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Abstract. An attempt to derive signer-efficient digital signatures from
aggregate signatures was made in a signature scheme referred to as
Structure-free Compact Rapid Authentication (SCRA) (IEEE TIFS 2017).
In this paper, we first mount a practical universal forgery attack against
the NTRU instantiation of SCRA by observing only 8161 signatures. Sec-
ond, we propose a new signature scheme (FAAS), which transforms any
single-signer aggregate signature scheme into a signer-efficient scheme.
We show two efficient instantiations of FAAS, namely, FAAS-NTRU and
FAAS-RSA, both of which achieve high computational efficiency. Our ex-
periments confirmed that FAAS schemes achieve up to 100x faster signa-
ture generation compared to their underlying schemes. Moreover, FAAS
schemes eliminate some of the costly operations such as Gaussian sam-
pling, rejection sampling, and exponentiation at the signature generation
that are shown to be susceptible to side-channel attacks. This enables
FAAS schemes to enhance the security and efficiency of their underlying
schemes. Finally, we prove that FAAS schemes are secure (in random ora-
cle model), and open-source both our attack and FAAS implementations
for public testing purposes.

Keywords: Authentication, Digital signatures, Universal forgery, NTRU-
based signatures

1 Introduction

Efficient authentication is critical for applications that need to generate a large
throughput of authenticated data in a short amount of time. For instance, in
smart grids [23,41], vehicular [1,24] and commercial drone networks [37,42], a
large number of messages should be authenticated and transmitted to ensure
reliable service and safe operation. While conventional digital signatures (e.g.,
RSA [35], ECDSA [5]) are deemed as an ideal mean to provide authentication,
they might not offer the computational efficiency required by such applications.
It is essential to propose fast digital signature schemes that can meet with the
stringent requirements of such applications.

Achieving this computational efficiency becomes even harder when consider-
ing security in the post-quantum era [2,28]. While efficient and easy-to-implement
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one-time/multiple-time signatures exist (e.g., [26]), the case for polynomially-
unbounded signatures seems to be more difficult. The proposal of such schemes
is also necessary to support post-quantum key encapsulation schemes [11]. In this
direction, the Department of Energy (DOE) and the Department of Homeland
Security (DHS) have shown increased interest in proposals on post-quantum se-
cure authentication schemes [3] for smart grids. To ensure a smooth and timely
transition, National Institute of Standards and Technology (NIST) has started
the initial rounds of accepting proposals for PQ secure constructions [4].

Aggregate digital signature schemes allow multiple signatures to be aggre-
gated into a single one [10]. They are used to achieve efficient signature gen-
eration as shown in [43] with Rapid Authentication (RA) scheme. In RA, the
signer precomputes a set of individual signatures in the key generation algorithm,
and aggregates a subset of them to efficiently compute signatures. However, RA
requires messages to be in a predefined (fixed-length) format.

It is very desirable to develop fast digital signature schemes that can avoid
both the storage/re-generation of one-time signatures and the need of a prede-
fined message format. Such schemes can potentially support the legacy systems
(aggregate RSA-based signatures [31]) and be secure against quantum comput-
ers, with the advent of post-quantum aggregate signature schemes [25]. One
recent attempt to address these issues was proposed in Structure-free Compact
and Rapid Authentication (SCRA) [44]. In this paper, we show that, it is a chal-
lenging and yet feasible task to create such fast signatures by first mounting
an attack to SCRA [44], and then constructing a new generic scheme that can
address the aforementioned limitations.

1.1 Owur Contributions

Our contributions are two-fold: (i) We identify a weakness in SCRA which
leads to a universal forgery attack on its lattice-based instantiations. (ii) We
then present a new scheme called Fast Authentication from Aggregate Signatures
(FAAS) which achieves significant performance gains on the signer’s side along
with an improved security in terms of side-channel resiliency.

