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Abstract— We consider non-convex training of shallow neural
networks and introduce a convex relaxation approach with
theoretical guarantees. For the single neuron case, we prove
that the relaxation preserves the location of the global minimum
under a planted model assumption. Therefore, a globally
optimal solution can be efficiently found via a gradient method.
We show that gradient descent applied on the relaxation always
outperforms gradient descent on the original non-convex loss
with no additional computational cost. We then characterize this
relaxation as a regularizer and further introduce extensions to
multineuron single hidden layer networks.

I. INTRODUCTION

Deep neural networks have attracted significant attention

due to their success in various applications, e.g., computer

vision [1] and natural language processing [2]. Despite their

highly non-convex and nonlinear structure, training of these

networks is adequately performed by simple first-order gradi-

ent based optimization algorithms such as Gradient Descent

(GD). However, it is still theoretically elusive that how such

algorithms can successfully train deep networks and obtain

solutions that generalize.

In order to resolve this issue, theoretical aspects of training

neural networks with GD have been extensively studied re-

cently. Since shallow networks can approximate any function

with a sufficient number of neurons [3] and have a compar-

atively simpler structure to analyze, most of the theoretical

results in the current literature are based on shallow networks.

Among these, [4]–[7] studied the recovery of a planted model

parameter for one hidden layer networks trained with GD,

where they used expected risk minimization. In particular, [4]

proved that for one neuron networks with the Rectified Linear

Unit (ReLU) activation, GD with random initialization can

recover the planted model parameter. In a similar work, [5]

showed that GD can recover the planted parameters of an

NN with one hidden layer. Then, [6] proved that Stochastic

GD (SGD) with random initialization can learn one layer

NNs in polynomial time. Later on, [7] extended the previous

work to two layer training, where the input is assumed to be

Gaussian. However, all of these studies are based on expected

risk minimization, which is not practical since we have only

training samples in practice [8]. Additionally, most of the

studies either work under the Gaussian input assumption or

provide restricted theoretical results without this assumption,

e.g., [9].

Unlike the above studies, [10]–[12] focused on directly

minimizing the generic ℓ2 norm loss function, which is

also known as empirical risk. However, [10]–[12] provided

only a locally linear convergence rate for smooth activation

functions, where they also require a proper initialization. Fur-

thermore, these results cannot be applied to most applications

since some commonly used activation functions, e.g., ReLU,

are non-smooth.

Another line of research [13]–[15] studied overparameter-

ized neural networks. In particular, [13] proved the conver-

gence rate of SGD for a two layer network with leaky ReLU

activations in an overparameterized scenario. However, they

also assumed that the input data is linearly separable, which

is not the case in general. [14] further relaxed this assumption

to the case where the data is well clustered. However, in their

results, the amount of overparameterization depends on the

desired error value. Later on, [15] remedied this issue by

providing a result for GD, where the amount of overparame-

terization is independent of the desired error value. However,

these studies assume that the number of neurons is extremely

large, which is an unrealistic assumption.

In this paper, we provide a theoretical analysis for the

globally optimal training of a wide range of NN archi-

tectures without requiring strong assumptions. Our main

contributions can be summarized as follows: 1) We study

the training of shallow neural networks using empirical risk

minimization. Thus, unlike [4]–[7], we present a theoretical

analysis which is more practical; 2) We analyze shallow

networks and illustrate why GD might fail to achieve the

global optimum of the training cost. Based on our analysis,

we derive a convex relaxation for the original loss function

for a single neuron. We then prove that the introduced

relaxation preserves the location of the global minimum

under a planted model assumption; 3) We extend these

observations to the multineuron case by characterizing the

relaxation as a regularization term. We then prove that the

regularized GD achieves the optimal training performance

for the original non-convex loss.

Notation: We denote the matrices and vectors (or scalars)

as uppercase and lowercase letters, respectively. We also use

‖ · ‖2 to denote the Euclidean norm. To denote a vector or

matrix of zeros or ones, we use 0 or 1, respectively, where

the sizes are understood from the context. Additionally, Is
represents the identity matrix of the size s.

