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ABSTRACT
Recent studies have debated the timing and spatial configuration of a possible intersection 

between the Pacific-Izanagi spreading ridge and the northeast Asian continental margin dur-
ing Cretaceous or early Cenozoic times. Here we examine a newly compiled magmatic catalog 
of ∼900 published Cretaceous to Miocene igneous rock radioisotopic values and ages from 
the northeast Asian margin for ridge subduction evidence. Our synthesis reveals that a near-
synchronous 56–46 Ma magmatic gap occurred across ∼1500 km of the Eurasian continental 
margin between Japan and Sikhote-Alin, Russian Far East. The magmatic gap separated two 
distinct phases of igneous activity: (1) an older, Cretaceous to Paleocene pre–56 Ma episode 
that had relatively lower εNd(t) (−15 to + 2), elevated (87Sr/86Sr)0 (initial ratio, 0.704–0.714), 
and relatively higher magmatic fluxes (∼1090 km2/m.y.); and (2) a younger, late Eocene to 
Miocene post–46 Ma phase that had relatively elevated εNd(t) (−2 to + 10), lower (87Sr/86Sr)0 
(0.702–0.707), and a lower 390 km2/m.y. magmatic flux. The 56–46 Ma magmatic gap links 
other geological evidence across northeast Asia to constrain an early Cenozoic, low-angle 
ridge-trench intersection that had profound consequences for the Eurasian continental mar-
gin, and possibly led to the ca. 53–47 Ma Pacific plate reorganization.

INTRODUCTION
The Eurasian margin along East Asia has 

been a long-lived convergent margin since ear-
ly Mesozoic times (e.g., Müller et al., 2016). 
Several plate tectonic reconstructions have sug-
gested that at least one paleo-Pacific plate, prob-
ably the Izanagi plate, subducted beneath the 
margin during the Mesozoic (Maruyama et al., 
1997; Müller et al., 2016). Consequently, a mid-
ocean ridge between the modern Pacific plate 
and the Izanagi plate could have intersected the 
East Asia Eurasian continental margin and sub-
ducted. Three competing classes of plate tec-
tonic reconstructions have been proposed for 
Pacific-Izanagi ridge-trench intersections along 
East Asia (Fig. 1) that imply alternative geologi-
cal histories for the East Asian margin, for north-
west Pacific Ocean plate reconstructions, and 
possibly for a 50 Ma Pacific hemisphere plate-
mantle reorganization. The high-angle ridge-
trench intersection model proposed that a north-
west-southeast–trending mid-ocean ridge that 
separated the Izanagi plate to the north and the 
Pacific plate to the south intersected the north-
east Asian margin at a high angle; the resultant 

trench-trench-ridge triple junction swept from 
south to north in the late Cretaceous (Fig. 1B; 
Maruyama et al., 1997). In the low-angle ridge-
trench intersection model, a NNE-SSW–trend-
ing Izanagi-Pacific spreading ridge intersected 
subparallel to a large swath of the northeast 
Asian margin and was subducted beneath the 
margin in the early Cenozoic at 60–50 Ma 
(Fig. 1C; Whittaker et al., 2007; Seton et al., 
2015). Finally, the marginal sea closure model 
involved the closure of now-vanished East Asian 
marginal seas in the early Cenozoic (Fig. 1D) 
(Domeier et al., 2017; Itoh et al., 2017).

Each plate model class predicts distinct igne-
ous activities along the East Asian margin, and we 
tested each using magmatic ages, radioisotopic 
values, and magmatic flux. We compiled ages and 
Sr-Nd isotopic values of intermediate to felsic ig-
neous rocks within the continental arc of northeast 
Asia (Fig. 1), aged between 110 and 20 Ma, to 
search for spatiotemporal constraints on possible 
ridge subduction. We digitally rebuilt published 
end-member Japan Sea opening plate reconstruc-
tions to palinspastically restore the magmatism to 
prior to Japan Sea opening.

GEOLOGICAL SETTING
The southern Russian Far East and the Japa-

nese Islands along northeast Asia have widely 
distributed Cretaceous to Cenozoic igneous 
rocks (Fig. 1) that provide a magmatic record 
of subduction history. In Sikhote-Alin, Russian 
Far East, the continental margin grew from 
subduction of oceanic plates, and is formed by 
Mesozoic geological units such as accreted ter-
ranes and accretionary prisms (Zharov, 2005; 
Khanchuk et al., 2016). Likewise, the Japanese 
Islands are a segmented, subduction-related oro-
gen that has grown along the East Asian margin 
since at least the Jurassic (Wakita, 2013; Taira 
et al., 2016). During the Japan Sea opening in 
the early Miocene, northeast and southwest 
Japan separated from the continental margin 
(Otofuji et al., 1985). The pre-rift positions of 
the Japanese Islands remain debated, but there 
is general consensus that Japan was a southern 
extension of Sikhote-Alin prior to rifting (Van 
Horne et al., 2017).

