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Abstract— We consider the probabilistic group testing problem
where d random defective items in a large population of N items
are identified with high probability by applying binary tests.
It is known that the 2(d log N) tests are necessary and sufficient
to recover the defective set with vanishing probability of error
when d = O(N

α) for some α ∈ (0, 1). However, to the best of
our knowledge, there is no explicit (deterministic) construction
achieving 2(d log N) tests in general. In this paper, we show
that a famous construction introduced by Kautz and Singleton
for the combinatorial group testing problem (which is known
to be suboptimal for combinatorial group testing for moderate
values of d) achieves the order optimal 2(d log N) tests in the
probabilistic group testing problem when d = �(log2

N). This
provides a strongly explicit construction achieving the order
optimal result in the probabilistic group testing setting for a wide
range of values of d . To prove the order-optimality of Kautz and
Singleton’s construction in the probabilistic setting, we provide
a novel analysis of the probability of a non-defective item being
covered by a random defective set directly, rather than arguing
from combinatorial properties of the underlying code, which has
been the main approach in the literature. Furthermore, we use
a recursive technique to convert this construction into one that
can also be efficiently decoded with only a log-log factor increase
in the number of tests.

Index Terms— Algorithm design and analysis, group testing,
explicit constructions, efficient decoding.

I. INTRODUCTION

THE objective of group testing is to efficiently identify a
small set of d defective items in a large population of size

N by performing binary tests on groups of items, as opposed to
testing the items individually. A positive test outcome indicates
that the group contains at least one defective item. A negative
test outcome indicates that all the items in the group are non-
defective. When d is much smaller than N , the defectives can
be identified with far fewer than N tests.
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The original group testing framework was developed
in 1943 by Robert Dorfman [1]. Back then, group testing
was devised to identify which WWII draftees were infected
with syphilis, without having to test them individually.
In Dorfman’s application, items represented draftees and
tests represented actual blood tests. Over the years, group
testing has found numerous applications in fields spanning
biology [2], medicine [3], machine learning [4], data analy-
sis [5], signal processing [6], and wireless multiple-access
communications [7]–[10].

A. Non-Adaptive Probabilistic Group Testing

Group testing strategies can be adaptive, where the i th test
is a function of the outcomes of the i − 1 previous tests,
or non-adaptive, where all tests are designed in one shot.
A non-adaptive group testing strategy can be represented by
a t × N binary matrix M , where Mi j = 1 indicates that
item j participates in test i . Group testing schemes can also
be combinatorial [11], [12] or probabilistic [13]–[20].

The goal of combinatorial group testing schemes is to
recover any set of up to d defective items with zero-
error and require at least t = min{N,�(d2 logd N)}
tests [21], [22]. A strongly explicit construction1 that achieves
t = O(d2 log2

d N) was introduced by Kautz and Singleton
in [23]. A more recent explicit construction achieving t =
O(d2 log N) was introduced by Porat and Rothschild [24].
We note that the Kautz-Singleton construction matches the
best known lower bound �(d2 logd N) in the regime where
d = 2(Nα) for some α ∈ (0, 1). However, for moderate
values of d (e.g., d = O(poly(log N))), the construction
introduced by Porat and Rothschild achieving t = O(d2 log N)

is more efficient and the Kautz-Singleton construction is
suboptimal in this regime.

In contrast, probabilistic group testing schemes assume
a random defective set of size d , allow for an arbitrarily
small probability of reconstruction error, and require only
t = 2(d log N) tests when d = O(N1−α) for some α ∈
(0, 1) [15]–[17]. In this paper, we are interested in non-
adaptive probabilistic group testing schemes.

B. Our Contributions

To best of our knowledge, all known probabilistic group
testing strategies that achieve t = O(d log N) tests are

1We will call a t × N matrix strongly explicit if any column of the matrix
can be constructed in time poly(t). A matrix will be called explicit if it can
be constructed in time poly(t, N).
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randomized (i.e., M is randomly constructed) [13]–[20].
Recently, Mazumdar [25] presented explicit schemes (deter-
ministic constructions of M) for probabilistic group testing
framework. This was done by studying the average and min-
imum Hamming distances of constant-weight codes (such as
Algebraic-Geometric codes) and relating them to the proper-
ties of group testing strategies. However, the explicit schemes
in [25] achieve t = 2(d log2 N/ log d), which is not order-
optimal when d is poly-logarithmic in N . It is therefore of
interest to find explicit, deterministic schemes that achieve
t = O(d log N) tests.

This paper presents a strongly explicit scheme that achieves
t = O(d log N) in the regime where d = �(log2 N).
We show that Kautz and Singleton’s well-known scheme is
order-optimal for probabilistic group testing. This is perhaps
surprising because for moderate values of d (e.g., d =
O(poly(log N))), this scheme is known to be sub-optimal for
combinatorial group testing. We prove this result for both
the noiseless and noisy (where test outcomes can be flipped
at random) settings of probabilistic group testing framework.
We prove the order-optimality of Kautz and Singleton’s con-
struction by analyzing the probability of a non-defective item
being “covered” (c.f. Section II) by a random defective set
directly, rather than arguing from combinatorial properties of
the underlying code, which has been the main approach in the
literature [23]–[25].

We say a group testing scheme, which consists of a group
testing strategy (i.e., M) and a decoding rule, achieves proba-
bility of error � and is efficiently decodable if the decoding rule
can identify the defective set in poly(t)-time complexity with �

probability of error. While we can achieve the decoding com-
plexity of O(t N) with the “cover decoder” (c.f. Section II),2

our goal is to bring the decoding complexity to poly(t).
To this end, we use a recursive technique inspired by [26]
to convert the Kautz-Singleton construction into a strongly
explicit construction with t = O(d log N log logd N) tests and
decoding complexity O(d3 log N log logd N). This provides
an efficiently decodable scheme with only a log-log factor
increase in the number of tests. Searching for order-optimal
explicit or randomized constructions that are efficiently decod-
able remains an open problem.

C. Outline

The remainder of this paper is organized as follows.
In Section II, we present the system model and necessary pre-
requisites. The optimality of the Kautz-Singleton construction
in the probabilistic group testing setting is formally presented
in Section III. We propose an efficiently decodable group
testing strategy in Section IV. We defer the proofs of the
results to their corresponding sections in the appendix. We pro-
vide, in Section V, a brief survey of related results on group
testing and a detailed comparison with Mazumdar’s recent
work in [25]. Finally, we conclude our paper in Section VI
with a few interesting open problems.

2Common constructions in group testing literature have density 2(1/d),
therefore, the decoding complexity can be brought to O(t N/d).

