
Distributed Black-Box Optimization via Error Correcting Codes

Burak Bartan and Mert Pilanci

Department of Electrical Engineering, Stanford University

Email: {bbartan, pilanci}@stanford.edu

Abstract— We introduce a novel distributed derivative-free
optimization framework that is resilient to stragglers. The
proposed method employs coded search directions at which
the objective function is evaluated, and a decoding step to find
the next iterate. Our framework can be seen as an extension of
evolution strategies and structured exploration methods where
structured search directions were utilized. As an application, we
consider black-box adversarial attacks on deep convolutional
neural networks. Our numerical experiments demonstrate a
significant improvement in the computation times.

I. INTRODUCTION

Derivative-free optimization is an important computational

task in many areas such as machine learning, statistics,

design optimization and decision making [1]. In many appli-

cations, it is common to encounter black-box optimization

problems where the gradient of the objective function is

not available. It is also possible that the gradient informa-

tion is unreliable, or impractical to obtain. Derivative-free

optimization methods employ only the function values to

make progress toward an optimal solution. They can be used

to directly tackle complex and diverse problems without

an analytical form of the objective function. Additionally,

since the function values can be evaluated independently in

parallel, derivative-free methods can exploit parallelism to a

great extent.

In the recent years, cloud computing has offered inexpen-

sive and scalable solutions to computational problems, and is

widely adopted and used by the community. However, cloud-

based serverless computing systems typically suffer from

system noise, latency and variability in computation times

[2], [3]. This results in a subset of slower worker nodes called

stragglers. In this work, we propose a distributed derivative-

free optimization method that is resilient to stragglers. Our

method forms gradient estimates by evaluating the function at

several points by employing coding theoretic ideas and tools.

We first encode ordinary basis perturbations using Hadamard

transform into perturbation directions along the rows of the

Hadamard matrix H . The objective function is evaluated at

the encoded points in parallel, and then a gradient direction

is determined from the available workers via decoding. We

establish a connection between derivative free optimization

via the well-known finite differences method, recently pro-

posed structured evolution strategies [4], and polar codes [5].

The structured evolution strategies approach corresponds to

averaging the outputs of function evaluations with variables

perturbed along the rows of HD where H is the Hadamard

matrix and D is a diagonal matrix with random diagonal

entries. When the decoding step is omitted, encoding the

unit perturbations leads to the structured evolution strategies

which is simple to implement. If we decode the outputs

instead of averaging them using the modified successive can-

cellation decoder of polar codes, however, we obtain partial

derivatives as in the finite differences method. Because the

function evaluations are scalar valued and the decoder can

run in near linear time, the time it takes to decode these

scalar outputs is negligible. For a large class of problems,

including the decoding step yields faster convergence in

optimization. The proposed method also enables a way to

switch between finite differences and structured evolution

strategies and provide a more favorable trade-off.

A. Related Work

This work draws ideas from coded computation literature

where the goal is to speed up distributed matrix multipli-

cation. The authors in [6] introduced the concept of using

Maximum Distance Separable (MDS) codes to compute

matrix-vector multiplications faster in distributed computing

platforms. The way coding is integrated into the computation

of a matrix vector product Ax, where A ∈ R
n×d and x ∈ R

d

is as follows: First A is partitioned into submatrices along

the rows and then these submatrices are encoded using MDS

codes. The workers multiply their assigned submatrix with

x. Because the encoded A contains redundancy, it is possible

to decode Ax via a standard decoder without accessing the

outputs of all workers. Works that introduce variants and

extensions of this idea include [7], [8] and [9]. There are

many other recent studies on coded computation that explore

the partitioning of both matrices being multiplied, e.g., [10],

[11]. This work is more related to the case where only one

of the matrices is partitioned.

Another line of study that this work is connected to is the

study of black-box optimization methods for reinforcement

learning. The authors in [12] explore the use of the evolution

strategies method in reinforcement learning and show that

distributed training with evolution strategies can be very fast

because of its scalability. The work in [4] shows that using

orthogonal exploration directions leads to lower errors and

present the structured evolution strategies method which is

based on a special way of generating random orthogonal

exploration directions, as we discuss later in detail.

