
A Decidable Logic for Tree Data-Structures with
Measurements

Xiaokang Qiu and Yanjun Wang

Purdue University
{xkqiu,wang3204}@purdue.edu

Abstract. We present Dryaddec, a decidable logic that allows reason-
ing about tree data-structures with measurements. This logic supports
user-defined recursive measure functions based on Max or Sum, and re-
cursive predicates based on these measure functions, such as AVL trees
or red-black trees. We prove that the logic’s satisfiability is decidable.
The crux of the decidability proof is a small model property which al-
lows us to reduce the satisfiability of Dryaddec to quantifier-free lin-
ear arithmetic theory which can be solved efficiently using SMT solvers.
We also show that Dryaddec can encode a variety of verification and
synthesis problems, including natural proof verification conditions for
functional correctness of recursive tree-manipulating programs, legal-
ity conditions for fusing tree traversals, synthesis conditions for con-
ditional linear-integer arithmetic functions. We developed the decision
procedure and successfully solved 220+ Dryaddec formulae raised from
these application scenarios, including verifying functional correctness of
programs manipulating AVL trees, red-black trees and treaps, check-
ing the fusibility of height-based mutually recursive tree traversals, and
counterexample-guided synthesis from linear integer arithmetic specifi-
cations. To our knowledge, Dryaddec is the first decidable logic that can
solve such a wide variety of problems requiring flexible combination of
measure-related, data-related and shape-related properties for trees.

1 Introduction

Logical reasoning about tree data-structures has been needed in various applica-
tion scenarios such as program verification [32,24,26,42,49,4,14], compiler opti-
mization [17,18,9,44] and webpage layout engines [30,31]. One particular class of
desirable properties is the measurements of trees such as the size or height. For
example, one may want to check whether a compiler optimizer always reduces
the size of the program in terms of the number of nodes in the AST, or a tree
balancing routine does not increase the height of the tree. These measurements
are usually tangled with other shape properties and arithmetic properties, mak-
ing logical reasoning very difficult. For example, an AVL tree should be sorted
(arithmetic property) and height-balanced (shape property based on height), or
a red-black tree of height 5 should contain at least 10 nodes (two measurements
combined).

2 X. Qiu and Y. Wang

Most existing logics for trees either give up the completeness, aiming at
mostly automated reasoning systems [5,16,39,4], or disallow either data proper-
ties [32,58,28] or tree measurements [24,25]. There do exist some powerful au-
tomatic verification systems that are capable of handling all of data, shape and
tree measurements, such as VCDryad [26,42,36] and Leon [49,50]. However, the
underlying logic of VCDryad cannot reason about the properties of AVL trees
or red-black trees in a decidable fashion. In other words, they can verify the
functional correctness of programs manipulating AVL trees or red-black trees,
but they do not guarantee to provide a concrete counterexample to disprove a
defective program. Leon [49,50] does guarantee decidability/termination for a
small and brittle fragment of their specification language, which does not cap-
ture even the simplest measurement properties. For example, consider a program
that inserts a new node to the leftmost path of a full tree: Skipping lines 2 and
3, the program recursively finds the leftmost leaf of the input tree and inserts a
newly created node to the left. The requires (line 2) and ensures (line 3) clauses
describe the simplest properties regarding the size of the tree: if the input tree
is a nonempty full tree, the returned tree after running the program should not
be a full tree and should contain at least 2 nodes. Note that the full-treeness
full∗ and the tree-size size∗ can be defined recursively in VCDryad or Leon in
a similar manner. However, none of VCDryad or Leon can verify the program
below in a decidable fashion (see explanation in Section 5).

1 loc insertToLeft(Node t)
2 requires full∗(t) ∧ size∗(t) ≥ 1
3 ensures ¬full∗(ret) ∧ size∗(ret) ≥ 2
4 {
5 if (t.l == nil) t.l = new Node();
6 else t.l = insertToLeft(t.l);
7 return t;
8 }

In this work, our aim is to develop
a decidable logic for tree data-structures
that combines shape, data, and measure-
ment. The decidability for such a power-
ful logic is highly desirable, as the decision
procedure will guarantee to construct ei-
ther a proof or witness trees as a disproof,
which can benefit a wide variety of tech-
niques beyond deductive verification, e.g.,

syntax-guided synthesis or test generation.

The decidable logic we set forth in this paper stems from the Dryad logic,
an expressive tree logic proposed along with a proof methodology called Nat-
ural Proofs [26,42]. Dryad allows the user to define recursive definitions that
can be unfolded exhaustively for arbitrarily large trees. Natural proofs, as a
lightweight, automatic but incomplete proof methodology, restricts the unfold-
ing to the footprint of the program only, then encodes the unfolded formula
to decidable SMT-solvable theories using predicate abstraction, i.e., treating
the remaining recursive definitions as uninterpreted. The limited unfolding and
predicate abstraction make the procedure incomplete.

In this paper, we identify Dryaddec, a fragment of Dryad, and show that
its satisfiability is decidable. The fragment limits both user-defined recursive
definitions and formulae with carefully crafted restrictions to obtain the small
model property. With a given Dryaddec formula, one can analytically compute
a bound up to which all recursive definitions should be unfolded, and the small

A Decidable Logic for Tree Data-Structures with Measurements 3

dir ∈ Loc Fields G ∈ Loc Field Groups x, y ∈ Loc Variables K : Int Constant
f ∈ Int Fields r : Intermittence j, k ∈ Int Variables q ∈ Boolean Variables

Increasing Int function : mif∗(x)
def
= ite

(
isNil(x), −∞, max

(
{mif∗(x.dir)|dir ∈ Dir} ∪ {it

[
x
]
}
))

Decreasing Int function : mdf∗(x)
def
= ite

(
isNil(x), ∞, min

(
{mdf∗(x.dir)|dir ∈ Dir} ∪ {it

[
x
]
}
))

Increasing IntSet function : sf∗(x)
def
= ite

(
isNil(x), ∅,

(∪
dir sf

∗(x.dir)
)
∪ ST

[
x
])

Measure function Max-based : lif∗(x)
def
= ite

(
isNil(x), 0, max

dir∈Dir
lif∗(x.dir) + iter(υ

[
x
]
, 1, 0)

)
Measure function Sum-based : eif∗(x)

def
= ite

(
isNil(x), 0,

∑
dir∈Dir

eif∗(x.dir) + iter(υ
[
x
]
, 1, 0)

)
General predicate : gp∗(x)

def
= ite

(
isNil(x), true,

(∧
dir

gp∗(x.dir)
)
∧ φ

[
x.dir, x.f

])
(φ may involve other general predicates or increasing functions that only have positive

coefficients, or decreasing functions that only have negative coefficients.)

Measure-related predicate : mp∗(x)
def
= ite

(
isNil(x), true,

(∧
dir

mp∗(x.dir)
)
∧ φ

[
x.dir, x.f

])
(φ may involve anything allowed for general predicates and one Max-based measure function

lif∗in the form of lif∗(x.dir1)− lif∗(x.dir2) ≥ K)

Local Int Term: it, it1, it2, . . . ::= K
∣∣ x.f ∣∣ t1 + t2

∣∣ − t
∣∣ ite(υ, t1, t2)

Local Set Term: ST, ST1, ST2, . . . ::= ∅
∣∣ {it} ∣∣ ST1 ∪ ST2

∣∣ ST1 ∩ ST2
Local Formula: υ, υ1, υ2, . . . ::= it1 ≥ 0

∣∣ υ1 ∧ υ2
∣∣ υ1 ∨ υ2

∣∣ ¬υ
Fig. 1: Templates of Dryaddec Functions and Predicates

model property ensures that a fixed number of unfolding is sufficient and guar-
antees completeness. The Dryaddec logic features the following properties: a)
allows user-defined and mutually recursive definitions to describe the functional
properties of AVL trees, red-black trees and treaps; b) the satisfiability prob-
lem is decidable; c) experiments show that the logic can be used to encode and
solve a variety of practical problems, including correctness verification, fusibility
checking and syntax-guided synthesis. To the best of our knowledge, Dryaddec is
the first decidable logic that can reason about a flexible mixture of sophisticated
data, shape and measure properties of trees.