II. SYSTEM MODEL AND BASIC DEFINITIONS

For any t × N matrix M , we use Mi to refer to its i ’th
column and Mi j to refer to its (i, j)’th entry. The support of
a column Mi is the set of coordinates where Mi has nonzero
entries. For an integer m ≥ 1, we denote the set {1, . . . , m}
by [m]. The Hamming weight of a column of M will be simply
referred to as the weight of the column.

We consider a model where there is a random defective set
S of size d among the items [N]. We define S as the set of all
possible defective sets, i.e., the set of

(

N
d

)

subsets of [N] of
cardinality d and we let S be uniformly distributed over S.3

The goal is to determine S from the binary measurement vector
Y of size t taking the form

Y =
(

∨

i∈S

Mi

)

⊕ v, (1)

where t × N measurement matrix M indicates which items are
included in the test, i.e., Mi j = 1 if the item j is participated
in test i , v ∈ {0, 1}t is a noise term, and ⊕ denotes modulo-2
addition. In words, the measurement vector Y is the Boolean
OR combination of the columns of the measurement matrix
M corresponding to the defective items in a possible noisy
fashion. We are interested in both the noiseless and noisy
variants of the model in (1). In the noiseless case, we simply
consider v = 0, i.e., Y =

∨

i∈S Mi . Note that the randomness
in the measurement vector Y is only due to the random
defective set in this case. On the other hand, in the noisy
case we consider v ∼ Bernoulli(p) for some fixed constant
p ∈ (0, 0.5), i.e., each measurement is independently flipped
with probability p.

Given M and Y , a decoding procedure forms an estimate
Ŝ of S. The performance measure we consider in this paper
is the exact recovery where the average probability of error is
given by

Pe � Pr(Ŝ 6= S),

and is taken over the realizations of S and v (in the noisy
case). The goal is to minimize the total number of tests t

while achieving a vanishing probability of error, i.e., satisfying
Pe → 0.

A. Disjunctiveness

We say that a column Mi is covered by a set of
columns M j1, . . . , M jl with j1, . . . , jl ∈ [N] if the support
of Mi is contained in the union of the supports of columns
M j1, . . . , M jl . A binary matrix M is called d-disjunct if any
column of M is not covered by any other d columns. The
d-disjunctiveness property ensures that we can recover any
defective set of size d with zero error from the measure-
ment vector Y in the noiseless case. This can be naively
done using the cover decoder (also referred as the COMP
decoder [15], [17]) which runs in O(t N)-time. The cover
decoder simply scans through the columns of M , and returns

3This assumption is not critical. Our results carry over to the setting where
the defective items are sampled with replacement.
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Fig. 1. An example of the Kautz-Singleton construction with [3, 1]3
Reed-Solomon code.

the ones that are covered by the measurement vector Y . When
M is d-disjunct, the cover decoder succeeds at identifying all
the defective items without any error.

In this work, we are interested in the probabilistic group
testing problem where the 0-error condition is relaxed into
a vanishing probability of error. Therefore we can relax the
d-disjunctiveness property. Note that to achieve an arbitrary
but fixed � average probability of error in the noiseless case,
it is sufficient to ensure that at least (1 − �) fraction of all
possible defective sets do not cover any other column. A binary
matrix satisfying this relaxed form is called an almost disjunct

matrix [25], [27]–[29] and with this condition one can achieve
the desired � average probability of error by applying the cover
decoder.

B. Kautz-Singleton Construction

In their work, Kautz and Singleton [23] provide a construc-
tion of disjunct matrices by converting a Reed-Solomon (RS)
code [30] to a binary matrix. We begin with the definition of
Reed-Solomon codes.

Definition 1. Let Fq be a finite field and α1, . . . , αn be

distinct elements from Fq . Let k ≤ n ≤ q. The Reed-Solomon

code of dimension k over Fq , with evaluation points α1, . . . , αn

is defined with the following encoding function. The encoding

of a message m = (m0, . . . , mk−1) is the evaluation of the

corresponding k − 1 degree polynomial fm(X) =
∑k−1

i=0 mi X i

at all the αi ’s:

RS(m) = ( fm(α1), . . . , fm(αn)).

The Kautz-Singleton construction starts with a [n, k]q RS
code with n = q and N = qk . Each q-ary symbol is then
replaced by a unit weight binary vector of length q , via
“identity mapping” which takes a symbol i ∈ [q] and maps it
to the vector in {0, 1}q that has a 1 in the i ’th position and
zero everywhere else. Note that the resulting binary matrix
will have t = nq = q2 tests. An example illustrating the
Kautz-Singleton construction is depicted in Figure 1. This
construction achieves a d-disjunct t × N binary matrix with
t = O(d2 log2

d N) by choosing the parameter q appropriately.
While the choice n = q is appropriate for the combinatorial
group testing problem, we will shortly see that we need to set
n = 2(log N) in order to achieve the order-optimal result in
the probabilistic group testing problem.

While this is a strongly explicit construction, it is sub-
optimal for combinatorial group testing in the regime d =
O(poly(log N)): an explicit construction with smaller t

(achieving t = O(d2 log N)) is introduced by Porat and
Rothschild [24]. Interestingly, we will show in the next section
that this same strongly explicit construction that is suboptimal
for combinatorial group testing in fact achieves the order-
optimal t = 2(d log N) result in both the noiseless and noisy
versions of probabilistic group testing.

III. OPTIMALITY OF THE KAUTZ-
SINGLETON CONSTRUCTION

We begin with the noiseless case (v = 0 in (1)). The
next theorem shows the optimality of the Kautz-Singleton
construction with properly chosen parameters n and q .

Theorem 1. Let δ > 0. Under the noiseless model introduced

in Section II, the Kautz-Singleton construction with parameters

q = c1 d for any c1 ≥ 4 and n = (1 + δ) log N has average

probability of error Pe ≤ N−�(log q) + N−δ under the cover

decoder in the regime d = �(log2 N).

The proof of the above theorem can be found in Appen-
dix A. We note that the Kautz-Singleton construction in
Theorem 1 has t = nq = 2(d log N) tests, therefore,
achieving the order-optimal result in the probabilistic group
testing problem in the noiseless case. It is further possible to
extend this result to the noisy setting where we consider v ∼
Bernoulli(p) for some fixed constant p ∈ (0, 0.5), i.e., each
measurement is independently flipped with probability p. Our
next theorem shows the optimality of the Kautz-Singleton
construction in this case.