Attack on Lattice-Based Instantiation of SCRA [44]: We identified a flaw in
generic SCRA where each signature leaks the aggregation of a subset of the
private key, along with their corresponding indexes. In the lattice-based instan-
tiation of SCRA, we show how the adversary can form a set of linear equations,
and forge signatures on any message only after observing 8161 signatures. We
have fully implemented our attack and forged signatures in a few milliseconds
after a one-time 2.5-hour learning phase.

Fast Authentication from Aggregate Signatures (FAAS): We present our new
signature scheme FAAS that can be instantiated from any aggregate signature
scheme. We prove the security of FAAS in the random oracle model (ROM) under

the hardness of breaking the underlying aggregate signature scheme. We propose
two efficient instantiations of FAAS: (i) An instantiation with pgNTR Usign [25]
called FAAS-NTRU (ii) and an instantiation with Condensed-RSA [31] called FAAS-RSA.
The desired properties of FAAS are as follows:



Table 1: Experimental performance comparison and analysis.

. . s Qs . . |Online Phase

Schemes Sign|Verify |Delay |Sig Size|SK Size|PK Size Gauss|Exp[ RS
RSA [35] 8.08| 0.05 | 8.13 372 768 386 X Vo X
ECDSA [5] 0.73| 0.93 | 1.66 64 32 32 X v | X
Ed25519 [9] 0.13| 0.33 | 0.46 64 32 32 X V| x
SPHINCS [8] [[13.46] 0.37 | 13.83 | 41000 1088 1056 X X | X
paNTRUsign [25]|[14.52] 0.30 | 14.82 | 576 1024 1024 v | x|V
FAAS-RSA 0.19| 0.06 | 0.25 768 197408 1024 X X | X
FAAS-NTRU 0.49| 0.71 | 1.20 3072 525328 1024 X X | X
FAAS-NTRU' 0.14| 0.71 | 0.85 3072 | 1049600 1024 X X | X

FAAS schemes do not require any Gaussian sampling (Gauss), exponentiation (Exp) or rejection
sampling (RS) at its online calculations. Therefore, they have an improved side-channel resiliency
and better performance that is further explained in §5.1.

All sizes are in Bytes (B). All times are in milliseconds (ms). The results are obtained on a laptop
equipped with an Intel i7 6th generation CPU operating at 2.6GHz. All parameter sizes are selected
to provide k = 128-bit security level (except for SPHINCS [8], that provides k = 256-bit security).
A detailed performance analysis and comparison are given in §6.

i) Improved Side-Channel Resiliency: The signature generation of FAAS only re-
lies on signature aggregation, and therefore improves the side-channel resiliency
of its base schemes (i.e., [25,31]). For instance, FAAS-NTRU does not require
any Gaussian sampling algorithm (in its signature generation) which is known
to be susceptible to a number of side-channel attacks (e.g., [18,22]). Besides,
FAAS-NTRU offers a fixed-time sign algorithm (as opposed to its underlying scheme
[25]) since it does not require any rejection sampling. Moreover, FAAS instanti-
ations offer deterministic signing and therefore immune to side-channel attacks
targeting weak pseudorandom number generators (PRNGs). Lastly, FAAS-RSA is
not susceptible to the attacks targeting the square-and-multiply method on tra-
ditional RSA signatures [20,34].

i1) High Computational Efficiency: We instantiate FAAS with verification-efficient
digital signature schemes to complement the benefits of the improved signature
generation, and therefore achieving a low delay® for FAAS instantiations. For in-
stance, FAAS-RSA and FAAS-NTRU’ improve the delay of their base schemes by
32x and 17x, respectively.

i11) Generic Design: FAAS can be instantiated with any aggregate signature. For
example, several lattice-based post-quantum signature schemes (which require
Gaussian and/or rejection sampling) have been proposed to the NIST post-
quantum competition (e.g., Dilithium [16]). FAAS can be used to enhance the
security (from side-channel perspective) and performance of these schemes pro-
vided that they offer a secure signature aggregation capability.

