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Abstract— We introduce a novel distributed derivative-free
optimization framework that is resilient to stragglers. The
proposed method employs coded search directions at which
the objective function is evaluated, and a decoding step to find
the next iterate. Our framework can be seen as an extension of
evolution strategies and structured exploration methods where
structured search directions were utilized. As an application, we
consider black-box adversarial attacks on deep convolutional
neural networks. Our numerical experiments demonstrate a
significant improvement in the computation times.

I. INTRODUCTION

Derivative-free optimization is an important computational
task in many areas such as machine learning, statistics,
design optimization and decision making [1]. In many appli-
cations, it is common to encounter black-box optimization
problems where the gradient of the objective function is
not available. It is also possible that the gradient informa-
tion is unreliable, or impractical to obtain. Derivative-free
optimization methods employ only the function values to
make progress toward an optimal solution. They can be used
to directly tackle complex and diverse problems without
an analytical form of the objective function. Additionally,
since the function values can be evaluated independently in
parallel, derivative-free methods can exploit parallelism to a
great extent.

In the recent years, cloud computing has offered inexpen-
sive and scalable solutions to computational problems, and is
widely adopted and used by the community. However, cloud-
based serverless computing systems typically suffer from
system noise, latency and variability in computation times
[2], [3]. This results in a subset of slower worker nodes called
stragglers. In this work, we propose a distributed derivative-
free optimization method that is resilient to stragglers. Our
method forms gradient estimates by evaluating the function at
several points by employing coding theoretic ideas and tools.
We first encode ordinary basis perturbations using Hadamard
transform into perturbation directions along the rows of the
Hadamard matrix H. The objective function is evaluated at
the encoded points in parallel, and then a gradient direction
is determined from the available workers via decoding. We
establish a connection between derivative free optimization
via the well-known finite differences method, recently pro-
posed structured evolution strategies [4], and polar codes [5].
The structured evolution strategies approach corresponds to
averaging the outputs of function evaluations with variables
perturbed along the rows of HD where H is the Hadamard

matrix and D is a diagonal matrix with random diagonal
entries. When the decoding step is omitted, encoding the
unit perturbations leads to the structured evolution strategies
which is simple to implement. If we decode the outputs
instead of averaging them using the modified successive can-
cellation decoder of polar codes, however, we obtain partial
derivatives as in the finite differences method. Because the
function evaluations are scalar valued and the decoder can
run in near linear time, the time it takes to decode these
scalar outputs is negligible. For a large class of problems,
including the decoding step yields faster convergence in
optimization. The proposed method also enables a way to
switch between finite differences and structured evolution
strategies and provide a more favorable trade-off.

A. Related Work

This work draws ideas from coded computation literature
where the goal is to speed up distributed matrix multipli-
cation. The authors in [6] introduced the concept of using
Maximum Distance Separable (MDS) codes to compute
matrix-vector multiplications faster in distributed computing
platforms. The way coding is integrated into the computation
of a matrix vector product Az, where A € R"*? and = € R?
is as follows: First A is partitioned into submatrices along
the rows and then these submatrices are encoded using MDS
codes. The workers multiply their assigned submatrix with
x. Because the encoded A contains redundancy, it is possible
to decode Ax via a standard decoder without accessing the
outputs of all workers. Works that introduce variants and
extensions of this idea include [7], [8] and [9]. There are
many other recent studies on coded computation that explore
the partitioning of both matrices being multiplied, e.g., [10],
[11]. This work is more related to the case where only one
of the matrices is partitioned.

Another line of study that this work is connected to is the
study of black-box optimization methods for reinforcement
learning. The authors in [12] explore the use of the evolution
strategies method in reinforcement learning and show that
distributed training with evolution strategies can be very fast
because of its scalability. The work in [4] shows that using
orthogonal exploration directions leads to lower errors and
present the structured evolution strategies method which is
based on a special way of generating random orthogonal
exploration directions, as we discuss later in detail.



B. Main Contributions

We introduced a novel framework based on coded gra-
dient estimates that leads to straggler-resilient distributed
optimization of black-box functions. Our method introduces
a novel connection between the finite differences method
and the structured evolution strategies method by using
polar codes [5]. Once function evaluations at perturbed
parameters are returned, it is possible to use them as they
are without decoding, which is equivalent to the structured
evolution strategies method or decode them to obtain the
gradient estimate and use it in a gradient-based optimization
algorithm. Our method offers this flexibility at the expense of
doing some additional inexpensive computing for decoding
because of the efficient polar code decoder.