B. Main Contributions

We introduced a novel framework based on coded gra-

dient estimates that leads to straggler-resilient distributed

optimization of black-box functions. Our method introduces

a novel connection between the finite differences method

and the structured evolution strategies method by using

polar codes [5]. Once function evaluations at perturbed

parameters are returned, it is possible to use them as they

are without decoding, which is equivalent to the structured

evolution strategies method or decode them to obtain the

gradient estimate and use it in a gradient-based optimization

algorithm. Our method offers this flexibility at the expense of

doing some additional inexpensive computing for decoding

because of the efficient polar code decoder.

II. PRELIMINARIES

A. Notation

We are interested in solving the black-box optimization

problem given by

minimize
θ

f(θ)

where f : Rd → R. Throughout the text, unless otherwise

stated, we assume that we do not have access to the analytical

form of f(θ) or its gradient, and we assume that we are only

able to make queries for function evaluations. We use ∇v to

denote directional derivative along the direction v. We use

ei to denote the i’th unit column vector with the appropriate

dimension. Throughout the text, H refers to the Hadamard

matrix (its dimension can be determined from the context),

and H refers to the Hessian of a function.

B. Finite Differences

For black-box optimization problems, approximate gradi-

ents can be obtained by using the finite differences estimator.

The derivative of a function f(x) with respect to the variable

xi can be approximated by using

∂f(x)

∂xi

≈
f(x+ δei)− f(x− δei)

2δ
, (1)

where ei is the i’th unit vector and δ ∈ R is a small scalar

that determines the perturbation amount. One can obtain

an approximate gradient using (1) and feed these estimate

gradients to gradient-based optimization methods such as

gradient descent.

The finite differences estimator can easily exploit par-

allelism since the partial approximate derivatives can be

computed in different workers in a distributed setting. This

method can be modified to be straggler-resilient by using

only the available derivative estimates and ignoring the

outputs of the slower workers. However, this typically leads

to slower convergence. We note that the proposed method

results in a mechanism that always returns all entries of

the gradient estimate and is straggler-resilient at the same

time. Another alternative is to replicate finite difference

calculations, which is not optimal from a coding theory

perspective.

C. Evolution Strategies

Let us consider the following evolution strategies (ES)

gradient estimator ([12], [4])

∇f(θ) ≈
1

2Nδ

N
∑

i=1

(f(θ + δǫi)ǫi − f(θ − δǫi)ǫi) (2)

where δ is the scaling coefficient for the random perturbation

directions ǫi and N is the number of perturbations. This

estimator is referred to as antithetic evolution strategies gra-

dient estimator. There are other gradient estimators slightly

different from the one in (2). In this work, we always

consider the antithetic version given in (2) because it leads

to better empirical results in our numerical simulations. The

random perturbation directions ǫi may be sampled from a

standard multivariate Gaussian distribution N (0, I). Alter-

natively, ǫi’s may be generated as the rows of HD where

the D is a diagonal matrix with entries distributed according

to Rademacher distribution. The authors in [4] propose gen-

erating perturbation directions by repetitive multiplications

HD1...HDk where Di’s are independent.

It is shown in [4] that if exploration (or perturbation)

directions ǫi are orthogonal, the gradient estimators lead to

lower error. We note that the rows of HD are orthogonal with

the appropriate scaling factor. We omit this scaling factor by

absorbing it in the δ term which scales perturbation directions

ǫi. This work considers the case where random perturbation

directions are generated according to HD and we will refer

to it as structured evolution strategies as they do in [4].

Evolution strategies can exploit parallelism as well since

workers need to communicate only scalars which are the

function evaluations and the random seeds used when gen-

erating the random perturbation directions.