2 A decidable fragment of Dryad

Dryad is a logic for reasoning about tree data-structures, first proposed by Mad-
husudan et al. [26].Dryad can be viewed as a variant of first-order logic extended
with least fixed points. The syntax of Dryad is free of quantifiers but supports
user-provided recursive functions for describing properties and measurements
of tree data structures. Each recursive function maps trees to a boolean value,
an integer or a set of integers, and is defined recursively in the following form:

F ∗(x)
def
= ite(isNil(x), Fbase, Find), where Fbase stands for the value of the

base case, i.e., x is nil, and Find recursively defines the value of F ∗(x) based on
the local data fields and subtrees of x.Dryad is in general undecidable and Mad-

4 X. Qiu and Y. Wang

Int Term: t, t1, t2, . . . ::= K
∣∣ j ∣∣ mif∗(x)

∣∣ mdf∗(x)
∣∣ t1 + t2

∣∣ − t
∣∣ ite(l, t1, t2)

IntSet Term: S, S1, S2, . . . ::= ∅
∣∣ {t} ∣∣sf∗(x) ∣∣ S1 ∪ S2

∣∣ S1 ∩ S2

Measure-related Formula ψ ::= lif∗(x)− lif∗(y) ≥ K
∣∣ eif∗(x)− eif∗(y) ≥ K

∣∣
lif∗(y) ≥ K

∣∣ eif∗(y) ≥ K
∣∣ mp∗(x)

(x is related to lif∗, eif∗, or mp∗, respectively.)
Negatable Formula: l ::= q

∣∣ t ≥ 0
∣∣ t ∈ S

∣∣ ψ ∣∣ isNil(x) ∣∣ gp∗(x) ∣∣ ¬l
Formula: φ,φ1, φ2, . . . ::= l

∣∣ S1 ̸⊆ S2

∣∣ φ1 ∧ φ2

∣∣ φ1 ∨ φ2

(Every variable x can be related to only one measure function.)

Fig. 2: Syntax of Dryaddec logic

husudan et al. [26] present an automatic but incomplete procedure for Dryad
based on a methodology called Natural Proofs.

In this paper, we carefully crafted a decidable fragment of Dryad, called
Dryaddec, which is amenable for reasoning about the measurement of trees.

2.1 Syntax

The templates for recursive functions and predicates allowed in Dryaddec are
shown in Figure 1 and the syntax of Dryaddec is presented in Figure 2. To
simplify the presentation, these figures show unary functions and predicates
only, i.e., those recursively defined over a single tree. Dryaddec also supports
recursive functions and predicates with multiple arguments, which are amenable
to define data structures characterizing loop invariants, such as list segments,
tree-with-a-hole, etc.

Overall, Dryaddec allows seven categories of recursive functions or predicates
with various types, constraints on their definitions and forms of occurrence in
a formula. Figure 3 gives several common examples of recursive definitions ex-
pressible in Dryaddec. We explain the intuition behind each category below:

Increasing or decreasing Int function1 defines the maximum or mini-
mum value of it

[
x
]
, where x is the location being unfolded in the tree. The local

term it
[
x
]
is an integer term defined only based on the local data fields of x. The

most common example is it
[
x
]
= x.key; then the function gives the maximum

or minimum key stored in a tree. These increasing/decreasing functions can be
combined using standard arithmetic connectives to form atomic formulae.

Increasing IntSet function defines the union of all set terms ST
[
x
]
for

any location x under the tree, where ST
[
x
]
is a set of local integer terms defined

only based on the local data fields of x. The most typical example is the function
representing the set of all keys w.r.t. the data field key, where ST

[
x
]
= {x.key}.

These IntSet functions can be combined with regular Int terms arbitrarily to
form IntSet terms in Dryaddec, which can be further used to construct atomic

1 Intuitively, a Dryaddec function is increasing/decreasing if its value monotonically
increases/decreases when the input tree expands. The monotonicity will be formally
defined in Section 3.1

A Decidable Logic for Tree Data-Structures with Measurements 5

formulae for set-inclusion and subset relationship. The only restriction is that
the subset checking S1 ⊆ S2 can occur negatively only.

There are two types of measure functions. Intuitively, they recursively de-
fine Max- and Sum-based measurements of a tree or tree segment, respectively.
For each node x under the tree, it counts towards the measurement, i.e., the
height/size being increased by 1, if and only if a local formula υ

[
x
]
is satis-

fied. In Figure 1, this conditional value is written as iter(υ
[
x
]
, 1, 0), where r

is an integer constant called intermittence. For example, the black height for
red black trees can be defined with intermittence 2: ite2(x.color = black, 1, 0).
The intermittence’s semantics will be explained in Section 2.3. Specifically, when

υ
[
x
] def
= true and r = 1, the corresponding Max- and Sum-based functions de-

fine the regular tree height and size, respectively. In this paper, we denote them
as height∗ and size∗.

A measure-related Int term can be a measure function f∗(x) only, or a dif-
ference of form f∗(x1) − f∗(x2). A measure-related Int term can be compared
with a constant K. For example, one can specify two trees with the same height
using height∗(x1)− height∗(x2) = 0.

General predicate is satisfied by trees (x) if and only if a local constraint
φ is satisfied between any location in x. Notice that φ may involve other non-
measure-related functions or predicates (with some restrictions as shown in Fig-
ure 1). For example, the sorted∗ property can be defined based on max∗ and
min∗ (see the definition of sorted∗ in Figure 3).

Measure-related predicate is similar to general predicates. In addition
to everything allowed in the definition of general predicates, a measure-related
predicate is allowed to involve a single measure-related function in the differ-
ence form. For example, an avl∗-tree requires the height∗-difference between two
subtrees is at most one (see the definition of avl∗ in Figure 3).

2.2 Syntactic Restrictions for Decidability

As we have mentioned before, the syntax of Dryaddec is carefully crafted for
decidability. Besides the specific syntactical restrictions delineated above for the
definitions in each category of recursive functions or predicates, Dryaddec also
restricts how variables, functions and predicates can be related to each other. As
shown in Figure 2, a variable x is considered related to a measure function if x
occurs in a measure-related predicate or in the difference form f∗(x)−f∗(y). One
important restriction of Dryaddec is that a location variable can be related to
only one measure function. For example, Dryaddec cannot express a single-path
tree: height∗(x) = size∗(x).

Insight Behind the Syntax. Intuitively, the Dryaddec syntax character-
izes the class of formulae independent to the height/size of the tree. Hence non-
measure functions such as min∗ or max∗ can occur unrestrictedly in the logic, as
their values are only determined by the “witness nodes”. For measure functions
such as height or size, obviously they are determined by the height/size of the
tree; that’s why we allow only differences between measure functions such as

6 X. Qiu and Y. Wang

height∗(x1) − height∗(x2), as the difference is unchanged if we tailor both the
two trees rooted by x1 and x2 at the same time. Likewise for subset relation, the
negation of subset relation S1 ⊈ S2 can also be captured by a “witness node”
which is in the set of S1 but not in the set of S2 whereas the subset relation
S1 ⊆ S2 is determined by all elements in two sets. Therefore, S1 ⊈ S2 is allowed
whereas S1 ⊆ S2 is not as S1 ⊆ S2 is not ensured to be unchanged through
tailoring. To conclude, we try to maximize the logic without losing decidability.

Capabilities And Limitations. Dryaddec can express all standard tree-
based data structures such as lists, trees, lists of trees, etc., and some limited
non-tree data structures such as doubly linked lists or cyclic lists. However,
Dryad (and inherently Dryaddec) is unable or not natural to express non-tree
data structures, e.g., DAGs or overlaid data structures. The main restrictions
from Dryad to Dryaddec are twofold. First, only Max- and Sum-based measure
functions are allowed. For example, Dryaddec cannot define the length of the
leftmost path of a tree. Second, properties involving multiple measure functions
are not allowed. For example, as red-black trees are defined using black-height,
Dryaddec cannot describe the real height of a red-black tree.

Category Name Definition

Measure Function height∗ ite
(
isNil(x), 0, max

(
height∗(x.left), height∗(x.right)

)
+ 1

)
(Max-based) bh∗ ite

(
isNil(x), 0, max

(
bh∗(x.left), bh∗(x.right)

)
+ ite2(x.isBlack, 1, 0)

)
Measure Function

size∗ ite
(
isNil(x), 0, size∗(x.left) + size∗(x.right) + 1

)
(Sum-based)

Non-Measure
max∗ ite

(
isNil(x),−∞, max

(
max∗(x.left),max∗(x.right), x.key

))
Function

min∗ ite
(
isNil(x),∞, min

(
max∗(x.left),min∗(x.right), x.key

))
keys∗ ite

(
isNil(x), ∅, keys∗(x.left) ∪ keys∗(x.right) ∪ {x.key}

)
avl∗

ite
(
isNil(x), true, avl∗(x.left) ∧ avl∗(x.right)

Measure-related ∧1 ≥ height∗(x.left)− height∗(x.right) ≥ −1
)

Predicate
rbt∗

ite
(
isNil(x), true, rbt∗(x.left) ∧ rbt∗(x.right)

∧bh∗(x.left) = bh∗(x.right)
)

General
sorted∗

ite
(
isNil(x), true, sorted∗(x.left) ∧ sorted∗(x.right)

Predicate

∧max∗(x.left) < x.key < min∗(x.right)
)

treap∗
ite

(
isNil(x), true, treap∗(x.left) ∧ treap∗(x.right)
∧max key∗(x.left) < x.key < min key∗(x.right)
∧max prt∗(x.left) < x.prt ∧max prt∗(x.right) < x.prt

)
Fig. 3: List of recursive definitions

2.3 Semantics

The semantics of Dryaddec is consistent with the semantics of Dryad defined
in [26], which is interpreted on program heaps. A heap consists of a finite set of
locations with the same layout. Each location contains a set of pointer fields Dir
and a set of data fields DF. In addition, there is a set of location variables LV,
a set of integer variables IV, and a special location nil where the pointer fields
can point to. We call Σ = (Dir,DF,LV, IV) a signature for the Dryaddec logic,
and call the heap w.r.t. Σ a Σ-heap. The formal definition is as below:

A Decidable Logic for Tree Data-Structures with Measurements 7

Definition 1. Let Σ = (Dir,DF). A Σ-heap is a tuple (N, pf, df) where:

– N is a finite set of locations; nil ∈ N is a special location;
– pf : (N \ {nil})×Dir → N is a function defining the pointer fields;
– df : (N \ {nil})×DF → Z is a function defining the data fields.