Limitations: FAAS has an increased private key size due to the storage of
precomputed signatures. FAAS-RSA and FAAS-NTRU require 193 KB and 511 KB
private keys, respectively, with x = 128-bit security (see Table 1). This increased
private key size; however, translates into 30x and 42x faster signing with an
improved side-channel resiliency, for FAAS-RSA and FAAS-NTRU, respectively.

3Delay is defined as the aggregated time required to compute and verify a signature.



2 Preliminaries

Notation. |a| denotes the bit length of variable a. M denotes the message space.

a & S denotes that a is selected from set S at random. In z|ly, || denotes the
concatenation of bit strings of x and y. We represent vectors as bold letters (i.e.,
a), and matrices are defined by bold capital letters (i.e., A), while scalars are
represented as non-bold letters (i.e., a). ||al|2 and ||a]|s denote the Euclidean
norm and infinity norm of vector a, respectively. We define hash functions Hy :
{0,1}* — {0,1}, Hy : {0,1}* — {0,1}}* and H» : {0,1}* — {0,1}%2 for some
integers ly, I, and lo, to be defined in §6.2. .A91%i denotes that algorithm A is
provided with access to oracles O, ...,O;.

Definition 1. A digital signature SGN = (Kg,Sig,Ver) is defined as follows.

— (sk, PK) <« SGN.Kg(1"): Given the security parameter , it outputs the
public/private key pair (sk, PK).

— 0 < SGN.Sig(m, sk): Given a message m and sk, it outputs the signature o.

- {0,1} <« SGN.Ver(m,o, PK): Given a message-signature pair (m,o), and
PK, it outputs b € {0,1}.

We say that SGN is correct if 1 <— SGN. Ver(m, SGN.Stig(m, sk), PK).

Definition 2. FEzxistential Unforgeability under Chosen Message Attack (EU-
CMA) [27] experiment Exptfcg’;‘CMA against an adversary A is as follows.

L, +0 Signg, (m;)

(sk, PK) + SGN.Kg(1") 0; < SGN.Sig(m;, sk)

(m*,0*) « ASies()(PK) L, + L, Um;

We say A wins in time t, and after making qs signatures and qp queries to

random oracles (Hy, Ha, and Hs), iféngGN.Ver(m*,a*,PK) A (mN Ly, =0).
The advantage of A is defined as Ad’USGN;EMA(t, qs,qn) = Pr[Expr[,{,'fMA 1].

Definition 3. A single-signer aggregate signature ASig = (Kg,Sig,Agg,Ver)
is defined as follows.

- (sk, PK) < Asig.Kg(1"): Given the security parameter x as the input, it re-
turns a private/public key pair (sk, PK).

- 0 + Asig.Sig(m, sk): Given a message m € {0,1}" and sk as the input, it
returns a signature vy of the message under sk.

- s+ Asig.Agg(oy,...,0r): Given a set of signatures (o1,...,0r) as the input,
it returns a single-compact signature s.

- {0,1} « Asig.Ver(mi,s, PK): Given messages m = (my,...,mp), s and
PK as the input, it returns a bit: 1 means valid and 0 means invalid.

Definition 4. 4gg function, that is used to aggregate multiple messages to a
single message, is defined as follows.

- m « Agg(my,...,mp): Given a set of messages (my,...,my) as the input,
4gg function returns a single message m as the output.



Algorithm 1 pgNTRUsign Signature Generation [25]

(v') + paNTRUsign.Sig(m, sk’, h):

: Compute (up, vp) = Hn(m|/h) and sample r < x and b & {0,1}

: Compute uy < pr+ up, vi < urth mod ¢ and a + (vp —vi1)/g mod p

: if ||af||2 > vs or ||ag]||c > v+ then go to Step 1

v =vi + (—1)’ag

. if ||V'||ec > ¢/2 — B then go to Step 1

: Calculate b = (r+(—1)"af) with probability 1/ (Msexp( — ”222" )Cosh(“’éizﬂ)), else
go to Step 1

7: Return v’

D T WD

Agg function is also a part of the Asig.Ver algorithm that allows the batch
verification of multiple messages. This function can be instantiated as modular
multiplication in RSA [31] or vector addition in pgNTRUsign [25].