METHODS
A 110–20 Ma magmatic record for Japan, 

Sikhote-Alin, and Sakhalin (Russia) was com-
piled from published literature (Shibata and 
Ishihara, 1979; Tanaka, 1987; Terakado and 
Nohda, 1993; Yuhara, 1998; Morioka et al., 
2000; Imaoka et al., 2011; Jahn et al., 2015; 
Okamura et al., 2016; Zhao et al., 2017; Liao 
et al., 2018; see other references in Table DR1 
in the GSA Data Repository1). Intermediate 
to felsic compositions are typically produced 
within continental arcs (Ducea et al., 2015), 
and Cretaceous to early Cenozoic subduction 
in the study area primarily manifested in silicic 
magmatism (Jahn et al., 2015). Therefore, we 
compiled ages and whole-rock Sr-Nd isotopic 
values for igneous rocks with intermediate to 
felsic compositions into a database of 1291 
values (Table DR1). Initial Sr and Nd isotope 

1GSA Data Repository item 2019337, Figure DR1 (comparison between alternative Japan Sea reconstructions) and Table DR1 (database of magmatic rocks in 
northeast Asia), is available online at http://www.geosociety.org/datarepository/2019/, or on request from editing@geosociety.org.
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values were recalibrated using the same de-
cay constants (Table DR1). Ages from zircon 
U-Pb analyses were used where possible (173 
samples); the remainder were relatively good-
quality Rb-Sr and K-Ar dates and a small mi-
nority (<40) of estimated ages (Table DR1). To 
roughly estimate magmatic influx across time, 
we digitized the areal extents of Cretaceous to 
early Cenozoic igneous rocks from southwest 
Japan to southern Sikhote-Alin (30°N to 46°N) 
following the 1:5,000,000-scale International 
Geological Map of Asia (Ren et al., 2013) in 
QGIS software (https://www.qgis.org). The digi-
tized igneous rock polygons were later input 
into our plate reconstruction within the software 
Gplates (https://www.gplates.org; Boyden et al., 
2011). We palinspastically restored the igneous 
rocks to prior to the Japan Sea opening by digi-
tally recreating published end-member Japan 
Sea opening plate models using GPlates. Here 
we present our preferred model, following Ya-
makita and Otoh (2000; for southwestern Ja-
pan and most of northeastern Japan); the Kuril 
arc, including eastern Hokkaido, was restored 
closer to the Sakhalin island, and the Kuril ba-

sin was closed, following Ueda (2016). We also 
show that our results are valid within other end-
member reconstructions (Fig. DR1 in the Data 
Repository).

RESULTS
Plots of igneous rock ages against whole-rock 

εNd(t) and (87Sr/86Sr)0 (initial ratio) values show that 
felsic to intermediate rocks of 56–46 Ma ages are 
absent (i.e., there is a magmatic gap) along the 
entire study area (Fig. 2). Age errors proximal 
to the magmatic gap were carefully checked to 
confirm feature integrity. Isotopically, Cretaceous 
to Paleocene rocks formed prior to the gap show 
relatively lower εNd(t) = −15 to + 2 and higher 
(87Sr/86Sr)0 = 0.704–0.714 compared to post-
gap rocks. In contrast, the Eocene to Oligocene 
rocks have relatively higher εNd(t) = −2 to + 6 and 
lower (87Sr/86Sr)0 = 0.702–0.707. Our palinspastic 
restoration shown in Figure 3A reveals that the 
56–46 Ma magmatic gap occurred near-synchro-

nously across the northeast Asian margin between 
38°N to 48°N paleolatitudes, including Sikhote-
Alin and Sakhalin (42°–48° N), Hokkaido and 
northeast Japan (38°–46° N), and southwest Japan 
(31°–38° N) (Fig. 3B). Comparison to other pub-
lished Japan Sea reconstructions shifted north-
east and southwest Japan paleolatitudes by 1°–3° 
northward relative to our reference model (Fig. 
DR1) but preserved the spatiotemporal trends 
shown in Figure 3. Cretaceous to Paleocene arc 
magmatic fluxes were ∼1090 km2/m.y. prior to the 
56–46 Ma magmatic gap and decreased to ∼390 
km2/m.y. from the mid- to end Eocene (Fig. 3C).