A recursive definition f∗(x) can be interpreted on a Σ-heap (N, pf, df) by
mapping x to a location nx in the heap. As f∗ is a recursive definition, f∗(x)
is undefined if nx is not the root of a tree; otherwise it is evaluated inductively
using the recursive definition of f∗. Notice that the evaluation is only determined
by a subset of N that is reachable from nx. If a heap T ’s locations form a tree,
we use f∗(T) to represent the interpretation of f∗(x) with x mapped to the root
of T . We simply call T a Σ-tree. We denote n as root(T), and the subtree rooted
by n.dir as T.dir.

A Dryaddec formula φ(x̄, j̄, r̄) can be interpreted on a Σ-heap by mapping
every Loc variable in x̄ to a location in the heap and mapping every Int variable
in j̄ and IntSet variable in r̄ to the corresponding sort. The mapping is valid
only if every Loc variable maps to the root of a tree in the heap; otherwise the
interpretation is undefined.

Most logical connectives and recursive functions/predicates are interpreted
as one can expect. In addition, measure functions have a special intermittence
constraint. Recall that any measure function f∗’s definition comes with an inter-
mittence r occurred in form of iter(υ

[
x
]
, 1, 0). The intermittence is a positive

integer indicating how often the local formula υ
[
x
]
should be satisfied in the

trees. Formally, f∗ is defined on a tree T only if the following intermittence
constraint is satisfied: for any node x in T and its (r − 1) immediate ancestors,
there is a node w within these r nodes such that υ

[
w
]
is true.

Notice that a satisfiable φ with m Loc variables x1, . . . , xm can always be
satisfied by a heap consisting of m disjoint trees T1, . . . , Tm by mapping every
xi to the root of Ti. In the rest of the paper, we focus on checking satisfiability
and consider only these disjoint-tree models.

3 Proof of Decidability

In this section, we prove that the satisfiability problem of Dryaddec is decidable.
The crux of the proof is the small model property : Given a Dryaddec formula φ,
it is satisfiable only if it is satisfied by a model of bounded size. The main idea is
to show that if φ is satisfied by a model larger than the bound, one can tailor the
model to obtain a smaller model which preserves the satisfiability (Theorem 1).

Intuitively, the value of an increasing/decreasing Int function or increasing
IntSet function always relies on a witness node. For example, if an increasing Int
function mif∗ is defined w.r.t. a local term it within any tree T , there is a witness
node w s.t. mif∗(T) = it[w] and it[w] ≥ it[u] for any other node u. Then these
function values can be preserved as long as these witness nodes are retained in
the tailored model (Lemma 6).

8 X. Qiu and Y. Wang

d : |Dir| n : # Int Variables m : # Loc Variables
P : # General Predicates M : # lif∗ -related Predicates C : Balance Bound
Dht : Height Bound Dsz : Size Bound Dsub : Subtractive Bound
F : # Increasing/Decreasing Int Fuctions E : # Increasing IntSet Fuctions

Fig. 4: Denotations for metrics

The most challenging part is that the value of a measure-related function
will become smaller. Nonetheless, we prove that one can tailor the tree appro-
priately such that the height/size is reduced by exactly 1 while all relevant
recursive predicates are still preserved. Then as these measure functions only
occur in the form f∗(x1) − f∗(x2), both f∗(x1) and f∗(x2) will be reduced by
1 simultaneously and the difference will remain unchanged. Moreover, we prove
the tailoring guarantees that the evaluation of other functions and predicates
are not affected (Lemmas 7 and 8).

3.1 Preliminaries

We start with some formal definitions and lemmas. The proofs for these lemmas
can be found at the project website [1].

Normalization. We normalize a Dryaddec formula φ through repeatedly apply-
ing the following steps until no rule can be applied:

1. For every ite-expression Eite = ite(l, t1, t2) in φ, rewrite φ to (l∧φ[t1/Eite])∨
(¬l ∧ φ[t2/Eite]);

2. For every literal S1 ̸⊆ S2, introduce a fresh integer variable w as a witness,
and replace the literal with w ∈ S1 ∧ w ̸∈ S2;

3. For every atomic formula of the form t ∈ A∩B or t ∈ A∪B, replace it with
t ∈ A ∧ t ∈ B or t ∈ A ∨ t ∈ B, respectively;

4. For every atomic formula of the form t1 ∈ {t2}, replace it with t1 = t2;
5. For every atomic formula t ∈ S where t is a non-variable expression, intro-

duce a fresh integer variable j and replace t ∈ S with j ∈ S ∧ j = t;
6. For every literal lif∗(x)− lif∗(y) ̸≥ K or eif∗(x)−eif∗(y) ̸≥ K, replace it with

lif∗(y)− lif∗(x) ≥ 1−K or eif∗(y)− eif∗(x) ≥ 1−K.

We denote the normalized formula constructed from φ as Norm(φ). The first two
steps remove the ite-expressions and the ̸⊆ relations from the formula. Steps 3–5
make sure that set terms occur in the form of j ∈ sf∗(x) only. Step 6 makes sure
differences between measure functions occur positively only. To check the satis-
fiability of φ, one can always normalize the formula first, as the normalization
process preserves satisfiability, which can be trivially proved:

Lemma 1. For any Dryaddec formula φ, φ and Norm(φ) are equisatisfiable.

A Decidable Logic for Tree Data-Structures with Measurements 9

Formula Metrics. The size bound for the small model property will be deter-
mined by a set of metrics regarding the signature Σ, the formula φ and the set of
recursive definitions it relies on. For the rest of the paper, we fix the denotation
for these metrics, as shown in Figure 4. Besides simple counting of functions or
predicates, these metrics also include the bounds on various kinds of constants
involved in the formula. Specifically, we define the following four bounds:

Definition 2 (Balance Bound). For any Max-based measure function lif∗, the
balance bound C is the maximal constant in the set: {ite(K > 0,K, 1 −K) |
lif∗(t)− lif∗(t′) ≥ K occurred in the definition of a lif∗-related predicate}.

Definition 3 (Subtractive Bound). The subtractive bound Dsub of a for-
mula φ is the maximal constant in the set: {max(K, 0) | lif∗(x) − lif∗(y) ≥
K or eif∗(x)− eif∗(y) ≥ K occurred positively in φ}.

Definition 4 (Height Bound). The height bound Dht of a formula φ is the
maximal constant in the set: {rK | lif∗(y) ≥ K occurred positively in φ and r is
the intermittence of lif∗}.

Definition 5 (Size Bound). The size bound Dsz of a formula φ is the maxi-
mal constant in the set: {(d

r−1
d−1)·K+1 | eif∗(y) ≥ K occurred positively in φ and

r is the intermittence of eif∗}.

Remark: For all of the above bounds, if the corresponding set is empty, we define
the bound to be 0.

rt

(a) T : a binary-tree heap
S: the set of shaded nodes

rt

(b) tailorS(T): the tailored
tree represented by shaded
nodes and dashed edges

x

y

(c) critical nodes and criti-
cal paths

Fig. 5: A binary tree example of tailored trees and critical nodes and paths

Tailored Tree and Monotonicity. As a key concept in the decidability proof,
the small model is formalized via tree tailoring : a tree model can be tailored to
obtain a smaller model.

Definition 6 (Tailored tree). Let T = (N, pf, df) be tree, and let S ⊂ N be a
subset, then the tailored tree tailorS(T) can be defined as (N ′, pf′, df′), where (i)
N ′ = S ∪ {lca(S′) | S′ ⊆ S} where lca(S′) is the lowest common ancestor of
S′; (ii) pf′(x, dir) = lca(N ′ ∩ Tx.dir) for any x ∈ N ′ and dir ∈ Dir, where Tx.dir
is the subtree of T rooted by x.dir; and (iii) df′ = df

∣∣
N ′×DF

.

10 X. Qiu and Y. Wang

Note that N ′ is LCA-closed, the lowest common ancestor lca(N ′ ∩ T.dir)
defined by pf′(x, dir) always belongs to N ′. As an example, Figure 5a shows a
tree-shaped heap T and a subset S of nodes (the shaded ones); Figure 5b shows
the tailored tree tailorS(T) constructed from S. The edges of the tailored tree
are represented using dashed edges.

