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Abstract— We consider the probabilistic group testing prob-
lem where d random defective items in a large population
of N items are identified with high probability by applying
binary tests. It is known that Θ(d logN) tests are necessary and
sufficient to recover the defective set with vanishing probability
of error. However, to the best of our knowledge, there is no
explicit (deterministic) construction achieving Θ(d logN) tests
in general. In this work, we show that a famous construction
introduced by Kautz and Singleton for the combinatorial group
testing problem (which is known to be suboptimal for combi-
natorial group testing for moderate values of d) achieves the
order optimal Θ(d logN) tests in the probabilistic group testing
problem. This provides the first strongly explicit construction
achieving the order optimal result in the probabilistic group
testing setting. To prove the order-optimality of Kautz and
Singleton’s construction in the probabilistic setting, we provide
a novel analysis of the probability of a non-defective item being
covered by a random defective set directly, rather than arguing
from combinatorial properties of the underlying code, which
has been the main approach in the literature. Furthermore, we
use a recursive technique to convert this construction into one
that can also be efficiently decoded with only a log-log factor
increase in the number of tests.

I. INTRODUCTION

The objective of group testing is to efficiently identify a

small set of d defective items in a large population of size N
by performing binary tests on groups of items, as opposed

to testing the items individually. A positive test outcome

indicates that the group contains at least one defective item.

A negative test outcome indicates that all the items in the

group are non-defective. When d is much smaller than N ,

the defectives can be identified with far fewer than N tests.

The original group testing framework was developed in

1943 by Robert Dorfman [1]. Back then, group testing

was devised to identify which WWII draftees were infected

with syphilis, without having to test them individually. In

Dorfman’s application, items represented draftees and tests

represented actual blood tests. Over the years, group testing

has found numerous applications in fields spanning biology

[2], medicine [3], machine learning [4], data analysis [5],

signal processing [6], and wireless multiple-access commu-

nications [7]–[10].

A. Non-adaptive probabilistic group testing

Group testing strategies can be adaptive, where the ith

test is a function of the outcomes of the i− 1 previous tests,
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or non-adaptive, where all tests are designed in one shot.

A non-adaptive group testing strategy can be represented by

a t × N binary matrix M , where Mij = 1 indicates that

item j participates in test i. Group testing schemes can also

be combinatorial [11], [12] or probabilistic [13]–[16]. The

goal of combinatorial group testing schemes is to recover any

set of up to d defective items with zero-error and require

at least t = Ω(d2 logN/ log d) tests [17], [18]. Existing

constructions in this setting achieve t = O(d2 log2d N) [19]

and t = O(d2 logN) [20] tests. In contrast, probabilistic

group testing schemes assume a random defective set of size

d, allow for an arbitrarily small probability of reconstruction

error, and require t = Θ(d logN) tests only [13]. In this

paper, we are interested in non-adaptive probabilistic group

testing schemes.

B. Our contributions

To best of our knowledge, all known probabilistic group

testing strategies that achieve t = O(d logN) tests are

randomized (i.e., M is randomly constructed) [13]–[16].

Recently, Mazumdar [21] presented explicit schemes (deter-

ministic constructions of M ) for probabilistic group testing.

This was done by studying the average and minimum Ham-

ming distances of constant-weight codes (such as Algebraic-

Geometric codes) and relating them to the properties of

group testing strategies. However, the explicit schemes in

[21] achieve t = Θ(d log2 N/ log d), which is not order-

optimal when d is poly-logarithmic in N . It is therefore of

interest to find explicit, deterministic schemes that achieve

t = O(d logN) tests.

This paper presents the first strongly explicit1 scheme that

achieves t = O(d logN). We show, perhaps surprisingly, that

Kautz and Singleton’s construction [19], a well known sub-

optimal (for moderate values of d) explicit scheme for com-

binatorial group testing, is actually optimal for probabilistic

group testing. We prove this result for both the noiseless

and noisy (where test outcomes can be flipped at random)

settings of probabilistic group testing framework. We prove

the order-optimality of Kautz and Singleton’s construction

by analyzing the probability of a non-defective item being

“covered” (c.f. Section II) by a random defective set directly,

rather than arguing from combinatorial properties of the

underlying code, which has been the main approach in the

literature [19]–[21].

1We will call a t×N matrix strongly explicit if any column of the matrix
can be constructed in time poly(t). A matrix will be called explicit if it can
be constructed in time poly(t,N).
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We say a group testing scheme is efficiently decod-

able if there is a decoding strategy that runs in poly(t)-
time. While we can achieve the decoding complexity of

O(tN) with the “cover decoder” (c.f. Section II), our goal

is to bring the decoding complexity to poly(t). To this

end, we use a recursive technique to convert the Kautz-

Singleton construction into a strongly explicit construction

with t = O(d logN log logd N) tests and decoding com-

plexity O(d3 logN log logd N). This provides an efficiently

decodable scheme with only a log-log factor increase in

the number of tests. Searching for order-optimal explicit

or randomized constructions that are efficiently decodable

remains an open problem.