Theorem 2. Let δ > 0. Under the noisy model introduced

in Section II with some fixed noise parameter p ∈ (0, 0.5),

the Kautz-Singleton construction with parameters q = c1 d

for any c1 ≥ 24 and n = c2(1 + δ) log N for any c2 ≥
max{ 8

9(0.5−p)2 , 40.57} has average probability of error Pe ≤
N−�(log q)+3N−δ under the modified version of cover decoder

in the regime d = �(log2 N).

The proof of the above theorem can be found in Appen-
dix B. Similar to the noiseless setting, the Kautz-Singleton
construction provides a strongly explicit construction achiev-
ing optimal number of tests t = 2(d log N) in the noisy case.

Given that the Kautz-Singleton construction achieves a van-
ishing probability of error with t = 2(d log N) order-optimal
number of tests, a natural question of interest is how large
the constant is and how the performance of this construction
compares to random designs for given finite values of d and N .
To illustrate the empirical performance of the Kautz-Singleton
construction in the noiseless case, we provide simulation
results in Figure 2 and 3 for different choices of N and d

and compare the results to random designs considered in
the literature. We used the code in [31] (see [32] for the
associated article) for the Kautz-Singleton construction. For
comparison, we take two randomized constructions from the
literature, namely the Bernoulli design (see [17]) and the near-
constant column weight design studied in [18]. We use the
cover decoder for decoding. The simulation results illustrate
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Fig. 2. Empirical performances of the Kautz-Singleton construction along
with the random near-constant column weight [18] and Bernoulli designs [17]
under the cover decoder for N = 500 items and d = 10 defectives. For
the Kautz-Singleton construction, empirical performance was judged using
5000 random trials and the number of tests correspond to a range of (q, n)
pair selections. For the random matrices, empirical performance was judged
from 100 trials each on 100 random matrices.

Fig. 3. Empirical performances of the Kautz-Singleton construction along
with the random near-constant column weight [18] and Bernoulli designs [17]
under the cover decoder for N = 2000 items and d = 100 defectives. For
the Kautz-Singleton construction, empirical performance was judged using
5000 random trials and the number of tests correspond to a range of (q, n)
pair selections. For the random matrices, empirical performance was judged
from 100 trials each on 100 random matrices.

that the Kautz-Singleton construction achieves better success
probability for the same number of tests, which suggests that
the implied constant for the Kautz-Singleton construction may
be better than those for these random designs; we note that
similar empirical findings were observed in [32]. Since the
Kautz-Singleton construction additionally has an explicit and
simple structure, this construction may be a good choice for
designing measurement matrices for probabilistic group testing
in practice.

IV. DECODING

While the cover decoder, which has a decoding complexity
of O(t N), might be reasonable for certain applications, there is
a recent research effort towards low-complexity decoding

schemes due to the emerging applications involving massive
datasets [26], [33]–[36]. The target is a decoding complex-
ity of poly(t). This is an exponential improvement in the
running time over the cover decoder for moderate values
of d . For the model we consider in this work (i.e., exact
recovery of the defective set with vanishing probability of
error), there is no known efficiently decodable scheme with
optimal t = 2(d log N) tests to the best of our knowl-
edge. The work [35] presented a randomized scheme which
identifies all the defective items with high probability with
O(d log d log N) tests and time complexity O(d log d log N).
Another recent result, [36], introduced an algorithm which
requires O(d log d log N) tests with O(d(log2 d + log N))

decoding complexity. Note that the decoding complexity
reduces to O(d log N) when d = O(poly(log N)) which is
order-optimal (and sub-linear in the number of tests), although
the number of tests is not. In both [35] and [36], the number
of tests is away from the optimal number of tests by a factor
of log d .

We can convert the strongly explicit constructions in
Theorem 1 and 2 into strongly explicit constructions that
are also efficiently decodable by using a recursive technique
introduced in [26] where the authors construct efficiently
decodable error-tolerant list disjunct matrices. For the sake
of completeness, we next discuss the main idea applied to our
case.

The cover decoder goes through the columns of M and
decides whether the corresponding item is defective or not.
This results in decoding complexity O(t N). Assume we were
given a superset S0 such that S0 is guaranteed to include the
defective set S, i.e. S ⊆ S0, then the cover decoder could run
in time O(t ·|S0|) over the columns corresponding to S0, which
depending on the size of S0 could result in significantly lower
complexity. It turns out that we can construct this small set S0

recursively.
Suppose that we have access to an efficiently decodable

t1(d,
√

N , �/4, p) ×
√

N matrix M(1) which can be used to
detect at most d defectives among

√
N items with probability

of error Pe ≤ �/4 when the noise parameter is p by using
t1(d,

√
N , �/4, p) tests. We construct two t1(d,

√
N , �/4, p)×

N matrices M(F) and M(L) using M(1) as follows. For i ∈ [N],
the i ’th column of M(F) is equal to j ’th column of M(1) if
the first 1

2 log N bits in the binary representation of i are given
by the binary representation of j for j ∈ [

√
N ]. Similarly, for

i ∈ [N], the i ’th columns of M(L) is equal to the j ’th column
of M(1) if the last 1

2 log N bits in the binary representation of
i are given by the binary representation of j for j ∈ [

√
N ].

The final matrix M is constructed by vertically stacking
M(F), M(L) and a t2(d, N, �/2, p) × N matrix M(2) which is
not necessarily efficiently decodable (e.g., the Kautz-Singleton
construction). As before, t2(d, N, �/2, p) is the number of
tests for M(2), which we assume can be used to detect d

defectives among N items with probability of error Pe ≤
�/2 when the noise parameter is p. The decoding works
as follows. We obtain the measurement vectors Y (F), Y (L),
and Y (2) given by Y (F) =

∨

i∈S M
(F)
i ⊕ v(F), Y (L) =

∨

i∈S M
(L)
i ⊕ v(L), and Y (2) =

∨

i∈S M
(2)
i ⊕ v(2) respectively

where v(F), v(L), and v(2) are the noise terms corrupting
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Fig. 4. An illustration of the construction presented in Section IV for the case d = 2 and N = 16. The illustration depicts the main idea, and the full
construction is achieved by applying this idea recursively.

the corresponding measurements. We next apply the decoding
algorithm for M(1) to Y (F) and Y (L) to obtain the estimate
sets Ŝ(F) and Ŝ(L) respectively. Note that the sets Ŝ(F) and
Ŝ(L) can decode the first and last 1

2 log N-bits of the defective
items respectively with probability at least 1−�/2 by the union
bound. Therefore, we can construct the set S0 = Ŝ(F) × Ŝ(L)

where × denotes the Cartesian product and obtain a super set
that contains the defective set S with error probability at
most �/2. We further note that since |Ŝ(F)| ≤ d and |Ŝ(L)| ≤ d ,
we have |S0| ≤ d2. We finally apply the naive cover decoder to
M(2) by running it over the set S0 to compute the final estimate
Ŝ which can be done in additional O(t2 · d2) time. Note that
by the union bound the probability of error is bounded by �.
Figure 4 illustrates the main idea with the example of d = 2
and N = 16. We provide this decoding scheme in Algorithm 1
for the special case N = d2i

for some non-negative integer i

although the results hold in the general case and no extra
assumption beyond d = �(log2 N) is needed. The next
theorem is the result of applying this idea recursively.