DISCUSSION
Implications for East Asia Ridge-Trench 
Interactions during the Early Cenozoic

Ridge subduction events profoundly affect 
the upper plate, but specific processes are non-
unique and time transgressive; therefore, mul-
tiple geological constraints must be considered 
in unison to properly diagnose past ridge sub-
duction (Sisson et al., 2003). Accordingly, we 
synthesize other geological evidence with our 
56–46 Ma magmatic gap to discuss proposed 
Eurasia–northwest Pacific ridge-trench inter-
sections (Fig. 1). We then discuss our isotopic 
values and magmatic addition rates relative to 
our preferred plate model.

Basalts with mid-oceanic ridge basalt 
(MORB) chemical characteristics extruded in 
the forearc region are considered the most dis-
tinctive indicator of ridge-trench intersections 
(Lagabrielle et al., 1994). Syn-sedimentary pil-
low basalts with MORB chemical characteristics 
have been found in the early Cenozoic Hidaka 
belt in Hokkaido (event 1 in Fig. 2C; Maeda and 
Kagami, 1996; Nanayama et al., 2019). There-
fore, evidence exists for ridge-trench intersec-
tion at Hokkaido during our observed 56–46 Ma 
near-simultaneous shutdown of subduction mag-
matism between Japan and southern Sikhote-
Alin (Figs. 2 and 3). Ridge subduction has also 
been linked to termination of arc magmatism 
by Dickinson and Snyder (1979), Thorkelson 
(1996), and Sisson et al. (2003). These studies 
proposed that ridge subduction would have cre-
ated a slab-free region (i.e., slab window) within 
the downgoing slab beneath the overriding plate, 
resulting in a temporarily inactive volcanic arc 
(Fig. 4B; Thorkelson, 1996), which is consis-
tent with the 56–46 Ma magmatic gap revealed 
here (Figs. 2 and 3). Indeed, a magmatic gap 
and forearc basaltic magmatism have also been 
observed within the Chile Rise ridge-trench in-
tersection (Nur, 1981; Lagabrielle et al., 1994; 
Gutiérrez et al., 2005).

Ridge-trench intersections commonly pro-
duce elevated heat flows and topographic uplift 
(Sisson et al., 2003). These have been interpreted 
within the northeast Asian margin for the early 
Cenozoic, near the magmatic gap time interval 
(events 2–5 in Figs. 2C and 3). At the southern 

Figure 1.  (A) Tectonic framework and distribu-
tion of Cretaceous to Eocene igneous rocks 
at the northeast Asian margin. K1—Early 
Cretaceous, K2—Late Cretaceous, E1—
Paleocene, E2—Eocene. Two gray dashed 
lines show boundaries between southwest 
and northeast Japan, and between the Kuril 
arc system and western Hokkaido. CSF—
Central Sikhote-Alin fault; HTL—Hatagawa 
tectonic line; TTL—Tanakura tectonic line; 
MTL—Median tectonic line; ISTL—Itoigawa-
Shizuoka tectonic line. (B–D) Proposed plate 
tectonic reconstructions of the Izanagi and 
Pacific plates and the Izanagi-Pacific spread-
ing ridge. Lengths of plate-motion arrows in 
red denote relative velocities. (B) High-angle 
ridge-trench intersection model (Maruyama 
et al., 1997). (C) Low-angle ridge-trench inter-
section model (Whittaker et al., 2007; Seton 
et al., 2015). Modeled Izanagi-Pacific spread-
ing ridge extends further south into southeast 
Asia, but only the northern portion is shown 
here for comparative purposes. (D) Marginal 
sea closure model (Domeier et al., 2017).