D. Coded Computation

Coded computation has recently been introduced in [6]

for speeding up distributed matrix multiplication. The idea

is to add redundancy to computations by using linear codes

in order to make it possible to recover the output of the mul-

tiplication without having all worker outputs. The fact that

matrix multiplication is a linear operation plays a key role

in coded computation. The scheme in [6] is based on MDS

codes. More recently, the authors in [9] proposed a coded

computation mechanism for serverless computing platforms

using polar codes instead of MDS codes. Polar codes have

low encoding and decoding complexity O(N logN).
This work draws ideas from the coded computation litera-

ture. In coded computation, for computing Ax, one encodes

submatrices Ai and decodes worker outputs Aix. In coded

optimization, the perturbation directions are encoded and

function evaluations are decoded.

Many of the coded computation schemes have the restric-

tion that they are designed to work with finite field data

and not applicable to full-precision inputs. The decoding

algorithm introduced in [9] for polar codes can however work

with full-precision data. Since we do not restrict the output

of the black-box function f to take values in a finite field, we

need a decoder that can operate on full-precision real values.

Quantization is an option, though it would introduce noise,

which can be avoided by using a decoding algorithm that can

work with full-precision data. We note that it is possible to

use the decoder in [9] with a slight modification to account

for the difference in the encoding kernels (
[

1 1
0 1

]

for polar

codes, and
[

1 1
1 −1

]

for the Hadamard transform). We discuss

the decoding in detail in the next section.

III. CODED BLACK-BOX OPTIMIZATION

In this section, we present the proposed method for

speeding up distributed black-box optimization. We start

by introducing some more notation and definitions that we

will be using. The derivative of a differentiable function f

at a point θ along the unit vector direction ei is the i’th

component of the gradient ∇f . More precisely, we have

∂f

∂θi
= eTi ∇f. (3)

The directional derivative along v is defined as follows

∇vf = lim
δ→0

f(θ + δv)− f(θ)

δ
. (4)

If the function is differentiable at a point θ, then the

directional derivative exists along any direction v and is a

linear map [13]. In this case we have

∇vf = vT∇f. (5)

When we do not have access to exact gradients, we can

employ a numerical directional derivative by choosing a

small δ in

∇vf ≈
f(θ + δv)− f(θ)

δ
. (6)

Note that the approximation in (6) is not symmetric, that

is, we only perturb the parameters along +v. We instead use

the symmetric version of (6) for approximating derivatives in

which the parameters are perturbed along both the directions

−v and +v:

∇vf ≈
f(θ + δv)− f(θ − δv)

2δ
. (7)

If we consider the Taylor series expansion for f(θ+ δv), we

obtain

f(θ + δv) = f(θ) + δ∇fT v +
δ2

2
vTHv +O(δ3) (8)

and for f(θ − δv), we have

f(θ − δv) = f(θ)− δ∇fT v +
δ2

2
vTHv +O(δ3) (9)

where O(δ3) is a third order error term and H is the Hessian

matrix for f . Substituting these expansions in (7), we obtain

∇vf ≈
2δ∇fT v +O(δ3)

2δ
= ∇fT v +O(δ2). (10)

This shows that by choosing δ small, we can make the

numerical directional derivative approximately linear in ∇f .

Our proposed method makes use of this assumption that

gradient estimates are approximately linear in their directions

v to ensure that coding can be applied to directional deriva-

tive estimates. To make this more concrete, let us consider

the construction given in Figure 1. The block H simply

corresponds to the linear transformation H =
[

1 1
1 −1

]

.

�
∇� ≈ ∇��

∇� ≈ ∇��

∇()� ≈ ∇�(�+�)

∇()� ≈ ∇�(�−�)

Fig. 1. 2-by-2 construction based on Hadamard transformation.

In Figure 1, if we know the estimates for ∇(θ1+θ2)f and

∇(θ1−θ2)f , we can compute the estimates for ∇θ1f and

∇θ2f because the directional derivative estimates are approx-

imately linear in their corresponding directions. Furthermore,

if we know the estimate for ∇θ1f , then it is sufficient to

know only one of the estimates for ∇(θ1+θ2)f or ∇(θ1−θ2)f

in order to be able to compute the estimate for ∇θ2f . This

would happen if, for example, θ1 is the zero vector (i.e.

frozen direction) because the estimate for ∇θ1f would be

zero and either of the directional derivative estimates from

the right-hand side would be enough for us to obtain the

estimate of ∇θ2f .

