressing FIB [57] does
not really change the overall comparative analysis here since
a similar study can be made involving SRAM costs.

IV. PRICE COMPARISON

Forecasting memory price is uncertain due to its market
dependency. Supply-demand mismatch, environmental hazards
or even company policy can impact on the price variation.
Regardless, this price is certainly not comparable with the
current price offered by cloud providers. A back-end cloud
service (including storage facility) and a transit service towards
the cloud are two key components of CAR. Historically, the
prices for all of these services have been reducing as we shall
see in the following discussion.

A. DRAM Price, d

We use memory price data from McCallum [58] for our
study. This dataset contains memory prices from 1957 (tran-
sistor Flip-Flops) to 2017 (DIMM DDR3-1600), but we restrict
our starting date from 1984. Figure 4 shows the decaying trend
in DRAM prices with ups and downs on multiple occasions
like 1988-1990 or 1996-1998 periods. In 2013, the price
increased by 40% compared to its previous year which is not
visible in this figure as the recent price of DRAM is extremely
low compared to its initial predecessors. To get a more refined
view on the recent years, we plot average DRAM prices for
the last 10 years in Figure 5 separately. It is noticeable that the
price started falling after 2014 and reached its lowest ($3.55)
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in 2016. After that, the price is increasing again and is reported
to climb at least by 10% on average in 2018 [59].

Major DRAM makers like Samsung, Micron, SK Hynix
are undergoing a transition, as they are competing to take the
future lead and investing more to produce 18nm-class DRAM
instead of 25nm or even 20nm wafers. Moreover, robust and
continued demand from the mobile industry who are packing
4GB or 8GB of RAM in a smartphone contributes to the tight
supply and thus leading to the most recent price hike.

Taking all of these into consideration, how much cheaper
the (DRAM) memory price will become, in future, is un-
predictable. According to the trend-line (in Figure 4), we
expect the price to reduce exponentially with a small decaying
exponent, but it will not necessarily be extremely economical
in near future than what it is of today. Yet, based on the DRAM
prices in 1984-2016 and favoring the traditional routers, we
model the DRAM price with an exponential decay with respect
to time, t:

d(r) = 1,072,118.81¢70-0% (Eq. 4)

B. Cloud Storage Price, ¢

Gartner introduces Magic Quadrant, a graphical represen-
tation of research providing a summarized insight about any
given market, to position the competitors into four categories:
leader, challenger, visionary and niche. According to them,
AWS and Azure are the market leader and Google Cloud is
marked as the top visionary, who is late to join the market
(eight years later than Amazon) but can shift the momentum
into its favor anytime [60]. We base on this criteria and will
limit our discussion primarily on these three providers.

Cloud storage cost is advertised as per GB per month, even
s0, users have to pay some associated costs depending on the
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providers’ business strategies. Costs like storage request or
transaction count, HTTP operations (i.e, GET, PUT) counts are
often referred to as “hidden costs”, although service providers
mention them in their ‘terms & conditions’ [61]. For instance,
both Amazon S3 and Microsoft Azure charge for both of these
operations while Google does not charge for PUT requests.
For simplicity, we discard these variable costs and base our
analysis only on the storage costs.

Figure 6 evaluates the declining price trend for cloud
storage from January 2012 to January 2018. One interesting
observation we have found, albeit of its absence in the figure,
AWS initially launched S3 in 2006 setting the price at $0.15
per GB/month and continued to charge so ($0.14 in 2010)
until 2013, which is the year, Google publicly introduced its
cloud services with a cheaper price for the first time. To match
Google cloud storage plan, AWS halved the price; and since
then, these two providers and Microsoft are battling to offer
the lowest price to attract new customers.

Our proposed CAR architecture, to become efficient, needs
faster storage services, hence we consider LRS-Hot (Local
Redundant Storage) for Azure, S3 for AWS, and Google’s
Regional storage option. We discard other lower price options
available from each of the vendors like LRS-Cold (Azure)
with the price of $0.0152, Glacier (Amazon) with $0.004
and Coldline (Google) with $0.007 as these are comparatively
slower and will not grant frequent access that is needed for
PRX in the CAR architecture. It may be very effective for
CAR to have a multi-regional redundancy to offer intra-ISP
optimization. But, Amazon’s lack of similar service till date
and without enough concrete evidence of benefits achieved
from such approach, to maintain consistency, we have not
included multi-regional storage price analysis in this paper.

