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Abstract— We consider non-convex training of shallow neural
networks and introduce a convex relaxation approach with
theoretical guarantees. For the single neuron case, we prove
that the relaxation preserves the location of the global minimum
under a planted model assumption. Therefore, a globally
optimal solution can be efficiently found via a gradient method.
We show that gradient descent applied on the relaxation always
outperforms gradient descent on the original non-convex loss
with no additional computational cost. We then characterize this
relaxation as a regularizer and further introduce extensions to
multineuron single hidden layer networks.

I. INTRODUCTION

Deep neural networks have attracted significant attention
due to their success in various applications, e.g., computer
vision [1] and natural language processing [2]. Despite their
highly non-convex and nonlinear structure, training of these
networks is adequately performed by simple first-order gradi-
ent based optimization algorithms such as Gradient Descent
(GD). However, it is still theoretically elusive that how such
algorithms can successfully train deep networks and obtain
solutions that generalize.

In order to resolve this issue, theoretical aspects of training
neural networks with GD have been extensively studied re-
cently. Since shallow networks can approximate any function
with a sufficient number of neurons [3] and have a compar-
atively simpler structure to analyze, most of the theoretical
results in the current literature are based on shallow networks.
Among these, [4]-[7] studied the recovery of a planted model
parameter for one hidden layer networks trained with GD,
where they used expected risk minimization. In particular, [4]
proved that for one neuron networks with the Rectified Linear
Unit (ReLU) activation, GD with random initialization can
recover the planted model parameter. In a similar work, [5]
showed that GD can recover the planted parameters of an
NN with one hidden layer. Then, [6] proved that Stochastic
GD (SGD) with random initialization can learn one layer
NN in polynomial time. Later on, [7] extended the previous
work to two layer training, where the input is assumed to be
Gaussian. However, all of these studies are based on expected
risk minimization, which is not practical since we have only
training samples in practice [8]. Additionally, most of the
studies either work under the Gaussian input assumption or
provide restricted theoretical results without this assumption,
e.g., [9].

Unlike the above studies, [10]-[12] focused on directly
minimizing the generic {5 norm loss function, which is
also known as empirical risk. However, [10]-[12] provided
only a locally linear convergence rate for smooth activation

functions, where they also require a proper initialization. Fur-
thermore, these results cannot be applied to most applications
since some commonly used activation functions, e.g., ReL.U,
are non-smooth.

Another line of research [13]-[15] studied overparameter-
ized neural networks. In particular, [13] proved the conver-
gence rate of SGD for a two layer network with leaky ReLLU
activations in an overparameterized scenario. However, they
also assumed that the input data is linearly separable, which
is not the case in general. [14] further relaxed this assumption
to the case where the data is well clustered. However, in their
results, the amount of overparameterization depends on the
desired error value. Later on, [15] remedied this issue by
providing a result for GD, where the amount of overparame-
terization is independent of the desired error value. However,
these studies assume that the number of neurons is extremely
large, which is an unrealistic assumption.

In this paper, we provide a theoretical analysis for the
globally optimal training of a wide range of NN archi-
tectures without requiring strong assumptions. Our main
contributions can be summarized as follows: 1) We study
the training of shallow neural networks using empirical risk
minimization. Thus, unlike [4]-[7], we present a theoretical
analysis which is more practical; 2) We analyze shallow
networks and illustrate why GD might fail to achieve the
global optimum of the training cost. Based on our analysis,
we derive a convex relaxation for the original loss function
for a single neuron. We then prove that the introduced
relaxation preserves the location of the global minimum
under a planted model assumption; 3) We extend these
observations to the multineuron case by characterizing the
relaxation as a regularization term. We then prove that the
regularized GD achieves the optimal training performance
for the original non-convex loss.

Notation: We denote the matrices and vectors (or scalars)
as uppercase and lowercase letters, respectively. We also use
[l - |l2 to denote the Euclidean norm. To denote a vector or
matrix of zeros or ones, we use 0 or 1, respectively, where
the sizes are understood from the context. Additionally, I,
represents the identity matrix of the size s.

II. MAIN SECTION

Here, we consider the following minimization problem
Z = argmin f(z),

where & € RY represents the desired parameter vector and
f(x) is the objective function. Throughout the paper, we



assume that f(-) is the ¢ norm loss function.

A. Single Neuron Training

In this section, we aim to solve the following problem

.1
argmin - ||g(Az) — yl3, (1
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where g(-) is a nonlinear activation function, A € R"*? is

the data matrix, z € R% is the parameter matrix, and y € R™
is the observation matrix. We let {a;}? ; denote the rows of

the data matrix A, which are d dimensional feature vectors.

We can solve (1) using the GD algorithm as follows
Tyl = Ty — MATDt(g(AiUt) -y), 2

where p is the learning rate, the subscript ¢ is the iteration
index, D, is a diagonal matrix and its i*" diagonal entry is
computed as 1 if aiTxt > 0, 0 otherwise.