Figure 2.  (A,B) Nd and Sr isotopic composition 
across time for felsic to intermediate igneous 
rocks of 110–20 Ma ages along the north-
east Asian margin between 30°N and 46°N. 
Increase in εNd(t) and decrease in (87Sr/86Sr)0 
(initial ratio) after the 56–46 Ma magmatic gap 
(red area) indicates a more depleted mantle 
component after 46 Ma. DM—depleted mantle; 
CHUR—chondritic unfractionated reservoir; 
BSE—bulk silica earth. (C) Early Cenozoic tec-
tonic events 1–5 (circled numbers) possibly 
related to ridge subduction along the north-
east Asian margin. Location of events 1–5 
is shown in Figure 3A. MORB—mid-oceanic 
ridge basalt. References: event 1—Maeda and 
Kagami (1996), Nanayama et al. (2019); event 
2—Raimbourg et al. (2014); event 3—Agar 
et al. (1989), MacKenzie et al. (1990), Hara and 
Kimura (2008), Mukoyoshi et al. (2009); event 
4—Song et al. (2014); Song et al. (2018), Wang 
et al. (2013); event 5—Ando (2003).
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end of the magmatic gap, thermochronology has 
revealed an early Eocene thermal event within 
the Shimanto belt in southwest Japan during 58–
46 Ma (event 3 in Figs. 2C and 3; Agar et al., 
1989; MacKenzie et al., 1990; Hara and Kimura, 
2008; Mukoyoshi et al., 2009; Raimbourg et al., 
2014). Extensive early Cenozoic unconformities 
have also been recorded in northeast Japan (event 
5 in Figs. 2C and 3; Ando, 2003). Kimura et al. 
(2019) showed that the Japan islands experienced 
a general Paleocene to early Eocene interrup-
tion in volcanism and trench wedge accretion; 
unconformities formed in the forearc basins, fol-
lowed by shallowing of sedimentary facies that 
was consistent with a ridge subduction. At the 
northern end of our identified magmatic gap, a 
strong Paleocene to early Eocene unconformity 
has been identified within the Songliao Basin 
(northeast China; Wang et al., 2013; Song et al., 
2014). Apatite fission-track dating has suggested 
intense uplift in the area at ca. 65–50 Ma (Song 
et al., 2018). Together, these possible ridge-sub-
duction signals corroborate the spatial extent and 
timing of our magmatic gap, thus strengthening 
the case that our 56–46 Ma magmatic gap is evi-
dence of ridge subduction.

Implications for Izanagi-Pacific Plate 
Tectonic Reconstructions

Here we consider our results against pro-
posed plate model classes (Figs. 1B–1D), but 
other valid solutions exist because the Izanagi 
plate is conceptual (i.e., fully subducted). The 
low-angle Izanagi-Pacific ridge-trench intersec-
tion model of Whittaker et al. (2007) and Seton 
et al. (2015) (Fig. 1C) is generally most consis-
tent with the 56–46 Ma magmatic gap (Fig. 3), 

but their modeled ridge-trench intersection 
extended >5000 km into southeast China and 
southeast Asia, albeit with a time dependence 
to when it interacted with the Eurasian margin. 
Magmatism in southeast China (Li, 2000; Zhou 
et al., 2006) and west Borneo (e.g., Hennig et al., 
2017) ceased at ca. 80 Ma and is highly contrast-
ed to that of our study area, which showed con-
tinuous igneous activity until 56 Ma followed 
by the magmatic gap (Fig. 2). This suggests that 
Izanagi-Pacific ridge-trench intersections did not 
extend south of southernmost Japan, in contrast 
to the model of Seton et al. (2015).

An alternative plate model proposed that 
marginal seas closed along East Asia in the early 
Cenozoic (Fig. 1D) and that the Izanagi-Pacific 
spreading ridge never reached Japan (Domeier 
et al., 2017). Our study shows that the Izanagi-
Pacific ridge did subduct along East Asia in the 
early Cenozoic (Fig. 2), and likely at a low angle 
to the margin (Figs. 3B and 4). Nonetheless, 
the presence of now-subducted marginal seas 
north of the paleo–Kurile trench, from Domeier 
et al. (2017), may explain the early Cenozoic 
tectonic setting north of 48°N present latitude. 
The high-angle ridge-trench intersection mod-
el (Fig. 1B) implies that a spatially restricted, 
amagmatic area migrated along the East Asian 
margin during the Cretaceous (Maruyama et al., 
1997), which is incompatible with our observed 
synchronous and areally extensive 56–46 Ma 
magmatic gap (Fig. 3B). Finally, given uncer-
tainties, it is possible that a Kula-Pacific ridge-
trench intersection with Eurasia in the early 
Cenozoic could have produced the magmatism 
shown here; however, a viable plate model has 
yet to be proposed.

Implications for ca. 50 Ma Pacific Plate 
Reorganization

Seton et al. (2015) suggested that subpar-
allel arrival of the Pacific-Izanagi ridge along 
the East Asian margin led to a margin-wide 
slab detachment that significantly decreased 
the slab pull force acting on the Pacific plate at 
60–50 Ma, possibly leading to the Pacific plate-
mantle reorganization at ca. 53–47 Ma (Whit-
taker et al., 2007; O’Connor et al., 2013). The 
simultaneous 56–46 Ma magmatic gap along the 
northeast Asia margin shown here (Figs. 2 and 
3B) supports formation of an ∼1500-km-long 
margin-parallel slab window beneath the East 
Asian margin during this time frame. Howev-
er, the apparent lack of magmatic evidence for 
early Cenozoic Izanagi-Pacific ridge subduction 
south of Japan (i.e., in South China and south-
east Asia) suggests that the modeled >5000 km 
slab detachment of Seton et al. (2015) may be 
overestimated by more than a factor of two. 
Furthermore, studies to the north of our area 
suggest that Izanagi-Pacific ridge subduction 
was limited to the south of southern Sakhalin 
(Vaes et al., 2019), which would further shorten 
a slab detachment. The geodynamic viability of 
a much shorter (i.e., ∼1500 km length from this 
study) Izanagi-Pacific ridge-trench intersection 
for producing a ca. 50 Ma Pacific plate reorga-
nization should be reexamined.