2.1 Lattice-Based Tools

We work over a polynomial ring R, = Z,[z]/(x" 41) for a prime ¢ and a positive
integer N [25]. For FAAS-NTRU, we model a hash function Hy : {0,1}* — Z[.
This enables generating random elements mp = (up,vp) with up € ngvl and
Vp € Zé\’? for a prime p and N = Nj + No.

NTRU Lattice: Following the work in [25], we work over a NTRU lattice as an
R, module of rank 2. We let f(z),g(z),h(x) € Ry where f(z) and g(z) have
small coefficients and h(z) = p~tg(x)f~(x).

The NTRU lattice associated with h is defined as £ = {(@,¥) € R2 :
th = ¥}. A vector in NTRU lattice can be written as v = (8, t) where 8,t € R,,
following [25], we refer to § as the s-side and t as the t-side of the vector.
Definition 5. An N-dimensional Gaussian function ps. : R — (0,1]) is de-

fined as ps.(z) 4 exp(—%). Given a lattice A C R™, the discrete Gaussian
p

distribution over A is Dy s .(x) = p:%gj)) for allx € A.

Hoffstein et al. uses a Bimodal Gaussian distribution xY [15] with standard
deviation & to sample an N-dimension random vector r. Hoffstein et al. also
uses rejection sampling to ensure that the signature components do not leak
any information about the private keys by checking if its norm is in (—2 +
vy, 3 — v,) for some public parameter v where y € {s-side, t-side}. This is
done as in the Step 3 of Algorithm 1. We also note that ¢ in Algorithm 1 is
a Gaussian distribution parameter which ensures a bound on the value of the
sampled vector’s coordinates. In Step 6, b + {0,1} is a random bit related to
bimodal Gaussian distribution [15]. M as defined in [25], is the repetition rate
which determines the rate of rejection.

3  On the Security of SCRA-NTRU

We first recall SCRA signature scheme and also present its lattice-based instan-
tiation. We then describe the idea behind our attack, followed by its detailed
description and implementation.



Algorithm 2 SCRA - pgNTRUsign Instantiation

(sk, PK) < SCRA-NTRU.Kg(1"):

Generate secrets f, g € R, such that h(z) = p~'g(z)f " (z)
If f and g are not invertible mod ¢, go to Step 1
sk’ « (f,g), PK' + h and P <& {0,1} and
Select integers (b, L) such that b- L =l
mi; < (i||7]|P), ~i,; < paNTRUsign.Sig(m,,;,sk’,PK'), i = 1,...,L and j =
0,...,2° -1
b
6: sk « (sk’,T') and PK < (PK', P), where I + {7i; };-7 ;%

o < SCRA-NTRU.Sig(m, sk):

1. (M7,...M;) < Ho(ml||r) where r & {0,1}" and M; € [0,2" —1],i=1,...,L.
2: s+ ZiL:1 Yi,vy and o < (r,s)

{0,1} < SCRA-NTRU.Ver(m, o, PK):

(M{,...Mp) < Ho(m||r)

i =sh™! modgq

if ||4||oo > v/ (k + L)7pé then return 0

(up,, vp;) < Hn(i||M]||P||h) where i =1,...,L

if (4,s) =3 ;" ,(up;,Vp,;) then return 1, else return 0

3.1 SCRA Signature Scheme

SCRA was proposed as a generic scheme that transforms a single-signer ag-
gregate signature scheme into a fast signature scheme. Before we highlight the
weakness that leads to our attack, we briefly recall the generic SCRA signature
scheme below. For a detailed description, we refer the interested reader to [44].
Key Generation: A set of signatures are precomputed for each b-bit L fields of the
hash output, where [ = b- L, and [y is the bit length of the hash output. These
signatures are stored in a precomputed table containing 2° - L signatures. This
table and the public key of the underlying aggregate signature are the private
and public keys, respectively.