For ReLU function, i.e., g(z) = max{0,z}, when we
express f(x) in a different form as

f(@) = llg(Az)[|5 — 2y" g(Az) + |lylI3,

we observe that our problem is non-convex due to the second
term above. In order to make the problem convex (see
Proposition 1), we relax f(z) as follows

fr(z) = llg(Az)|13 - 29" Az + [|y]3. 3)
Here, we consider the following planted model

y = g(Az"), “4)
where x* is the planted parameter vector.

Proposition 1. Provided that (4) hold, the relaxed version
of the objective function f(x) is convex.

Proof. Here, we directly use the convexity definition to prove
the convexity of f.(x) as in the following. Let u,v € R,
then Vo € [0, 1], we have

fr(ou+ (1 = a))) = [lg(A(au + (1 = a)v))|3
=2y (A(au+ (1 = a)v)) + [lyl3
< Jlg(adu)[|5 + llg((1 — o) Av)||3
— QyT(a(Au) +(1- a)(Av))
+ [yl
< afr(u) + (1 —a)fr(v),

which concludes the proof. O

Thus, we can find the global minimum of f,.(z) using the
GD algorithm. Based on the definition of the new objective
function f,(x), we modify the GD update in (2) as

Tip1 = ap — pA (g(Azy) — ) (%)

Theorem 1. Given the model (4), let & be the global
minimum of f.(x). Then, T is a global minimizer of f(x),

ie, f(z*) = f(Z), and min f(x) = min f,(x).

Proof. We first note that f,.(z) is an upper-bound for f(x),
ie., fr(x) > f(z),Yr € RY, due to its definition in (3).
Since x* is the minimum of f(z), we have

[r(@) = f(Z) = f(z7). (6)
Additionally, we have
fr(@) = [lg(Az™)13 — 24" g(Az") + |lyl3
= [lg(Az*)|13 — 24" (Az*) + |lylI3
= f(="),

where the second equality follows from our planted model,
i.e., y = g(Azx*), and the properties of the max function, i.e.,
maz{0,u}u = maz{0,u}?, Yu € R. With this observation,
we obtain the following inequality

By (6) and (7), we have f.(Z) = f(«*), which completes
the proof. [

B. Multineuron Training

In this section, instead of (4), we assume that the obser-
vations come from the following model

yi=>_ gla] ). ®)
j=1
For (8), we aim to minimize the following function

2
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where we denote the observation vector as y and the j**
column of the parameter matrix X € R4*™ as ;.

We first note that (9) has several global minimum points.
As an example, we can change the order of the neurons,
however, y will still be the same. Thus, we cannot make it
convex. However, we can still improve the performance. For
n > d, since we can obtain more equations than the number
of parameters, the true parameter can be achieved even by the
conventional GD algorithm [12]. However, when n < d, GD
might fail to achieve the global minimum. Thus, we examine
the n < d case and propose an algorithm that achieves the
global minimum at any stationary point.

Let us assume that g(-) is the ReLU function in order to
illustrate why GD might fail to achieve the global minimum
when n < d. With the ReLU assumption, we know that
Va, fm(X) = 2AT D;r, where 7 is the residual, i.c.,

r= Zg(ij) —. (10)
=1

We also know that at a local or global minimum, i.e., a

stationary point, all the parameter vectors satisfy

Vo, (X)) = 0,% € {1,2,...,m}.



If we further assume that A is full rank, which holds with
high probability for random matrices [16], we obtain the
following gradient for each neuron j

Va, fm(X) =2ATDjr =0 (11)

if and only if

Djr=0,Yje{1,2,...,m}. (12)
The above equalities imply that the conventional GD ap-
proach only guarantees that an entry of the residual surely
vanishes if the corresponding entry of the diagonal matrix
is active for at least one neuron. Mathematically, this claim
corresponds to the following

which does not guarantee that the residual indexes that
correspond to a 0 element of all D;’s vanish by using the
conventional GD algorithm. Note that these indexes can be
represented as [[_, D, where D§ = I,, — D;.

In order to enforce GD to minimize these mdexes as well,
we introduce a new term to the gradient as follows

Vi, fmp(X) = 247 Djr 4 24T T [ D
j=1

(13)

With this modification, we can guarantee that each index
of the residual has a positive multiplicative factor so that
Va, fmp(X) = 0, Vj implies that r = 0. In other words, any
stationary point of the new objective function fi,,(X) is a
global minimum.

In the following, we propose a function that satisfies (13)
and prove that global minimums of this function are the same
with the global minimums of f,,,(X).

Proposition 2. The following selection for fp,,(X) yields
the desired gradient (13) when the entries of AX is nonzero.