II. PRELIMINARIES
A. Notation

We are interested in solving the black-box optimization
problem given by

miniemize f(6)

where [ : R — R. Throughout the text, unless otherwise
stated, we assume that we do not have access to the analytical
form of f(#) or its gradient, and we assume that we are only
able to make queries for function evaluations. We use V,, to
denote directional derivative along the direction v. We use
e; to denote the 7’th unit column vector with the appropriate
dimension. Throughout the text, H refers to the Hadamard
matrix (its dimension can be determined from the context),
and H refers to the Hessian of a function.

B. Finite Differences

For black-box optimization problems, approximate gradi-
ents can be obtained by using the finite differences estimator.
The derivative of a function f(z) with respect to the variable
x; can be approximated by using

Of(x) _ flz+de;) — f(x — de;) 1)
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where e; is the i’th unit vector and § € R is a small scalar
that determines the perturbation amount. One can obtain
an approximate gradient using (1) and feed these estimate
gradients to gradient-based optimization methods such as
gradient descent.

The finite differences estimator can easily exploit par-
allelism since the partial approximate derivatives can be
computed in different workers in a distributed setting. This
method can be modified to be straggler-resilient by using
only the available derivative estimates and ignoring the
outputs of the slower workers. However, this typically leads
to slower convergence. We note that the proposed method
results in a mechanism that always returns all entries of
the gradient estimate and is straggler-resilient at the same
time. Another alternative is to replicate finite difference
calculations, which is not optimal from a coding theory
perspective.

C. Evolution Strategies

Let us consider the following evolution strategies (ES)
gradient estimator ([12], [4])

N
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where 0 is the scaling coefficient for the random perturbation
directions €; and N is the number of perturbations. This
estimator is referred to as antithetic evolution strategies gra-
dient estimator. There are other gradient estimators slightly
different from the one in (2). In this work, we always
consider the antithetic version given in (2) because it leads
to better empirical results in our numerical simulations. The
random perturbation directions ¢; may be sampled from a
standard multivariate Gaussian distribution A(0,1). Alter-
natively, €;’s may be generated as the rows of HD where
the D is a diagonal matrix with entries distributed according
to Rademacher distribution. The authors in [4] propose gen-
erating perturbation directions by repetitive multiplications
HD;...HD), where D;’s are independent.

It is shown in [4] that if exploration (or perturbation)
directions €; are orthogonal, the gradient estimators lead to
lower error. We note that the rows of H D are orthogonal with
the appropriate scaling factor. We omit this scaling factor by
absorbing it in the § term which scales perturbation directions
€;. This work considers the case where random perturbation
directions are generated according to H D and we will refer
to it as structured evolution strategies as they do in [4].

Evolution strategies can exploit parallelism as well since
workers need to communicate only scalars which are the
function evaluations and the random seeds used when gen-
erating the random perturbation directions.

D. Coded Computation

Coded computation has recently been introduced in [6]
for speeding up distributed matrix multiplication. The idea
is to add redundancy to computations by using linear codes
in order to make it possible to recover the output of the mul-
tiplication without having all worker outputs. The fact that
matrix multiplication is a linear operation plays a key role
in coded computation. The scheme in [6] is based on MDS
codes. More recently, the authors in [9] proposed a coded
computation mechanism for serverless computing platforms
using polar codes instead of MDS codes. Polar codes have
low encoding and decoding complexity O(N log V).

This work draws ideas from the coded computation litera-
ture. In coded computation, for computing Az, one encodes
submatrices A; and decodes worker outputs A;x. In coded
optimization, the perturbation directions are encoded and
function evaluations are decoded.

Many of the coded computation schemes have the restric-
tion that they are designed to work with finite field data
and not applicable to full-precision inputs. The decoding
algorithm introduced in [9] for polar codes can however work
with full-precision data. Since we do not restrict the output
of the black-box function f to take values in a finite field, we



need a decoder that can operate on full-precision real values.
Quantization is an option, though it would introduce noise,
which can be avoided by using a decoding algorithm that can
work with full-precision data. We note that it is possible to
use the decoder in [9] with a slight modification to account
for the difference in the encoding kernels ([(1) H for polar
codes, and H _H for the Hadamard transform). We discuss

the decoding in detail in the next section.