If the current trend continues, each of the cloud providers
will offer really low-cost unlimited storage. As the price goes
down, providers will be motivated to promote more value-
added services with a very little tweaking in their infrastruc-
ture. It will encourage them to implement routing feature on
the cloud system, where the user will be able to rent a specific
sized virtual router by paying a fixed (or on-demand) fee. It
can be treated similarly to already existing cloud-based virtual
machines. From the pricing data in Figure 8, we have deduced
the following decaying cost equation for cloud storage:

c(r) = 0.127003 (Eq. 5)
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Fig. 7. Hourly price comparison for On-Demand (OD) vs. Reserved Instance
(RI) for 1 or 3 years (Normalized to hours) cloud service

It would be interesting to see how much these vendors are
willing to lower the price to compete with the new providers
like Rackspace or Backblaze who are now offering similar
services with almost one-fourth of the market price [62].

C. Cloud Service Price

Using memory and compute resources of a cloud provider
also involves “servicing” price for the various labor needed to
set up the cloud service. Comparison between cloud service
price and actual physical router performance cost is not
straight-forward. Even so, Newnan [63] identified the fixed
cost for setting up the entire routing infrastructure, the variable
cost of power and employee salary, the marginal cost of each
additional performance improvement as the priority. If we opt
for cloud service instead of managing the router by ourselves,
it becomes easier to calculate the cost. Cloud providers charge
hourly basis for on-demand service and offer discounts for
year-long commitment. For convenience, we have normalized
all prices to hourly-basis in order to compare them.

Among the yearly committed discount options, AWS Re-
served Instance (RI) requires 1 year or 3 years of commitment
and saves around 24%-75% depending on the duration, Azure
has a similar policy with savings of 15%-45% and Google
offers a flat 37%-55% discount per year on its sustained use
policy. While IBM still does not have any yearly plan, it
negotiates for a month-to-month agreement with about 10%
reduced price. Discounts may vary based on the upfront
payment method as well, for example, AWS allows no upfront,
partial or full upfront payment options.

We plot a comparison between on-demand pricing and year-
long commitment for four vendors in Figure 7. As AWS
matures, we notice, it is not radically dropping the service
price now like it was doing before (“on 44 different occasions
over the last six to seven years”, stated in 2014 [64]), and
rather introduces multiple new instance types with better
performance for same or even cheaper price over the period we
conducted our research. We always prefer the latest instance
type, as suggested by AWS, with similar capability and try
to be consistent without remaining glued to a specific type.
We choose m2.xlarge for the year 2014, r3.large for the year
2015 and continue with r4.large afterward as all of these have
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Fig. 8. Cloud storage vs. service price trends (log-log scale)

2 vCPU with 15 GB of RAM. For compatibility, we select nl-
highmem-2 from Google Cloud and DI/ v2 from Microsoft
Azure as both of them have the same number of vCPU cores
with RAM size of 13 GB and 14 GB, respectively.

Figure 8 illustrates trends of average cloud service price and
cloud storage price simultaneously. It is clear, from the graph,
service price trend-line is less steep than the storage one. This
supports our observation of a market that is approaching to
a steady state, where the cloud providers will not consider
price reduction as their main selling point but will delve into
developing new features to attract customers instead. Taking
the average value to represent the entire business scenario, we
get the following decay equation for cloud service price:

s(t) = 9.95¢70-01 (Eq. 6)

D. Transit Price, z

Packets delegated from the router will be transmitted over
the actual physical link towards the cloud incurring transit
cost. Depending on link type (i.e., dedicated or shared), the
cost will vary. ISPs treat data transmission cost as the epitome
of monumental costs involved in Internet business, as it, alone,
asks for almost half of the long-haul network expenses [47].
However, the improvement of WDM (Wavelength Division
Multiplexing) empowers network operators to constantly re-
duce the price per unit bandwidth by facilitating the expansion
of transmission capacity without any extra fiber line setup.

To explore the trend in transit business, Fishburn and
Odlyzko [47] considered two types of data demands. First one
is delay insensitive (A) and another one is sensitive to delay
(B). They also proposed two different services for these data
types: a) separate network for A and B with different pricing
schemes; and b) a single network with a unified price for both.