_HZg Ax;) yH —2yTHD(AZxJ

(14)

fmp

Proof. When we take the gradient of (14) with respect to x;,
we obtain

Va, fmp(X) = 24T Djr — 24T ] DSy + v(X, A)
Jj=1

=2A"Dr + 24T [ Dr,

j=1

where (X, A) represents the remaining terms of the gradient
due to the chain rule. However, since we assume that AX
has no zero entries, v(X, A) = 0, which thus vanishes. For
the second equality, we first provide an alternative definition

of the ReLU function as g(Ax;) = D;Az. Then, due to
D§D.j = 0, our model in (8), and (10), we have

[1 D5 =-1] psv
j=1 j=1

which yields the result.

Theorem 2. For (8), let X be a global minimum of fmp(X
Then, X is a global minimizer of fm(X), i.e., fm(X)
fm(X), and min fp, (X)) = min fr,,(X).

Proof. We first note that f,,,(X) is an upper-bound for
(X)), iy frnp(X) > frn(X),VX € RTX™, due to (14).
Since X* is the minimum of f,,(X), we have

Sp(X) = frn(X) > fin(X7).
Additionally, we have

m m
= HZg (Az}) sz—QyTHD;cAZx;
j=1 j=1

- [Soas ol
j=1
= fm(X*)a

where the second equality follows from our planted model,
ie, y = Y g(Az}), and D;"D; = 0, Vj. With this
observation, we obtain the following inequality

fmp( )<fmp( ):fm(X*)

By (15) and (16), we have fo,(X) = fn(X*), which
completes the proof. [

— O

15)

fmp

(16)

Corollary 1. As a result of Theorem 2 and the definition in
(13), whenever the following update converges, it achieves
the global minimum of f,,(X)

- /jfva:J fmp(Xt) (17)

Li+1,5 = Lt,j

for each neuron j.

III. NUMERICAL EXPERIMENTS

In this section, we use synthetic data that obeys the models

in (4) and (8) in order to verify our theoretical analysis.
For the experiments in this section, we obtain the data
matrices using a multivariate Gaussian distribution with zero
mean and identity covariance matrix, i.e., a; ~ N(0,1;)
for i = 1,2,...,m, unless otherwise stated. In addition
to this, we randomly initialized the parameter vector, i.e.,
2o ~ N(0,1,;), and use the ReLU as activation. Throughout
the section, we denote our approach and conventional GD as
Regularized GD (RGD) and GD, respectively.

We first consider the single neuron training performance of
RGD and GD, where we particularly focus on training, test,
and recovery errors. Note that in this context, recovery error
is computed as the Euclidean distance between the planted
model parameter and the estimated parameter vector. Here,
we choose the learning rate as ¢ = 0.1 for both algorithms.
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Fig. 1: Comparison of GD and RGD in terms of the training, test and true parameter recovery errors when m = 1.
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Fig. 2: Comparison of GD and RGD in terms of the training and test errors when m = 3.

Additionally, we use 100 samples for the test data. In Fig. 1,
we illustrate three scenarios, i.e., n < d, n = d, and n > d.
In Fig. 1a and 1b, RGD achieves zero training error when
n < d, which matches with our analysis. Moreover, RGD
provides smaller error for the recovery of the true parameter
and the test case. When n > d, since both algorithms have
enough nonzero observations, they achieve zero error for
each case in Fig. lc. However, our regularization enables
RGD to converge at a faster rate.

We also consider the multineuron training case. Here,
since the permutations of neurons do not change the value of

the objective function, there are multiple global minimums.

Hence, we do not consider the recovery error unlike the
single neuron training case. For both algorithms, we choose
1 = 0.08 and use 3 neurons, i.e., m = 3. Note that in (13),
our contribution depends on a multiplicative term, where

we multiply m diagonal matrices that has 0’s and 1’s at
their diagonal. Therefore, as m increases, the effect of our
contribution will get smaller. We also observe this effect in
Fig. 2, where as n increases, the performance gap between
RGD and GD tends to vanish at a faster rate. Other than
this, we again observe that RGD achieves zero training error
and lower test error for each case while GD only provides a
comparable performance when n > d.

IV. CONCLUSION

In this paper, we studied globally optimal training of
shallow networks, where we used the {5 norm loss function.
In order to achieve the globally optimal training performance,
we first introduced a convex relaxation for the original non-
convex loss function of a single neuron network. We then
proved that this relaxation preserves the locations of the



global minimum under a planted model assumption. We then
characterize this relaxation as a regularization term for the
gradient of the original loss function in the case of multi-
neuron. We also proved that this regularization preserves the
global minimums of the original function. We then verified
our theoretical results using numerical experiments. There
are several open directions for future work. Extending our
framework for more general activation functions beyond
ReLU and deeper neural networks is currently an open
problem. We also refer the reader to [17] for a block-wise
approach to multilayer networks. Furthermore, random pro-
jection and sketching methods recently developed for convex
optimization problems [18]-[21] can also be employed on
convex neural network relaxations for faster training.
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