We refer to the directions θ1, θ2, (θ1 + θ2), (θ1 − θ2) as

perturbation directions.

We now summarize the proposed method and detailed

description of each item will follow:

• Encode all the unit vectors in R
d to obtain the encoded

perturbation directions.

• Assign each perturbation direction to a worker and have

workers compute their directional derivative estimates

using (7).

• Master starts collecting worker outputs.

• When a decodable set of worker outputs (i.e. direc-

tional derivative estimates) is available, the master node

decodes these outputs to obtain an estimate for the

gradient.

• The master node then makes a gradient update to find

the next iterate for the parameter θ.

• Repeat until convergence or for a desired number of

iterations.

The above procedure assumes that we want to estimate all

entries of the gradient, but it is possible estimate only a

portion of gradient entries by encoding only the unit vectors

corresponding to the desired entries.

We note that we can always check whether decoding

helps in obtaining a better objective function compared to

the the structured evolution strategies and make the update

accordingly. Because the decoding step is quite fast thanks

to the polar decoder, having decoded the outputs but ended

up not using the decoded estimate is not a computational

burden.

A. Encoding

Encoding is done based on the Hadamard transformation

whose kernel is shown in Figure 2. Encoding is done the

same way as polar encoding is done. Hence, the computa-

tional complexity of encoding is only N logN operations.

�

�

�

� + �

� − �

Fig. 2. 2-by-2 Hadamard transformation of the perturbation directions.

The way polar coding for the erasure channel works is

that one computes the erasure probabilities of the trans-

formed channels and freezes the channels with the highest

erasure probabilities and the remaining channels are used

for information. We refer the reader to [5] and [9] for more

details on polar codes. In channel coding, freezing channels

corresponds to sending known bits, e.g., zeros, at the receiver.

In this work, freezing channels corresponds to setting it to

zero coordinates such that the directional derivative along

these vectors is zero. This makes it possible, when decoding,

to take the value of the derivative estimates for frozen

channels to be zero. For the information channels, we simply

send in unit vectors.

Encoding for a function of 3 variables using N = 4
workers is shown in Figure 3. The resulting 4 output vectors

are the perturbation directions. In this construction, the rate

�

�

�

�

0 0 0


1 0 0


0 1 0


0 0 1


1 0 0


−1 0 0


0 1 1


0 1 −1


1 1 1


1 −1 −1


−1 1 −1


−1 −1 1


Fig. 3. Example encoding.

is 3
4 since 3 out of 4 channels are used for sending in unit

vectors. When the erasure probabilities of the transformed

channels are computed (see [5]), one will see that the worst

one corresponds to the first index. Hence, the first channel

is the frozen channel and the remaining 3 channels are the

information channels. The frozen channel is set to the zero

vector and the information channels are set to unit vectors.

Sending in the zero vector for the frozen channel makes

sense because perturbing by the zero vector is the same as

not perturbing the variables and hence we get f(θ + 0) −
f(θ−0) = 0. This is important because during decoding, we

will not have to do any computations to evaluate the value

of the frozen inputs as we know they are zero.

If we wish to use N = 8 workers instead of 4, we would

set the worst 5 channels to zero vectors and the remaining

best three channels would be set to the unit vectors e1, e2, e3.

The rate in this case would be 3
8 , and this construction would

be more straggler-resilient since we can recover the gradient

estimate in the presence of even more stragglers compared

to the N = 4 case.