Signature Generation: The message is hashed with a randomness, and for each
of L fields of the hash output, their corresponding precomputed signatures (re-
trieved from the private key of the signer) are aggregated. The randomness is
sent along with the aggregated signature to enable signature verification.
Signature Verification: Individual indexes are recovered and their batch verifica-
tion is performed under the signer’s public key.

SCRA Lattice-Based Instantiations: SCRA was instantiated with lattice-
based aggregate signatures in [17]. Recently, Hoffstein et al. [25] proposed an
NTRU-based signature scheme called pgNTRUsign which offers provably secure
single-signer secure aggregation [25]. Therefore, we instantiate SCRA with the
scheme in [25]. We present this instantiation in Algorithm 2 with a reference
to the signature generation of pqNTRUsign in Algorithm 1. We remark that
given the similarity of pqNTRUsign with the schemes used in the instantiations



of SCRA (e.g., [17]), our attack can be directly applied to the lattice-based
instantiations originally proposed in SCRA.

3.2 Our Attack

In generic SCRA, the signature generation algorithm releases an aggregation
of a subset of the precomputed signature components without any masking.
Furthermore, to enable signature verification, the message fields (i.e., indexes),
dictating the selected precomputed components, are publicly released. These
leakages can be observed in all instantiations of SCRA and they permit an
adversary A to learn which private key components are aggregated to form the
signature for a given message. In this paper, we leverage such leakages to mount
a universal forgery attack on the lattice-based instantiations of SCRA.

Attack Algorithm: Since one can compute the indexes used to form the sig-
nature, each signature leaks the aggregation of L private keys. For lattice-based
instantiations, these are vector additions of individual private key components.

In our first attempt, our goal was to observe enough signatures to perform
a key recovery attack. Since there are 2° - L private key components, we have
2%. L variables in our linear equations, and A needs the observe the same number
of equations/signatures. However, to solve this equation system, each equation
A observes must be linearly independent. However, due to the selection of private
keys in signature generation (i.e., one private key component from each L fields),
the adversary can only observe (2° — 1) - L + 1 linearly independent equations.
While one can use methods such as least mean squares to estimate the private
key components, it is not possible to fully recover them with this many equations.
However, we observed that (2° — 1) - L + 1 linearly independent equations are
enough for A to generate signatures on any message (i.e., universal forgery). The
details of this attack are given in Algorithm 3, and further explained below.

The function Y < echelon(X) computes the row echelon form of matrix X.
Following the definition of EU-CMA in Definition 2, our attack takes place in
two phases, namely the learning phase and the forgery phase.

In the attack, A first observes enough signatures to construct the linear equa-
tions. In Step 3, A parses signatures (s;,7;) < o; and extracts s;’s to form the
matrix B. This matrix represents the solutions of each linear equation, since they
are derived by vector addition in SCRA.S%g. In Step 4, A derives all the indexes
from the messages as in the signature verification. Using these indexes, A forms
a matrix A, that represents which private key components are aggregated to de-
rive the signature s;. A then concatenates these two matrices (as in Step 6) and
calculates the row echelon form of the new matrix. This enables the adversary to
easily form the linear combinations of these vectors to generate new signatures.
Therefore, after this point, A selects any message that was not queried before,
get the indexes with a simple hash function, and forms a new row from the row
echelon matrix, based on the indexes of the target message. Since this matrix
includes the signature components observed (C «— A|B), the right side of this
vector gives the signature for the selected message.



Algorithm 3 Attack on SCRA Lattice-Based Instantiation

Setup:
1: (sk, PK) < SCRA-NTRU.Kg(1") and L, < 0

Learning:

Query o; < SCRA-NTRU.Sig(m;, sk) and Ly, = L,yUm; fori=1,..., (2b7 1)-L+1
Parse (s;, ;) < 0y and form B = [Bls;] for i =1,...,(2° - 1) - L+ 1

Li= (M, ...,M} ;) + Ho(m|r;) fori=1,...,(2" = 1)- L+1

Set A s.t. Afi,j] =1ifj € Ly, fori =1,...,(2®=1)-L+1,j=1,...,2° L,
otherwise, A[i, j] = 0.