Now with tailored tree formally defined, we can prove the monotonicity of
non-measure functions/predicates, a very important property for our decidability
proof. We prove the following three lemmas.

Lemma 2 (Monotonicity for increasing/decreasing function). Let mif∗

(or mdf∗) be an increasing (or decreasing) function w.r.t. Σ. Let T be a Σ-tree
and let tailorS(T) be the tailored tree w.r.t. a subset of nodes S. Then mif∗(T) ≥
mif∗(tailorS(T)) (or mdf∗(T) ≤ mdf∗(tailorS(T))).

Lemma 3 (Monotonicity for increasing IntSet function). Let T be a Σ-
tree and let tailorS(T) be the tailored tree w.r.t. a subset of nodes S. Then for
any increasing set function sf∗, sf∗(tailorS(T)) ⊆ sf∗(T).

Lemma 4 (Monotonicity for general predicate). Let T be a Σ-tree and let
tailorS(T) be the tailored tree w.r.t. a subset of nodes S. Then for any general
predicate gp∗, gp∗(T) implies gp∗(tailorS(T)).

Critical Path. While measure-related functions/predicates do not have witness
nodes, their evaluation can be determined by a set of paths, which we call critical
paths.

Definition 7 (Critical Node and Critical Path). Let T = (N, pf, df) be a
nonempty Σ-tree and y ∈ N be a node. Let lif∗ be a Max-based measure function.
Then y is a critical node of T w.r.t. lif∗ if one of the following conditions holds:

1. lif∗(y) ≥ lif∗(z) for any other sibling node z;
2. there is a measure-related predicate mp∗ whose recursive definition involves

a subformula of the form lif∗(x.dir1)− lif∗(x.dir2) ≥ K, and there is a node
x ∈ N such that:
– either K ≥ 1, lif∗(x.dir1) − lif∗(x.dir2) = K, y = x.dir2 and x.dir1 is a

critical node;
– or K ≤ 0, lif∗(x.dir1)− lif∗(x.dir2) = K − 1, y = x.dir1 and x.dir2 is a

critical node.

For the second case, we also call y a critical child of x. Moreover, a critical path
w.r.t. lif∗ is a path from a child of T to a leaf consisting of critical nodes only.

As an example, Figure 5c shows a binary tree rooted by x. The shaded nodes
are critical nodes and curved edges are two critical paths w.r.t. height∗. (See
definition of height∗ in Figure 3.)

Lemma 5 (Length bound for critical paths). Let lif∗ be a Max-based func-
tion with intermittence r and with a local constraint υ, let T be a d-ary tree.
Then for any critical path of T w.r.t. lif∗, the number of nodes satisfying υ on

the path is at least ⌊ lif∗(T)−1
(d−1)Cr+1⌋, where C is the balance bound of lif∗.

A Decidable Logic for Tree Data-Structures with Measurements 11

3.2 Tailorability

The tailorability of various functions/predicates is the crux of guaranteeing the
small model property, which in turn guarantees the decidability. As mentioned
before, non-measure functions/predicates can be easily preserved as long as the
tailoring does not affect witness nodes.

Lemma 6 (Tailorability for non-measure functions and general predi-
cates). Let T = (N, pf, df) be a tree, S ⊂ N be a subset of nodes.

Then if the height of T is greater than P + F + |S|, there is a tailored tree
T ′ of T such that

(i) T ′ contains all nodes of S;
(ii) f∗(T ′) = f∗(T) for any increasing/decreasing Int function f∗;
(iii) gp∗(T ′) ↔ gp∗(T) for any general predicate gp∗.

Proof. See [1].

For a Max-based function, a large tree can be tailored by removing exactly
one node from every critical path; hence the function value is reduced by 1.
Similarly, Sum-based functions can also be reduced by 1 through tailoring.

Lemma 7 (Tailorability for Max-based function). Let T = (N, pf, df) be a
d-ary tree, S ⊂ N be a subset of nodes. Let lif∗ be a Max-based measure function
with intermittence r and balance bound C. Then if lif∗(T) > (P +M +F + |S|+
1) · ((d− 1)Cr + 1) , there is a tailored tree T ′ of T such that

(i) T ′ contains all nodes of S;
(ii) f∗(T ′) = f∗(T) for any increasing/decreasing Int function f∗;
(iii) gp∗(T ′) ↔ gp∗(T) for any general predicate gp∗;
(iv) lif∗(T ′) = lif∗(T)− 1;
(v) mp∗(T ′) ↔ mp∗(T) for any lif∗-related predicate mp∗.

Proof. Let the definition of lif∗ be ite
(
isNil(x), 0, . . . + iter(υ

[
x
]
, 1, 0)

)
Consider an arbitrary critical path w.r.t. lif∗ in T . By Lemma 5, the number of
nodes in the path satisfying the local constraint υ from the definition of lif∗ is
at least

⌊ lif∗(T)− 1

(d− 1)Cr + 1
⌋ ≥ ⌊ (P +M + F + |S|+ 1) · ((d− 1)Cr + 1)

(d− 1)Cr + 1
⌋ = P+M+F+|S|+1

Let N be the set including all these nodes. We denote a node in N as nj

if it is the j-th highest one in the set. For each j, consider the set of nodes

Nj
def
= {n | n ≺ nj ∧ n ̸≼ nj+1}, where n ≺ nj denotes that n is a descendant of

nj . Intuitively, Nj is the root or a descendant of a sibling of nj+1. Notice that
there are at least P +M + F + |S| + 1 such sets and they are all disjoint, i.e.,
there is a set of at least P +M + F + 1 nodes such that for every node j in the

12 X. Qiu and Y. Wang

set, Nj ∩ S = ∅. Furthermore, consider the witness node for every f∗(T), where
f∗ is an increasing or decreasing Int function, among the remaining at least
P +M +F +1 nodes, at least P +M +1 ones are nodes for which corresponding
set Nj does not contain any witness nodes. Moreover, as the number of all
predicates is P +M , there is at least one node l such that nl and nl+1

2 agree
on the evaluation of all general predicates and lif∗-related predicates.

Now we can replace the subtree rooted by nl with the subtree rooted by nl+1

to form a tailored tree Tl. Notice that Tl holds the first three properties for the
desired tailored tree:

1. Tl retains all nodes of S, as Nj ∩ S = ∅.
2. f∗(Tl) = f∗(T) for any increasing or decreasing f∗.
3. gp∗(Tl) if and only if gp∗(T) for any general predicate gp∗.

The reason for properties (i) and (ii) to hold is straightforward. For property
(iii), consider three situations:

1. if gp∗(T) is true, so is gp∗(Tl) by Lemma 4.
2. if gp∗(T) is false and gp∗(nl) is true, then T does not satisfy gp due to a path

not affected by the tailoring. Hence gp∗(Tl) remains false.
3. if gp∗(T) is false and gp∗(nl) is false, by our assumption about l, nl and

nl+1 agree on the evaluation of all general predicates. Hence gp∗(nl+1) is
also false. Then by Lemma 4, gp∗(Tl) is also false.

Moreover, as nl and nl+1 agree on all predicates, the tailoring also preserves any
lif∗-related predicate mp.

This tailoring also removes exactly one node from N for the critical path
we are considering. One can continue this tailoring for other critical paths until
all critical paths have been shortened and the value of lif∗ is reduced by 1.
We claim that the resulting tree is just the desired tailored tree T ′. As each
tailoring guarantees the first three properties, we only need to show the last two
properties. Property (iv) is obvious: all critical paths of z are shortened and
lif∗(z) is reduced by 1. For Property (v), we prove it by a bottom-up induction
for any node z under which a tailoring took place. The evaluation of any lif∗-
related predicate mp∗(z) is not affected: if the subtree under z replaced another
subtree rooted by z′, mp∗(z) if and only if mp∗(z′) is true; otherwise, there was
a separate tailoring for each critical child of z. Therefore

– by induction hypothesis, mp∗(z.dir) is preserved for any mp∗ and any dir;
– local Int terms are not affected, as z is unchanged during the tailoring;
– for any increasing or decreasing function f∗ and any child T.dir, the value

of f∗(T.dir) is preserved during every tailoring and still unchanged;
– similarly, gp∗(T.dir) for any general predicate gp∗ is unchanged;
– for any critical child T.dir, lif∗(T.dir) only occurs in subtractive formulae in

the recursive definition for lif∗(x). Notice that lif∗(T.dir) is decreased by 1
and so is any other critical lif∗(T.dir′), the evaluation of these subtractive
formulae will be unaffected.

2 Let nl+1 be nil if |N | ≤ l.

A Decidable Logic for Tree Data-Structures with Measurements 13

Lemma 8 (Tailorability for Sum-based function). Let T = (N, pf, df) be a
d-ary tree, S ⊂ N be a subset of nodes. Let eif∗ be a Sum-based measure function
with intermittence r. Then if eif∗(T) > 2 · (|S|+ F + 2P)− 1, there is a tailored
tree T ′ of T such that

(i) T ′ retains all nodes of S;
(ii) f∗(T ′) = f∗(T) for any increasing/decreasing Int function f∗;
(iii) gp∗(T ′) ↔ gp∗(T) for any general predicate gp∗;
(iv) eif∗(T ′) = eif∗(T)− 1;

Proof. Let the definition of eif∗ be ite
(
isNil(x), 0, . . . + iter(υ

[
x
]
, 1, 0)

)
.

