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Abstract— We consider the probabilistic group testing prob-
lem where d random defective items in a large population
of N items are identified with high probability by applying
binary tests. It is known that ©(d log V) tests are necessary and
sufficient to recover the defective set with vanishing probability
of error. However, to the best of our knowledge, there is no
explicit (deterministic) construction achieving ©(dlog N) tests
in general. In this work, we show that a famous construction
introduced by Kautz and Singleton for the combinatorial group
testing problem (which is known to be suboptimal for combi-
natorial group testing for moderate values of d) achieves the
order optimal ©(dlog N) tests in the probabilistic group testing
problem. This provides the first strongly explicit construction
achieving the order optimal result in the probabilistic group
testing setting. To prove the order-optimality of Kautz and
Singleton’s construction in the probabilistic setting, we provide
a novel analysis of the probability of a non-defective item being
covered by a random defective set directly, rather than arguing
from combinatorial properties of the underlying code, which
has been the main approach in the literature. Furthermore, we
use a recursive technique to convert this construction into one
that can also be efficiently decoded with only a log-log factor
increase in the number of tests.

I. INTRODUCTION

The objective of group testing is to efficiently identify a
small set of d defective items in a large population of size N
by performing binary tests on groups of items, as opposed
to testing the items individually. A positive test outcome
indicates that the group contains at least one defective item.
A negative test outcome indicates that all the items in the
group are non-defective. When d is much smaller than N,
the defectives can be identified with far fewer than N tests.

The original group testing framework was developed in
1943 by Robert Dorfman [1]. Back then, group testing
was devised to identify which WWII draftees were infected
with syphilis, without having to test them individually. In
Dorfman’s application, items represented draftees and tests
represented actual blood tests. Over the years, group testing
has found numerous applications in fields spanning biology
[2], medicine [3], machine learning [4], data analysis [5],
signal processing [6], and wireless multiple-access commu-
nications [7]-[10].

A. Non-adaptive probabilistic group testing

Group testing strategies can be adaptive, where the i*"

test is a function of the outcomes of the ¢ — 1 previous tests,
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or non-adaptive, where all tests are designed in one shot.
A non-adaptive group testing strategy can be represented by
a t X N binary matrix M, where M;; = 1 indicates that
item j participates in test ¢. Group testing schemes can also
be combinatorial [11], [12] or probabilistic [13]-[16]. The
goal of combinatorial group testing schemes is to recover any
set of up to d defective items with zero-error and require
at least t = (d?log N/logd) tests [17], [18]. Existing
constructions in this setting achieve t = O(d? log3 N) [19]
and t = O(d?log N) [20] tests. In contrast, probabilistic
group testing schemes assume a random defective set of size
d, allow for an arbitrarily small probability of reconstruction
error, and require ¢ = O(dlog N) tests only [13]. In this
paper, we are interested in non-adaptive probabilistic group
testing schemes.

B. Our contributions

To best of our knowledge, all known probabilistic group
testing strategies that achieve ¢ = O(dlogN) tests are
randomized (i.e., M is randomly constructed) [13]-[16].
Recently, Mazumdar [21] presented explicit schemes (deter-
ministic constructions of M) for probabilistic group testing.
This was done by studying the average and minimum Ham-
ming distances of constant-weight codes (such as Algebraic-
Geometric codes) and relating them to the properties of
group testing strategies. However, the explicit schemes in
[21] achieve t = ©(dlog® N/logd), which is not order-
optimal when d is poly-logarithmic in V. It is therefore of
interest to find explicit, deterministic schemes that achieve
t =0(dlog N) tests.

This paper presents the first strongly explicit' scheme that
achieves t = O(dlog N). We show, perhaps surprisingly, that
Kautz and Singleton’s construction [19], a well known sub-
optimal (for moderate values of d) explicit scheme for com-
binatorial group testing, is actually optimal for probabilistic
group testing. We prove this result for both the noiseless
and noisy (where test outcomes can be flipped at random)
settings of probabilistic group testing framework. We prove
the order-optimality of Kautz and Singleton’s construction
by analyzing the probability of a non-defective item being
“covered” (c.f. Section II) by a random defective set directly,
rather than arguing from combinatorial properties of the
underlying code, which has been the main approach in the
literature [19]-[21].