Theorem 3. Under the noiseless/noisy model introduced in

Section II, there exists a strongly explicit construction and

a decoding rule achieving an arbitrary but fixed � average

probability of error with t = O(d log N log logd N) number

of tests that can be decoded in time O(d3 log N log logd N) in

the regime d = �(log2 N).

The proof of the above theorem can be found in Appen-
dix C. We note that with only log logd N extra factor in the
number of tests, the decoding complexity can be brought
to the desired O(poly(t)) complexity. We further note that

Algorithm 1: The Decoding Alg. Decode(Y , M , d , N)

Input: The measurement vector Y , the group testing matrix
M , the defective set size d , the number of items N

Output: The defective set estimate Ŝ

1 if N = d then
2 Return the defective set using Y (individual testing);
3 else
4 Compute M(1) and M(2) (as described in the text);
5 Compute Y (F) and Y (L) (as described in the text);
6 Ŝ(F) = decode(Y (F), M(1), d,

√
N );

7 Ŝ(L) = decode(Y (L), M(1), d,
√

N);
8 if |Ŝ(F)| > d or |Ŝ(L)| > d then
9 return {};

10 Construct S0 = Ŝ(F) × Ŝ(L);
11 Apply the cover decoder to M(2) over the set S0 and

compute Ŝ;

12 Return Ŝ;

the number of tests becomes order-optimal in the regime
d = 2(Nα) for some α ∈ (0, 1). In Table I we provide the
results presented in this work along with the related results in
the literature.

V. RELATED WORK

The literature on the non-adaptive group testing frame-
work includes both explicit and random test designs.
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TABLE I

COMPARISON OF NON-ADAPTIVE PROBABILISTIC GROUP TESTING RESULTS. WE NOTE THAT THE

MAIN FOCUS IN [17], [37] IS THE IMPLIED CONSTANT IN t = 2(d log N)

We refer the reader to [12] for a survey. In combinato-
rial group testing, the famous construction introduced by
Kautz and Singleton [23] achieves t = O(d2 log2

d N) tests
matching the best known lower bound min{N,�(d2 logd N)}
[21], [22] in the regime where d = 2(Nα) for some α ∈
(0, 1). However, this strongly explicit construction is subop-
timal in the regime where d = O(poly(log N)). An explicit
construction achieving t = O(d2 log N) was introduced by
Porat and Rothschild [24]. While t = O(d2 log N) is the
best known achievability result in combinatorial group testing
framework, there is no strongly explicit construction matching
it to the best of our knowledge. Regarding efficient decoding,
recently Indyk et al. [34] introduced a randomized construction
with t = O(d2 log(N)) tests that could be decoded in
time poly(t). Furthermore, the construction in [34] can be
derandomized in the regime d = O(log N/ log log N). Later,
Ngo et al. [26] removed the constraint on d and provided
an explicit construction that can be decoded in time poly(t).
The main idea of [34] was to consider list-disjunct matrices;
a similar idea was considered by Cheraghchi [33], which
obtained explicit constructions of non-adaptive group testing
schemes that handle noisy tests and return a list of defectives
that may include false positives.

There are various schemes relaxing the zero-error criteria in
the group testing problem. For instance, the model mentioned
above, where the decoder always outputs a small super-
set of the defective items, was studied in [33], [38]–[40].
These constructions have efficient (poly(t)-time) decoding
algorithms, and so can be used alongside constructions without
sublinear time decoding algorithms to speed up decoding.
Another framework where the goal is to recover at least
a (1 − �)-fraction (for any arbitrarily small � > 0) of the
defective set with high probability was studied in [35] where
the authors provided a scheme with order-optimal O(d log N)

tests and the computational complexity. There are also dif-
ferent versions of the group testing problem in which a
test can have more than two outcomes [41], [42] or can be
threshold based [43]–[45]. More recently, sparse group testing
frameworks for both combinatorial and probabilistic settings
were studied in [46]–[48].

When the defective set is assumed to be uniformly ran-
dom, it is known that t = 2(d log N) is order-optimal
for achieving the exact recovery of the defective set with
vanishing probability of error (which is the model considered
in this work) in the broad regime d = O(Nα) for some

α ∈ (0, 1) using random designs and information-theoretical
tools [16], [37]. These results also include the noisy variants
of the group testing problem. Efficient recovery algorithms
with nearly optimal number of tests were introduced recently
in [35] and [36]. Regarding deterministic constructions of
almost disjunct matrices, recently Mazumdar [25] introduced
an analysis connecting the group testing properties with the
average Hamming distance between the columns of the mea-
surement matrix and obtained (strongly) explicit constructions
with t = O(d log2 N/ log d) tests. While this result is order-
optimal in the regime where d = 2(Nα) for some α ∈
(0, 1), it is suboptimal for moderate values of d (e.g., d =
O(poly(log N))). The performance of the Kautz-Singleton
construction in the random model has been studied empiri-
cally [32], but we are not aware of any theoretical analysis
of it beyond what follows immediately from the distance of
Reed-Solomon codes. To the best of our knowledge there
is no known explicit/strongly explicit construction achieving
t = 2(d log N) tests in general for the noiseless/noisy version
of the probabilistic group testing problem.

VI. CONCLUSION

In this work, we showed that the Kautz-Singleton construc-
tion is order-optimal in the noiseless and noisy variants of
the probabilistic group testing problem. To the best of our
knowledge, this is the first (strongly) explicit construction
achieving order-optimal number of tests in the probabilistic
group testing setting for poly-logarithmic (in N) values of d .
We provided a novel analysis departing from the classical
approaches in the literature that use combinatorial properties
of the underlying code. We instead directly explored the
probability of a non-defective item being covered by a random
defective set using the properties of Reed-Solomon codes in
our analysis. Furthermore, by using a recursive technique,
we converted the Kautz-Singleton construction into a construc-
tion that is also efficiently decodable with only a log-log factor
increase in number of tests which provides interesting tradeoffs
compared to the existing results in the literature.