Analyzing this work and based on our research with prices
for minimum commitment [65], [66], [67], we plot transit
costs in Figure 9. We observe the decay trend in transit costs
with larger R%-ed value, supporting the well-fitting nature of
our linear regression model. This decay trend will eventually
promote more off-loading of packets to cloud for routing
purpose. To ensure the validity of the model, we have also
considered the existence of bias in the prediction by evaluating
the residual plot (which we do not include due to space
constraints) and found that the values were scattered randomly
around zero with the residual center at zero.

1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2947030, IEEE

Transactions on Network and Service Management

1400

1200

100 ] y = 1397.2e0:037x
" .
1000 -, R7=0.9%

& 800 . e
a -
= e
S 600 1 w
; i W]
£ 400
a

0.1
| 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018!
e T e e 3

200

0 g \ f
1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Fig. 9. Transit price trend

5
—— DRAM price

Cloud price

£

1,072,118.81¢ 003

w

N

Cost ($/GB)

=

0.12¢ 7003

0
Jan-18 Sep-19 May-21 Jan-23 Sep-24 May-26 Jan-28 Sep-29 May-31 Jan-33
Time (in mmm-YY)

Fig. 10. Cloud storage price vs. DRAM price

For CAR, utilizing a dedicated transit system to delegate the
packets to the cloud would be the best. Having said that, such
dedicated service policy does not exist, except leased fiber
lines. But, since this would limit the deployment of CAR to
only those RXs that can have leased fiber line connections, we
do not consider such leased transit service in our model. The
only available option for high-bandwidth transit are the ones
offered for generic use, which we consider. Fitting the data to
an exponential decay gives us the transit cost equation as:

2(t) = 1,397.19¢0-057 (Eq. 7)

V. EcONOMIC VIABILITY

Our modeling effort thus far gives an opportunity to explore
the economic viability and scalability of cloud-assisted SDN
architectures. We will now look at how legacy and cloud-
assisted routing (CAR) will compare in terms of costs, find
break-even points and explore regimes where one may be more
beneficial in the emerging trends of Internet routing ecosystem.

Figure 10 plots the cost comparison between cloud storage
and DRAM. According to the graph, the cloud price is cheaper
and if the current trend continues, it will take at least 15
years for DRAM to catch up. Referring to our discussion in
Section IV-A, DRAM price does not exactly align with the
decaying trend, which means, according to this graph, cloud
storage will certainly be more profitable compared to DRAM
in future. Hence, usage of cloud storage for routing purpose
will likely be economical and more common.

A. Break-even Points

Based on the cost models (Eq. 1) and (Eq. 2), we find the
break-even points between CAR (C‘ ) and No CAR (C) cases in
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Fig. 11. CAR vs. No CAR after 15 years (at Jan 2033)

terms of the costs. Although Figure 9 plots the transit cost in
$/M bps/month, for our calculation, we convert all the values
to GB to match the units with cloud prices. As a parameter
into this comparative analysis, we consider the percentage of
FIB that needs to be stored in RX, i.e., the FIB cache size.

1) Considering No Labor Cost: Figure 11 reports the
break-even between C and C. To calculate p value using Eq.
3, we need to know the total traffic amount 7',  and w. From
CAIDA Anonymized Internet Traces and Chicago (dirA) trace
statistics [68] we identified the values for ¢ and w as 0.064 and
0.78 consecutively. Furthermore, we have assumed transit fee
is charged for 20% of the total incoming traffic (2.31 Gb/s)
towards RX. We shall discuss this assumption in detail and
shall explore the feasibility of relaxing it, later in Section VI
For now, we see from the graph that C is lower than C when
FIB cache size is zero, i.e, if we store the entire FIB table in
the cloud and delegate all data traffic to PRX for processing,
CAR is economically beneficial than No CAR. We observe
that C continues to go down as FIB cache size increases. This
is because C includes transit price for the delegated traffic and
as RX stores more entry in FIB, fewer packets need delegation
which, effectively, minimizes the total cost. After a certain
point, C changes the direction and starts to climb up as FIB
cache size increases. We name this turning point as Plutus
after the Greek God of wealth as this marks the maximum
profit for CAR. Plutus point does not only indicate the optimal
FIB cache size, it also implies the maximum profit in CAR.
As point of tangent alludes an (X,y) co-ordinate in geometry,
Plutus point denotes the tuple of the optimal FIB cache size
and the maximum profit. According to the graph, keeping
around 10% of the entire FIB in RX will ensure the Plutus
point.