III. CODED BLACK-B0OX OPTIMIZATION

In this section, we present the proposed method for
speeding up distributed black-box optimization. We start
by introducing some more notation and definitions that we
will be using. The derivative of a differentiable function f
at a point # along the unit vector direction e; is the ¢’th
component of the gradient V f. More precisely, we have

of _ r
90, e; Vf. 3)
The directional derivative along v is defined as follows
f(0 +dv) - f(6)
5 .

If the function is differentiable at a point 6, then the
directional derivative exists along any direction v and is a
linear map [13]. In this case we have

Vof =0V (5)
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When we do not have access to exact gradients, we can
employ a numerical directional derivative by choosing a
small § in
f(0+6v) — f(6)
5 .
Note that the approximation in (6) is not symmetric, that
is, we only perturb the parameters along +v. We instead use
the symmetric version of (6) for approximating derivatives in
which the parameters are perturbed along both the directions
—v and +uv:

Vof & (6)

f(0+dv) — f(6 —dv)
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If we consider the Taylor series expansion for f(6+ dv), we
obtain

Vo f = . (7

2
F(0-+60) = F0) + 0V 0 + S 0THY + O0Y) (8)

and for f(6 — 0v), we have

f(0—ov) = f(0) —oVfTv+ %’UTH’U +0(8%) )

where O(83) is a third order error term and H is the Hessian
matrix for f. Substituting these expansions in (7), we obtain

T 3
S\ 230(5)
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This shows that by choosing J small, we can make the
numerical directional derivative approximately linear in V f.

Our proposed method makes use of this assumption that
gradient estimates are approximately linear in their directions
v to ensure that coding can be applied to directional deriva-
tive estimates. To make this more concrete, let us consider
the construction given in Figure 1. The block H simply
corresponds to the linear transformation H = H 4 ]

Vslf =~ VfTo,

Vig,+o)f = VfT(01+6;)
Vio,-0,)f = VfT(61—65)

Vo,f ~ V76,

Fig. 1. 2-by-2 construction based on Hadamard transformation.

In Figure 1, if we know the estimates for Vg, ¢,)f and
V(9,—0,)f, we can compute the estimates for Vy, f and
Vo, f because the directional derivative estimates are approx-
imately linear in their corresponding directions. Furthermore,
if we know the estimate for Vy, f, then it is sufficient to
know only one of the estimates for Vg, 1.g,)f or Vg, _g,) f
in order to be able to compute the estimate for Vy, f. This
would happen if, for example, 6; is the zero vector (i.e.
frozen direction) because the estimate for Vg, f would be
zero and either of the directional derivative estimates from
the right-hand side would be enough for us to obtain the
estimate of Vy, f.

We refer to the directions 01, 65, (61 + 62), (61 — 63) as
perturbation directions.

We now summarize the proposed method and detailed
description of each item will follow:

« Encode all the unit vectors in R? to obtain the encoded

perturbation directions.

o Assign each perturbation direction to a worker and have
workers compute their directional derivative estimates
using (7).

o Master starts collecting worker outputs.

o« When a decodable set of worker outputs (i.e. direc-
tional derivative estimates) is available, the master node
decodes these outputs to obtain an estimate for the
gradient.

o The master node then makes a gradient update to find
the next iterate for the parameter 6.

« Repeat until convergence or for a desired number of
iterations.

The above procedure assumes that we want to estimate all
entries of the gradient, but it is possible estimate only a
portion of gradient entries by encoding only the unit vectors
corresponding to the desired entries.

We note that we can always check whether decoding
helps in obtaining a better objective function compared to
the the structured evolution strategies and make the update
accordingly. Because the decoding step is quite fast thanks
to the polar decoder, having decoded the outputs but ended
up not using the decoded estimate is not a computational
burden.

A. Encoding

Encoding is done based on the Hadamard transformation
whose kernel is shown in Figure 2. Encoding is done the



same way as polar encoding is done. Hence, the computa-
tional complexity of encoding is only N log N operations.

0, 01+ 0,

0, 6, -6,

Fig. 2. 2-by-2 Hadamard transformation of the perturbation directions.

The way polar coding for the erasure channel works is
that one computes the erasure probabilities of the trans-
formed channels and freezes the channels with the highest
erasure probabilities and the remaining channels are used
for information. We refer the reader to [5] and [9] for more
details on polar codes. In channel coding, freezing channels
corresponds to sending known bits, e.g., zeros, at the receiver.
In this work, freezing channels corresponds to setting it to
zero coordinates such that the directional derivative along
these vectors is zero. This makes it possible, when decoding,
to take the value of the derivative estimates for frozen
channels to be zero. For the information channels, we simply
send in unit vectors.