Embedding interpretation: It is also possible to perform

the encoding step slightly differently for a different view on

freezing channels. Instead of setting frozen channels to zero

vectors, one can increase the dimension of the inputs from

d to N and set the frozen channels to unit vectors ej where

j ∈ {d+1, d+2, ..., N}. Because the function f(θ) accepts

d-dimensional inputs, we could embed f(θ) into a higher

dimension, that is, we could define f̃(θ̃) where θ̃ ∈ R
N and

f̃(θ̃) = f(θ) if θ̃i = θi for i ∈ {1, 2, ..., d}. The advantage

of this approach is that the output of the encoding step will

be equal to the H matrix with permuted rows.

B. Decoding

The sequential polar code decoder given in [9] works

for linear operations such as matrix-vector multiplication

with full-precision data (i.e. does not require finite field

data). Because we assume that the gradient estimates ∇hi
f

are approximately linear, we use the same decoder in [9]

by only modifying it slightly so that it decodes according

to the Hadamard kernel and not the polar code kernel.

The decoder is given in Alg. 1 along with the subroutine

decodeRecursive(i,j) in Alg. 2. The decoder uses the notation

Dij to denote the value corresponding to the node i in the

j’th level in the coding circuit. Figure 4 shows this notation

in the coding circuit for N = 4. The blocks W in Figure

4 represent workers. The notation IDij
in Alg. 1 indicates

whether the data for the node i in the j’th level is available or

erased (i.e., not computed yet). checkDecodability is another

subroutine that checks whether it is possible to decode the

available outputs given the indicators of output availabilities.

It checks decodability of outputs by running the decoder on

the indicators and if decoding fails, it returns false, otherwise,

it returns true.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 4. N = 4 construction.

C. Multiplication by D

Structured evolution strategies method is usually based on

exploring the parameter space along the rows of HD instead

of H alone. D is a diagonal matrix with random diagonal

entries distributed according to Rademacher distribution (±1
with probability 0.5). So far, we have only considered

the H matrix for perturbation directions. It is possible to

incorporate the diagonal matrix D into our method as well.

Multiplying H by D from the right corresponds to multi-

plying all the entries of the i’th column of H by Dii for

all i. In this case, instead of computing an estimate for

the directional derivative along a direction of v, we will

approximate the directional derivative with respect to the

direction Dv. The derivations we have done for v also apply

for these randomized directions Dv. Decoding will work the

Algorithm 1: Decoding algorithm.

Input: Indices of the frozen channels

Result: estimate of ∇f ⊲ Part I

Initialize ID:,0
= [ID0,0

, ID1,0
, . . . , IDN−1,0

] = [0, . . . , 0]

while ID:,0 not decodable do

update ID:,0

checkDecodability(ID:,0
)

end

Initialize an empty list y ⊲ Part II

for i ← 0 to N − 1 do

Di,0 = decodeRecursive(i, 0)

if node i is a data node then

y = [y;Di,0]
end

⊲ forward propif i mod 2 = 1 then

for j ← 0 to log2 N do

for l ← 0 to i do
compute Dlj if unknown

end

end

end

end

return y

same as before, except, after the decoding algorithm is run on

the outputs, we need to divide the i’th entry of the decoded

gradient estimate by Dii to obtain the entries of the gradient

estimate.

IV. SPEEDING UP DISTRIBUTED COMPUTATION OF

ADVERSARIAL ATTACKS

Deep neural networks have found success in many differ-

ent tasks. Their robustness is a critical performance criterion

for many applications. In the literature, there are many

works that propose methods to generate adversarial inputs to

attack neural networks to investigate their robustness. Attack

settings may differ in terms of levels of knowledge on the

neural network model. Some works assume knowledge on

the architecture of the neural network and this setting is

referred to as open-box setting. On the other hand, if we

only assume we have access to the outputs of the neural

network, then this is called the black-box setting. In this

section, we are interested in applying our proposed method

to the black-box setting.

We apply our proposed method to the setting of finding

adversarial examples based on black-box optimization. We

adopt the settings in [14] where they develop black-box

attacks to neural network based classifiers and the goal is

to find a misclassified image that looks like a given image

θ0. They pose the following optimization problem for finding

adversarial examples: minimize f(θ), where

f(θ) = ||θ − θ0||
2
2 + cmax{max

i6=t
[F (θ)]i − log[F (θ)]t,−κ}.