'We will call a t x N matrix strongly explicit if any column of the matrix
can be constructed in time poly(¢). A matrix will be called explicit if it can
be constructed in time poly(t, V).



We say a group testing scheme is efficiently decod-
able if there is a decoding strategy that runs in poly(¢)-
time. While we can achieve the decoding complexity of
O(tN) with the “cover decoder” (c.f. Section II), our goal
is to bring the decoding complexity to poly(¢). To this
end, we use a recursive technique to convert the Kautz-
Singleton construction into a strongly explicit construction
with ¢ = O(dlog N loglog,; N) tests and decoding com-
plexity O(d®log N loglog, N). This provides an efficiently
decodable scheme with only a log-log factor increase in
the number of tests. Searching for order-optimal explicit
or randomized constructions that are efficiently decodable
remains an open problem.

C. Outline

The remainder of this paper is organized as follows. In
Section II, we present the system model and necessary
prerequisites. The optimality of the Kautz-Singleton con-
struction in the probabilistic group testing setting is formally
presented in Section III. We propose an efficiently decodable
group testing strategy in Section IV. We defer the proof of the
results to their corresponding sections in the appendix. We
provide, in Section V, a brief survey of important results on
group testing and a detailed comparison with Mazumdar’s
recent work in [21]. Finally, we conclude our paper in
Section VI with a few interesting open problems.

II. SYSTEM MODEL AND BASIC DEFINITIONS

For any ¢ x N matrix M, we use M; to refer to its ¢’th
column and M;; to refer to its (4, ) th entry. The support of
a column M, is the set of coordinates where M; has nonzero
entries. For an integer m > 1, we denote the set {1,...,m}
by [m]. The Hamming weight of a column of M will be
simply referred to as the weight of the column.

We consider a model where there is a random defective set
S of size d among the items [N]. We define S as the set of
all possible defective sets, i.e., the set of (];[ ) subsets of [N]
of cardinality d and we let S be uniformly distributed over
S.2 The goal is to determine S from the binary measurement
vector Y of size ¢ taking the form

Y = <\/Mz-> S,

ies
where t x N measurement matrix M indicates which items
are included in the test, i.e., M;; = 1 if the item j is
participated in test i, v € {0,1}' is a noise term, and
@ denotes modulo-2 addition. In words, the measurement
vector Y is the Boolean OR combination of the columns of
the measurement matrix M corresponding to the defective
items in a possible noisy fashion. We are interested in both
noiseless and noisy variant of the model in (1). In the noise-
less case, we simply consider v = 0, ie., Y = \/,.g M.
Note that the randomness in the measurement vector Y is
only due to the random defective set in this case. On the

(D

2This assumption is not critical. Our results carry over to the setting
where the defective items are sampled with replacement.
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other hand, in the noisy case we consider v ~ Bernoulli(p)
for some fixed constant p € (0,0.5), i.e., each measurement
is independently flipped with probability p.

Given M and Y, a decoding procedure forms an estimate
S of S. The performance measure we consider in this paper
is the exact recovery where the average probability of error
is given by

P, 2Pr(S #8S),

and is taken over the realizations of S and v (in the noisy
case). The goal is to minimize the total number of tests ¢
while achieving an arbitrary but fixed e average probability
of error, i.e., satisfying P, < e.

A. Disjunctiveness

We say that a column M; is covered by a set of columns
My, ..., M; if the support of M; is contained in the union
of the supports of columns M, ..., M;. A binary matrix M
is called d-disjunct if any column of M is not covered by
any other d columns. The d-disjunctiveness property ensures
that we can recover any defective set of size d with zero
error from the measurement vector Y in the noiseless case.
This can be naively done using the cover decoder which
runs in O(¢tN)-time. The cover decoder simply scans through
the columns of M, and returns the ones that are covered
by the measurement vector Y. When M is d-disjunct, the
cover decoder succeeds at identifying all the defective items
without any error.

In this work, we are interested in the probabilistic group
testing problem where we allow an arbitrary but fixed e
average probability of error. Therefore we can relax the d-
disjunctiveness property. In the noiseless case, it is sufficient
to ensure that at least (1 — €) fraction of all possible
defective sets do not cover any other column. A binary matrix
satisfying this relaxed form is called an almost disjunct
matrix [21]-[24] and with this condition one can achieve
the desired e average probability of error by applying the
cover decoder.