Encoding for a function of 3 variables using N = 4
workers is shown in Figure 3. The resulting 4 output vectors
are the perturbation directions. In this construction, the rate

[1 o o]
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[1 o o 1 00l —11n -1 -1]"
0 1 o] e -1]7
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Fig. 3. Example encoding.
3

is ¢ since 3 out of 4 channels are used for sending in unit
vectors. When the erasure probabilities of the transformed
channels are computed (see [5]), one will see that the worst
one corresponds to the first index. Hence, the first channel
is the frozen channel and the remaining 3 channels are the
information channels. The frozen channel is set to the zero
vector and the information channels are set to unit vectors.
Sending in the zero vector for the frozen channel makes
sense because perturbing by the zero vector is the same as
not perturbing the variables and hence we get f(6 + 0) —
f(6—0) = 0. This is important because during decoding, we
will not have to do any computations to evaluate the value
of the frozen inputs as we know they are zero.

If we wish to use N = 8 workers instead of 4, we would
set the worst 5 channels to zero vectors and the remaining
best three channels would be set to the unit vectors eq, es, e3.
The rate in this case would be %, and this construction would
be more straggler-resilient since we can recover the gradient
estimate in the presence of even more stragglers compared
to the N = 4 case.

Embedding interpretation: It is also possible to perform
the encoding step slightly differently for a different view on

freezing channels. Instead of setting frozen channels to zero
vectors, one can increase the dimension of the inputs from
d to N and set the frozen channels to unit vectors e; where
je{d+1,d+2,...,N}. Because the function f(6) accepts
d-dimensional inputs, we could embed f(6) into a higher
dimension, that is, we could define f (é) where § € RN and
f(8) = f(0) if 6; = 0; for i € {1,2,...,d}. The advantage
of this approach is that the output of the encoding step will
be equal to the H matrix with permuted rows.

B. Decoding

The sequential polar code decoder given in [9] works
for linear operations such as matrix-vector multiplication
with full-precision data (i.e. does not require finite field
data). Because we assume that the gradient estimates Vp,, f
are approximately linear, we use the same decoder in [9]
by only modifying it slightly so that it decodes according
to the Hadamard kernel and not the polar code kernel.
The decoder is given in Alg. 1 along with the subroutine
decodeRecursive(i,j) in Alg. 2. The decoder uses the notation
D;; to denote the value corresponding to the node ¢ in the
7’th level in the coding circuit. Figure 4 shows this notation
in the coding circuit for N = 4. The blocks W in Figure
4 represent workers. The notation Ip,; in Alg. 1 indicates
whether the data for the node 7 in the j’th level is available or
erased (i.e., not computed yet). checkDecodability is another
subroutine that checks whether it is possible to decode the
available outputs given the indicators of output availabilities.
It checks decodability of outputs by running the decoder on
the indicators and if decoding fails, it returns false, otherwise,
it returns true.

D Doy Doy
Dog — " = y . Do3
D D Dy,
Dyp —— 11 21 Dy
D D D.
Dyo — 21 11 Dis
H D D H D
Do 31 31 32 . Dss

Fig. 4. N = 4 construction.

C. Multiplication by D

Structured evolution strategies method is usually based on
exploring the parameter space along the rows of H D instead
of H alone. D is a diagonal matrix with random diagonal
entries distributed according to Rademacher distribution (31
with probability 0.5). So far, we have only considered
the H matrix for perturbation directions. It is possible to
incorporate the diagonal matrix D into our method as well.

Multiplying H by D from the right corresponds to multi-
plying all the entries of the ¢’th column of H by D,; for
all <. In this case, instead of computing an estimate for
the directional derivative along a direction of v, we will
approximate the directional derivative with respect to the
direction Dv. The derivations we have done for v also apply
for these randomized directions Dv. Decoding will work the



Algorithm 1: Decoding algorithm.

Algorithm 2: decodeRecursive(i, j)

Input: Indices of the frozen channels
Result: estimate of V f
Initialize ID;,O = [IDo,m IDI,(]? ..