The fact that we need more DRAM to store more FIB entries
explains the increase in C after the Plutus point. Even though
RX will be able to handle most of the traffic by itself and
reduce the transit cost, DRAM price trumps the other variables
in € and cause the rise up. In the meantime, C maintains the
constant value as it is independent of the FIB cache size. The
cross-over between these two models happen when FIB cache
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size is 64%, which means, C is more economical as long as
we keep the FIB cache size less than or equal to around 64%
of the total FIB size.

2) Considering Labor Cost: According to Newnan’s en-
gineering economic cost discussion [63] and Gartner [69],
for a five-year life-cycle, the maintenance/support cost may
supersede the initial setup cost. So, the engineering/labor cost
for physical router maintenance may not be negligible. Though
most of these data are business proprietary information, we
can still say the labor costs will likely have a sizable impact
on the router service pricing. We compare our proposed
system, CAR, with an unrealistic approach to prove the cost-
effectiveness. We assume zero maintenance cost for traditional
routing, while CAR has both cloud service and storage cost.
We think this comparison will help us to understand how
beneficial CAR model will be even if we consider it in an
uneven condition. Figure 12 considers three cases.

i) Traditional routing cost, (DRAM cost only)
ii) CAR cost (only cloud storage expense), and
iii) CAR cost, considering both cloud storage and service
cost. For expressing CAR cost with service cost, we
revise Eq. 2 as follows:

Cs = dFl + cF + zp(l) + sp(l) (Eq. 8)

According to the plots portrayed in Figure 12, increasing the
FIB cache size will be more profitable for C, (case-iii) while
it is not certainly the case for C (case-ii). This may seem
contradictory to each other, but it is not. With FIB cache size
reduction, we essentially delegate more packets to the clouds
and thus injecting the additional cloud service cost.

Although this comparison does not show a break-even
between CA‘S and C, we would like to emphasize that our cost
model for C does not consider the recurring costs involved in
traditional routing (e.g., human-labor and daily maintenance),
which cannot be amortized over time. A fair comparison would
require consideration of the labor and management costs of
traditional routing and CAR’s centralization benefits from
possible management of multiple RX's being managed by the
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Fig. 13. CAR savings compared to legacy routing with no CAR in future

same cloud provider. Future work could explore these addi-
tional parameters involving inter-domain routing and business
aspects spanning multiple autonomous systems.

B. CAR Savings

So far, we have explained how much savings CAR can offer
at any specific time in future. We have extended our work
in Figure 13 to determine how much buffer with respect to
FIB cache size reduction a CAR engineer can enjoy over a
period of time. Here, the scale factor represents the percentage
of CAR savings over traditional routing, i.e., scale factor 1
means, there is no extra saving and both C and C are exactly
the same (break-even). Assuming y be the scale factor, we
state the relation as

C=vyC (Eq. 9)

Each point in individual curves represents the monthly
break-even point (with a certain scale-factor) in future. For
example, without any extra savings (y = 1), after 180 months,
graph plots 0.64 as break-even point for / (marked in Figure
as the Year 2033), which is exactly what we have seen
in Figure 11. This means, referring to our earlier detailed
discussion, storing less than 64% of FIB in RX will be
profitable for € in year 2033. The lower we set the y at (to
gain higher C savings), the more stringent FIB limitation is
set for that specific month. In our analysis, we varied y from
0.1 to 1 so that the impact of scale factor on maximum and
minimum cost savings for CAR can be clearly demonstrated.

Another observation from here is that all the curves are
concave and reach to their individual maxima. We shall discuss
about these highest achievable values, the threshold, for each
curve, and mathematically calculate them later on. FIB cache
size can not be reduced beyond that threshold for a specific
scale factor to achieve further savings.

Finally, we want to emphasize on the shaded area of the
figure (beyond y = 1 curve), anything on this area is not
profitable for CAR at all and engineers are advised to plan
accordingly for finding a suitable FIB cache size to serve their
own purpose. The dotted line represents 0.18 in Y-axis of the
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graph and this (18%) is the minimum FIB cache size at break-
even point for y = 1. Anything below this FIB cache size in
RX will make CAR cheaper than traditional routing.

Eq. 9 brings us to the following remarks.