C. Outline

The remainder of this paper is organized as follows. In

Section II, we present the system model and necessary

prerequisites. The optimality of the Kautz-Singleton con-

struction in the probabilistic group testing setting is formally

presented in Section III. We propose an efficiently decodable

group testing strategy in Section IV. We defer the proof of the

results to their corresponding sections in the appendix. We

provide, in Section V, a brief survey of important results on

group testing and a detailed comparison with Mazumdar’s

recent work in [21]. Finally, we conclude our paper in

Section VI with a few interesting open problems.

II. SYSTEM MODEL AND BASIC DEFINITIONS

For any t × N matrix M , we use Mi to refer to its i’th
column and Mij to refer to its (i, j)’th entry. The support of

a column Mi is the set of coordinates where Mi has nonzero

entries. For an integer m ≥ 1, we denote the set {1, . . . ,m}
by [m]. The Hamming weight of a column of M will be

simply referred to as the weight of the column.

We consider a model where there is a random defective set

S of size d among the items [N ]. We define S as the set of

all possible defective sets, i.e., the set of
(

N
d

)

subsets of [N ]
of cardinality d and we let S be uniformly distributed over

S .2 The goal is to determine S from the binary measurement

vector Y of size t taking the form

Y =

(

∨

i∈S

Mi

)

⊕ v, (1)

where t×N measurement matrix M indicates which items

are included in the test, i.e., Mij = 1 if the item j is

participated in test i, v ∈ {0, 1}t is a noise term, and

⊕ denotes modulo-2 addition. In words, the measurement

vector Y is the Boolean OR combination of the columns of

the measurement matrix M corresponding to the defective

items in a possible noisy fashion. We are interested in both

noiseless and noisy variant of the model in (1). In the noise-

less case, we simply consider v = 0, i.e., Y =
∨

i∈S Mi.

Note that the randomness in the measurement vector Y is

only due to the random defective set in this case. On the

2This assumption is not critical. Our results carry over to the setting
where the defective items are sampled with replacement.

other hand, in the noisy case we consider v ∼ Bernoulli(p)
for some fixed constant p ∈ (0, 0.5), i.e., each measurement

is independently flipped with probability p.

Given M and Y , a decoding procedure forms an estimate

Ŝ of S. The performance measure we consider in this paper

is the exact recovery where the average probability of error

is given by

Pe , Pr(Ŝ 6= S),

and is taken over the realizations of S and v (in the noisy

case). The goal is to minimize the total number of tests t
while achieving an arbitrary but fixed ǫ average probability

of error, i.e., satisfying Pe ≤ ǫ.

A. Disjunctiveness

We say that a column Mi is covered by a set of columns

M1, . . . ,Ml if the support of Mi is contained in the union

of the supports of columns M1, . . . ,Ml. A binary matrix M
is called d-disjunct if any column of M is not covered by

any other d columns. The d-disjunctiveness property ensures

that we can recover any defective set of size d with zero

error from the measurement vector Y in the noiseless case.

This can be naively done using the cover decoder which

runs in O(tN)-time. The cover decoder simply scans through

the columns of M , and returns the ones that are covered

by the measurement vector Y . When M is d-disjunct, the

cover decoder succeeds at identifying all the defective items

without any error.

In this work, we are interested in the probabilistic group

testing problem where we allow an arbitrary but fixed ǫ
average probability of error. Therefore we can relax the d-

disjunctiveness property. In the noiseless case, it is sufficient

to ensure that at least (1 − ǫ) fraction of all possible

defective sets do not cover any other column. A binary matrix

satisfying this relaxed form is called an almost disjunct

matrix [21]–[24] and with this condition one can achieve

the desired ǫ average probability of error by applying the

cover decoder.

B. Kautz-Singleton Construction

In their work [19], Kautz and Singleton provide a construc-

tion of disjunct matrices by converting a Reed-Solomon (RS)

code [25] to a binary matrix. We begin with the definition

of Reed-Solomon codes.

Definition 1: Let Fq be a finite field and α1, . . . , αn be

distinct elements from Fq . Let k ≤ n ≤ q. The Reed-

Solomon code of dimension k over Fq , with evaluation points

α1, . . . , αn is defined with the following encoding function.