There are a number of nontrivial extensions to our work.
Firstly, it would be interesting to extend these results to the
regime d = o(log2 N). Another interesting line of work would
be to find a deterministic/randomized construction achieving
order-optimal t = 2(d log N) tests and is also efficiently
decodable.
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APPENDIX

A. Proof of Theorem 1

Let N be the number of items and d be the size of the
random defective set. We will employ the Kautz-Singleton
construction which takes a [n, k]q RS code and replaces each
q-ary symbol by a unit weight binary vector of length q

using identity mapping. This corresponds to mapping a symbol
i ∈ [q] to the vector in {0, 1}q that has a 1 in the i ’th
position and zero everywhere else (see Section II-B for the
full description). Note that the resulting t × N binary matrix
M has t = nq tests. We shall later see that the choice
q = 4d and n = 2(log N) is appropriate, therefore, leading
to t = 2(d log N) tests.

We note that for any defective set the cover decoder provides
an exact recovery given that none of the non-defective items
are covered by the defective set. Recall that a column Mi is
covered by a set of columns M j1 , . . . , M jl with j1, . . . , jl ∈
[N] if the support of Mi is contained in the union of the
supports of columns M j1 , . . . , M jl . Note that in the noiseless
case the measurement vector Y is given by the Boolean OR of
the columns corresponding to the defective items. Therefore,
the measurement vector Y covers all defective items, and the
cover decoder can achieve exact recovery if none of the non-
defective items are covered by the measurement vector Y

(or equivalently the defective set).
For s ⊆ [N], we define As as the event that there exists a

non-defective column of M that is covered by the defective
set s. Define As

i as the event that the non-defective column
Mi (i /∈ s) is covered by the defective set s. We can bound
the probability of error as follows:

Pe ≤
∑

s⊆[N],|s|=d

1(As) Pr(S = s)

≤ 1
(

N
d

)

∑

s⊆[N],|s|=d

∑

i∈[N]\s

1(As
i )

= 1
(

N
d

)

∑

i∈[N]

∑

s⊆[N]/{i},|s|=d

1(As
i )

=
(

N−1
d

)

(

N
d

)

∑

i∈[N]

1
(

N−1
d

)

∑

s⊆[N]/{i},|s|=d

1(As
i )

= N − d

N

∑

i∈[N]
Pr

(

A
S[N]/{i}
i

)

(2)

where in the last equation S[N]/{i} is uniformly distributed on
the sets of size d among the items in [N]/{i} and 1(·) denotes
the indicator function of an event.

Fix any n distinct elements α1, α2, . . . , αn from Fq .
We denote 9 � {α1, α2, . . . , αn}. We note that due to
the structure of mapping to the binary vectors in the
Kautz-Singleton construction, a column Mi is covered by
the random defective set S if and only if the corresponding
symbols of Mi are contained in the union of symbols of S

in the RS code for all rows in [n]. Recall that there is a
k − 1 degree polynomial fm(X) =

∑k−1
i=0 mi X i corresponding

to each column in the RS code and the corresponding symbols
in the column are the evaluation of fm(X) at α1, α2, . . . , αn .

Denoting fmi (X) as the polynomial corresponding to the
column Mi , we have

Pr
(

A
S[N]/{i}
i

)

= Pr
(

fmi (α) ∈
{

fm j (α) : j ∈ S[N]/{i}
}

∀ α ∈ 9
)

= Pr
(

0 ∈
{

fm j (α) − fmi (α) : j ∈ S[N]/{i}
}

∀ α ∈ 9
)

.

We note that the columns of the RS code contain all pos-
sible (at most) k − 1 degree polynomials, therefore, the set
{

fm j (α) − fmi (α) : j ∈ [N]/{i}
}

is sweeping through all pos-
sible (at most) k − 1 degree polynomials except the zero
polynomial. Therefore, the randomness of S[N]/{i} that gen-
erates the random set

{

fm j (α) − fmi (α) : j ∈ S[N]/{i}
}

can be
translated to the random set of polynomials { fm j (X) : j ∈ S0}
that is generated by picking d nonzero polynomials of degree
(at most) k − 1 without replacement. This gives

Pr
(

0 ∈
{

fm j (α) − fmi (α) : j ∈ S[N]/{i}
}

∀ α ∈ 9
)

= Pr
(

0 ∈
{

fm j (α) : j ∈ S0} ∀ α ∈ 9
)

.

We define the random polynomial h(X) �
∏

j∈S 0
fm j (X). Note

that

0 ∈ { fm j (α) : j ∈ S0} ∀ α ∈ 9 ⇔ h(α) = 0 ∀ α ∈ 9.

We next bound the number of roots of the polynomial h(X).
We will use the following result from [49].

Lemma 1 ( [49, Lemma 3.9]). Let Rq(l, k) denote the set

of nonzero polynomials over Fq of degree at most k that

have exactly l distinct roots in Fq . For all powers q and

integers l, k,

|Rq(l, k)| ≤ qk+1 · 1

l! .

Let r denote the number of roots of a random nonzero
polynomial of degree at most k − 1. One can observe that
E[r ] ≤ 1 by noting that there is exactly one value of m0

that makes fm(X) = 0 for any fixed X and m1, . . . , mk−1

and the inequality is due to excluding the zero polynomial.
Furthermore, using Lemma 1, we get

E[r2] ≤
k−1
∑

i=1

i2

i !

=
k−1
∑

i=1

i

(i − 1)!

=
k−1
∑

i=1

i − 1

(i − 1)! +
k−1
∑

i=1

1

(i − 1)!
< 2e

where the first inequality is due to Pr(r = i) = |Rq(i, k −
1)|/qk ≤ 1/ i ! from Lemma 1. Hence we can bound E[r2] < 6.
We denote ri as the number of roots of the polynomial fmi (X)

and rh as the number of roots of the polynomial h(X). Note
that rh ≤

∑

j∈S 0 r j . We will use the following Bernstein
concentration bound for sampling without replacement [50]:

Proposition 1 ( [50, Proposition 1.4]). Let X ={x1, . . . , xN }
be a finite population of N points and X1, . . . , Xn be a random
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sample drawn without replacement from X . Let a = min
1≤i≤N

xi

and b = max
1≤i≤N

xi . Then for all � > 0,

Pr

(

1

n

n
∑

i=1

X i − µ > �

)

≤ exp

(

− n�2

2σ 2 + (2/3)(b − a)�

)

where µ = 1
N

∑N
i=1 xi is the mean of X and σ 2 =

1
N

∑N
i=1(xi − µ)2 is the variance of X .