6: C + [A|B] and C’ + echelon(C)

Forgery:

7. m' & M where m’ ¢ Lum,

8 v & {0,1}", and L = (M7,... M}) « Ho(m/||r").

9: Linearly combine rows of C’ to generate a row, such that fori = 1...2°-L, afi] = 1
if 1 € L and 0 otherwise.

10: The right side of the new row a gives a valid signature over m’.

Attack implementation: We have fully implemented our attack? and forged
a signature over the message “May the force be with you’. We used C for the
hash operations and computing SCRA signatures and Matlab for the matrix
operations. Specifically, we used the predefined rref function in Matlab to gen-
erate the row echelon form of the matrix and then used this matrix to forge
signatures. With the suggested parameters of SCRA (b =8, L = 32), rref func-
tion of Matlab took around 2.5 hours (executed only once). After that, each
forgery only took a few milliseconds. Therefore, we were able to forge signatures
on any message, by observing only 8161 signatures. Note that, although SCRA
can be instantiated with different (b, L) parameters, since the storage overhead
is 2° . L, increasing parameters to make our attack impractical would also make
the signature scheme impractical for the signer.

4 The Proposed Scheme

Main Idea: Following the works in [43,44], we capitalize on the observations
that signature aggregation of some signature schemes is significantly faster than
their signature generation. FAAS differs from the previous constructions in the
way that messages and randomness are encoded and computed: (i) FAAS has
significantly shorter private keys since we only rely on sampling L-out-of-2°
different combinations (as in [12]) rather than encoding the message as L b-bit
structures as in SCRA. (ii) Most importantly, FAAS masks the aggregation of
private key components (i.e., individual signatures) via an aggregate one-time
masking technique (elaborated below) to address the vulnerability identified in
SCRA [44] (see §3 for our attack).

Aggregate One-time Masking of Signatures: The security flaw in SCRA
stems from disclosing the aggregation of private key components. To efficiently

4yww.github. com/ozgurozmen/SCRA-NTRU_ATTACK
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Algorithm 4 Generic FAAS Scheme

(sk, PK) < FAAS.Kg(1%):

1: Select integers (k,t) such that k - |¢| = l2 and (b, L) such that b- L =l
2: (sk’, PK') + ASig.Xg(1") and 2z « {0,1}"
3: u; + Hi(i||z) and B; <+ ASig.Sig(u, sk’) fori=0,...,t —1
4: Set precomputed signature table B <+ {f; E;é
5: 7 <+ ASig.Sig(i,sk’) fori=0,...,2° — 1
6: Set precomputed signature table I" < {v; ?igl
7: sk + (2,B,I') and PK + PK'
o < FAAS.Sig(m, sk):
1: (ji,...,Jx) < Ha(m||z), where each {j;}¥_, is interpreted as a |t|-bit integer.
2: uj, < Hi(jil|z) fori=1,...,k
3w+ Agg(ujy, ... uj,)
4: oy < ASig.Agg(Bji,-- -, Bj)
5: (47,...,41) < Ho(m||u), where each {j;}=, is interpreted as a b-bit integer.
6: s < ASig.Agg(ou,Vsz,---,7;;) and set 0 < (u,s)

{0,1} + FAAS.Ver(m, o, PK):

2: {0,1} « Asig.Ver((u,j7,...,ji), s, PK")

overcome this, we (deterministically) generate random message components u;
and their corresponding signatures §; in the key generation phase (Step 3 in
FAAS.Kg of Algorithm 4) and then aggregate a subset of them to generate a
random message-signature pair (u,oy) as in Step 3-4 of FAAS.Sig (Algorithm
4). We then use this one-time randomness oy to hide the aggregation of private
keys at Step 6 of FAAS.Sig. Although the aggregated message u is released with
the signature, computing the individual message components or the selected
indexes is as hard as breaking the underlying signature scheme.