The encoding of a message m = (m0, . . . ,mk−1) is the

evaluation of the corresponding k − 1 degree polynomial

fm(X) =
∑k−1

i=0 miX
i at all the αi’s:

RS(m) = (fm(α1), . . . , fm(αn)).

The Kautz-Singleton construction starts with a [n, k]q RS

code with n = q − 1 and N = qk. Each q-ary symbol is

then replaced by unit weight binary vectors of length q, via
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“identity mapping” which takes a symbol i ∈ [q] and maps

it to the vector in {0, 1}q that has a 1 in the i’th position and

zero everywhere else. Note that the resulting binary matrix

will have t = q(q − 1) tests. This construction achieves a

d-disjunct t × N binary matrix with t = O(d2 log2d N) by

choosing the parameter q appropriately.

While this is a strongly explicit construction, it is sub-

optimal for combinatorial group testing in the regime d =
O(poly(logN)): an explicit construction with smaller t
(achieving t = O(d2 logN)) is introduced by Porat and

Rothschild in [20]. Interestingly, we will show in the next

section that this same strongly explicit construction that is

suboptimal for combintorial group testing in fact achieves the

order-optimal t = Θ(d logN) result in both the noiseless and

noisy versions of probabilistic group testing.

III. OPTIMALITY OF THE KAUTZ-SINGLETON

CONSTRUCTION

We begin with the noiseless case (v = 0 in (1)). The

next theorem shows the optimality of the Kautz-Singleton

construction with properly chosen parameters n and q.

Theorem 1: Under the noiseless model introduced in Sec-

tion II, the Kautz-Singleton construction with parameters

q = Θ(d) and n = Θ(logN) achieves an arbitrary but fixed

ǫ average probability of error with t = Θ(d logN) tests in

the regime d = Ω(log2 N).
The proof of the above theorem can be found in Appendix A.

It is further possible to extend this result to the noisy setting

where we consider v ∼ Bernoulli(p) for some fixed constant

p ∈ (0, 0.5), i.e., each measurement is independently flipped

with probability p. Our next theorem shows the optimality

of the Kautz-Singleton construction in this case.

Theorem 2: Under the noisy model introduced in Section

II with some fixed constant p ∈ (0, 0.5), the Kautz-Singleton

construction with parameters q = Θ(d) and n = Θ(logN)
achieves an arbitrary but fixed ǫ average probability of error

with t = Θ(d logN) tests in the regime d = Ω(log2 N).
The proof of the above theorem can be found in Appendix

B. Similar to the noiseless setting, the Kautz-Singleton con-

struction provides a strongly explicit construction achieving

optimal number of tests t = Θ(d logN) in the noisy case.

IV. DECODING

While the cover decoder, which has a decoding complexity

of O(tN), might be reasonable for certain applications, there

is a recent research effort towards low-complexity decoding

schemes due to the emerging applications involving massive

datasets [26]–[29]. The target is a decoding complexity of

poly(t). This is an exponential improvement in the running

time over the cover decoder for moderate values of d. For

the model we consider in this work (i.e., exact recovery of

the defective set with Pe ≤ ǫ), there is no known efficiently

decodable scheme with optimal t = Θ(d logN) tests to the

best of our knowledge. However, there is a recent line of

work towards practical decoding schemes while preserving

the order of t as much as possible. The work [28] presented a

randomized scheme which identifies all the defective items

with high probability with O(d log d logN) tests and time

complexity O(d log d logN). Another recent result, [29],

introduced an algorithm which requires O(d log d logN)
tests with O(d(log2 d + logN)) decoding complexity. Note

that the decoding complexity reduces to O(d logN) when

d = O(poly(logN)) which is order-optimal (and sub-linear

in the number of tests), although the number of tests is not.

In both [28] and [29], the number of tests is away from the

optimal number of tests by a factor of log d.

We can convert the strongly explicit constructions in

Theorem 1 and 2 into strongly explicit constructions that

are also efficiently decodable by using a recursive technique

introduced in [27] where the authors construct efficiently

decodable error-tolerant list disjunct matrices. For the sake

of completeness, we next discuss the main idea applied to

our case.

For a defective set S, the cover decoder goes through the

columns of M and makes a decision whether an item is

inside the defective set or not. This gives us the decoding

complexity O(tN). However, if we were to somehow obtain

a superset S′ where it is guaranteed that S ⊆ S′, then the

naive decoder would run in time O(t · |S′|) which could

potentially be more efficient depending on the size of S′. It

turns out that we can construct this small set S′ recursively.