Let N be the set including all nodes satisfying υ. Note that |N | = eif∗(T) ≥
2 · (|S| + F + 2P). Consider those nodes in N but not above two other nodes

in N from two different branches: N ′ def
= {n | n ∈ N , ̸ ∃n1, n2, dir1, dir2 : dir1 ̸=

dir2∧n1 ≺ n.dir1∧n2 ≺ n.dir2}. Similar to the proof of Lemma 7, for each node
n ∈ N ′, T can be tailored by removing the subtree rooted by n or replaced with
its subtree preserving all nodes from N ′. We denote the set of removed nodes

Nn. Moreover, it is not hard to see that |N ′| ≥ ⌈ |N |+1
2 ⌉ ≥ |S|+ F + 2P + 1.

Now we remove from N ′ every node n such that Nn ∩ S ̸= ∅ or Nn contains
the witness node for f∗(T) for a increasing or decreasing Int function f∗. Let
the set of the remaining nodes in N ′ be N ′′. As the number of removed nodes
from N ′ is at most |S| + F , |N ′′| ≥ 2P + 1. Therefore there are at least two
nodes n1, n2 ∈ N ′′ such that n1 and n2 agree on all general predicates. If n1 and
n2 are on the same path and n1 is above n2, then we tailor Nn1

; otherwise we
tailor Nn2

. WLOG, assume the tailoring replaces n2 with n′
2 and forms T ′. The

tailoring satisfies all desired properties:

1. T ′ retains all nodes of S as Nn2 does not contain any node of S.
2. T and T ′ agree on all increasing/decreasing functions as all witness nodes

are retained.
3. T and T ′ also agree on all general predicates: for any gp∗, if n2 and n′

2 agree
on gp∗, the preservation can be propagated up to the root of T . Otherwise,
gp∗(n2) is false and gp∗(n′

2) is true. Notice that n1 and n2 are not on the
same path in this situation – otherwise n′

2 is between n2 and n1 and does
not satisfy gp∗. Then n1 is not affected by the tailoring and gp∗(n1) remains
false and propagates up to the root: gp∗(T) remains false.

4. By the definition of N , n2 is the only node in Nn2 that satisfies the local
constraint ϵ; hence eif∗(T ′) = eif∗(T)− 1.

3.3 Decidability

Now we are ready to show the small model property for Dryaddec.

14 X. Qiu and Y. Wang

Theorem 1. Let φ be a Σ-formula in Dryaddec. Then there is a height bound
hφ such that φ is satisfiable if and only if it can be satisfied by trees with height
at most hφ.

Proof. According to Lemma 1, we assume φ is normalized and satisfiable. Con-
sider any m disjoint trees T1 through Tm satisfying φ. For any Ti, we construct a
subset of nodes Si as follows: for every literal j ∈ sf∗(xi) where sf

∗(x) is an IntSet

function recursively defined as ite
(
isNil(x), ∅,

(∪
dir sf

∗(x.dir)
)
∪ ST

[
x
])

,

there must be a witness node y such that j ∈ Ti

[
y
]
. We add y to Si. For a fixed

location variable xi, there are up to En atomic formulae of the form j ∈ sf∗(xi).
Hence there are up to En nodes in the subset Si constructed for Ti.

Now if xi is related to a Max-based measure function, we claim the following
height bound: hφ = (En+P+M+F+1)·((d−1)Cr+2)+Dht+(m−1)Dsub−1.
for a set of variables J including xi. We define J recursively as the smallest set
satisfying the following properties:

– xi belongs to J ;
– if lif∗(x1) − lif∗(x2) ≥ K occurs in φ and the inequation is tight, i.e., the

model we are considering satisfies lif∗(x1)− lif∗(x2) = K, then x2 belongs to
J if x1 does.

Similarly, if xi is related to a Sum-based measure function eif∗, we claim the
following size bound: Uφ = 6(En + F + 2P) − 3 + 2Dsz + 2(m − 1)Dsub. Note
that the size bound is trivially a height bound as well. The proofs for the two
bounds hφ and Uφ can be found at [1].

If xi is not related to any measure function, we claim a height bound En+
P + F . When Ti’s height is greater than the bound, by Lemma 6, it can be
tailored to T ′

i and have all set-inclusions, non-measure Int functions and general
predicates preserved.

Now we obtain a tree T ′
i with strictly fewer nodes. By assumption, Ti is the

smallest model and T ′
i should not satisfy φ. In the rest of the proof, we will show

they do satisfy φ; and the contradiction concludes the proof.

As φ is quantifier-free, we only need to show that for any literal in φ, if Ti

satisfies it, so does T ′
i . We prove this for each type of literals:

Measure-related Predicate. For any measure-related predicate mp∗(xj)
in φ, xj must be involved in a Max-based measure function lif∗ or not involved in
any measure function. Replacing Tj with T ′

j guarantees that lif
∗(T ′

j) = lif∗(Tj)−
1, and according to Lemma 7, mp∗(Tj) = mp∗(T ′

j).
Measure-related Inequation. For any atomic formula f∗(xi)−f∗(y) ≥ K

affected by the tailoring, the second rule for the construction of J guarantees that
xi is in J . If f∗(xi)−f∗(y) is strictly greater than K or less than K, as the value
of f∗(xi) is reduced by only 1 in the course of shrinking, the inequation is still
satisfied or unsatisfied. Otherwise, f∗(xi)− f∗(y) = K, then y is also contained

A Decidable Logic for Tree Data-Structures with Measurements 15

in J . In that case, f∗(xi) is also reduced by 1. Hence f∗(xi) − f∗(y) ≥ K will
remain satisfied or unsatisfied in T ′

i .
For any atomic formula f∗(x) ≥ K affected by the tailoring, the tailoring

only happens when f∗(x) is greater than K before the tailoring. We have shown
above that f∗(x) ≥ K is still satisfied after each tailoring. Hence the satisfiability
is preserved.

For any atomic formula f∗(y) ≤ K, the tailorings will make it easier to be
satisfied.

Non-measure predicate or function. By Lemma 7 and Lemma 8, any
tailoring described above does not affect the evaluation of any non-measure
predicate or function, including any general predicate and increasing/decreasing
function.

Set Inclusion. For any j ∈ sf∗(xj) in φ satisfied by Tj , if it occurs positively,
the witness node is in S and will be preserved during the tailoring from Tj to
T ′
j ; hence it is satisfied by T ′

j as well. If Tj does not satisfy j ∈ sf∗(xj), as the set
sf∗(xj) becomes smaller during the tailoring (by Lemma 3), T ′

j does not satisfy
j ∈ sf∗(xj).

isNil predicate and other boolean variables. These are not affected by
tree tailoring and obviously unchanged.

Corollary 1. The satisfiability problem of Dryaddec is decidable. For a fixed
signature Σ and a fixed set of recursive functions, the problem is in NEXPTIME.

Proof. Given a Dryaddec formula φ with maximum constant bound D (includ-
ing subtractive, size and height bounds), by Theorem 1, a minimal satisfying
model of the normalized formula consists of m disjoint trees, each of which has a
bounded height O(n+mD), i.e., there are up to 2O(n+mD) nodes in the smallest
model. Hence one can unfold every recursive function/predicate in the formula
for 2O(n+mD) times and leave them uninterpreted. The resulting formula is equi-
satisfiable with φ and obviously decidable as it is in the theory of quantifier-free
uninterpreted functions and linear integer arithmetic (QF UFLIA), which is NP-
complete. As the size of the QF UFLIA formula is 2O(n+mD), the satisfiability
of Dryaddec is decidable and is in NEXPTIME.

If Σ does not involve any Max-based measure function, then the size of
the tree and the QF UFLIA formula is bounded by O(n +mD), and the time
complexity becomes NP-complete.

4 Experiments

To demonstrate the expressivity of Dryaddec and the efficiency of the decision
procedure, we implemented the decision procedure and solved 220+ Dryaddec

formulae. These formulae encode various problems from three verification/syn-
thesis scenarios: natural proof verification, fusion of recursive tree traversals,
and synthesis of CLIA functions. The implementation is SMT-based: for each

16 X. Qiu and Y. Wang

formula, we first analytically computed the height bound; then the decision pro-
cedure encoded the Dryaddec formula to a QF UFLIA formula with the com-
puted bound, and invoked an SMT solver to solve the formula.