> Part I
Ipy_1 o] =10,...,0]

while Ip_, not decodable do
update Ip, ,
checkDecodability(Ip, ,)
end '
Initialize an empty list y
for i< 0to N —1do
D; o = decodeRecursive(é, 0)
if node i is a data node then
|y =1[y; Diol
end
if i mod 2 = 1 then
for j < 0 to logy, N do
for [ < 0 to i do
| compute D;; if unknown
end
end
end

> Part II

> forward prop

end
return y

same as before, except, after the decoding algorithm is run on
the outputs, we need to divide the ¢’th entry of the decoded
gradient estimate by D;; to obtain the entries of the gradient
estimate.

IV. SPEEDING UP DISTRIBUTED COMPUTATION OF
ADVERSARIAL ATTACKS

Deep neural networks have found success in many differ-
ent tasks. Their robustness is a critical performance criterion
for many applications. In the literature, there are many
works that propose methods to generate adversarial inputs to
attack neural networks to investigate their robustness. Attack
settings may differ in terms of levels of knowledge on the
neural network model. Some works assume knowledge on
the architecture of the neural network and this setting is
referred to as open-box setting. On the other hand, if we
only assume we have access to the outputs of the neural
network, then this is called the black-box setting. In this
section, we are interested in applying our proposed method
to the black-box setting.

We apply our proposed method to the setting of finding
adversarial examples based on black-box optimization. We
adopt the settings in [14] where they develop black-box
attacks to neural network based classifiers and the goal is
to find a misclassified image that looks like a given image
6o. They pose the following optimization problem for finding
adversarial examples: minimize f(6), where

7(6) = 116 = 60| |3 + e max{max[F(6)); — log[F(0)l,, —}.
1D

Input: Node i € [0, N — 1], level j € [0,log, N]
Result: Ip,; and modifies D

if j = log, N then return Ip,,, . > base case 1

if Ip,, =1 then return 1

Ip, ., = decodeRecursive(i, j + 1)
ID,yiriy. 41, = decodeRecursive(pair (i), j + 1)

if i is upper node then

if Ip, ., AND Ip
‘ compute D;;

return 1
end

> base case 2

=1 then

pair(i),(G+1)

else
if IDi,(J#l) OR ID = ] then
‘ compute D;;

return 1
end

pair(i),(i+1)

end
return O

F'(0) represents the class probabilities of the neural network
when we feed in 6 as the input. The subscript i in [F'(0)];
means the class probability for the i’th class. ¢ and k are
non-negative parameters for tuning the attack. Note that the
objective in (11) is for a targeted attack, meaning we wish to
find an image that is classified as class ¢. If one is interested
in finding an example misclassified but not necessarily to
a given class, then this is called an untargeted attack. The
optimization problem to be solved for untargeted attacks is
given in [14] as

f(0) =
16 = 6ol[3 + cmax{log[F ()]s, — max log[F(0)];, —+}

12)

where £ is the correct class for the image that we wish to
misclassify. Note that since we assume we have no informa-
tion about the neural network F'(6), we cannot compute the
gradient of the functions in (11) and (12).

The proposed approach in [14] involves selecting a given
number of parameters in every iteration and estimating
the derivatives only for these parameters. Hence, in every
iteration, only a number of selected parameters are updated.
The updates are done using the ADAM algorithm [15]. We
present results regarding the use of our method in black-box
adversarial attacks problem in numerical results section.

V. NUMERICAL RESULTS

We now present results showing the performance of our
proposed framework.

A. An li-norm Based Objective as the Black-Box Function

In this subsection, we present experiment results for opti-
mizing a known objective function f(6) = ||A0 — b||; as a
test case. Even though we experiment with a known function,
we still use the black-box optimization algorithms assuming
we do not have the exact gradients.
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Fig. 5. We optimize the function f(6) = ||A@—b||1 where A € R200%32
and y € R290 ysing black-box optimization methods.

Figure 5 shows the cost as a function of iterations when
we use gradient descent algorithm with gradient estimates
obtained by the finite differences method, the proposed
method, and the structured evolution strategies method. For
fairness in comparing these methods, we used straggler-
resilient versions of the finite differences method and the
structured evolution strategies method in obtaining these
results. To clarify, for the finite differences method, we wait
for the first arriving 16 worker outputs out of the total
32 outputs to make a gradient update. For the structured
evolution strategies method, the perturbation directions come
from the rows of H D matrix which is a 32 x 32 matrix, so
we wait for the first arriving 16 outputs out of the 32. Finally,
the way we implement the proposed method is that we use
a rate of % with a total of 64 workers and wait for the first
decodable set of outputs out of a total of 64 outputs. Figure 5
illustrates that having all the entries of the gradient estimate
through decoding leads to faster convergence than having
only a half of the entries of the gradient estimate. It also
shows that the proposed method results in faster convergence
compared to the structured evolution strategies method.