Suppose that we have access to an efficiently decodable

t1(d,
√
N, ǫ/4, p) ×

√
N matrix M (1) that achieves exact

recovery of the defective set with Pe ≤ ǫ/4. We will

construct two t1(d,
√
N, ǫ/4, p) × N matrices M (F ) and

M (L) using M (1) as follows. The jth column of M (1) for

j ∈ [
√
N ] is identical to all ith columns of M (F ) for i ∈ [N ]

if the first 1
2 logN bits of i is j where i and j are considered

as their respective binary representations. Similarly, the jth

column of M (1) for j ∈ [
√
N ] is identical to all ith columns

of M (L) for i ∈ [N ] if the last 1
2 logN bits of i is j.

After getting the measurement vectors Y (F ) and Y (L)

from Y (F ) =
∨

i∈S M
(F )
i ⊕v and Y (L) =

∨

i∈S M
(L)
i ⊕v we

can apply the decoding algorithm for M (1) to Y (F ) and Y (L)

to obtain the estimate sets Ŝ(F ) and Ŝ(L) respectively. Note

that the sets Ŝ(F ) and Ŝ(L) consist of 1
2 logN -bit vectors

and by union bound the set S′ = Ŝ(F ) × Ŝ(L) contains all

the indices i ∈ S with error probability at most ǫ/2. We

further note that |S′| ≤ d2.

We can now vertically stack M (F ) and M (L) with a

t2(d,N, ǫ/2, p) × N matrix M (2) which is not necessarily

efficiently decodable to obtain our final matrix M . The

decoding is as follows. We first decode the components of M
corresponding to M (F ) and M (L) to obtain Ŝ(F ) and Ŝ(L)

respectively. We next construct the set S′ = Ŝ(F )×Ŝ(L). We

finally apply the naive cover decoder to the component of M
corresponding to M (2) over the set S′ to compute the final

estimate Ŝ which can be done with an additional O(t2 · d2)
time. We provide this decoding scheme in Algorithm 1 for

the special case N = d2
i

for some non-negative integer i.
Note that by union bound the probability of error is bounded

by ǫ. The next theorem is the result of applying this idea

recursively.

Theorem 3: Under the noiseless/noisy model introduced
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Reference Number of tests Decoding complexity Construction

[30] t = Θ(d logN) O(tN) Randomized

[21] t = O(d log2 N/ log d) O(tN) Strongly explicit

[28] t = O(d log d logN) O(d log d logN) Randomized

[29] t = O(d log d logN) O(d(log2 d+ logN)) Randomized

This work t = Θ(d logN) O(tN) Strongly explicit

This work t = O(d logN log logd N) O(d3 logN log logd N) Strongly explicit

TABLE I

COMPARISON OF NON-ADAPTIVE PROBABILISTIC GROUP TESTING RESULTS.

Algorithm 1: The decoding alg. decode(Y , M , d, N )

Input: The measurement vector Y , the group testing

matrix M , the defective set size d, the number

of items N
Output: The defective set estimate Ŝ

1 if N = d then

2 Return the defective set using Y (individual testing);

3 else

4 Compute M (1) and M (2) (as described in the text);

5 Compute Y (F ) and Y (L) (as described in the text);

6 Ŝ(F ) = decode(Y (F ),M (1), d,
√
N);

7 Ŝ(L) = decode(Y (L),M (1), d,
√
N);

8 if |Ŝ(F )| > d or |Ŝ(L)| > d then

9 return {};

10 Construct S′ = Ŝ(F ) × Ŝ(L);

11 Apply the cover decoder to M (2) over the set S′

and compute Ŝ;

12 Return Ŝ;

in Section II, there exists a strongly explicit construction

achieving an arbitrary but fixed ǫ average probability of error

with t = O(d logN log logd N) number of tests that can

be decoded in time O(d3 logN log logd N) in the regime

d = Ω(log2 N).
We defer a formal proof of this result to the full version of

the paper. We note that with only log logd N extra factor in

the number of tests, the decoding complexity can be brought

to the desired O(poly(t)) complexity. We further note that

the number of tests becomes order-optimal in the regime

d = Θ(Nα) for some α ∈ (0, 1). In Table I we provide the

results presented in this work along with the related results

in the literature.

V. RELATED WORK

The literature on the non-adaptive group testing framework

includes both explicit and random test designs [12]. In com-

binatorial group testing, a famous construction introduced by

Kautz and Singleton [19] achieves t = O(d2 log2d N) tests

matching the best known lower bound Ω(d2 logd N) [17],

[18] in the regime where d = θ(Nα) for some α ∈ (0, 1).
However, this strongly explicit construction is suboptimal in

the regime where d = O(poly(logN)). An explicit construc-

tion achieving t = O(d2 logN) was introduced by Porat and

Rothschild in [20]. While t = O(d2 logN) is the best known

achievability result in combinatorial group testing frame-

work, there is no strongly explicit construction matching it

to the best of our knowledge. Regarding efficient decoding,

recently Indyk, Ngo and Rudra [26] introduced a randomized

construction with t = O(d2 log(N)) tests that could be

decoded in time poly(t). Furthermore, their construction can

be derandomized in the regime d = O(logN/ log logN).
Later Ngo, Porat and Rudra [27] removed the constraint on

d and provided an explicit construction that can be decoded

in time poly(t).