B. Kautz-Singleton Construction

In their work [19], Kautz and Singleton provide a construc-
tion of disjunct matrices by converting a Reed-Solomon (RS)
code [25] to a binary matrix. We begin with the definition
of Reed-Solomon codes.

Definition 1: Let F, be a finite field and o, ..., o, be
distinct elements from F,. Let & < n < q. The Reed-
Solomon code of dimension k over I, with evaluation points
a1, ..., 0oy, is defined with the following encoding function.
The encoding of a message m = (mg,...,mp_1) is the
evaluation of the corresponding & — 1 degree polynomial
Fm(X) =S5 m X7 at all the a;'s:

i=0 "Mk
RS(m) = (fm(a1), ..., fm(an)).

The Kautz-Singleton construction starts with a [n, k], RS
code with n = ¢ — 1 and N = ¢*. Each g-ary symbol is
then replaced by unit weight binary vectors of length ¢, via



“identity mapping” which takes a symbol i € [g] and maps
it to the vector in {0, 1} that has a 1 in the ¢’th position and
zero everywhere else. Note that the resulting binary matrix
will have t = ¢g(¢ — 1) tests. This construction achieves a
d-disjunct ¢ x N binary matrix with ¢ = O(d?log% N) by
choosing the parameter ¢ appropriately.

While this is a strongly explicit construction, it is sub-
optimal for combinatorial group testing in the regime d =
O(poly(log N)): an explicit construction with smaller ¢
(achieving t = O(d?*log N)) is introduced by Porat and
Rothschild in [20]. Interestingly, we will show in the next
section that this same strongly explicit construction that is
suboptimal for combintorial group testing in fact achieves the
order-optimal ¢ = O(dlog N) result in both the noiseless and
noisy versions of probabilistic group testing.

III. OPTIMALITY OF THE KAUTZ-SINGLETON
CONSTRUCTION

We begin with the noiseless case (v = 0 in (1)). The
next theorem shows the optimality of the Kautz-Singleton
construction with properly chosen parameters n and q.

Theorem 1: Under the noiseless model introduced in Sec-

tion II, the Kautz-Singleton construction with parameters
q = O(d) and n = O(log N) achieves an arbitrary but fixed
e average probability of error with ¢ = ©(dlog N) tests in
the regime d = Q(log® N).
The proof of the above theorem can be found in Appendix A.
It is further possible to extend this result to the noisy setting
where we consider v ~ Bernoulli(p) for some fixed constant
p € (0,0.5), i.e., each measurement is independently flipped
with probability p. Our next theorem shows the optimality
of the Kautz-Singleton construction in this case.

Theorem 2: Under the noisy model introduced in Section
II with some fixed constant p € (0,0.5), the Kautz-Singleton
construction with parameters ¢ = O(d) and n = O(log N)
achieves an arbitrary but fixed e average probability of error
with t = ©(dlog N) tests in the regime d = Q(log® N).
The proof of the above theorem can be found in Appendix
B. Similar to the noiseless setting, the Kautz-Singleton con-
struction provides a strongly explicit construction achieving
optimal number of tests ¢ = ©(dlog N) in the noisy case.

IV. DECODING

While the cover decoder, which has a decoding complexity
of O(tN), might be reasonable for certain applications, there
is a recent research effort towards low-complexity decoding
schemes due to the emerging applications involving massive
datasets [26]-[29]. The target is a decoding complexity of
poly(t). This is an exponential improvement in the running
time over the cover decoder for moderate values of d. For
the model we consider in this work (i.e., exact recovery of
the defective set with P, < ¢), there is no known efficiently
decodable scheme with optimal ¢ = ©(dlog N) tests to the
best of our knowledge. However, there is a recent line of
work towards practical decoding schemes while preserving
the order of ¢ as much as possible. The work [28] presented a
randomized scheme which identifies all the defective items
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with high probability with O(dlogdlog N) tests and time
complexity O(dlogdlog N). Another recent result, [29],
introduced an algorithm which requires O(dlogdlog N)
tests with O(d(log? d + log N)) decoding complexity. Note
that the decoding complexity reduces to O(dlog N) when
d = O(poly(log N)) which is order-optimal (and sub-linear
in the number of tests), although the number of tests is not.
In both [28] and [29], the number of tests is away from the
optimal number of tests by a factor of logd.