4.1 Generic FAAS

Generic FAAS is presented in Algorithm 4, and is further elaborated as follows.
Key Generation: In Step 1-2, first, parameters (k,t) and (b, L) are generated. We
then create the private/public key pair of the underlying aggregate signature and
a random seed z, which are used to generate two precomputed signature tables:
(i) In Step 3-4, we deterministically derive ¢ random numbers u; with a keyed
hash and compute their corresponding individual signatures 3; to be stored in
table B. (ii) In Step 5-6, we generate 2° signatures, from which L of them will
be selected to encode the message in signature generation (FAAS.Sig Step 5-6).
Finally, the tables (B, I") and z constitute FAAS private key, while the public key
of the underlying aggregate signature scheme is used as FAAS public key.
Signature Generation: In Step 1-2, we derive the secret indezes (j1,. .., ji) from
the message m and compute their corresponding random numbers (u;, , ..., u;, )
via a keyed hash. In Step 3-4, we set u as the aggregation of the random



Algorithm 5 FAAS pgNTRUsign instantiation

(sk, PK) < FAAS-NTRU.Kg(1"):

1: Generate secrets f, g € R, such that h(z) = p~'g(z)f ' (z)
2: If f and g are not invertible mod ¢, go to Step 1
3: sk’ + (f,g), PK' + h and 2z «+ {0,1}"
4: Select integers (k,t,b, L) as in generic FAAS.Kg Step 1
5: u; < Hi(i||z), Bi + paNTRUsign.Sig(u;,sk’, PK'), where |u;| = & for i =
0,...,t—1
6: Set precomputed signature table B <+ {03; f;é
7: ~; + pgNTRUsign.Sig(i, sk'), for i =0,...,2° — 1
8: Set precomputed signature table I' < {+; fial
9: sk < (2,B,I') and PK + PK'’
o < FAAS-NTRU.Sig(m, sk):
1: (j1,..., k) < Ha(m||z), where each {j;}F, is interpreted as a |t|-bit integer.
2: wy, + Hi(jill2) and (upy,, vp;, ) < Hn(uj,|[h) where i =1,... .k
3: (up, vp) Zle(upji,vpji), and oy + Y5, B
4: (4%,...,43) <= Ho(m||up||vp), where each {j;}/=, is interpreted as a b-bit integer.
5: s« ou+),_,7 and o < (up, Vp,s)
{0,1} - FAAS-NTRU.Ver(m, o, PK):
L (Ji,-- -5 d1) < Ho(mllu)
2: a=sh™! mod g
3: if ||d||eo > v/(k + L)7pé then return 0
4: (up,,Vvp,) < Hn(ji||h) where i =1,...,L
5: if (@1,8) = (up,vp) + Zle(upi,vpi) then return 1, else return 0
(4j,-- -, uj, ) and aggregate their corresponding signatures (535, , ..., 3;,) fetched
from table B, as oy. In Step 5-6, we first encode the message and u to get in-
dexes (j7,...,Jj7), and then mask the aggregation of (vj;,...,v;:) with oy as

s < ASig.Agg(ov,7js,---,7:)- We set FAAS signature as o = (u, s).
Signature Verification: This algorithm checks if the aggregated random number
u and indexes (j7,...,73) < Ho(m||u) are verified with s under PK".

Remark 1. Tt is essential to keep individual random messages and their indexes
as secrets. We do this with an aggregation function u + Agg(uj;,...,ujz) as
in Step 4 for random message components. The aggregation function Agg(.) is
instantiated as modular multiplication and vector addition in Condensed RSA
(C-RSA) [31] and pgNTRUSign [25], respectively. We derive indexes (41, . ., ji)s
which select random numbers to be aggregated, via the private key z. Therefore,
unlike public indexes (j7,...,7;) that are used to encode the message, secret
indexes (j1,..., ji) are only known to the signer.