(11)

Algorithm 2: decodeRecursive(i, j)

Input: Node i ∈ [0, N − 1], level j ∈ [0, log2 N]
Result: IDij

and modifies D

if j = log2 N then return IDi,log2 N
⊲ base case 1

if IDij
= 1 then return 1 ⊲ base case 2

IDi,(j+1)
= decodeRecursive(i, j + 1)

IDpair(i),(j+1)
= decodeRecursive(pair(i), j + 1)

if i is upper node then

if IDi,(j+1)
AND IDpair(i),(j+1)

= 1 then

compute Dij

return 1
end

else

if IDi,(j+1)
OR IDpair(i),(j+1)

= 1 then

compute Dij

return 1
end

end

return 0

F (θ) represents the class probabilities of the neural network

when we feed in θ as the input. The subscript i in [F (θ)]i
means the class probability for the i’th class. c and κ are

non-negative parameters for tuning the attack. Note that the

objective in (11) is for a targeted attack, meaning we wish to

find an image that is classified as class t. If one is interested

in finding an example misclassified but not necessarily to

a given class, then this is called an untargeted attack. The

optimization problem to be solved for untargeted attacks is

given in [14] as

f(θ) =

||θ − θ0||
2
2 + cmax{log[F (θ)]t0 −max

i6=t0
log[F (θ)]i,−κ}

(12)

where t0 is the correct class for the image that we wish to

misclassify. Note that since we assume we have no informa-

tion about the neural network F (θ), we cannot compute the

gradient of the functions in (11) and (12).

The proposed approach in [14] involves selecting a given

number of parameters in every iteration and estimating

the derivatives only for these parameters. Hence, in every

iteration, only a number of selected parameters are updated.

The updates are done using the ADAM algorithm [15]. We

present results regarding the use of our method in black-box

adversarial attacks problem in numerical results section.

V. NUMERICAL RESULTS

We now present results showing the performance of our

proposed framework.

A. An l1-norm Based Objective as the Black-Box Function

In this subsection, we present experiment results for opti-

mizing a known objective function f(θ) = ||Aθ − b||1 as a

test case. Even though we experiment with a known function,

we still use the black-box optimization algorithms assuming

we do not have the exact gradients.

0 100 200 300 400 500
iteration

102

103

co
st

Finite Differences
Proposed Method
Structured ES

Fig. 5. We optimize the function f(θ) = ||Aθ−b||1 where A ∈ R
200×32

and y ∈ R
200 using black-box optimization methods.

Figure 5 shows the cost as a function of iterations when

we use gradient descent algorithm with gradient estimates

obtained by the finite differences method, the proposed

method, and the structured evolution strategies method. For

fairness in comparing these methods, we used straggler-

resilient versions of the finite differences method and the

structured evolution strategies method in obtaining these

results. To clarify, for the finite differences method, we wait

for the first arriving 16 worker outputs out of the total

32 outputs to make a gradient update. For the structured

evolution strategies method, the perturbation directions come

from the rows of HD matrix which is a 32× 32 matrix, so

we wait for the first arriving 16 outputs out of the 32. Finally,

the way we implement the proposed method is that we use

a rate of 1
2 with a total of 64 workers and wait for the first

decodable set of outputs out of a total of 64 outputs. Figure 5

illustrates that having all the entries of the gradient estimate

through decoding leads to faster convergence than having

only a half of the entries of the gradient estimate. It also

shows that the proposed method results in faster convergence

compared to the structured evolution strategies method.

B. Black-Box Adversarial Attacks

We now present some experiment results for our proposed

method applied to finding adversarial examples. We have

tested our proposed method for solving the optimization

problem for targeted black-box attacks (objective of which is

given in (11)) to a deep learning model. The model we con-

sidered is the VGG-16 architecture [16] trained on CIFAR-

10 dataset [17] for image classification. VGG-16 architecture

is a 16-layer convolutional neural network. CIFAR-10 is an

image dataset with a total of 60000 images of size 32×32×3
(50000 training and 10000 test images) with 6000 images per

class for a total of 10 classes.

