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ABSTRACT

We propose a novel randomized linear least squares solver
which is an improvement of Iterative Hessian Sketch and ran-
domized preconditioning. In the proposed Momentum-IHS
technique (M-IHS), Heavy Ball Method is used to accelerate
the convergence of iterations. It is shown that for any full rank
data matrix rate of convergence depends on the ratio between
the feature size and the sketch size. Unlike the Conjugate
Gradient technique, the rate of convergence is unaffected by
either the condition number or the eigenvalue spectrum of the
data matrix. As demonstrated over many examples, the pro-
posed M-IHS provides compatible performance with the state
of the art randomized preconditioning methods such as LSRN
or Blendenpik and yet, it provides a completely different per-
spective in the area of iterative solvers which can pave the
way for future developments.

Index Terms— Iterative Hessian Sketch, Momentum,
Randomized Preconditioning, Ill Condition, First Order Iter-
ative Solvers

1. INTRODUCTION

Least squares(LS) problem has ever increasing applications in
the era of data science. For a given full rank data matrix A €
R"*? and a measurement vector b € R", in the least squares
setting, solution to the following optimization problem yields
S e R%:

25 = argmin % 1Az — bl|2 = (ATA)"1 AT, )

zeRd

The case of n > d is of central importance in big data appli-
cations. Most efficient way of obtaining the x5 is to solve a
triangular system obtained through QR decomposition requir-
ing O(nd?) floating operations, which is prohibitively large in
big data applications. The main cause of this high complex-
ity is due to the calculation of the Hessian Matrix (ATA) in
eq. (1) and calculation of the R factor in the QR decompo-
sition of A. One remedy for reducing the required computa-
tion is to use the first order iterative techniques which require
only matrix-vector calculations at each iteration avoiding or-
der nd? computations [?]. However, the required number of

iterations are highly sensitive to the condition number of ma-
trix A. If the largest singular value of A is known, then the
optimal and unimprovable convergence rate of O(1/k?) be-
longs to the Nesterov’s Accelerated Gradient Descent [?]. In
addition to the largest singular value, if the smallest singular
value is also known, then the optimal rate is achieved by the
Polyak’s Heavy Ball Method(HBM) [?]. Unfortunately, such
information on A is rarely available in practice. In the absence
of this information, the Conjugate Gradient(CG) technique
can be used to have the same convergence rate of the HBM by
tuning the required parameters adaptively through additional
calculations at each iteration [?]. Similarly, Saunder’s LSQR
[?] which utilizes bidiagonalization by using Givens rotations
shares the same convergence rate as well. Additionally, if
one knows the ellipsoid containing eigenvalues, the Chehby-
shev Semi-iterative (CS) technique has a similar convergence
rate with a significant advantage over the CG and the LSQR.
In the CS, there is no need for inner products which allows
parallelization in distributed systems. Although convergence
of the CS is slower than those of CG and LSQR, in the dis-
tributed systems with high communication cost, where data is
stored in clusters, the convergence time of CS can be much
significantly less [?],[?]. Many other techniques can also be
added to this list [?],[?]. The common rate of convergence of
these techniques is:
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where « is the condition number of ATA, which is defined as
the ratio of the largest singular value to the smallest singular
value of ATA [?], [?]. However, for ill conditioned A matrices
with excessively large «, this rate of convergence becomes
extremely slow.

Preconditioning is a linear mapping of the solution do-
main which aims to transform an ill conditioned problem to a
well conditioned problem. In the deterministic setting, find-
ing an appropriate preconditioning matrix has always been a
challenging task until the introduction of the Random Projec-
tion(RP) techniques [?]. To the best of our knowledge, the
RP techniques developed in [?] is utilized first by Rokhlin
to construct a preconditioning matrix for a CG-like iterative
solver [?]. By using the R factor in QR decomposition of
a sketched matrix which is obtained through a series of ran-
domized Givens Rotations, randomized diagonal scaling and
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a Fourier Transform. Implementation of a similar idea re-
sulted in Blendenpik which is superior to some deterministic
LAPACK solvers [?]. Also, LSRN uses RP to construct a pre-
conditioner, but it uses the right singular vectors instead of the
R factor in the QR decomposition and utilizes the Chebyshev
technique as an iterative solver for parallelization [?]. Anal-
ysis of these algorithms, especially derivation of the the sta-
tistical bounds are only accessible by specialists in the field.
In this work we propose a new technique, M-IHS, which has
comparable performance with the state-of-the-art techniques
while its derivation is highly accessible by a large audience of
practitioners.