We can convert the strongly explicit constructions in
Theorem 1 and 2 into strongly explicit constructions that
are also efficiently decodable by using a recursive technique
introduced in [27] where the authors construct efficiently
decodable error-tolerant list disjunct matrices. For the sake
of completeness, we next discuss the main idea applied to
our case.

For a defective set S, the cover decoder goes through the
columns of M and makes a decision whether an item is
inside the defective set or not. This gives us the decoding
complexity O(tN). However, if we were to somehow obtain
a superset S’ where it is guaranteed that S C S’, then the
naive decoder would run in time O(¢ - |\S’|) which could
potentially be more efficient depending on the size of S’. It
turns out that we can construct this small set S’ recursively.

Suppose that we have access to an efficiently decodable
t1(d,v/N,€e/4,p) x /N matrix M) that achieves exact
recovery of the defective set with P, < ¢/4. We will
construct two t1(d,V/N,e/4,p) x N matrices M) and
M®) using M) as follows. The jth column of M) for
j € [V/N] is identical to all ith columns of M (F) for i € [N]
if the first % log N bits of 7 is j where ¢ and j are considered
as their respective binary representations. Similarly, the jth
column of M) for j € [v/N] is identical to all ith columns
of M) for i € [N] if the last & log N bits of i is j.

After getting the measurement vectors Y (F) and Y (%)
from YF) = \/, g M @vand YO = \/,_ o M v we
can apply the decoding algorithm for M () to Y (¥) and Y (%)
to obtain the estimate sets SF) and S(X) respectively. Note
that the sets S and S%) consist of 3 log N-bit vectors
and by union bound the set S’ = S(F) % §(I) contains all
the indices i € S with error probability at most €/2. We
further note that |S’| < d?.

We can now vertically stack M(F) and M) with a
ta(d, N,€e/2,p) x N matrix M) which is not necessarily
efficiently decodable to obtain our final matrix M. The
decoding is as follows. We first decode the components of M
corresponding to M) and M) to obtain S(F) and S
respectively. We next construct the set S’ S(F) 5 §(I) We
finally apply the naive cover decoder to the component of M
corresponding to M (?) over the set S’ to compute the final
estimate S which can be done with an additional O(t; - d2)
time. We provide this decoding scheme in Algorithm 1 for
the special case N = d? for some non-negative integer i.
Note that by union bound the probability of error is bounded
by €. The next theorem is the result of applying this idea
recursively.

Theorem 3: Under the noiseless/noisy model introduced



Reference Number of tests Decoding complexity Construction
[30] t = O(dlog N) O(tN) Randomized
[21] t = O(dlog? N/ log d) O(tN) Strongly explicit
[28] t = O(dlogdlog N) O(dlogdlog N) Randomized
[29] t = O(dlogdlog N) O(d(log? d 4+ log N)) Randomized

This work t = O(dlog N) O(tN) Strongly explicit

This work | t = O(dlog N loglog,; N) | O(d>log N loglog, N) | Strongly explicit

TABLE I
COMPARISON OF NON-ADAPTIVE PROBABILISTIC GROUP TESTING RESULTS.

Algorithm 1: The decoding alg. decode(Y, M, d, N)

Input: The measurement vector Y, the group testing
matrix M, the defective set size d, the number

of items NV X
Output: The defective set estimate S
if N = d then

Return the defective set using Y (individual testing);
else
Compute M (1) and M@ (as described in the text);
Compute Y ) and Y() (as described in the text);
SF) = decode(Y F), MM d,\/N);
S = decode(Y ), MM d,\/N);
if |SU)| > d or |SV)| > d then
| return {};
10 Construct S’ = SF) x §(I);
11 Apply the cover decoder to M () over the set S’
and compute 3;
12 Return S’;

o L N N R W N =

in Section II, there exists a strongly explicit construction
achieving an arbitrary but fixed e average probability of error
with t = O(dlog N loglog,; N) number of tests that can
be decoded in time O(d*log N loglog, N) in the regime
d = Q(log® N).