On the other hand, there are various schemes relaxing the

0-error criteria in the group testing problem. For instance, a

model where the decoder always outputs a super-set of the

defectives containing less than l other non-defective items

was studied in [31]–[33]. Another framework where the goal

is to recover at least a (1 − ǫ)-fraction (for any arbitrarily

small ǫ > 0) of the defective set with high probability

was studied in [28] where the authors provided a scheme

with order-optimal O(d logN) tests and the computational

complexity. There are also different versions of the group

testing problem in which a test can have more than two

outcomes [34], [35] or can be threshold based [36]–[38].

More recently, sparse group testing frameworks for both

combinatorial and probabilistic settings were studied in [39]–

[41].

When the defective set is assumed to be uniformly random,

it is known that t = Θ(d logN) is order-optimal for achiev-

ing the exact recovery of the defective set with ǫ error proba-

bility guarantee (which is the model considered in this work)

using random designs and information-theoretical tools [13],

[16], [30]. These results also include noisy variants of the

group testing problem. Efficient recovery algorithms with

nearly optimal number of tests were introduced recently

in [28] and [29]. Regarding deterministic constructions in

this model, recently Mazumdar [21] introduced an analysis

connecting the group testing properties with the average

Hamming distance between the columns of the measurement

matrix and obtained (strongly) explicit constructions with t =
O(d log2 N/ log d) tests. While this result is order-optimal

in the regime where d = Θ(Nα) for some α ∈ (0, 1), it is
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suboptimal for the moderate values of d. The performance of

the Kautz-Singleton construction in the random model has

been studied empirically [42], but we are not aware of any

theoretical analysis of it beyond what follows immediately

from the distance of Reed-Solomon codes. To the best of

our knowledge there is no known explicit/strongly explicit

construction achieving t = Θ(d logN) tests in general for

the noiseless/noisy version of the probabilistic group testing

problem.

VI. CONCLUSION

In this work, we showed that the Kautz-Singleton con-

struction is order-optimal in the noiseless and noisy variants

of the probabilistic group testing problem. To the best of our

knowledge, this is the first (strongly) explicit construction

achieving order-optimal number of tests in the probabilistic

group testing setting. We provided a novel analysis departing

from the classical approaches in the literature that use

combinatorial properties of the underlying code. We instead

directly explored the probability of a non-defective item be-

ing covered by a random defective set using the properties of

Reed-Solomon codes in our analysis. Furthermore, by using

a recursive technique, we converted the Kautz-Singleton con-

struction into a construction that is also efficiently decodable

with only a log-log factor increase in number of tests which

provides interesting tradeoffs compared to the existing results

in the literature.

There are a number of nontrivial extensions to our work.

Firstly, it would be interesting to extend these results to the

regime d = o(log2 N). Another interesting line of work

would be to find a deterministic/randomized construction

achieving order-optimal t = Θ(d logN) tests and is also

efficiently decodable.
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APPENDIX

A. The proof of Theorem 1

Let N be the number of items and d be the size of the

random defective set. We will employ the Kautz-Singleton

construction. We use a [n, k]q RS code such that N = qk

and we pick n and q appropriately in the following. Note

that the resulting t×N binary matrix M has t = nq tests.

We note that for any defective set the cover decoder

provides the exact recovery given that none of the non-

defective items are covered. For s ⊆ [N ], we define As

as the event that there exists a non-defective column of M
that is covered by the defective set s. Define As

i as the event

that the non-defective column Mi is covered by the defective

set s. We can bound the probability of error as follows:

Pe ≤
∑

s⊆[N ],|s|=d

1(As) Pr(S = s)

≤ 1
(

N
d

)

∑

s⊆[N ],|s|=d

∑

i∈[N ]\s

1(As
i )

=
1
(

N
d

)

∑

i∈[N ]

∑

s⊆[N ]/{i},|s|=d

1(As
i )

=

(

N−1
d

)

(

N
d

)

∑

i∈[N ]

1
(

N−1
d

)

∑

s⊆[N ]/{i},|s|=d

1(As
i )

=
N − d

N

∑

i∈[N ]

Pr(AS
i ) (2)

where in the last equation S is uniformly distributed on the

sets of size d among the items in [N ]/{i} and 1(·) denotes

the indicator function of an event.