Applications. The first set of 61 Dryaddec formulae is for program veri-
fication. We aim to verify the functional correctness of five tree-manipulating
programs, i.e., every routine should ensure that the returned tree after insertion
remains a corresponding data-structure. We have described insertToLeft in Sec-
tion 1; BST-insert, Treap-insert, AVL-insert and RBT-insert are self-explanatory.
We manually broke down each program into basic blocks and wrote all of the
Natural Proof Verification Conditions (NPVC) following the NPVC-generation
algorithm adapted from [26]. For sanity checking, we also manually implanted
some artificial bugs to the programs and created the corresponding NPVCs.

The second set of 48 formulae is for checking the fusibility of recursive tree
traversals. Fusion of tree traversals arises in numerous settings [37,31,44,43,17,18,47,27,8]
for performance concern. One of the crucial parts for this fusion process is to
check the fusibility of two traversals, i.e., if there exists a fused traversal that has
identical behavior with the original two traversals. We used Dryaddec to check
all possible fusions of two pairs of traversals: a pair of height-based, mutually
recursive traversals and another pair of a post-order traversal execute before
a pre-order traversal. Neither can be handled by state-of-the-art checkers [48].
Please find more details of encoding fusibility to Dryaddec at [1].

The last set of 112 formulae is for synthesizing Conditional Linear Integer
Arithmetic (CLIA) functions. The goal is to synthesize a sequence of arith-
metic operations that implements an unknown function described by a formula.
Dryaddec formulae are created by our in-house Syntax Guided Synthesis SyGuS
synthesizer [13] as queries raised from the Counter-Example Guided Inductive
Synthesis (CEGIS) algorithm. We adopted 23 benchmarks from the 2017 Sy-
GuS [2] competition, for which the queries fall into Dryaddec. The detail of the
CEGIS algorithm and the Dryaddec encoding can be found at [1].

Scenario Signature E P M F r C Dsub Bound

BST mutation bst∗, keys∗,max∗,min∗ 1 1 0 2 0 0 0 n+ 3

Treap mutation
treap∗, prts∗,max prt∗

2 1 0 3 0 0 0 n+ 4
keys∗,max key∗,min key∗

AVL mutation height∗, avl∗ 0 0 1 0 1 2 3 3m− 2

RBT mutation bh∗, rbt∗ 0 0 1 0 2 1 3 3m− 2

CLIA {exp∗specf ,F | ∅ ⊂ F ⊆ G} 0 2|G| − 1 0 0 0 0 0 |G| · |specf |
Fusion dp∗, schd∗ 0 2 0 F 0 0 0 F + 2

Table 1: Height/Size bounds for different scenarios (Metrics defined in Figure 4)

Bound Optimization.We implemented the decision procedure with a set of
optimizations. The height/size bound derived in Theorem 1 is general and loose,
affecting the decision procedure’s scalability. We developed many optimization
strategies for different situations. Every strategy is automatically applied when
the corresponding condition is satisfied. Table 1 shows the best bounds we obtain

A Decidable Logic for Tree Data-Structures with Measurements 17

for each scenario after all applicable optimizations. Below we explain the main
optimization strategies we developed.

To check the satisfiability of a formula φ, we first converted φ to the Disjunc-
tive Normal Form (DNF) and computed the height/size bound for each disjunct
separately, as φ is satisfiable if and only if one of the disjuncts is satisfiable. This
helps us compute a better bound in many situations, as for each disjunct, at
least one or more factors used in the bound computation, e.g., n, m, Dht, Dsz

and Dsub, can be reduced.

Analyzing how variables occur in φ can also be helpful. For example, the
number of location variables m only contribute to the bound with the term
(m− 1)Dsub. This term is concise only if there is a chain of variables x1, . . . , xm

such that for any i < m, there is a literal lif∗(xi) − lif∗(xi+1) ≥ K in φ with
a positive K. Hence the number m can be improved to |V | + 2 where V =
{x | there are y1, y2 and positive K1,K2 such that lif∗(x)− lif∗(y1) ≥ K1 and
lif∗(y2)− lif∗(x) ≥ K2 occur in φ}.

Moreover, when a location variable is involved in the regular height∗ function,
the local constraint υ is true and trivially satisfied by all nodes. Hence in the
proof of Theorem 1, the claim lif∗(xi)−L ≤ En+ P +M + F can be improved
to lif∗(xi) = 0. As the intermittence r is trivially 1, the height bound can be
improved to (En+ P +M + F + 1) · ((d− 1)C + 1) +Dht + (m− 1)Dsub.

We also observed that the definitions of avl∗ and rbt∗ do not involve any
positive constant, e.g., there is no formula lif∗(x.dir) − lif∗(x.dir′) ≥ K with
positive K. For these measure-related predicates, if they only occur positively in
aDryaddec formula φ, the height bound computed in Lemma 7 can be improved,
because we only need to tailor those paths with maximum number of nodes
satisfying the corresponding measure function lif∗’s local constraint υ. Once all
of these paths are tailored, the value of lif∗ is reduced by 1; moreover, these
tailorings make the measure-related predicates easier to be satisfied. Hence the
balancedness factor (d − 1)Cr + 1 can be skipped and the height bound for
Lemma 7 becomes P + F + |S|; the height bound for lif∗-related variables in
Theorem 1 also can be improved to (2En+ 2P + 2F + 1) +Dht + (m− 1)Dsub.

For CLIA synthesis, with a set of counterexamples G, there are 2|G| − 1
predicates and the height bound should be 2|G| − 1 according to Theorem 1.
However, we can easily show an alternative bound which is usually better: |G| ·
|specf | where |specf | is the number of distinct f -terms in φ, e.g., those terms of
the form f(v1, . . . , vn): no matter how large a decision tree T is, concretizing the
|specf | terms for each counterexample will lead to up to |specf | leaf nodes and
the whole set G will lead to up to |G| · |specf | leaf nodes in T . Let this set of
leaves be S and we can tailor T to tailorS(T), which is of height up to |G| · |specf |
and does not affect the evaluation of any f -term.

Performance. Our implementation leverages Z3 [33], a state-of-the-art SMT
solver as the backend QF UFLIA solver. The experiments were conducted on a
server with a 40-core, 2.2GHz CPU and 128GB memory running Fedora 26.

Table 2 summarizes the experimental results on correctness verification and
tree traversal fusion. For each Dryaddec formula, we report the formula size,

18 X. Qiu and Y. Wang

Category Formulae D
r
y
a
d
d
ec

si
ze

B
o
u
n
d

(U
n
o
p
ti
m
iz
ed

)

Z
3
si
ze

(K
B
)

T
im

e
(s
)

(U
n
o
p
ti
m
iz
ed

)

S
a
ti
sfi
a
b
le
?

BST insert
nil, rec l pre, rec r pre ≤48 5(11) ≤161 <1 (⊥) N
rec l post, rec r post

rec r post bug 48 5(11) 161 0.3 (100.5) Y

Treap insert
nil, rec l pre, rec r pre, rec l prt le, ≤108 7(17) ≤1,696 <12 (⊥) N
rec r prt le, rec l r rtt, rec r l rtt

rec l prt le bug, 88 7(17) 1,172 0.7 (89.8) Y

AVL insert

nil, rec l pre, rec r pre, rec l no rtt,

≤197 7(10) ≤399 <1 (<6) N
(balancedness)

rec l r rtt, rec r no rtt, rec r l rtt,
rec l lr rtt, rec r rl rtt,
rec l df 0, rec r df 0

rec r rl rtt bug 197 7(10) 399 2.7 (63.2) Y

AVL insert
nil, rec l pre, rec r pre,

≤134 5(11) ≤271 <1 (⊥) N
(sortedness)

rec l no rtt,, rec r no rtt, rec l r rtt,
rec r l rtt, rec l lr rtt, rec r rl rtt

RBT insert

nil, rec l pre, rec r pre, rec l l blk,

≤150 7(10) ≤464 <1 (<6) N
(balancedness)

rec l r rd, rec l ll rd, rec l all blk,
rec r r blk, rec r l rd, rec r rr rd,
rec r all blk, rec l lr rd, rec r rl rd

l r rd bug 142 7(10) 279 0.4 (9.4) Y

nil, rec l pre, rec l l blk, rec r pre,
≤136 5(11) ≤271 <1 (⊥) NRBT insert rec r r blk, rec l r rd, rec l lr rd,

(sortedness) rec l ll rd, rec l all blk, rec r l rd,
rec r rl rd, rec r rr rd, rec r all blk

InsertToLeft nil, rec pre, rec post ≤28 7 ≤216 <1 N

Fusion
schd lrab, schd rlab 4 5 84 <1 N

(post pre)
schd lrba, schd rlba 4 5 84 <1 Y
unfusible schd(20) 4 6 <216 <1 Y

Fusion
schd lra1b2, schd rla1b2,

4 7 604 <3 N
(mutl rec)

schd lrb2a1, schd rlb2a1
unfusible schd(20) 4 9 <3,304 <7 Y

Table 2: Performance for program verification and fusibility checking

the analytically computed height bound, the size of the encoded Z3 constraint
in KB, the time spent by Z3 in seconds (⊥ for timeout to 30 mins) and the
satisfiability result. Bounds computed from Theorem 1 and corresponding Z3
running time are shown in parentheses if Bounds computed from Theorem 1
are not equal to the optimized bounds. For the program verification examples,
the NPVCs generated from different basic blocks vary in their sizes, but share
the same height bound. Experiments show that the height bound is critical
for the performance of our decision procedure. Our bound optimization can
significantly decrease the bounds, making the decision procedure scale well to
solve all benchmarks. Table 3 lists the names of CLIA synthesis problems, each