II. MAIN SECTION

Here, we consider the following minimization problem

x̂ = argmin f(x),

where x̂ ∈ R
d represents the desired parameter vector and

f(x) is the objective function. Throughout the paper, we



assume that f(·) is the ℓ2 norm loss function.

A. Single Neuron Training

In this section, we aim to solve the following problem

argmin
x

1

2
‖g(Ax)− y‖22
︸ ︷︷ ︸

f(x)

, (1)

where g(·) is a nonlinear activation function, A ∈ R
n×d is

the data matrix, x ∈ R
d is the parameter matrix, and y ∈ R

n

is the observation matrix. We let {ai}
n
i=1 denote the rows of

the data matrix A, which are d dimensional feature vectors.

We can solve (1) using the GD algorithm as follows

xt+1 = xt − µATDt(g(Axt)− y), (2)

where µ is the learning rate, the subscript t is the iteration

index, Dt is a diagonal matrix and its ith diagonal entry is

computed as 1 if aTi xt ≥ 0, 0 otherwise.

For ReLU function, i.e., g(x) = max{0, x}, when we

express f(x) in a different form as

f(x) = ‖g(Ax)‖22 − 2yT g(Ax) + ‖y‖22,

we observe that our problem is non-convex due to the second

term above. In order to make the problem convex (see

Proposition 1), we relax f(x) as follows

fr(x) = ‖g(Ax)‖22 − 2yTAx+ ‖y‖22. (3)

Here, we consider the following planted model

y = g(Ax∗), (4)

where x∗ is the planted parameter vector.

Proposition 1. Provided that (4) hold, the relaxed version

of the objective function f(x) is convex.

Proof. Here, we directly use the convexity definition to prove

the convexity of fr(x) as in the following. Let u, v ∈ R
d,

then ∀α ∈ [0, 1], we have

fr(αu+ (1− α))v) = ‖g(A(αu+ (1− α)v))‖22

− 2yT (A(αu+ (1− α)v)) + ‖y‖22

≤ ‖g(αAu)‖22 + ‖g((1− α)Av)‖22

− 2yT
(
α(Au) + (1− α)(Av)

)

+ ‖y‖22

≤ αfr(u) + (1− α)fr(v),

which concludes the proof.

Thus, we can find the global minimum of fr(x) using the

GD algorithm. Based on the definition of the new objective

function fr(x), we modify the GD update in (2) as

xt+1 = xt − µAT (g(Axt)− y) (5)

Theorem 1. Given the model (4), let x̃ be the global

minimum of fr(x). Then, x̃ is a global minimizer of f(x),
i.e., f(x∗) = f(x̃), and min f(x) = min fr(x).

Proof. We first note that fr(x) is an upper-bound for f(x),
i.e., fr(x) ≥ f(x), ∀x ∈ R

d, due to its definition in (3).

Since x∗ is the minimum of f(x), we have

fr(x̃) ≥ f(x̃) ≥ f(x∗). (6)

Additionally, we have

fr(x
∗) = ‖g(Ax∗)‖22 − 2yT g(Ax∗) + ‖y‖22

= ‖g(Ax∗)‖22 − 2yT (Ax∗) + ‖y‖22

= f(x∗),

where the second equality follows from our planted model,

i.e., y = g(Ax∗), and the properties of the max function, i.e.,

max{0, u}u = max{0, u}2, ∀u ∈ R. With this observation,

we obtain the following inequality

fr(x̃) ≤ fr(x
∗) = f(x∗). (7)

By (6) and (7), we have fr(x̃) = f(x∗), which completes

the proof.

B. Multineuron Training

In this section, instead of (4), we assume that the obser-

vations come from the following model

yi =
m∑

j=1

g(aTi x
∗

j ). (8)

For (8), we aim to minimize the following function

argmin
X

1

2

∥
∥
∥

m∑

j=1

g(Axj)− y
∥
∥
∥

2

2

︸ ︷︷ ︸

fm(X)

, (9)

where we denote the observation vector as y and the jth

column of the parameter matrix X ∈ R
d×m as xj .

We first note that (9) has several global minimum points.