Fix any n distinct elements α1, α2, . . . , αn from Fq . We

denote Ψ , {α1, α2, . . . , αn}. We note that due to the

structure of mapping to the binary vectors in the Kautz-

Singleton construction, a column Mi is covered by the

random defective set S if and only if the corresponding

symbols of Mi is contained in the union of symbols of S
in RS code for all rows in [n]. Denoting fmi

(X) as the

polynomial corresponding to the column Mi, we have

Pr(AS
i ) = Pr(fmi

(α) ∈ {fmj
(α) : j ∈ S} ∀ α ∈ Ψ)

= Pr(0 ∈ {fmj
(α)− fmi

(α) : j ∈ S} ∀ α ∈ Ψ)

= Pr(0 ∈ {fmj
(α) : j ∈ S} ∀ α ∈ Ψ)

where in the last step the random set of polynomials

{fmj
(X) : j ∈ S} is generated by picking d nonzero

polynomials of degree at most k−1 without replacement. We

define the random polynomial h(X) ,
∏

j∈S

fmj
(X). Note

that

0 ∈ {fmj
(α) : j ∈ S} ∀ α ∈ Ψ ⇔ h(α) = 0 ∀ α ∈ Ψ.

We next bound the number of roots of the polynomial h(X).
We will use the following result from [43].

Lemma 1 ( [43], Lemma 3.9): Let Rq(l, k) denote the set

of nonzero polynomials over Fq of degree at most k that have

exactly l distinct roots in Fq . For all powers q and integers

l, k,

|Rq(l, k)| ≤ qk+1 · 1
l!
.

Let r denote the number of roots of a random nonzero

polynomial of degree at most k − 1. It is easy to observe

that E[r] ≤ 1 and using Lemma 1, we get

E[r2] ≤
k−1
∑

i=1

i2

i!

=

k−1
∑

i=1

i− 1

(i− 1)!
+

k−1
∑

i=1

1

(i− 1)!

< 2e.
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Hence we can bound E[r2] < 6. We denote ri as the number

of roots of the polynomial fmi
(X) and rh as the number of

roots of the polynomial h(X). Note that rh ≤ ∑

j∈S rj .

We next use the Bernstein concentration bound for sampling

without replacement [44]:

Pr





∑

j∈S

rj > 7d



 = Pr





1

d

∑

j∈S

rj > 7





≤ Pr





1

d

∑

j∈S

(rj − E[rj ]) > 6





≤ exp

(

− 36d

12 + 6k(2/3)

)

≤ exp

(

−36d

16k

)

.

We have k = logN/ log q, hence, under the regime d =
Ω(log2 N), the last quantity is bounded by N−c log q for some

constant c > 0. Hence the number of roots of the polynomial

h(X) is bounded by 7d with high probability.

Given the condition that the number of roots of the

polynomial h(X) is bounded by 7d and the random set of

polynomials {fmj
(X) : j ∈ S} is picked from the nonzero

polynomials of degree at most k−1 without replacement, due

to the symmetry, we claim that the probability of satisfying

h(α) = 0 for all α ∈ Ψ is bounded by the probability of

covering n elements from a field of size q by picking 7d
elements randomly without replacement. We next prove this

claim. We define the set R(h) := {α ∈ Fq : h(α) = 0} and

we emphasize that this is not a multiset, i.e., the repeated

roots appear as a single element. We begin with the following

observation.

Claim 1: Let l > 0, and condition on the event that

|R(h)| = l. Then R(h) is uniformly distributed among all

sets Λ ⊆ Fq of size l.

Proof: For f ∈ Fq[X], we can write

f(X) = gf (X) ·
∏

γi∈R(f)

(X − γi)
ci ,

where ci is the corresponding multiplicity of the root γi and

gf ∈ Fq[X] does not have any linear factor. We note that

this decomposition is unique. For Λ ⊆ Fq of size l, let

HΛ :=

{

{f1(X), . . . , fd(X)} : R

(

∏

i

fi(X)

)

= Λ

}

.

Let Λ′ ⊆ Fq such that |Λ′| = l and Λ′ 6= Λ. Then |HΛ| =
|HΛ′ |. Indeed, let ϕ : Fq → Fq be a bijection such that

ϕ(Λ) = Λ′. Then Φ : HΛ → HΛ′ given by

Φ(f) = gf (X) ·
∏

γi∈R(f)

(X − ϕ(γi))
ci ,

and Φ({f1, . . . , fd}) := {Φ(f1), . . . ,Φ(fd)} is a bijection.