Implications for Northeast Asian Margin 
Magmatic Evolution

Contrasted areal addition rates (Fig. 3C) and 
isotopic compositions (Fig. 2) of igneous rocks 
astride the 56–46 Ma magmatic gap between 
Japan and Sikhote-Alin are generally consistent 
with a subduction zone reorganization during 
low-angle Izanagi-Pacific ridge-trench intersec-
tion (Fig. 4). Studies have shown positive corre-
lations between magma generation and subduc-
tion rates (Cagnioncle et al., 2007; Hughes and 
Mahood, 2008; Zellmer, 2008). Our preferred 
low-angle ridge-trench intersection model (Figs. 
1C and 4) indicates that the northeast Asian con-
tinental margin was dominated by fast, ∼20 cm/
yr, Izanagi subduction before 55 Ma and slower 
(65% reduced) Pacific subduction after 50 Ma, 
at ∼7 cm/yr (Fig. 4) (Whittaker et al., 2007; 
Seton et al., 2015). Interestingly, our estimated 
magma addition rates over time show a simi-
lar reduction (∼65%) in magmatism after the 
Paleocene, from ∼1090 km2/m.y. to ∼390 km2/
m.y. (Fig. 3C). Isotopically, late Eocene igneous 
rocks show more-depleted mantle compositions 
[i.e., higher εNd(t) and lower (87Sr/86Sr)0] than Cre-
taceous to Paleocene igneous rocks (Fig. 2). 
This could be consistent with input of depleted 
mantle to the mantle wedge through a slab win-
dow during the ridge subduction (Fig. 4) and/
or input of relatively enriched crustal material 
into the subduction zone during earlier Izanagi 
subduction.

Figure  3.  (A) Recon-
structed configuration of 
the northeast Asian margin 
based on our preferred 
Japan Sea plate recon-
struction, modified from 
Yamakita and Otoh (2000). 
Reconstructions following 
other published models 
are shown in Figure DR1 
(see footnote 1). Locations 
of early Cenozoic tec-
tonic events from Figure 
2 are shown by circled 
numbers 1–5. K1—Early 
Cretaceous, K2—Late Cre-
taceous, E1—Paleocene, 
E2—Eocene. (B) Spatio-
temporal distribution of 
igneous rocks across 
three regions. All regions 
show a near-simultaneous 
56–46 Ma magmatic gap. 
DM—depleted mantle; 

BSE—bulk silica earth. (C) Comparison of areal addition rate of igneous rocks with ages 
before and after the 56–46 Ma magmatic gap in southwest Japan to the southern Sikhote-Alin 
area (30°N to 46°N). Relatively higher magmatic addition rates before 56 Ma and lower rates 
after 46 Ma are consistent with a change from fast Izanagi-Eurasia plate convergence (∼20 cm/
yr) to slow Pacific-Eurasia convergence (∼7 cm/yr) predicted by the low-angle ridge-trench 
intersection plate model in Figure 1C.

A B

C
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CONCLUSION
Past plate kinematics can be reliably recon-

structed from spreading ridge geometries, but 
Eurasia–northwest Pacific plate reconstructions 
remain controversial because the ridges have 

subducted. Our compiled and palinspastically 
restored magmatic record between Sikhote-Alin 
and southwest Japan in the early Cenozoic links 
fragmentary geological evidence to present new, 
definitive spatiotemporal constraints on low-an-
gle ridge-trench intersection along ∼1500 km 
of the northeast Eurasian margin, clarifying an 
ongoing, first-order plate tectonic controversy. 
The 56–46 Ma magmatic gap shown here coin-
cides with the major Pacific plate reorganization 
at ca. 53–47 Ma. Although this may support a 
Pacific Ocean basin plate-mantle reorganiza-
tion sparked by widespread Izanagi-Pacific ridge 
subduction, we limit the ridge subduction to 
north of southwest Japan, over a significantly 
shorter length (∼1500 km versus 5000 km) than 
previously thought. This may require reevalua-
tion of circum-Pacific geodynamic models.
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