As an example, we can change the order of the neurons,

however, y will still be the same. Thus, we cannot make it

convex. However, we can still improve the performance. For

n > d, since we can obtain more equations than the number

of parameters, the true parameter can be achieved even by the

conventional GD algorithm [12]. However, when n ≤ d, GD

might fail to achieve the global minimum. Thus, we examine

the n ≤ d case and propose an algorithm that achieves the

global minimum at any stationary point.

Let us assume that g(·) is the ReLU function in order to

illustrate why GD might fail to achieve the global minimum

when n ≤ d. With the ReLU assumption, we know that

∇xj
fm(X) = 2ATDjr, where r is the residual, i.e.,

r =

m∑

j=1

g(Axj)− y. (10)

We also know that at a local or global minimum, i.e., a

stationary point, all the parameter vectors satisfy

∇xj
fm(X) = 0,∀j ∈ {1, 2, . . . ,m}.



If we further assume that A is full rank, which holds with

high probability for random matrices [16], we obtain the

following gradient for each neuron j

∇xj
fm(X) = 2ATDjr = 0 (11)

if and only if

Djr = 0, ∀j ∈ {1, 2, . . . ,m}. (12)

The above equalities imply that the conventional GD ap-

proach only guarantees that an entry of the residual surely

vanishes if the corresponding entry of the diagonal matrix

is active for at least one neuron. Mathematically, this claim

corresponds to the following

m∑

j=1

Djr = 0,

which does not guarantee that the residual indexes that

correspond to a 0 element of all Dj’s vanish by using the

conventional GD algorithm. Note that these indexes can be

represented as
∏m

j=1 D
c
j , where Dc

j = In −Dj .

In order to enforce GD to minimize these indexes as well,

we introduce a new term to the gradient as follows

∇xj
fmp(X) = 2ATDjr + 2AT

m∏

j=1

Dc
jr. (13)

With this modification, we can guarantee that each index

of the residual has a positive multiplicative factor so that

∇xj
fmp(X) = 0, ∀j implies that r = 0. In other words, any

stationary point of the new objective function fmp(X) is a

global minimum.

In the following, we propose a function that satisfies (13)

and prove that global minimums of this function are the same

with the global minimums of fm(X).

Proposition 2. The following selection for fmp(X) yields

the desired gradient (13) when the entries of AX is nonzero.

fmp(X) =
∥
∥
∥

m∑

j=1

g(Axj)− y
∥
∥
∥

2

2
− 2yT

m∏

j=1

Dc
jA

m∑

j=1

xj .

(14)

Proof. When we take the gradient of (14) with respect to xj ,

we obtain

∇xj
fmp(X) = 2ATDjr − 2AT

m∏

j=1

Dc
jy + γ(X,A)

= 2ATDjr + 2AT

m∏

j=1

Dc
jr,

where γ(X,A) represents the remaining terms of the gradient

due to the chain rule. However, since we assume that AX

has no zero entries, γ(X,A) = 0, which thus vanishes. For

the second equality, we first provide an alternative definition

of the ReLU function as g(Axj) = DjAx. Then, due to

Dc
jDj = 0, our model in (8), and (10), we have

m∏

j=1

Dc
jr = −

m∏

j=1

Dc
jy,

which yields the result.

Theorem 2. For (8), let X̃ be a global minimum of fmp(X).
Then, X̃ is a global minimizer of fm(X), i.e., fm(X∗) =
fm(X̃), and min fm(X) = min fmp(X).

Proof. We first note that fmp(X) is an upper-bound for

fm(X), i.e., fmp(X) ≥ fm(X), ∀X ∈ R
d×m, due to (14).

Since X∗ is the minimum of fm(X), we have

fmp(X̃) ≥ fm(X̃) ≥ fm(X∗). (15)

Additionally, we have

fmp(X
∗) =

∥
∥
∥

m∑

j=1

g(Ax∗

j )− y
∥
∥
∥

2

2
− 2yT

m∏

j=1

D∗
c

j A

m∑

j=1

x∗

j

=
∥
∥
∥

m∑

j=1

g(Ax∗

j )− y
∥
∥
∥

2

2

= fm(X∗),

where the second equality follows from our planted model,

i.e., y =
∑m

j=1 g(Ax∗

j ), and D∗
c

j D∗

j = 0, ∀j. With this

observation, we obtain the following inequality

fmp(X̃) ≤ fmp(X
∗) = fm(X∗). (16)

By (15) and (16), we have fmp(X̃) = fm(X∗), which

completes the proof.