A Decidable Logic for Tree Data-Structures with Measurements 19

Category Fornulae Dryaddec size Time(s)

Multiple
fg fivefuncs(3), fg sixfuncs(3), fg sevenfuncs(3),

<279 <1
functions

fg eightfuncs(3), fg ninefuncs(3),
fg tenfunc1(3), fg tenfunc2(3)

Polynomial
fg polynomial1(3), fg polynomial2(3),

<60 <1
fg polynomial3(3), fg polynomial4(4)

Other CLIA fg max2(7), fg VC22 a(17) <2,227 <1

INV
ex11-new(18), ex11(17), ex14 simp(3), ex14 vars(3),

<936 <1formula22(1), formula25(1), formula27(1),
treax1(3), trex1 vars(3), vsend(4)

Table 3: Performance for SyGuS benchmarks synthesis

followed by the number of formulae raised to solve it, the Dryaddec formula size
and synthesis time. All queries for CLIA synthesis are solved in negligible time.

5 Related Work

It is well known that the First-Order Logic (FOL) of finite graphs is undecid-
able [51], and the decidability can only be obtained by restricting the logic or the
class of graphs. There is a rich literature on logics over tree-like structures [7,21].

PALE [32] has been developed to verify all structures that can be expressed
using graph types [21], by reducing problems to the MONA system [12]. Nonethe-
less, PALE and other similar techniques [11,29,57] do not reason with the data
stored in the structure. Separation logic [35,45] has been a popular logic for
reasoning with heap structures. Many decidable fragments have been identified.
There has been significant efforts on decidable logic for structure properties of
list-like structures. SLP [34] and SeLoger [6,10] are designed to check validity
of the entailment problem for separation logic over pointers and lists. Iosif et
al. [14] extend separation logic with recursive definitions to define structures of
bounded tree-width, and guarantee the decidability by classical MSO reasoning.

The last decade has seen logics for reasoning about both the structure prop-
erties and data properties. The Lisbq [22] logic used in the Havoc system is
a well known decidable logic; it obtains decidability by syntactically restricting
the reachability predicates and universal quantification. The CSL [3] logic is de-
signed in a similar vein, with a different set of syntactic restrictions that allow
it to express doubly-linked lists. Neither Lisbq nor CSL can handle basic tree
data-structures such as binary search trees. AFR [15] is also a decidable frag-
ment of first-order logic with transitive closure for list-like structures. The GRIT
logic [40,41] is capable to handle tree structures; its decidability is obtained by
reducing the separation logic to a decidable fragment of first order logic. GRIT
is decidable for reasoning local data properties, such as sortedness, but mea-
surements of trees cannot be expressed. The Strand logic [24,25] combines a
powerful tree logic with an arbitrary data-logic. If the underlying data-logic is
decidable, a fragment of Strand is also decidable. As the first decidable logic
for binary search trees, a main limitation of Strand is it cannot express any tree
measurement. In other words, AVL trees or red black trees cannot be defined.

20 X. Qiu and Y. Wang

The underlying logic in the type checker Catalyst [19] is decidable but Cata-
lyst cannot handle measurements either. In contrast, combining term algebra
and Presburger arithmetic [58,28] yields decidable theories that can model tree
balancedness of red black trees, but not sortedness.

More recently, several automatic verification systems for heap-manipulating
programs have been developed. Liquid Types [46,20] handle measurements by
folding or unfolding the recursive definitions systematically and then treat the
refined types as uninterpreted functions. As the number of unfolding or folding
needed is unbounded, the system has to give up either termination or complete-
ness. Inherited the approach from Liquid Types, LiquidHaskell [53,54,55,52] can-
not guarantee termination and completeness at the same time either. Apart from
Dryad and natural proofs, by which our decidable logic is inspired, [49,50] and
[4] exploit recursive definitions and proof tactics that unfold the definitions tac-
tically. These approaches can handle arbitrary combinations of data, shape and
measurement properties for trees, but give up general decidability, as mentioned
in Section 1 and explained below.

Recall the insertToLeft example we described in Section 1. To reason about
the recursively defined full-treeness and tree-size in Leon, one has to define an ad
hoc abstraction function α that maps trees to the domain (Int, Boolean), whose
first and second elements represent the tree size and full-treeness, respectively.
Then Leon can decidably verify the insertToLeft example only if α is sufficiently
surjective (see Definition 7 of [49]), which is not the case. To show α is not
sufficiently surjective, it suffices to find a positive integer p such that for an
arbitrarily large tree t with α(t) = (i, b), the property |α−1(i, b)| > p cannot be
characterized by a linear arithmetic formula Mi,b(c). Now let t be an arbitrarily
large non-full tree such that α(t) = (i, false). Notice that i, as the first part of the
abstraction, represents the size of the tree t and is arbitrarily large, too. Then the
term |α−1(i, b)| essentially means the number of different non-full trees with size
i. As the total number of binary trees of size i can be computed combinatorially

as (2i)!
(i+1)!·i! and there is a single full tree when i = 2k − 1 for some k. Hence, the

property |α−1(i, false)| > p can be essentially captured by the following formula

Mi,false ≡
(2i)!

(i+ 1)! · i!
− ite(∃k : i = 2k − 1, 1, 0) > p

Obviously, this Mi,false is too complicated and not equivalent to any linear arith-
metic formula. Therefore, the abstract domain (Int, Boolean) representing size
and full-treeness is not sufficiently surjective and hence cannot be reasoned by
Leon in a decidable fashion.

The more recent following work [23,38] either only handle tree with bounded
size in a decidable fashion or can only verify the red-black properties and the
black-height of the tree, i.e., they cannot verify the functional correctness of AVL
or red-black trees manipulating programs. A more recent work [56] related to
Liquid Types also shows decidability for transparent formulae; but the formulae
handled in our experiments are usually non-transparent.

Acknowledgments This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 1837023.

A Decidable Logic for Tree Data-Structures with Measurements 21

References

1. https://engineering.purdue.edu/˜xqiu/dryad-dec
2. Alur, R., Bod́ık, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A.,

Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:
Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA,
October 20-23, 2013. pp. 1–8 (2013)

3. Bouajjani, A., Drăgoi, C., Enea, C., Sighireanu, M.: A Logic-Based Framework
for Reasoning about Composite Data Structures, pp. 178–195. Springer Berlin
Heidelberg, Berlin, Heidelberg (2009)

4. Chin, W.N., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape,
size and bag properties via user-defined predicates in separation logic. Sci. Comput.
Program. pp. 1006–1036 (2012)

5. Chlipala, A.: Mostly-automated verification of low-level programs in computational
separation logic. In: PLDI ’11. pp. 234–245 (2011)

6. Cook, B., Haase, C., Ouaknine, J., Parkinson, M.J., Worrell, J.: Tractable reasoning
in a fragment of separation logic. In: CONCUR’11. pp. 235–249 (2011)

7. Courcelle, B.: The monadic second-order logic of graphs. i. recognizable sets of
finite graphs. Information and Computation 85(1), 12 – 75 (1990)

8. Engelfriet, J., Maneth, S.: Output string languages of compositions of deterministic
macro tree transducers. J. Comput. Syst. Sci. 64(2), 350–395 (Mar 2002)

9. Goldfarb, M., Jo, Y., Kulkarni, M.: General transformations for gpu execution of
tree traversals. In: Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis (Supercomputing). SC ’13
(2013)

10. Haase, C., Ishtiaq, S., Ouaknine, J., Parkinson, M.J.: SeLoger: A tool for graph-
based reasoning in separation logic. In: CAV’13. pp. 790–795 (2013)

11. Habermehl, P., Iosif, R., Vojnar, T.: Automata-based verification of programs with
tree updates. Acta Informatica 47(1), 1–31 (2010)

12. Heinze, T.S., Møller, A., Strocco, F.: Type safety analysis for Dart. In: Proc. 12th
Dynamic Languages Symposium (DLS) (October 2016)

13. Huang, K., Qiu, X., Tian, Q., Wang, Y.: Reconciling enumerative and symbolic
search in syntax-guided synthesis (02 2018)

14. Iosif, R., Rogalewicz, A., Simácek, J.: The tree width of separation logic with
recursive definitions. In: CADE-24. pp. 21–38 (2013)

15. Itzhaky, S., Banerjee, A., Immerman, N., Nanevski, A., Sagiv, M.: Effectively-
propositional reasoning about reachability in linked data structures. In: CAV. pp.
756–772 (2013)

16. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
Verifast: a powerful, sound, predictable, fast verifier for C and Java. In: NFM’11.
pp. 41–55 (2011)