We further note that R(h) = Λ ⇒ |R(h)| = l, so

Pr{R(h) = Λ
∣

∣ |R(h)| = l} =
Pr{R(h) = Λ}
Pr{|R(h)| = l}

=
Pr{{f1, . . . , fd} ∈ HΛ}

Pr{|R(h)| = l}
(i)
=

Pr{{f1, . . . , fd} ∈ HΛ′}
Pr{|R(h)| = l}

= Pr{R(h) = Λ′
∣

∣ |R(h)| = l},

where (i) is due to |HΛ| = |HΛ′ | and we pick f1, . . . , fd
uniformly with replacement.

Based on this, we have

Pr{R(h) ⊇ Ψ
∣

∣ |R(h)| ≤ 7d}
=
∑

l≤7d

Pr{R(h) ⊇ Ψ
∣

∣ |R(h)| = l}

· Pr{|R(h)| = l
∣

∣ |R(h)| ≤ 7d}
≤ max

l≤7d
Pr{R(h) ⊇ Ψ

∣

∣ |R(h)| = l}

= max
l≤7d

(

q−n
l−n

)

(

q
l

) .

Let us fix q = 14d. We then have

Pr{R(h) ⊇ Ψ
∣

∣ |R(h)| ≤ 7d} ≤
(

14d−n
7d−n

)

(

14d
7d

)

=
(14d− n)!

(7d− n)!(7d)!

(7d)!(7d)!

(14d)!

=
7d . . . (7d− n+ 1)

14d . . . (14d− n+ 1)

≤
(

1

2

)n

.

Therefore, Pr(AS
i ) is bounded by

Pr(AS
i ) ≤ Pr{R(h) ⊇ Ψ

∣

∣ |R(h)| ≤ 7d}+ Pr{|R(h)| > 7d}

≤
(

1

2

)n

+N−c log q.

Applying the summation over all i ∈ [N ] in (2), we obtain

Pe ≤ N1−c log q + N2−n. Therefore, under the regime d =
Ω(log2 N), an arbitrary but fixed ǫ average probability of

error can be achieved with n = Θ(logN). The resulting

t×N binary matrix M has t = nq = Θ(d logN) tests.

B. The proof of Theorem 2

We begin with describing the decoding rule. Since we

are considering the noisy model, we will slightly modify

the cover decoder employed in the noiseless case. For any

defective item with codeword weight w, in the noiseless

outcome the tests in which this item participated will be all

positive. On the other hand, when the noise is added, wp of

these tests will flip in expectation. Based on this observation

(see No-CoMa in [30] for a more detailed discussion), we

consider the following decoding rule. For any item i ∈ [N ],
we first denote wi as the weight of the corresponding column

Mi and ŵi as the number of rows k ∈ [t] where both
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Mk,i = 1 and Yk = 1. If ŵi ≥ wi(1 − p(1 + τ)), then

the ith item is declared as defective, else it is declared to be

non-defective.

Under the aforementioned decoding rule, an error event

happens either when ŵi < wi(1− p(1 + τ)) for a defective

item i or ŵi ≥ wi(1 − p(1 + τ)) for a non-defective item

i. Using the union bound, we can bound the probability of

error as follows:

Pe ≤
1
(

N
d

)

∑

s⊆[N ],|s|=d

[

∑

i∈[N ]\s

Pr{ŵi ≥ wi(1− p(1 + τ))}

+
∑

i∈s

Pr{ŵi < wi(1− p(1 + τ))}
]

=
1
(

N
d

)

∑

i∈[N ]

∑

s⊆[N ]/{i},|s|=d

Pr{ŵi ≥ wi(1− p(1 + τ))}

+
1
(

N
d

)

∑

s⊆[N ],|s|=d

∑

i∈s

Pr{ŵi < wi(1− p(1 + τ))}

=

(

N−1
d

)

(

N
d

)

(

∑

i∈[N ]

1
(

N−1
d

)

·
∑

s⊆[N ]/{i},|s|=d

Pr{ŵi ≥ wi(1− p(1 + τ))}
)

+
1
(

N
d

)

∑

s⊆[N ],|s|=d

∑

i∈s

Pr{ŵi < wi(1− p(1 + τ))}

=
N − d

N

∑

i∈[N ]

Pr{ŵi ≥ wi(1− p(1 + τ))}

+
1
(

N
d

)

∑

s⊆[N ],|s|=d

∑

i∈s

Pr{ŵi < wi(1− p(1 + τ))}

=: P1 + P2,

where in the first quantity of the last equation S is randomly

distributed on the sets of size d among the items in [N ]/{i}.

We denote the first quantity as P1 and the second one as P2

in the last equation.