Besides, instead of using randomization in the precondi-
tioning for the first order solvers, RP can be utilized directly
to solve the least squares problem. In naive randomized least
squares techniques, both data matrix and measurements are
projected to lower dimensions in order to decrease the com-
putational complexity(see [?] and references therein). How-
ever, Pilanci showed that projection of both A and b is sub-
optimal and he proposed a novel method, called Iterative Hes-
sian Sketch (IHS), which approximates only the Hessian term
in eq. (1) [?]. Very recently an accelerated version of IHS is
proposed by using CG-like iterations [?]. Some efforts, also,
has been made to use RP in Nesterov’s Accelerated Gradient
Method which is known also as FISTA [?][?].

In the proposed M-IHS technique, IHS and HBM are
jointly used to improve the rate of convergence. Our main
contribution is to determine the momentum weights through
Marchenko-Pastur (MP) Law instead of an adaptive approach
as proposed in [?] which increases the computational com-
plexity of the iterations. Further, for a sketch size of m, we
proved that the convergence rate of the proposed M-IHS is
\/d/m, which is completely independent of the data matrix
A. The computational complexity of the proposed M-IHS
technique is O(ndlog(m) + md? + (nd + d?)log(1/e))
where € is the desired accuracy. Furthermore, as presented
in the Section 2.2, for the regularized schemes, squared de-
pendencies like md? and d? can be avoided by using inexact
solvers for the subproblem.

2. SKETCH BASED ITERATIVE LS SOLVERS

We are interested in sketch matrices that satisfy E[STS] =
I; where S € R™*¢. Amongst many, we specifically use
sketch matrices that are based on Randomized Orthonormal
Systems(ROS) which are constructed as follows:

e Choose an n-dimensional orthonormal transformation
matrix H € R™*" such as the Hadamard, Fourier, Hart-
ley or Cosine transformation matrix which can realize
matrix-vector products in nlog(n) operations.

e Construct a diagonal matrix D € R™*" whose diagonal
elements are i.i.d. Rademacher random variables.
e Row vectors are 57 = y/ne; HD with probability 1/n,

i=1,...,nande; € R"is ithcanonical basis.

2.1. The Naive IHS Technique

The least squares problem can be formulated by the New-
ton Method as a combination of the Hessian and the Jacobian
term:
5 = argmin %HA(:E ) < AT(b— A,z >, ()
zERd

where 2° is any initial vector. Newton Method converges in
exactly one iteration for any z°[?]. In IHS only the Hessian
term is approximated and the solution is improved recursively
by solving the following minimization problem:

2! = argmin %HSA(ac —a9)3- < AT (y — Az"), 2 >
zeC
= 2"+ (ATSTSA) AT (y — Ad").

The important point here is that instead of changing the sketch
matrix S at each iteration as described in [?], we can use a
single sketch matrix in all iterations. However, we should use
a tunable step size to prevent divergent behaviour stemming
from single sketch scheme as follows:.

2 =2 4+ 1,(ATSTSA) AT (y — AdY), )

The convergence rate of IHS can be investigated through the
same approach in [?], by finding the transformation matrix
between the current and the previous error vectors. The I5-
norm of the transformation matrix serves as a lower bound
for the convergence rate.

For this purpose, consider the following transformation
and recall that AT (Az"™ —y) =0

2! — 2" ||a = [|l2* + £k (ATSTSA) T AT (y — Aa¥) — 22
= ||(Ig — t (ATSTSA) T ATA) (2 — 2|2
< || Ia — te(ATSTSA) T ATA ||2]|2* — 2|2 (5)

T

Therefore, we can write following improvement by using the
Gelfand Formula:

2" = 2"z < T |l2ll2” — 2"z

< (o) + &) f12° = ")l

where klim e = 0 and p(T) is the spectral radius of 7T". Thus,
— 00

if the spectral radius of 7' is bounded, then contraction ra-
tio (or the norm of transformation) can be bounded as well.
To find p(T) , the largest and the smallest eigenvalues of ma-
trix (AT STSA)~! AT A should be determined. Changing basis
by using (AT A)~'/?yields (AT A)/2(ATSTSA)~H(AT A)/2
which is a symmetric matrix similar to (AT ST SA)"* AT A. By
using compact SVD of A = ULV7, where U € R™*%, VX ¢
R UTU = VTV = vVT = I, and ¥ = diag(o,...,0q),
o1 >...> 04 >0, we obtain:

(ATA)l/Q(ATSTSA)71(ATA)1/2
=vevi(wxutsTsusvh)ytvsy”
=vwrstsu) tvT,



Note that in the last step, we have used the fact that V is full
rank. Since V is a unitary matrix, spectral properties depends
only on the eigenvalues of (U7 STSU)~! . Since the columns
of U is an orthonormal set of vectors and entries of S are zero
mean, unit variance i.i.d. random variables, the entries of
SU have the same probability distribution as the entries of
S. Hence, if we generate a sketch matrix S € R™*¢ with
the same techniques used for S, then SU will be statistically
equivalent to S.

Based on this observation, we need to know the largest
and the smallest eigenvalues of a sample covariance matrix of
S € R™*? which is called as the Wishart matrix in statistics
[?]. By the MP Law, the largest and the smallest eigenvalues
of Wishart matrices converge to (1 &+ +/d/m)?, as m — oo
while the ratio d/m remains the same [?], [?]). Therefore,
the largest and the smallest eigenvalues of (AT STSA)~'AT A
asymptotically converge to 1/(1 F y/d/m)?. The spectral ra-

1_ ti 7 ' _ ti

dius p(T) is:
(1+v7)? (1—vr)? }

p(T) = max {
where r = d/m. Here, the following choice for ¢, yields the
minimum spectral radius

A ROV M ©
(I+Vr)2+ (1 —/r)? T+7r

which remains constant during the iterations:

- 420 /(1+¢7~)2

In conclusion, the damped IHS converges with the following
exponentially decaying upper bound:

2 k
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p(T) =

1+7r

2.2. The Proposed Momentum based M-IHS Technique

Momentum effect in iterations can be realized by taking a step
in the direction of a linear combination of the gradients of
both the objective function and the solution trajectory:

:rk+l _ :rk _ Oszf(mk) + ﬁk(mk _ Ikil),

where arand SBrare respective momentum weights. For the
objective function of the IHS, the momentum update be-
comes:

2 = 2" 4 0 (ATSTSA) TP AT (b — AZ®) + Br(dF — 25
=z —ap(ATSTSA) AT A(Z® — ) + Br(a* — 2.
Now, consider the following bipartite transformation:

2 LS o S
2K _ LS S R O

T [(1 + )1 — a(ATSTSA)"1ATA —,Bld}
Iy 0

where momentum weights are kept constant during the itera-
tions. By using the same similarity transformation in [?],[?],
we can find a block diagonal form for the transformation ma-
trix 7', so that we can determine its eigenvalues easily. For
this purpose, the following change of basis will be used:

T =P 'diag(T\,...,Ta)P, T, := [1+,3*a)\¢ 5]

1 0
1 ioddj=1,
P = uvoo 11, I; ; = 1 1ievenj =n-+1,
0 U ’ .
0 otherwise

where UAU 7 is the eigenvalue decomposition of (A7STSA)™!
ATA and ); is the i'" eigenvalue. The characteristic poly-
nomial of each block is u*> — (1 + 8 — aX)u + 8 = 0. If
B > (1—+/a\;)?, then both of the roots will be imaginary and
both will have a magnitude /3 which will be the contraction
ratio of the transformation. Note that 5 can be selected to en-
sure this upper bound for all eigenvalues. For this purpose,
checking only the largest and the smallest \; values, which is
determined by using the MP Law in the previous section, is
Va Va

sufficient:
2
e e |

B > max { ‘1 —
The lower bound on 3 can be minimized over « by choosing
a = (1 —r)?, so that the contraction ratio reaches its smallest
value of 5 = r. Consequently, the resulting convergence rate
becomes:

I

k+1 k/2

e = a2 < P20 — 2. (10)

If the convergence rates of the Naive IHS and the proposed
M-IHS obtained in eq. (8) and eq. (10), respectively, are com-
pared, then an improvement of factor 2/(1 + r) can be ob-
served. Recall that the above analysis is valid for use of a
single sketch in all iterations. A pseudo-algorithm of M-IHS
can be seen below. Iterations of the M-IHS do not require