Remark 1: In order to achieve a long-term scaling factor of
v for fixed total traffic T arriving at RX, the FIB cache size /
should be set to y as long as FIB table size F' monotonically
increases:

tlirgol(t) =y (Eq. 10)
Proof: Using C and C expressions from Eq. 1 and Eq. 2, we
can re-write Eq. 9 as following:

dFl+c()F +z(t)(1 =y In(l) —w)T = yd(t)F

Equating it for y, we get:

_d@FL+c(F + 2 (1 =y In(l) — )T
v d(F

(Eq. 11a)

Now substituting the values from Eq. 4, Eq. 5, Eq. 7,

. 0.12¢79937F 4+ 1397.19¢7%-%4 (1 — y In(l) — w)T

=1
107211881003 F
(Eq. 11b)
_ 0.12 1397.19 T o
=t 0721881 07211881 F O @ T ¥ Ind)e
(Eq. 11¢)

Second term in the above equation will be very negligible and
ignoring this value we get,

r T
=1+ [—0.0013F¢ In(l) + OOOBF(] — w)]e 00U
(Eq. 11d)

-0.01¢

Since, lim;_, € =0, we finally get:

y=1
This means, in future, if total incoming traffic towards RX
remains constant, FIB cache size in RX and the CAR savings
will have a linear relationship between them. For instance, if
we want CAR cost to be 50% cheaper than that of traditional

routing, storing 50% of full FIB as cache would be enough to
achieve the savings.

Remark 2: As long as the ratio of the total incoming traffic
T and full FIB size F does not increase more than 12.75%
per year, Eq. 10 will be always true.

Proof: See Appendix A.

VI. PEERING INFLUENCE

Throughout our analysis, we assumed that 20% of the total
traffic will incur transit cost and the rest will be transmitted
using either public or private peering. This is based on the fact
that Cloudflare, a prominent content-delivery network (CDN)
that operates 122 data centers across 58 countries around the
globe, observed a significant shift towards peering from the
year 2014 to 2016 and expected this trend to grow even more.
According to them, 40% of their traffic goes through peered
network relationship in North America, which is the lowest in

10

peering as they observed, while Europe and Asia have 60%
and Africa has 90% peered traffic [70]. One question that
arises is how CAR and No CAR costs will change as future
trends of peering increases.

Figure 14a plots multiple C graphs for varying amount of
transit traffic in the year 2033. It identifies the Plutus points,
optimal FIB cache sizes and associated maximum profits, for
individual graphs as well. The higher the transit percentage
is, the more Plutus point is shifted towards the right, meaning
less traffic delegation to PRX will be economically beneficial
which is self-explanatory as more transit cost will be charged
for more traffic to PRX.

To get a better understanding on the relationship between
transit traffic amount and its associated C values at Plutus
point, we vary the transit percentage from O to 100 and charge
that corresponding amount of traffic for transit to calculate
C. Observing the behavior of this relationship presented in
Figure 14b we can, conservatively, claim that if ISPs continue
to peer more and carry traffic among themselves without
charging extra, owning a smaller FIB cache will be sufficient
for CAR providers to offer cheaper routing services. As the
amount of transit traffic rises up, FIB cache size increases
almost linearly, yet, CAR is capable of saving at least 50% of
FIB at Plutus point when there is no peering and the entire
data traffic needs to pay the transit cost.

A. On Plutus Point

To evaluate the peering influence on Plutus point at any
given time, we introduce a new variable, A that represents the
percentage of the delegated traffic that will require transit cost.

Proposition 1: Y1 € R | 0 < A4 < 1, the optimal FIB cache
size [* at the Plutus point is
= Ay zT
- dF

Proof: Taking the first order derivative of Eq. 2 with respect
to [ and equating it to zero, we get

(Eq. 12)

d
E[dFl +cF+zp(D)]=0 (Eq. 13a)
Substituting p(l) with 1p(l) and using Eq. 3,
d
dF + /lza[T —yTn(l) -wT] =0 (Eq. 13b)

Hence, to formulate the equation for [*, we re-write Eq. 13b
in the following closed-form expression:

= Ay T
- dF

Our observations from Eq. 12 are multifold. First, the ratio
of transit cost z and DRAM cost d converges to zero if transit
cost keeps declining. If that is the case, then [* will get closer
to zero as well. Second, based on how peering relationship
between the ISPs evolve in future, it is possible that transit
percentage A may also increase or decrease. Third, as total
traffic T continues to grow, with same A value, larger [* will
be obtained and force the architecture to ensure a modest FIB
cache size to mitigate the traffic increase impact. However, as
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T keeps increasing, bigger full FIB will be required to store
the entire BGP table and the ratio of total traffic 7 and FIB
size F will play an important role to determine how CAR cost
grows over time. Finally, with A increasing, C at Plutus point
is also increased and after a certain value of A, C exceeds C
(see in Figure 14a for 35% Transit curve), and CAR becomes
no longer economically beneficial beyond that point.