We will employ the Kautz-Singleton construction. We use

a [n, k]q RS code such that N = qk and we pick n and q
appropriately in the following. Fix any n distinct elements

α1, α2, . . . , αn from Fq . We denote Ψ , {α1, α2, . . . , αn}.

We begin with P2. Fix any defective set s in [N ] with

size d and fix an arbitrary element i of this set. We first note

that wi = n due to the Kautz-Singleton construction. We

further note that before the addition of noise the noiseless

outcome will have positive entries corresponding to the ones

where Mk,i = 1. Therefore Pr{ŵi < wi(1−p(1+τ))} only

depends on the number of bit flips due to the noise. Using

Hoeffding’s inequality, we have

Pr{ŵi < wi(1− p(1 + τ))} ≤ e−2np2τ2

.

Summing over the d defective items i ∈ s, we get P2 ≤
de−2np2τ2

.

We continue with P1. We fix an item i ∈ [N ] and note

that wi = n. We similarly define the random polynomial

h(X) ,
∏

j∈S

fmj
(X). Let A be the event of h(X) having at

most 7d number of roots. We then have

Pr{ŵi ≥ wi(1− p(1 + τ))}
≤ Pr{ŵi ≥ wi(1− p(1 + τ))|A}+ Pr{Ac}.

(3)

Following similar steps as in the proof of Theorem 1 we

obtain Pr{Ac} ≤ N−c log q for some constant c > 0 in the

regime d = Ω(log2 N).
We next bound the first term in (3). We choose q = 84d

and define the random set Υ = {α ∈ Ψ : fmi
(α) ∈

{fmj
(α) : j ∈ S}}. We then have

Pr{ŵi ≥ wi(1− p(1 + τ))|A} ≤
Pr{ŵi ≥ wi(1− p(1 + τ))|A, |Υ| ≤ n/4}Pr{|Υ| ≤ n/4|A}

+ Pr{|Υ| > n/4|A}
≤ Pr{ŵi ≥ wi(1− p(1 + τ))|A, |Υ| ≤ n/4}

+ Pr{|Υ| > n/4|A}.
Let us first bound the second term Pr{|Υ| > n/4|A}. We

note that

|Υ| = |{α ∈ Ψ : fmi
(α) ∈ {fmj

(α) : j ∈ S}}|
= |{α ∈ Ψ : 0 ∈ {fmj

(α)− fmi
(α) : j ∈ S}}|

= |{α ∈ Ψ : 0 ∈ {fmj
(α) : j ∈ S}}|

where in the last equality the random set of polynomials

{fmj
(X) : j ∈ S} is generated by picking d nonzero

polynomials of degree at most k − 1 without replacement.

Following similar steps of the proof of Theorem 1 we can

bound Pr{|Υ| > n/4|A} by considering the probability

of having at least n/4 symbols from Ψ when we pick 7d
symbols from [q] uniformly at random without replacement.

Hence we have

Pr{|Υ| > n/4|A} ≤
(

n
n/4

)(

q−n/4
7d−n/4

)

(

q
7d

)

=

(

n
n/4

)(

84d−n/4
7d−n/4

)

(

84d
7d

)

≤ (4e)n/4
(84d− n/4)!

(7d− n/4)!(77d)!

(7d)!(77d)!

(84d)!

≤
(

4e

12

)n/4

where we use
(

n
k

)

≤ (en/k)k in the second inequality.

We continue with Pr{ŵi ≥ wi(1 − p(1 + τ))|A, |Υ| ≤
n/4}. Note that wi = n. We further note that

E[ŵi] = E[E[ŵi|Υ]] = E[|Υ|](1− p) + (n− E[|Υ|])p.
Since p ∈ (0, 0.5) we have E[ŵi | |Υ| ≤ n/4] ≤ (n/4)(1−
p)+(3n/4)p = n/4+(n/2)p. Using Hoeffding’s inequality,

we have

Pr{ŵi ≥ wi(1− p(1 + τ))|A, |Υ| ≤ n/4}
≤ Pr{ŵi − E[ŵi] ≥ n(3/4− 3p/2− pτ)|A, |Υ| ≤ n/4}
≤ e−2n(3/4−3p/2−pτ)2
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where the condition 3/4 − 3p/2 − pτ > 0 or τ < (3/4 −
3p/2)/p can be satisfied with our choice of free parameter

τ since p < 1/2. Combining everything, we obtain

Pe ≤ N1−c log q +N(e/3)n/4 +Ne−2n(3/4−3p/2−pτ)2

+ de−2np2τ2

.

Therefore, under the regime d = Ω(log2 N), an arbitrary

but fixed ǫ average probability of error can be achieved with

n = Θ(logN). The resulting t × N binary matrix M has

t = nq = Θ(d logN) tests.
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