Before we delve into the details of the experiments, we

show two original input images from CIFAR-10 and the

generated adversarial images that look almost the same as

the original images but are misclassified. Figure 6 shows

the original images θ0 which are correctly classified by the

neural network F (θ). Figure 7 shows the generated adver-

sarial images obtained by solving the black-box optimization

problem for targeted attacks where the target class is the

dog class. The adversarial images in Figure 7 are both

misclassified as dog. These adversarial images were obtained

by using our proposed method.

0 5 10 15 20 25 30

0

5

10

15

20

25

30

(a) Airplane classified correctly

0 5 10 15 20 25 30

0

5

10

15

20

25

30

(b) Ship classified correctly

Fig. 6. Original images θ0.

(a) Airplane classified as dog (b) Ship classified as dog

Fig. 7. Adversarial images generated using the proposed method.

We now discuss details of how we obtained these adver-

sarial images. For obtaining these results, we have solved the

problem of minimizing f(θ) where f(θ) is given in (11). We

have set κ = 0, c = 0.1. We have solved this optimization

problem using three different methods and compared them in

Figure 9 via a run time simulation. The simulation was done

by sampling worker run times from the distributions shown

in Figure 8. Figure 8(a) shows the empirical histogram of

worker times which were obtained for the AWS Lambda

platform, which is a serverless computing platform. Figure

8(b) shows the histogram of worker times generated from

the shifted exponential distribution.

0 50 100 150 200
return times

0

100

200

300

400

fre
qu

en
cy

(a) AWS Lambda return times

0 10 20 30 40
return times

0

25

50

75

100

125

fre
qu

en
cy

(b) Exponential distribution

Fig. 8. Run time distributions used in simulations.

Figure 9 illustrates that it is possible to eliminate the

straggling workers effect by using the proposed method.

The way finite differences and structured evolution strategies

methods were implemented is not straggler-resilient in these

simulations, that is, all worker outputs are waited for in every

gradient update. We note that this is different from the results

on the optimization of the l1-norm based function given

in previous subsection because we used straggler-resilient

versions of the methods in those experiments. The point of

the simulation results given in Figure 7 is not necessarily

to compare the run times of each method but instead to

showcase that our proposed method works for the recent

problem of adversarial attacks to deep neural networks.

0 100000 200000 300000
time

10−1

100

101

102

co
st

Finite Differences
Proposed Method
Structured ES

(a)

0 100000 200000 300000
time

100

101

102

co
st

Finite Differences
Proposed Method
Structured ES

(b)

0 20000 40000
time

10−1

100

101

102

co
st

Finite Differences
Proposed Method
Structured ES

(c)

0 10000 20000 30000 40000 50000
time

100

101

102

co
st

Finite Differences
Proposed Method
Structured ES

(d)

Fig. 9. Simulated plots of cost as a function of time (all methods were run
for 3000 iterations). a,c: Airplane image classified as dog. b,d: Ship image
classified as dog. a,b: Worker return times sampled from AWS Lambda
return times shown in Figure 8(a). c,d: Worker return times sampled from
the exponential distribution shown in Figure 8(b).

VI. CONCLUSION

We have introduced a novel distributed black-box opti-

mization mechanism based on coded perturbation directions.

Because of the redundancy inserted during encoding, the

proposed method is resilient against straggling workers in

distributed computing platforms. This makes our method

suitable for large scale serverless cloud-based systems where

nodes are unreliable. Our work utilizes coding theoretic

tools and ideas from coded distributed computation methods.

Furthermore, the proposed method provides a connection be-

tween two black-box optimization methods: finite differences

and structured evolution strategies, in a way that it is possible

to go from one to the other and choose the one that drives the

cost down more effectively. We have provided an argument

why coded gradient estimates would work for a variety of

cost functions and shown this through numerical examples.