B. On Optimal CAR Design

Eq. 2 calculates the CAR cost for any FIB cache size. By
using /* instead of /, we can get the CAR cost when optimal
FIB cache size is judicially picked by the CAR designer. This
gives us a chance to observe the peering influence at optimal
CAR design.

Proposition 2: If &, &, &3 are three positive constants and
f is a logarithmic function of transit percentage 1, CAR cost
at optimal FIB cache size C (1) will be:

CU*) = A6 - A6 f () + &

Proof: See Appendix B.

Now, according to Eq. 14, CAR providers can consider
C(I*) as a function of A (transit percentage) alone, and use this
condition to maximize their profit. Next, by setting A values
to the extreme, we get the boundary conditions for C(/*).

(Eq. 14)

Proposition 3: In a hypothetical environment in future where
ISPs are peering heavily with each-other (i.e., 4 — 0), CAR
cost at optimal FIB cache size C(I*) will be the direct product
of cloud storage cost ¢ and the total FIB size F.

C(I*) =cF (Eq. 15)

Proof: See Appendix C.

This equation is independent of DRAM cost d and exactly
resembles with Eq. 1 except for the fact that, d has been
replaced with ¢ (cloud-storage cost). This forecasts for a
future where ISPs, in a completely peered environment among
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themselves, will be able to store the full FIB table in the cloud
and delegate the entire traffic to cloud without any extra charge
since there will be no transit cost involved at all. If this actually
happens, then cloud providers can extend their footprint into
routing business aggressively by emerging themselves as new
candidates for ISP market and eliminate the existing ones
totally or embrace CAR architecture and form partnerships
to progress in a more conventional way.

Proposition 4: For light peering (i.e., 4 — 1), if transit
price z does not continue to drop, delegation to the cloud
will cost additional charge, which in turn will mandate CAR
providers to deal with the incoming traffic locally instead of
collaborating with the cloud. In such a case, the CAR cost at
optimal FIB cache size will be:

C(I*) = T[1 -y 1n(‘/;iFT) —w] - Ty + cF

(Eq. 16)
Proof: See Appendix D.

As T (total traffic through a router) increases, which is
expected to be, In function gives larger value and can even pro-
duce oo, mathematically. However, based on processing speed,
queue size and consumption of power, we can safely ignore
this possibility as every router will have its own threshold limit
and an electronic device can not perform indefinitely.

The multiplier of zT, in the first term of Eq. 16, is p (see Eq.
3), and the maximum value of it can be 1, as a router can
not delegate more traffic than it actually receives. To make
this possible, ¥ value can never be equal to zero for two
reasons. First, potential heavy hitters (popular prefixes) will
always exist in the router to exhibit temporal dynamics and
thus preventing ¢ from being zero; and second, even for a
capricious router with its arbitrary list of prefixes, if ¥ becomes
zero, In value will be undefined and the entire equation will
become indeterminate.

For any 0 < ¢ < 1 value, zT > zTy will be always
true. However, z7T and zTy will be very close to each other
unless iy becomes exceptionally small, which will be a rare
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phenomenon for the Internet. Now, if z does not continue to
drop as we have seen in Section IV-D, CAR providers have
to face a harsh environment where they are bound to pay for
every data traffic they delegate since there is zero peering.

Finally, the minimum value of p can be zero if router does
not delegate any traffic at all considering the transit situation.
This is the worst case scenario for CAR architecture where
RX avoids delegating towards PRX.