We apply the inequality above to
∑

j∈S 0 r j and obtain

Pr

⎛

⎝

∑

j∈S 0
r j > 2d

⎞

⎠ = Pr

⎛

⎝

1

d

∑

j∈S 0
r j > 2

⎞

⎠

≤ Pr

⎛

⎝

1

d

∑

j∈S 0
(r j − E[r j ]) > 1

⎞

⎠

≤ exp

(

− d

12 + k(2/3)

)

≤ exp

(

− d

16 k

)

.

We have k = log N/ log q , hence, under the regime d =
�(log2 N), the last quantity is bounded by N−c log q for some
constant c > 0. Hence the number of roots of the polynomial
h(X) is bounded by 2d with high probability.

Given the condition that the number of roots of the polyno-
mial h(X) is bounded by 2d and the random set of poly-
nomials { fm j (X) : j ∈ S0} is picked from the nonzero
polynomials of degree at most k − 1 without replacement,
due to the symmetry in the position of the roots of the
randomly selected polynomials, we claim that the probability
of satisfying h(α) = 0 for all α ∈ 9 is bounded by the
probability of covering n elements from a field of size q by
picking 2d elements randomly without replacement. We next
prove this claim. We define the set R(h) := {α ∈ Fq :
h(α) = 0} and we emphasize that this is not a multiset, i.e., the
repeated roots appear as a single element. We begin with the
following observation.

Claim 1. Let l > 0, and condition on the event that |R(h)|= l.

Then R(h) is uniformly distributed among all sets 3 ⊆ Fq of

size l.

Proof. For f ∈ Fq [X], we can write

f (X) = g f (X) ·
∏

γi∈R( f )

(X − γi )
ci ,

where ci is the corresponding multiplicity of the root γi and
g f ∈ Fq [X] does not have any linear factor. We note that this
decomposition is unique. For 3 ⊆ Fq of size l, let

H3 :=
{

{ f1(X), . . . , fd (X)} : R

(

∏

i

fi (X)

)

= 3

}

.

Let 30 ⊆ Fq such that |30| = l and 30 6= 3. Then
|H3| = |H30|. Indeed, let ϕ : Fq → Fq be a bijection such
that ϕ(3) = 30. Then 8 : H3 → H30 given by

8( f ) = g f (X) ·
∏

γi∈R( f )

(X − ϕ(γi ))
ci ,

and 8({ f1, . . . , fd }) := {8( f1), . . . ,8( fd )} is a bijection.

We further note that R(h) = 3 ⇒ |R(h)| = l, so

Pr{R(h) = 3
∣

∣ |R(h)| = l} = Pr{R(h) = 3}
Pr{|R(h)| = l}

= Pr{{ f1, . . . , fd } ∈ H3}
Pr{|R(h)| = l}

(i)= Pr{{ f1, . . . , fd } ∈ H30}
Pr{|R(h)| = l}

= Pr{R(h) = 30 ∣
∣ |R(h)| = l},

where (i) is due to |H3| = |H30| and we pick f1, . . . , fd

uniformly without replacement. �

Based on this, if we ensure n ≤ 2d , then it follows that

Pr{R(h) ⊇ 9
∣

∣ |R(h)| ≤ 2d}
=

∑

l≤2d

(

Pr{R(h) ⊇ 9
∣

∣ |R(h)| = l}

· Pr{|R(h)| = l
∣

∣ |R(h)| ≤ 2d}
)

≤ max
n≤l≤2d

Pr{R(h) ⊇ 9
∣

∣ |R(h)| = l}

= max
n≤l≤2d

(

q−n
l−n

)

(

q
l

) .

Let us fix q = 4d . We then have

Pr{R(h) ⊇ 9
∣

∣ |R(h)| ≤ 2d} ≤
(4d−n

2d−n

)

(4d
2d

)

= (4d − n)!
(2d − n)!(2d)!

(2d)!(2d)!
(4d)!

= 2d . . . (2d − n + 1)

4d . . . (4d − n + 1)

≤
(

1

2

)n

.

Therefore, Pr(AS
i ) is bounded by

Pr(AS
i ) ≤ Pr{R(h) ⊇ 9

∣

∣ |R(h)| ≤ 2d} + Pr{|R(h)| > 2d}

≤
(

1

2

)n

+ N−c log q .

Applying the summation overall i ∈ [N] in (2), we obtain
Pe ≤ N1−c log q + N2−n . Therefore, under the regime d =
�(log2 N), the average probability of error can be bounded
as Pe ≤ N−�(log q) + N−δ by choosing n = (1 + δ) log N .
The condition n ≤ 2d required in the proof is also satisfied
under this regime. Note that the resulting t × N binary matrix
M has t = nq = 2(d log N) tests.

B. Proof of Theorem 2

We begin with describing the decoding rule. Since we are
considering the noisy model, we will slightly modify the cover
decoder employed in the noiseless case. For any defective item
with codeword weight w, in the noiseless outcome the tests in
which this item participated will be all positive. On the other
hand, when the noise is added, wp of these tests will flip in
expectation. Based on this observation (see No-CoMa in [37]
for a more detailed discussion), we consider the following
decoding rule. For any item i ∈ [N], we first denote wi as
the weight of the corresponding column Mi and ŵi as the
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number of rows k ∈ [t] where both Mk,i = 1 and Yk = 1.
If ŵi ≥ wi (1 − p(1 + τ )), then the i th item is declared as
defective, else it is declared to be non-defective.

Under the aforementioned decoding rule, an error event
happens either when ŵi < wi (1 − p(1 + τ )) for a defective
item i or ŵi ≥ wi (1 − p(1 + τ )) for a non-defective item i .
Using the union bound, we can bound the probability of error
as follows:

Pe ≤ 1
(

N
d

)

∑

s⊆[N],|s|=d

[

∑

i∈[N]\s

Pr{ŵi ≥ wi (1 − p(1 + τ ))}

+
∑

i∈s

Pr{ŵi < wi (1 − p(1 + τ ))}
]

= 1
(

N
d

)

∑

i∈[N]

∑

s⊆[N]/{i},|s|=d

Pr{ŵi ≥ wi (1 − p(1 + τ ))}

+ 1
(

N
d

)

∑

s⊆[N],|s|=d

∑

i∈s

Pr{ŵi < wi (1 − p(1 + τ ))}

=
(

N−1
d

)

(

N
d

)

(

∑

i∈[N]

1
(

N−1
d

)

·
∑

s⊆[N]/{i},|s|=d

Pr{ŵi ≥ wi (1 − p(1 + τ ))}
)

+ 1
(

N
d

)

∑

s⊆[N],|s|=d

∑

i∈s

Pr{ŵi < wi (1 − p(1 + τ ))}

= N − d

N

∑

i∈[N]
Pr{ŵi ≥ wi (1 − p(1 + τ ))}

+ 1
(

N
d

)

∑

s⊆[N],|s|=d

∑

i∈s

Pr{ŵi < wi (1 − p(1 + τ ))}

(3)

=: P1 + P2,

where we denote the first term of (3) as P1 and the second one
as P2 in the last equation. We point out that in the first term of
(3) the randomness is both due to the noise and the defective
set that is uniformly distributed among the items in [N]/{i}
whereas in the second term the randomness is due to the
noise.