We defer a formal proof of this result to the full version of
the paper. We note that with only loglog, IV extra factor in
the number of tests, the decoding complexity can be brought
to the desired O(poly(t)) complexity. We further note that
the number of tests becomes order-optimal in the regime
d = ©(N®) for some « € (0,1). In Table I we provide the
results presented in this work along with the related results
in the literature.

V. RELATED WORK

The literature on the non-adaptive group testing framework
includes both explicit and random test designs [12]. In com-
binatorial group testing, a famous construction introduced by
Kautz and Singleton [19] achieves t = O(d?log3 N) tests
matching the best known lower bound Q(d?log, N) [17],
[18] in the regime where d = (N®) for some o € (0,1).
However, this strongly explicit construction is suboptimal in

the regime where d = O(poly(log V)). An explicit construc-
tion achieving ¢t = O(d? log N') was introduced by Porat and
Rothschild in [20]. While ¢ = O(d? log N) is the best known
achievability result in combinatorial group testing frame-
work, there is no strongly explicit construction matching it
to the best of our knowledge. Regarding efficient decoding,
recently Indyk, Ngo and Rudra [26] introduced a randomized
construction with t = O(d?log(N)) tests that could be
decoded in time poly(t). Furthermore, their construction can
be derandomized in the regime d = O(log N/loglog N).
Later Ngo, Porat and Rudra [27] removed the constraint on
d and provided an explicit construction that can be decoded
in time poly(t).

On the other hand, there are various schemes relaxing the
0-error criteria in the group testing problem. For instance, a
model where the decoder always outputs a super-set of the
defectives containing less than [ other non-defective items
was studied in [31]-[33]. Another framework where the goal
is to recover at least a (1 — ¢)-fraction (for any arbitrarily
small ¢ > 0) of the defective set with high probability
was studied in [28] where the authors provided a scheme
with order-optimal O(dlog N) tests and the computational
complexity. There are also different versions of the group
testing problem in which a test can have more than two
outcomes [34], [35] or can be threshold based [36]—[38].
More recently, sparse group testing frameworks for both
combinatorial and probabilistic settings were studied in [39]—
[41].

When the defective set is assumed to be uniformly random,
it is known that t = ©(dlog V) is order-optimal for achiev-
ing the exact recovery of the defective set with ¢ error proba-
bility guarantee (which is the model considered in this work)
using random designs and information-theoretical tools [13],
[16], [30]. These results also include noisy variants of the
group testing problem. Efficient recovery algorithms with
nearly optimal number of tests were introduced recently
in [28] and [29]. Regarding deterministic constructions in
this model, recently Mazumdar [21] introduced an analysis
connecting the group testing properties with the average
Hamming distance between the columns of the measurement
matrix and obtained (strongly) explicit constructions with ¢ =
O(dlog® N/logd) tests. While this result is order-optimal
in the regime where d = ©(N*) for some « € (0, 1), it is

191



suboptimal for the moderate values of d. The performance of
the Kautz-Singleton construction in the random model has
been studied empirically [42], but we are not aware of any
theoretical analysis of it beyond what follows immediately
from the distance of Reed-Solomon codes. To the best of
our knowledge there is no known explicit/strongly explicit
construction achieving ¢t = ©(dlog N) tests in general for
the noiseless/noisy version of the probabilistic group testing
problem.

VI. CONCLUSION

In this work, we showed that the Kautz-Singleton con-
struction is order-optimal in the noiseless and noisy variants
of the probabilistic group testing problem. To the best of our
knowledge, this is the first (strongly) explicit construction
achieving order-optimal number of tests in the probabilistic
group testing setting. We provided a novel analysis departing
from the classical approaches in the literature that use
combinatorial properties of the underlying code. We instead
directly explored the probability of a non-defective item be-
ing covered by a random defective set using the properties of
Reed-Solomon codes in our analysis. Furthermore, by using
a recursive technique, we converted the Kautz-Singleton con-
struction into a construction that is also efficiently decodable
with only a log-log factor increase in number of tests which
provides interesting tradeoffs compared to the existing results
in the literature.