VII. SUMMARY AND FUTURE WORK

In this paper, we have introduced a new hybrid approach of
SDN that leverages the computational power of the cloud and
keeps the intelligence of router to some extent for reducing
the FIB size and eventually offer monetary benefits to ISPs.
Our primary interest is to show how much FIB reduction CAR
can offer since DRAM price is not consistent enough to rely
on in present condition. We have presented two cost models:
one for traditional routing and the other for CAR, in which we
have included the related variables that impact cost for each
service. We have also shown the trends for these associated
variables separately and tried to predict how they will behave
in future, in order to equip the Internet providers with a better
understanding of the nature of these variables.

We have shown that cloud storage is cheaper than DRAM
price and transit cost is following an almost consistent decay.
We then compare the economic viability of CAR with respect
to traditional routing by finding a break-even between the two
cost models. Although we initially focus only on storage cost,
we have also considered the cloud service cost to replicate
labor cost (as in traditional routing) and observed its effects
on the break-even points. Later we demonstrate how much
savings CAR can offer, regarding FIB cache size, in future
by using scale factor against traditional routing and we have
found that it is not possible to achieve unlimited savings for
any given scale factor.

Finally, we have considered the Internet peering impact on
our proposed architecture as it is specifically important for
CAR providers to know how much luxury they can afford
in delegating traffic to the cloud via paid transit. We showed
an example scenario for the year 2033, where at least 65%
of traffic needs to be routed through a peered network so that
adopting CAR will be economical. Our analysis indicates that,
with heavy peering, cloud providers will have an authoritative
say in setting the market price that may bring some turbulence
in ISP business. In contrast, with light peering, transit cost
needs to be very small, otherwise, CAR providers will not be
interested in delegating the packets to the cloud, and instead,
will store the entire FIB table locally.

We believe there is a considerable scope for further research
in this area and some of the key research questions include
developing a failure-resilient architecture, and intra- and inter-
cloud optimization using multiple RXs and PRXs. Regarding
future works on economic analysis, developing a cost model
for labor cost in traditional routing and to develop a model
for future traffic should get priority. A more detailed private
data (e.g., pricing of custom designs and services of DRAM
and cloud) would enable development of more sophisticated
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pricing models. Further, a thorough modeling of multi-level
caching of routing functions and exploration of how CAR
solutions may impact an ISP’s CapEx and OpEx in real world
settings is needed. We plan to develop a simple prototype
of CAR architecture using Quagga router and connecting it
with public cloud services to observe the feasibility of the
overall design. Finally, the tradeoff between the offloading
cost and the performance degradation due to the packets being
delegated to the cloud needs to be treated diligently.

APPENDIX A
PROOF OF REMARK 2

We can re-write Eq. 11d as:
T
y =1+ [-0.0013y In(l) + 0.0013(1 — w)]e—o-m’; (Eq. 17)

To maintain Eq. 10, the following must be true.

T
L oou

F

T
Following table includes some threshold values that — can
obtain after a certain period of time to maximize CAR profit.

t (in months) 1 12 24 36 48
£0-011 1.01 | 1.1275 | 1.2713 | 1.4333 | 1.616
TABLE IIT

THRESHOLDS FOR F RATIO

APPENDIX B
PROOF OF PROPOSITION 2

To obtain the optimal CAR design case, we substitute [*
to Eq. 2:

C(I*) = dFI* + cF + zp(I*) (Eq. 18a)
Substituting p(l) with 1p(l) and using Eq. 3,
C(I*) = dFI* + cF + Az[1 =y In(I*) — w]T (Eq. 18b)

Using [* from Eq. 12, we get:

C(I*) = Azl + cF + Az[1 - zpln(/lZIiT) - w]T (Eq. 18c)
= AZT[1 +¢ — w] - AzTY 1n(AZ;T) +cF (Eq. 18d)

= A6 - A6 f () + &3 (Eq. 18e)

Here, &1, &, &3 are constants while f is a function of A and
can be interpreted as following:

& =201 +¢ - w] (Eq. 18f)
& =Ty (Eq. 18g)
& =cF (Eq. 18h)
_qpA¥er .

S () =1In( IF ) (Eq. 18i)
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APPENDIX C
PROOF OF PROPOSITION 3

Using 4 =0 in Eq. 18d,

C") =& (Eq. 19a)
=cF [From Eq. 18h] (Eq. 19b)
APPENDIX D
PROOF OF PROPOSITION 4
Using 1 =1 in Eq. 18d,
A T
CU) = 2T - 7Ty — zTw — Ty 1n('%) +cF
T
= T[l -y 1n("”dLF) —w] - 7Ty +cF
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