There are several open directions for future work. In par-

ticular, our coding Hadamard transform structured coding

method is analogous to subsampled Hadamard constructions

in random projections [18], [19], [20]. An interesting direc-

tion is to combine these structured embeddings for faster

distributed optimization [21], [22].

ACKNOWLEDGEMENTS

This work was supported in part by the National Science

Foundation under grant IIS-1838179.

REFERENCES

[1] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to

derivative-free optimization. Siam, 2009, vol. 8.
[2] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the

ACM, vol. 56, no. 2, pp. 74–80, 2013.
[3] T. Hoefler, T. Schneider, and A. Lumsdaine, “Characterizing the

influence of system noise on large-scale applications by simulation,” in
Proceedings of the 2010 ACM/IEEE International Conference for High

Performance Computing, Networking, Storage and Analysis. IEEE
Computer Society, 2010, pp. 1–11.

[4] K. Choromanski, M. Rowland, V. Sindhwani, R. E. Turner, and
A. Weller, “Structured evolution with compact architectures for
scalable policy optimization,” arXiv preprint arXiv:1804.02395, 2018.
[Online]. Available: http://arxiv.org/abs/1804.02395

[5] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,”
IEEE Transactions on Information Theory, vol. 55, pp. 3051–3073,
2009.

[6] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchan-
dran, “Speeding up distributed machine learning using codes,” IEEE

Transactions on Information Theory, vol. 64, no. 3, pp. 1514–1529,
March 2018.

[7] A. Severinson, A. G. i Amat, and E. Rosnes, “Block-diagonal and
lt codes for distributed computing with straggling servers,” IEEE

Transactions on Communications, 2018.
[8] A. Mallick, M. Chaudhari, and G. Joshi, “Rateless codes

for near-perfect load balancing in distributed matrix-vector
multiplication,” CoRR, vol. abs/1804.10331, 2018. [Online]. Available:
http://arxiv.org/abs/1804.10331

[9] B. Bartan and M. Pilanci, “Polar coded distributed matrix multiplica-
tion,” arXiv preprint arXiv:1901.06811, 2019.

[10] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial codes:
An optimal design for high-dimensional coded matrix multiplication,”
Adv. in Neural Info. Proc. Systems (NIPS) 30, pp. 4406–4416, 2017.

[11] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler
mitigation in distributed matrix multiplication: Fundamental limits
and optimal coding,” CoRR, vol. abs/1801.07487, 2018. [Online].
Available: http://arxiv.org/abs/1801.07487

[12] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution
strategies as a scalable alternative to reinforcement learning,” arXiv

preprint arXiv:1703.03864, 2017.
[13] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge, UK:

Cambridge University Press, 2004.
[14] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “Zoo: Zeroth

order optimization based black-box attacks to deep neural networks
without training substitute models,” arXiv preprint arXiv:1708.03999,
2017.

[15] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[16] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” arXiv preprint arXiv:1409.1556,
2014.

[17] A. Krizhevsky, “Learning multiple layers of features from tiny im-
ages,” 2009.

[18] M. Pilanci and M. J. Wainwright, “Randomized sketches of convex
programs with sharp guarantees,” IEEE Trans. Info. Theory, vol. 9,
no. 61, pp. 5096–5115, September 2015.

[19] ——, “Iterative hessian sketch: Fast and accurate solution approxima-
tion for constrained least-squares,” The Journal of Machine Learning

Research, vol. 17, no. 1, pp. 1842–1879, 2016.
[20] Y. Yang, M. Pilanci, M. J. Wainwright, et al., “Randomized sketches

for kernels: Fast and optimal nonparametric regression,” The Annals

of Statistics, vol. 45, no. 3, pp. 991–1023, 2017.
[21] M. Pilanci and M. J. Wainwright, “Newton sketch: A near linear-

time optimization algorithm with linear-quadratic convergence,” SIAM

Journal on Optimization, vol. 27, no. 1, pp. 205–245, 2017.
[22] M. Pilanci, “Fast randomized algorithms for convex optimization and

statistical estimation,” Ph.D. dissertation, UC Berkeley, 2016.