17. Jo, Y., Kulkarni, M.: Enhancing locality for recursive traversals of recursive struc-
tures. In: Proceedings of the 2011 ACM international conference on Object ori-
ented programming systems languages and applications. pp. 463–482. OOPSLA
’11, ACM, New York, NY, USA (2011)

18. Jo, Y., Kulkarni, M.: Automatically enhancing locality for tree traversals with
traversal splicing. In: Proceedings of the 2012 ACM international conference on
Object oriented programming systems languages and applications. OOPSLA ’12,
ACM, New York, NY, USA (2012)

https://engineering.purdue.edu/~xqiu/dryad-dec

22 X. Qiu and Y. Wang

19. Kaki, G., Jagannathan, S.: A relational framework for higher-order shape analysis.
In: Proceedings of the 19th ACM SIGPLAN International Conference on Func-
tional Programming. pp. 311–324. ICFP ’14, ACM, New York, NY, USA (2014)

20. Kawaguchi, M., Rondon, P., Jhala, R.: Type-based data structure verification. In:
Proceedings of the 30th ACM SIGPLAN Conference on Programming Language
Design and Implementation. pp. 304–315. PLDI ’09, ACM, New York, NY, USA
(2009)

21. Klarlund, N., Schwartzbach, M.I.: Graph types. In: Proceedings of the 20th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. pp.
196–205. POPL ’93, ACM, New York, NY, USA (1993)

22. Lahiri, S., Qadeer, S.: Back to the future: Revisiting precise program verification
using smt solvers. In: Principles of Programming Languages (POPL ’08). p. 16.
Association for Computing Machinery, Inc. (January 2008)

23. Le, Q.L., Sun, J., Chin, W.N.: Satisfiability modulo heap-based programs. In:
Chaudhuri, S., Farzan, A. (eds.) Computer Aided Verification. pp. 382–404.
Springer International Publishing, Cham (2016)

24. Madhusudan, P., Parlato, G., Qiu, X.: Decidable logics combining heap structures
and data. In: POPL’11. pp. 611–622. ACM (2011)

25. Madhusudan, P., Qiu, X.: Efficient decision procedures for heaps using STRAND.
In: Yahav, E. (ed.) Static Analysis - 18th International Symposium, SAS 2011,
Venice, Italy, September 14-16, 2011. Proceedings. LNCS, vol. 6887, pp. 43–59.
Springer (2011)

26. Madhusudan, P., Qiu, X., Stefanescu, A.: Recursive proofs for inductive tree data-
structures. In: POPL’12. pp. 123–136. ACM (2012)

27. Maletti, A.: Compositions of extended top-down tree transducers. Inf. Comput.
206(9-10), 1187–1196 (Sep 2008)

28. Manna, Z., Sipma, H.B., Zhang, T.: Verifying balanced trees. In: Artëmov, S.N.,
Nerode, A. (eds.) LFCS. LNCS, vol. 4514, pp. 363–378. Springer (2007)

29. McPeak, S., Necula, G.C.: Data Structure Specifications via Local Equality Ax-
ioms, pp. 476–490. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

30. Meyerovich, L.A., Bodik, R.: Fast and parallel webpage layout. In: Proceedings of
the 19th International Conference on World Wide Web. pp. 711–720. WWW ’10,
ACM, New York, NY, USA (2010)

31. Meyerovich, L.A., Torok, M.E., Atkinson, E., Bodik, R.: Parallel schedule synthesis
for attribute grammars. PPoPP ’13 (2013)

32. Møller, A., Schwartzbach, M.I.: The pointer assertion logic engine. In: PLDI’01.
pp. 221–231. ACM (June 2001)

33. de Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2008). pp. 337–340. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

34. Navarro Pérez, J.A., Rybalchenko, A.: Separation logic + superposition calculus
= heap theorem prover. In: PLDI’11. pp. 556–566. PLDI ’11 (2011)

35. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that
alter data structures. In: CSL’01. LNCS, vol. 2142, pp. 1–19. Springer (2001)

36. Pek, E., Qiu, X., Madhusudan, P.: Natural proofs for data structure manipulation
in C using separation logic. In: PLDI’14. pp. 440–451. ACM (2014)

37. Petrashko, D., Lhoták, O., Odersky, M.: Miniphases: Compilation using modular
and efficient tree transformations. In: Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation. pp. 201–216.
PLDI 2017, ACM, New York, NY, USA (2017)

A Decidable Logic for Tree Data-Structures with Measurements 23

38. Pham, T., Gacek, A., Whalen, M.W.: Reasoning about algebraic data types with
abstractions. CoRR abs/1603.08769 (2016)

39. Philippaerts, P., Mühlberg, J.T., Penninckx, W., Smans, J., Jacobs, B., Piessens,
F.: Software verification with VeriFast: Industrial case studies. Sci. Comput. Pro-
gram. 82, 77–97 (2014)

40. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic using smt. In:
CAV’13 (2013)

41. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic with trees and
data. In: Proceedings of the 16th International Conference on Computer Aided
Verification - Volume 8559. pp. 711–728. Springer-Verlag New York, Inc., New
York, NY, USA (2014)

42. Qiu, X., Garg, P., Stefanescu, A., Madhusudan, P.: Natural proofs for structure,
data, and separation. In: PLDI ’13. pp. 231–242. ACM (2013)

43. Rajbhandari, S., Kim, J., Krishnamoorthy, S., Pouchet, L.N., Rastello, F., Harri-
son, R.J., Sadayappan, P.: A domain-specific compiler for a parallel multiresolution
adaptive numerical simulation environment. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
pp. 40:1–40:12. SC ’16, IEEE Press, Piscataway, NJ, USA (2016)

44. Rajbhandari, S., Kim, J., Krishnamoorthy, S., Pouchet, L.N., Rastello, F., Harri-
son, R.J., Sadayappan, P.: On fusing recursive traversals of kd trees. In: Proceed-
ings of the 25th International Conference on Compiler Construction. pp. 152–162.
ACM (2016)

45. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In:
LICS’02. pp. 55–74. IEEE-CS (2002)

46. Rondon, P.M., Kawaguci, M., Jhala, R.: Liquid types. In: Proceedings of the 29th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion. pp. 159–169. PLDI ’08, ACM, New York, NY, USA (2008)

47. Saarikivi, O., Veanes, M., Mytkowicz, T., Musuvathi, M.: Fusing effectful compre-
hensions. SIGPLAN Not. 52(6), 17–32 (Jun 2017)

48. Sakka, L., Sundararajah, K., Kulkarni, M.: Treefuser: A framework for ana-
lyzing and fusing general recursive tree traversals. Proc. ACM Program. Lang.
1(OOPSLA), 76:1–76:30 (Oct 2017)

49. Suter, P., Dotta, M., Kuncak, V.: Decision procedures for algebraic data types with
abstractions. In: POPL’10. pp. 199–210 (2010)

50. Suter, P., Köksal, A.S., Kuncak, V.: Satisfiability modulo recursive programs. In:
SAS’11. pp. 298–315 (2011)

51. Trakhtenbrot, B.A.: The impossibility of an algorithm for the decision problem for
finite domains. Doklady Akad. Nauk SSSR (N.S.) 70, 569–572 (1950)

52. Vazou, N., Bakst, A., Jhala, R.: Bounded refinement types. In: Proceedings of the
20th ACM SIGPLAN International Conference on Functional Programming. pp.
48–61. ICFP 2015, ACM, New York, NY, USA (2015)

53. Vazou, N., Rondon, P.M., Jhala, R.: Abstract refinement types. In: Proceedings
of the 22Nd European Conference on Programming Languages and Systems. pp.
209–228. ESOP’13, Springer-Verlag, Berlin, Heidelberg (2013)

54. Vazou, N., Seidel, E.L., Jhala, R.: Liquidhaskell: experience with refinement types
in the real world. In: Haskell (2014)

55. Vazou, N., Seidel, E.L., Jhala, R., Vytiniotis, D., Peyton-Jones, S.: Refinement
types for haskell. In: Proceedings of the 19th ACM SIGPLAN International Con-
ference on Functional Programming. pp. 269–282. ICFP ’14, ACM, New York, NY,
USA (2014)

24 X. Qiu and Y. Wang

56. Vazou, N., Tondwalkar, A., Choudhury, V., Scott, R.G., Newton, R.R., Wadler,
P., Jhala, R.: Refinement reflection: Complete verification with smt. Proc. ACM
Program. Lang. 2(POPL), 53:1–53:31 (Dec 2017)

57. Yorsh, G., Rabinovich, A., Sagiv, M., Meyer, A., Bouajjani, A.: A Logic of Reach-
able Patterns in Linked Data-Structures, pp. 94–110. Springer Berlin Heidelberg,
Berlin, Heidelberg (2006)

58. Zhang, T., Sipma, H.B., Manna, Z.: Decision procedures for term algebras with
integer constraints. Information and Computation 204(10), 1526 – 1574 (2006)

	A Decidable Logic for Tree Data-Structures with Measurements