Corollary 1. As a result of Theorem 2 and the definition in

(13), whenever the following update converges, it achieves

the global minimum of fm(X)

xt+1,j = xt,j − µ∇xj
fmp(Xt) (17)

for each neuron j.

III. NUMERICAL EXPERIMENTS

In this section, we use synthetic data that obeys the models

in (4) and (8) in order to verify our theoretical analysis.

For the experiments in this section, we obtain the data

matrices using a multivariate Gaussian distribution with zero

mean and identity covariance matrix, i.e., ai ∼ N(0, Id)
for i = 1, 2, . . . ,m, unless otherwise stated. In addition

to this, we randomly initialized the parameter vector, i.e.,

x0 ∼ N(0, Id), and use the ReLU as activation. Throughout

the section, we denote our approach and conventional GD as

Regularized GD (RGD) and GD, respectively.

We first consider the single neuron training performance of

RGD and GD, where we particularly focus on training, test,

and recovery errors. Note that in this context, recovery error

is computed as the Euclidean distance between the planted

model parameter and the estimated parameter vector. Here,

we choose the learning rate as µ = 0.1 for both algorithms.
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(a) m = 1, n = 50, and d = 100
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(b) m = 1, n = 50, and d = 50
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(c) m = 1, n = 200, and d = 50

Fig. 1: Comparison of GD and RGD in terms of the training, test and true parameter recovery errors when m = 1.
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(a) m = 3, n = 10, and d = 100
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(c) m = 3, n = 200, and d = 50

Fig. 2: Comparison of GD and RGD in terms of the training and test errors when m = 3.

Additionally, we use 100 samples for the test data. In Fig. 1,

we illustrate three scenarios, i.e., n < d, n = d, and n > d.

In Fig. 1a and 1b, RGD achieves zero training error when

n ≤ d, which matches with our analysis. Moreover, RGD

provides smaller error for the recovery of the true parameter

and the test case. When n > d, since both algorithms have

enough nonzero observations, they achieve zero error for

each case in Fig. 1c. However, our regularization enables

RGD to converge at a faster rate.

We also consider the multineuron training case. Here,

since the permutations of neurons do not change the value of

the objective function, there are multiple global minimums.

Hence, we do not consider the recovery error unlike the

single neuron training case. For both algorithms, we choose

µ = 0.08 and use 3 neurons, i.e., m = 3. Note that in (13),

our contribution depends on a multiplicative term, where

we multiply m diagonal matrices that has 0’s and 1’s at

their diagonal. Therefore, as m increases, the effect of our

contribution will get smaller. We also observe this effect in

Fig. 2, where as n increases, the performance gap between

RGD and GD tends to vanish at a faster rate. Other than

this, we again observe that RGD achieves zero training error

and lower test error for each case while GD only provides a

comparable performance when n > d.

IV. CONCLUSION

In this paper, we studied globally optimal training of

shallow networks, where we used the ℓ2 norm loss function.

In order to achieve the globally optimal training performance,

we first introduced a convex relaxation for the original non-

convex loss function of a single neuron network. We then

proved that this relaxation preserves the locations of the



global minimum under a planted model assumption. We then

characterize this relaxation as a regularization term for the

gradient of the original loss function in the case of multi-

neuron. We also proved that this regularization preserves the

global minimums of the original function. We then verified

our theoretical results using numerical experiments. There

are several open directions for future work. Extending our

framework for more general activation functions beyond

ReLU and deeper neural networks is currently an open

problem. We also refer the reader to [17] for a block-wise

approach to multilayer networks. Furthermore, random pro-

jection and sketching methods recently developed for convex

optimization problems [18]–[21] can also be employed on

convex neural network relaxations for faster training.
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