B. Black-Box Adversarial Attacks

We now present some experiment results for our proposed
method applied to finding adversarial examples. We have
tested our proposed method for solving the optimization
problem for targeted black-box attacks (objective of which is
given in (11)) to a deep learning model. The model we con-
sidered is the VGG-16 architecture [16] trained on CIFAR-
10 dataset [17] for image classification. VGG-16 architecture
is a 16-layer convolutional neural network. CIFAR-10 is an
image dataset with a total of 60000 images of size 32x 32X 3
(50000 training and 10000 test images) with 6000 images per
class for a total of 10 classes.

Before we delve into the details of the experiments, we
show two original input images from CIFAR-10 and the
generated adversarial images that look almost the same as
the original images but are misclassified. Figure 6 shows
the original images 6y which are correctly classified by the
neural network F(). Figure 7 shows the generated adver-
sarial images obtained by solving the black-box optimization
problem for targeted attacks where the target class is the
dog class. The adversarial images in Figure 7 are both
misclassified as dog. These adversarial images were obtained
by using our proposed method.

o s 10 15 20 25 30 o 5 10 15 20 25

(a) Airplane classified correctly (b) Ship classified correctly

Fig. 6. Original images 6g.

(a) Airplane classified as dog (b) Ship classified as dog

Fig. 7. Adversarial images generated using the proposed method.

We now discuss details of how we obtained these adver-
sarial images. For obtaining these results, we have solved the
problem of minimizing f(0) where f(6) is given in (11). We
have set kK = 0, ¢ = 0.1. We have solved this optimization
problem using three different methods and compared them in
Figure 9 via a run time simulation. The simulation was done
by sampling worker run times from the distributions shown
in Figure 8. Figure 8(a) shows the empirical histogram of
worker times which were obtained for the AWS Lambda
platform, which is a serverless computing platform. Figure
8(b) shows the histogram of worker times generated from
the shifted exponential distribution.

400

frequency
N w
o o
o o
| I
frequency

—

o

S
—

0 50 100 150 200 0 10 20 30 40
return times return times

(a) AWS Lambda return times (b) Exponential distribution

Fig. 8. Run time distributions used in simulations.

Figure 9 illustrates that it is possible to eliminate the
straggling workers effect by using the proposed method.
The way finite differences and structured evolution strategies
methods were implemented is not straggler-resilient in these
simulations, that is, all worker outputs are waited for in every
gradient update. We note that this is different from the results
on the optimization of the [;-norm based function given
in previous subsection because we used straggler-resilient
versions of the methods in those experiments. The point of
the simulation results given in Figure 7 is not necessarily



to compare the run times of each method but instead to
showcase that our proposed method works for the recent
problem of adversarial attacks to deep neural networks.
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Fig. 9. Simulated plots of cost as a function of time (all methods were run
for 3000 iterations). a,c: Airplane image classified as dog. b,d: Ship image
classified as dog. a,b: Worker return times sampled from AWS Lambda
return times shown in Figure 8(a). c¢,d: Worker return times sampled from
the exponential distribution shown in Figure 8(b).

VI. CONCLUSION

We have introduced a novel distributed black-box opti-
mization mechanism based on coded perturbation directions.
Because of the redundancy inserted during encoding, the
proposed method is resilient against straggling workers in
distributed computing platforms. This makes our method
suitable for large scale serverless cloud-based systems where
nodes are unreliable. Our work utilizes coding theoretic
tools and ideas from coded distributed computation methods.
Furthermore, the proposed method provides a connection be-
tween two black-box optimization methods: finite differences
and structured evolution strategies, in a way that it is possible
to go from one to the other and choose the one that drives the
cost down more effectively. We have provided an argument
why coded gradient estimates would work for a variety of
cost functions and shown this through numerical examples.
There are several open directions for future work. In par-
ticular, our coding Hadamard transform structured coding
method is analogous to subsampled Hadamard constructions
in random projections [18], [19], [20]. An interesting direc-
tion is to combine these structured embeddings for faster
distributed optimization [21], [22].
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