We will employ the Kautz-Singleton construction which
takes a [n, k]q RS code and replaces each q-ary symbol by
unit weight binary vectors of length q using identity mapping.
This corresponds to mapping a symbol i ∈ [q] to the vector in
{0, 1}q that has a 1 in the i ’th position and zero everywhere
else (see Section II-B for the full description). Note that the
resulting t × N binary matrix M has t = nq tests. We shall
later see that the choice q = 24d and n = 2(log N) is
appropriate, therefore, leading to t = 2(d log N) tests. Fix
any n distinct elements α1, α2, . . . , αn from Fq . We denote
9 � {α1, α2, . . . , αn}.

We begin with P2. Fix any defective set s in [N] with
size d and fix an arbitrary element i of this set. We first
note that wi = n due to the structure of the Kautz-Singleton
construction. We further note that before the addition of noise
the noiseless outcome will have positive entries corresponding

to the ones where Mk,i = 1. Therefore Pr{ŵi < wi (1 − p(1 +
τ ))} only depends on the number of bit flips due to the noise.
Using Hoeffding’s inequality, we have

Pr{ŵi < wi (1 − p(1 + τ ))} ≤ e−2 np2τ 2
.

Summing over the d defective items i ∈ s, we get P2 ≤
de−2 np2τ 2

.
We continue with P1. We fix an item i ∈ [N] and note that

wi = n. We similarly define the random polynomial h(X) �
∏

j∈S

fm j (X). Let A be the event of h(X) having at most 2d

number of roots. We then have

Pr{ŵi ≥ wi (1 − p(1 + τ ))}
= Pr{ŵi ≥ wi (1 − p(1 + τ ))|A} Pr{A}

+ Pr{ŵi ≥ wi (1 − p(1 + τ ))|Ac} Pr{Ac}
≤ Pr{ŵi ≥ wi (1 − p(1 + τ ))|A} + Pr{Ac}. (4)

Following similar steps as in the proof of Theorem 1 we obtain
Pr{Ac} ≤ N−c log q for some constant c > 0 in the regime
d = �(log2 N).

We next bound the first term in (4). We choose q = 24d

and define the random set ϒ = {α ∈ 9 : fmi (α) ∈ { fm j (α) :
j ∈ S}}. We then have

Pr{ŵi ≥ wi (1 − p(1 + τ ))|A}
=

(

Pr{ŵi ≥ wi (1 − p(1 + τ ))|A, |ϒ| ≤ n/4}
· Pr{|ϒ| ≤ n/4|A}

)

+
(

Pr{ŵi ≥ wi (1 − p(1 + τ ))|A, |ϒ| > n/4}
· Pr{|ϒ| > n/4|A}

)

≤ Pr{ŵi ≥ wi (1 − p(1 + τ ))|A, |ϒ| ≤ n/4}
+ Pr{|ϒ| > n/4|A}.

Let us first bound the second term Pr{|ϒ| > n/4|A}. We note
that

|ϒ| = |{α ∈ 9 : fmi (α) ∈ { fm j (α) : j ∈ S}}|
= |{α ∈ 9 : 0 ∈ { fm j (α) − fmi (α) : j ∈ S}}|
= |{α ∈ 9 : 0 ∈ { fm j (α) : j ∈ S0}}|

where in the last equality the random set of polynomials
{ fm j (X) : j ∈ S0} is generated by picking d nonzero
polynomials of degree at most k −1 without replacement. This
holds since i /∈ S and the columns of the RS code contain
all possible (at most) k − 1 degree polynomials, therefore,
the randomness of { fm j (α)− fmi (α) : j ∈ S} can be translated
to the random set of polynomials { fm j (X) : j ∈ S0} that
is generated by picking d nonzero polynomials of degree
(at most) k − 1 without replacement. Following similar steps
of the proof of Theorem 1 we can bound Pr{|ϒ| > n/4|A}
by considering the probability of having at least n/4 symbols
from 9 when we pick 2d symbols from [q] uniformly at
random without replacement. Hence, if we ensure n ≤ 8d ,
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then we have

Pr{|ϒ| > n/4|A} ≤
(

n
n/4

)(

q−n/4
2d−n/4

)

(

q
2d

)

=
(

n
n/4

)(24d−n/4
2d−n/4

)

(24d
2d

)

≤ (4e)n/4 (24d − n/4)!
(2d − n/4)!(22d)!

(2d)!(22d)!
(24d)!

= (4e)n/4 2d . . . (2d − n/4 + 1)

24d . . . (24d − n/4 + 1)

≤
(

4e

12

)n/4

where we use
(

n
k

)

≤ (en/k)k in the second inequality.
We continue with Pr{ŵi ≥ wi (1− p(1+τ ))|A, |ϒ| ≤ n/4}.

Note that wi = n. We further note that

E[ŵi ] = E[E[ŵi |ϒ]] = E[|ϒ|](1 − p) + (n − E[|ϒ|])p.

Since p ∈ (0, 0.5) we have E[ŵi | |ϒ| ≤ n/4] ≤ (n/4)(1 −
p) + (3n/4)p = n/4 + (n/2)p. Using Hoeffding’s inequality,
we have

Pr{ŵi ≥ wi (1 − p(1 + τ ))|A, |ϒ| ≤ n/4}
≤ Pr{ŵi − E[ŵi ] ≥ n(3/4 − 3 p/2 − pτ )|A, |ϒ| ≤ n/4}
≤ e−2n(3/4−3p/2−pτ )2

where the condition 3/4 − 3 p/2 − pτ > 0 or τ < (3/4 −
3 p/2)/p can be satisfied with our choice of free parameter τ

since p < 1/2. Combining everything, we obtain

Pe ≤ N1−c log q + N(e/3)n/4 + Ne−2n(3/4−3p/2−pτ )2

+ de−2 np2τ 2

≤ N1−c log q + N(e/3)n/4 + Ne−2n(3/4−3p/2−pτ )2

+ Ne−2 np2τ 2

= N−�(log q) + elog N− n
4 log( 3

e
) + 2 elog N− 9

8 (0.5−p)2 n

where in the last step we pick τ = 3(0.5−p)
4p

. Therefore, under

the regime d = �(log2 N), the average probability of error
can be bounded as Pe ≤ N−�(log q) + 3N−δ by choosing
n = max{ 4

log(3/e) ,
8

9(0.5−p)2 }(1 + δ) log N . The condition n ≤
8d required in the proof is also satisfied under this regime.
Note that the resulting t × N binary matrix M has t = nq =
2(d log N) tests.