There are a number of nontrivial extensions to our work.
Firstly, it would be interesting to extend these results to the
regime d = o(log® N). Another interesting line of work
would be to find a deterministic/randomized construction
achieving order-optimal ¢ = ©(dlog N) tests and is also
efficiently decodable.
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APPENDIX

A. The proof of Theorem 1

Let N be the number of items and d be the size of the
random defective set. We will employ the Kautz-Singleton
construction. We use a [n, k], RS code such that N = ¢*
and we pick n and ¢ appropriately in the following. Note
that the resulting ¢ X N binary matrix M has ¢ = nq tests.

We note that for any defective set the cover decoder
provides the exact recovery given that none of the non-
defective items are covered. For s C [N], we define A®
as the event that there exists a non-defective column of M
that is covered by the defective set s. Define A; as the event
that the non-defective column M is covered by the defective
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set s. We can bound the probability of error as follows:

P S A)PH(S =)
sC[N],|s|=d
1 S
< m Z Z 1(A7)
d) sCINT,|s|=d i€[N]\s
1 S
= m Z Z 1(A7)
d/ i€[N] sC[N]/{i},|s|=d
") 1 .
= /N Z N_1 Z 1(A7)
(a) i€[N] (" )sg[N]/{i},\s|:d
= oS P 2)
i€[N]

where in the last equation S is uniformly distributed on the
sets of size d among the items in [N]/{:¢} and 1(-) denotes
the indicator function of an event.

Fix any n distinct elements oy, o, ..., a, from F,. We
denote ¥ {a1,0a9,...,a,}. We note that due to the
structure of mapping to the binary vectors in the Kautz-
Singleton construction, a column M; is covered by the
random defective set S if and only if the corresponding
symbols of M; is contained in the union of symbols of S
in RS code for all rows in [n]. Denoting f,,,(X) as the
polynomial corresponding to the column M;, we have

Pr(AJ) = Pr(fim, (@) € {fm,(a): j € S}V a € D)
=Pr(0 € {fim, (@) = frn,(a) : j €S} Vaec¥)
=Pr(0 € {fm, (@) :j €S} VaecV)

where in the last step the random set of polynomials

{fm;(X) = j € S} is generated by picking d nonzero

polynomials of degree at most k—1 without replacement. We

define the random polynomial h(X) £ [[ f,(X). Note
jes

that

0€{fm,(a):j€S}Vac¥ & h(a) =0V acV.
We next bound the number of roots of the polynomial /(X).
We will use the following result from [43].

Lemma 1 ( [43], Lemma 3.9): Let R,(l, k) denote the set
of nonzero polynomials over IF, of degree at most k that have
exactly [ distinct roots in IF,. For all powers ¢ and integers
Lk,

1
Ry(L )| < g o

Let r denote the number of roots of a random nonzero
polynomial of degree at most k¥ — 1. It is easy to observe
that E[r] <1 and using Lemma 1, we get

=12
SR

=l k—1
_2 i—1)! +; i—1)!
< 2e.



Hence we can bound E[r?] < 6. We denote r; as the number
of roots of the polynomial f,,,,(X) and rj, as the number of
roots of the polynomial h(X). Note that r, < > g5
We next use the Bernstein concentration bound for sampling
without replacement [44]:

%Z” > 7

jES

éZ(Tj —E[r;]) > 6

JjeSs

< exp (—

We have k = log N/loggq, hence, under the regime d =
Q(log? N), the last quantity is bounded by N ~¢'°24 for some
constant ¢ > 0. Hence the number of roots of the polynomial
h(X) is bounded by 7d with high probability.

Given the condition that the number of roots of the
polynomial h(X) is bounded by 7d and the random set of
polynomials {f,,,(X) : j € S} is picked from the nonzero
polynomials of degree at most k—1 without replacement, due
to the symmetry, we claim that the probability of satisfying
h(a) = 0 for all « € ¥ is bounded by the probability of
covering n elements from a field of size ¢ by picking 7d
elements randomly without replacement. We next prove this
claim. We define the set R(h) :== {a € F; : h(«) = 0} and
we emphasize that this is not a multiset, i.e., the repeated
roots appear as a single element. We begin with the following
observation.

Claim 1: Let [ > 0, and condition on the event that
|R(h)| = l. Then R(h) is uniformly distributed among all
sets A C F, of size [.