Algorithm 1 M-IHS
Data: SA € R™*? 20, A b
B=d/ma=(1-p)

while stopping criteria do

1. g = AT(b— A")
2. (SA)TSAZ =g (solve for z)
3. = a4 Bk —

end

any inner products or norm calculations, which avoids syn-
chronization steps in parallel computing and results in over-
whelming advantages over the CG or the GMRES like iter-
ative solvers in distributed or hierarchical memory systems
(we refer the reader to Section 2.4 of [?]). Indeed, M-IHS is
equivalent to the CS with a preconditioner (SA)TSA except
for one improvement: momentum parameters are determined
more accurately by the MP Law in the M-IHS than adaptive
approach in CS, which results in faster convergence as seen



on Figure 3. This suggests that the M-IHS can take CS’s place
in those applications where parallel computation is viable.

Moreover, due to the absence of inner products, the M-
IHS, even in sequential systems, requires fewer operations
than the CG or the LSQR as observed on Figure 3. Most im-
portantly, computation of vector z* in the second line of Algo-
rithm 1 can be realized by utilizing a symmetric CG technique
as a sub-solver, which avoids the md? term in the complexity.
Avoiding md? term may not be possible for the CG-like tech-
niques which use randomized preconditioning, because the 12
factor in the QR decomposition or the V' factor in the SVD
require O(md?) operations. Note that an inexact sub-solver
strategy is more suitable if a regularization term is used. Oth-
erwise, convergence of the sub-solver would be exorbitantly
slow since SA is ill conditioned.

3. RESULTS AND COMPARISONS

In MATLAB simulations, we used the singular value profile
extracted from baart function of Hansen’s Toolbox [?]. Af-
ter scaling and shifting into desired interval, the singular val-
ues have been placed into SVD of data matrix A € R2'7x500
whose entries are sampled from the distribution A/(0,9). We
did not inlude any noise in the simulations to focus on the con-
vergence behaviour of the algorithms. Additionally, results of
all randomized schemes were averaged over 20 Monte Carlo
simulations. The obtained 2/(1 + r) improvement by the M-
IHS over the Naive IHS can be seen on Figure 1. Furthermore,
as shown in Figure 2, when the condition number « increases,
convergence rate of the CG degrades considerably while the
performance of the proposed M-IHS technique remains un-
affected. To solve the normal equations, LS version of CG
implemented by Saunders was used [?]. Operation counts in
the figures were obtained by Lightspeed Toolbox [?]. LS so-
lution was obtained by using the QR Decomposition with the
Householder transformation.

Performance comparison of the proposed M-IHS with
Blendenpik and LSRN in MATLAB would not be fair, since
their released packages are implemented in C language. In-
stead, we compared, in Figure 3, the M-IHS with the CG and
the LSQR both of which use randomized preconditioning.
The R factor in the QR decomposition of the sketched matrix
was used as the preconditioner for the CG, LSQR and the
CS techniques, whereas it was used for M-IHS to solve the
linear system appeared in the second line of the Algorithm 1.
The same sketched matrix SA with sketch size m = 7d was
used for all the techniques and SA was created by using the
Discrete Cosine Transform. All randomization parts in the
compared techniques are the same for a fair comparison. In
all figures, the numbers between parenthesis in the legends
indicates the number of total iterations made by the technique
to obtain seen result.

4. CONCLUSION

By using the heavy ball method, a novel iterative solver for
the least square problem is proposed. The proposed M-IHS

technique converges significantly faster than the naive THS
technique. Furthermore, the computational complexity of the
proposed method is lower than the CG-like techniques. Also,
the M-IHS can easily be implemented in parallel and the com-
plexity can be reduced further by using an iterative sub-solver
in regularized cases. As a future work, the impact of regular-
ization on the convergence rate will be investigated.
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Fig. 1. Comparison with the damped IHS: the theoretical im-
provement rate 2/(1 + r) can be observed by comparing iter-
ation numbers for an accuracy.
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Fig. 2. Comparison with the CGLS: as x increases, M-IHS
remains unaffected and requires substantially less operations
than both the CGLS which is unable to converge even in d
iterations due to round-off errors and the full LS solution.
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Fig. 3. Comparison with randomized preconditioning meth-
ods: the slopes of the curves demonstrates that CG-like meth-
ods using randomized preconditioners have similar conver-
gence rate with the M-THS which requires fewer flop counts
per iteration.
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