C. Proof of Theorem 3

We begin with the noiseless case. We will use a recursive
approach to obtain an efficiently decodable group testing
matrix. Let MED

n denote such a matrix with n columns in
the recursion and MKS

n denote the matrix with n columns
obtained by the Kautz-Singleton construction. Note that the
final matrix is MED

N . Let tED(d, n, �) and tKS(d, n, �) denote
the number of tests for MED

n and MKS
n respectively to detect at

most d defectives among n columns with average probability
of error �. We further define DED(d, n, �) to be the decoding
time for MED

n with tED(d, n, �) rows.

We first consider the case N = d2i
for some non-negative

integer i . The base case is i = 0, i.e., N = d for which
we can use individual testing and have tED(d, d, �) = d and
DED(d, d, �) = O(d). For i > 0, we use tED(d,

√
N , �/4) ×√

N matrix MED√
N

to construct two tED(d,
√

N , �/4) × N

matrices M(F) and M(L) as follows. The j th column of MED√
N

for j ∈ [
√

N ] is identical to all i th columns of M(F) for
i ∈ [N] if the first 1

2 log N bits of i is j where i and j are
considered as their respective binary representations. Similarly,
the j th column of MED√

N
for j ∈ [

√
N ] is identical to all i th

columns of M(L) for i ∈ [N] if the last 1
2 log N bits of i is j .

We finally construct MKS
N that achieves �/2 average probability

of error and stack M(F), M(L), and MKS
N to obtain the final

matrix MED
N . Note that, this construction gives us the following

recursion in terms of the number of tests

tED(d, N, �) = 2 tED(d,
√

N , �/4) + tKS(d, N, �/2).

When N = d2i
, note that 2i = logd N and i = log logd N .

To solve for tED(d, d2i
, �), we iterate the recursion as follows.

tED
(

d, d2i

, �
)

= 2tED
(

d, d2i−1
,
�

4

)

+ tKS
(

d, d2i

,
�

2

)

= 4tED
(

d, d2i−2
,

�

16

)

+2tKS
(

d, d2i−1
,
�

8

)

+tKS
(

d, d2i

,
�

2

)

...

= 2i tED
(

d, d,
�

22i

)

+
i−1
∑

j=0

2 j tKS
(

d, d2i− j

,
�

2 j+1

)

= 2i · d +
i−1
∑

j=0

2 j · 4d log
(

d2i− j

/
(

�/2 j+1
))

(5)

= 2i · d +
i−1
∑

j=0

2 j · 4d
(

2i− j log d + ( j + 1) log 2 + log(1/�)
)

≤ 2i · d+i · 2i · 4d log d+4d

( i−1
∑

j=0

2 j ( j + 1) + 2i log(1/�)

)

≤ 2i · d + i · 2i · 4d log d + i · 2i · 4d + 2i · 4d log(1/�)

(6)

where in (5) for simplicity we ignore the term N−�(log q) in
the probability of error for Theorem 1 and take tKS(d, N, �) =
4 d log N/�. Replacing 2i = logd N and i = log logd N in (6),
it follows that

tED(d, N, �)

= O
(

d log N log logd N + d logd N log
(

(logd N)/�
))

.

Note that this gives tED(d, N) = O(d log N log logd N) in the
case where � = 2(1).

In the more general case, let i ≥ 1 be the smallest integer
such that d2i−1

< N ≤ d2i
. It follows that i < log logd N + 1.

We can construct MED
N from MED

d2i by removing its last d2i −N

columns. We can operate on MED
N as if the removed columns

were all defective. Therefore the number of tests satisfies
tED(d, N) = O(d log N log logd N).
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We next describe the decoding process. We run the decoding
algorithm for MED√

N
with the components of the outcome

vector Y corresponding to M(F) and M(L) to compute the
estimate sets Ŝ(F) and Ŝ(L). By induction and the union
bound, the set S0 = Ŝ(F) × Ŝ(L) contains all the indices
i ∈ S with error probability at most �/2. We further note
that |S0| ≤ d2. We finally apply the naive cover decoder to
the component of MED

N corresponding to MKS
N over the set S0

to compute the final estimate Ŝ which can be done with an
additional O(d2 · tKS(d, N, �/2)) time. By the union bound
overall probability of error is bounded by �. This decoding
procedure gives us the following recursion in terms of the
decoding complexity

DED(d, N, �) = 2 DED(d,
√

N , �/4)+O(d2 ·tKS(d, N, �/2)).

When N = d2i
, to solve for DED(d, d2i

, �), we iterate the
recursion as follows.

DED
(

d, d2i

, �
)

= 2DED
(

d, d2i−1
,
�

4

)

+ c · d2 · tKS
(

d, d2i

,
�

2

)

= 4DED
(

d, d2i−2
,

�

16

)

+ 2c · d2 · tKS
(

d, d2i−1
,
�

8

)

+ c · d2 · tKS
(

d, d2i

,
�

2

)

...

= 2i DED
(

d, d,
�

22i

)

+
i−1
∑

j=0

2 j c · d2 · tKS
(

d, d2i− j

,
�

2 j+1

)

= 2i · O(d) +
i−1
∑

j=0

2 j c · 4d3 log
(

d2i− j

/
(

�/2 j+1
))

≤ 2i · O(d) + i · 2i · 4cd3 log d + i · 2i · 4cd3

+ 2i · 4cd3 log(1/�) (7)

where (7) is obtained in the same way as (6). Replacing 2i =
logd N and i = log logd N in (7), it follows that

DED(d, N, �)

= O
(

d3 log N log logd N + d3 logd N log
(

(logd N)/�
)

)

.

Note that this gives DED(d, N) = O(d3 log N log logd N) in
the case where � = 2(1).

The noisy case follows similar lines except the difference is
that in the base case where N = d , we cannot use individual
testing due to the noise. In this case we can do individ-
ual testing with repetitions which requires tED(d, d, �) =
O(d log(d/�)) and DED(d, d, �) = O(d log(d/�)). We can
proceed similarly as in the noiseless case and show that
tED(d, N) = O(d log N log logd N) and DED(d, N) =
O(d3 log N log logd N).
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