Proof: For f € Fy[X], we can write

H (X - Vi)qa

Y ER(S)

> rp>1d| =Pr

jES

< Pr

36d
12 + 6k(2/3)>

f(X) =g5(X)-

where ¢; is the corresponding multiplicity of the root ; and
gs € F,[X] does not have any linear factor. We note that
this decomposition is unique. For A C F, of size [, let

Hy = {{fl(X)v'“afd(X)} ‘R (Hfi(X)> = A}-

Let A’ C F, such that [A’| =1 and A’ # A. Then |H,| =
|Ha|. Indeed, let ¢ : F, — F, be a bijection such that

@(A) = A’. Then @ : Hy — Hps given by
e(f) =gr(X)- J] (X —en),
vi€R(f)
and ®({f1,..., fa}) = {®(f1),...,P(fq4)} is a bijection.
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We further note that R(h) = A = |R(h)| =1, so

Pr{R(h) = A}
Pr{R(h) = A||R(h =0
() = AIROI=1 = BT =1)
_ Pr{{f1,..., fa} € Ha}
Pr{|R(h)| = 1}
é I‘{{fh...,fd}GHA/}
Pr{R(h)| = 1)
=Pr{R(h) = N[ [R(h)| =1},
where (i) is due to |Hp| = |Ha/| and we pick fi,..., fq
uniformly with replacement. [ ]
Based on this, we have
Pr{R(h) 2 V| |R(h)| < 7d}
= ZPr{R )2 V| |R(h)| =1}
1<7d
‘Pr{|R(h)| =L ||R(h)| < 7d}

< maxPr{R(h
i<7d

=
0N

Let us fix ¢ = 14d. We then have

) 2 V[ |R(h)] =1}

14d—n
|<7d}< (7d7n)

Pr{R(h) 2 ¥ | |R(h i
(74)
_ (14d—n)! (7d)\(7d)!
~ (7d —n)\(7d)! (14d)!
_7d.. (Td—n+1)
© 14d...(14d —n +1)

1 n
<| = .
<(3)
Therefore, Pr(A?) is bounded by
Pr(AY) < Pr{R(h) 2 ¥ | |R(h)| < 7d} + Pr{|R(h)| > 7d}

1 n
< (= N—cloga,
< (2) .

Applying the summation over all ¢ € [N] in (2), we obtain
P, < Nl'=cloga 4 N9~" Therefore, under the regime d =
Q(log2 N), an arbitrary but fixed e average probability of
error can be achieved with n = ©(log N). The resulting
t x N binary matrix M has t = ng = O(dlog N) tests.

B. The proof of Theorem 2

We begin with describing the decoding rule. Since we
are considering the noisy model, we will slightly modify
the cover decoder employed in the noiseless case. For any
defective item with codeword weight w, in the noiseless
outcome the tests in which this item participated will be all
positive. On the other hand, when the noise is added, wp of
these tests will flip in expectation. Based on this observation
(see No-CoMa in [30] for a more detailed discussion), we
consider the following decoding rule. For any item i € [N],
we first denote w; as the weight of the corresponding column
M, and w; as the number of rows k € [t] where both



Mk:,i =land YV, = 1. If w; > wz(l — p(l + T)), then
the sth item is declared as defective, else it is declared to be
non-defective.

Under the aforementioned decoding rule, an error event
happens either when w; < w;(1 —p(1 + 7)) for a defective
item ¢ or w; > w;(1 —p(1 + 7)) for a non-defective item
1. Using the union bound, we can bound the probability of
error as follows:

é) [Z [ > Pr{d; > wi(1-p(l+7))}

N]|s|=d = i€[N]\s

P. <

+ 3 Peli <1 =901+ 7))
S PV MU
d

i€[N] sCIN]/{i}|s|=d
1

+7 S Y Pr{di <wi(1-p(1+7))}
)s C[N],|s|=d i€s

ZE[

sC[N]/{i},|s|=d

N (Ilv S Y Prids < wi(l—p(l+7))}

d> sC[N],|s|=d i€s

NN d g\[] Pr{w; > w;(1 —p(1+7))}
_‘_% Z X:PI‘{UA)Z < wi(l_p(1+T)>}

(a) sC[N],|s|=d i€s
= P + Py,

where in the first quantity of the last equation .S is randomly
distributed on the sets of size d among the items in [N]/{i}.
We denote the first quantity as P; and the second one as P»
in the last equation.

We will employ the Kautz-Singleton construction. We use
a [n, k], RS code such that N = ¢* and we pick n and ¢
appropriately in the following. Fix any n distinct elements
a1, g, ..., 0 from Fy. We denote ¥ £ {ag,a0,...,an}.

We begin with P,. Fix any defective set s in [N] with
size d and fix an arbitrary element ¢ of this set. We first note
that w; = n due to the Kautz-Singleton construction. We
further note that before the addition of noise the noiseless
outcome will have positive entries corresponding to the ones
where M, ; = 1. Therefore Pr{«w; < w;(1—p(1+7))} only
depends on the number of bit flips due to the noise. Using
Hoeffding’s inequality, we have

Pr{tw; < w;(1—p(1+7))} < e 27",

Summmg over the d defective items 7 € s, we get Pp <
de—an T2

We continue with P;. We fix an item ¢ € [N] and note
that w; = n. We similarly define the random polynomial
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h(X) = ‘Hs fm,; (X). Let A be the event of h(X) having at
€

J
most 7d number of roots. We then have
Pr{w; > w;(1—p(1+ 7))}

< Pr{aw; > w;(1 — p(1 + 7)) A} + Pr{A°}.

3)

Following similar steps as in the proof of Theorem 1 we
obtain Pr{A¢} < N—¢1°8¢ for some constant ¢ > 0 in the
regime d = Q(log? N).

We next bound the first term in (3). We choose ¢ = 84d
and define the random set T = {a € ¥ : f,.(a) €
{fm,; (@) : j € S}}. We then have
Pr{w; > w;(1 —p(1 + 7))|A,|T| < n/4} Pr{|T| < n/4|A}

+ Pr{|Y| > n/4]|A}
< Pr{w; > w;(1 —p(1+1))|A, Y| <n/4}

+ Pr{|T| > n/4]A}.
Let us first bound the second term Pr{|Y| > n/4|A}. We
note that

Y| =HaeW: fim,(a) € {fm,;(e) : j € S}

=HaeV:0€e{fm,(a) = fm(a):je St}

= |{0[ cv:0e {fmj(a) j S S}}l
where in the last equality the random set of polynomials
{fm;(X) = j € S} is generated by picking d nonzero
polynomials of degree at most k — 1 without replacement.
Following similar steps of the proof of Theorem 1 we can
bound Pr{|Y| > n/4|A} by considering the probability
of having at least n/4 symbols from ¥ when we pick 7d
symbols from [g] uniformly at random without replacement.

Hence we have
(n/4) (7qd T;//44)

O
(o) (i)
)

< (46)71/4

Pr{|Y| > n/4|A} <

(84d — n/4)!
(7d — nj4)(77d)!

de n/4
< (=
—\12

where we use (}) < (en/k)* in the second inequality.
We continue with Pr{w; > w;(1 — p(1 + 7))|A,|T] <
n/4}. Note that w; = n. We further note that

E[w;] = E[E[@;|T]] = E[|T[](1 - p) + (n — E[|T[])p.
Since p € (0,0.5) we have E[w; | |T] < n/4] < (n/4)(1 —

(7d)!(77d)!
(84d)!

p)+(3n/4)p = n/4+ (n/2)p. Using Hoeffding’s inequality,

we have
Pr{w; > w;(1 —p(1+7))|A,|T| < n/4}
< Pr{w; — E[w;] > n(3/4 — 3p/2 — p7)|A, [T] < n/4}
< 67271(3/473;7/271)7')2



where the condition 3/4 — 3p/2 —pr > 0 or 7 < (3/4 —
3p/2)/p can be satisfied with our choice of free parameter
7 since p < 1/2. Combining everything, we obtain

P, < leclogq +N(€/3)n/4 +Nef2n(3/473p/27p7')2

+ de=2mP°

Therefore, under the regime d = Q(log2 N), an arbitrary
but fixed € average probability of error can be achieved with

n =

©(log N). The resulting ¢t X N binary matrix M has

t =nqg = 0O(dlog N) tests.
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