4.2 TFAAS Instantiations

FAAS can be instantiated with any single-signer aggregate signature scheme. We
propose two efficient instantiations of FAAS as below.
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Algorithm 6 Instantiation of FAAS with C-RSA

(sk, PK) + FAAS-C-RSA.Kg(1"):

1: Generate two large primes (p,q) and n < p - q. Compute (e, d) such that e-d =
1 mod ¢(n), where ¢(n) + (p—1)(¢—1)

sk’ < (n,d), PK’' < (n,e) and z < {0,1}"

Select integers (k,t,b, L) as in generic FAAS.Kg Step 1

u; + Hy(i]|z) and B; + u;* mod n, where |u;| = |n| for i =0,...,t —1

Set precomputed signature table B «+ {8;}:Z,

vi < Hp(i) mod n, for i = 0,...,2° — 1, where Hr : {0,1}* — Z;

Set precomputed signature table I" <— {’yi}?igl

sk + (2,B,I') and PK < PK'

o < FAAS-C-RSA.Sig(m, sk):

(1, - -+, ) < H2(m||z), where each {j;}F_, is interpreted as a |t|-bit integer.
uj, < Hi(ji||z) for i =1,...k

u <+ [1°_, uj, mod n and op + [[%_, B, mod n

(Ji,...,43) < Ho(m||u), where each {j;}/=, is interpreted as a b-bit integer.
s < ou - [[;L, 7j; mod n and set o < (u,s)

{0,1} < FAAS-C-RSA.Ver(m, o, PK):

L (jis. -+, 4L) < Ho(ml|u)
2: if s° = u-[[_, Hr(j;) mod n then return 1, else return 0

Lattice-Based Instantiation (FAAS-NTRU): Lattice-based signature schemes
provide a viable post-quantum security promise [16]. Among the identified lattice-
based signature schemes with secure aggregation [17,25], pqNTRUsign [25] of-
fers fast verification with a slow signature generation that requires Gaussian
sampling. Thus, FAAS-NTRU improves the security and signing efficiency of pgqN-
TRUsign by eliminating the Gaussian sampling and rejection sampling from
the online signature generation phase. The detailed description of FAAS-NTRU is
presented in Algorithm 5, that refers to pgNTRUsign signature generation al-
gorithm defined in Algorithm 1, to refrain from repetitions in the algorithm
description. Notice that expensive calculations such as Gaussian sampling and
polynomial multiplication are done in the key generation algorithm (once and
offline). At the signing phase, only polynomial additions are performed.

RSA-Based Instantiation (FAAS-RSA): We instantiate FAAS with Condensed
RSA (C-RSA) [31], which is secure under the RSA assumption in the ROM [7].
The signature generation of C-RSA requires an exponentiation over a large mod-
ulus, whereas its verification only requires an exponentiation over a small mod-
ulus (e.g., 65537). Therefore, FAAS-RSA, given in Algorithm 6, gains significant
improvements over C-RSA in terms of signature generation.

5 Security Analysis

Theorem 1. Advglj;aMA(t,qs,qh) < Advfs'g%'CMA(t’, qs,qy,) wheret’ = O(t)+
2qs (tawe + tssg +tagg) » 45 > 2qs and qu = ¢
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Proof. Please refer to Appendix B
5.1 Security and Performance of Online Operations

Side-channel attacks pose a serious threat to cryptographic implementations.
Some critical operations that are prone to side-channel attacks are given below.
Gaussian Sampling: Lattice-based cryptography offers efficient solutions with
post-quantum security promise. However, most of the efficient lattice-based sig-
nature schemes require a (high precision) sampling from a distribution, mostly
a Gaussian, which not only degrades their performance on the signer’s side but
also is highly prone to side-channel attacks. For instance, BLISS [15], as one of
the most efficient instances of such schemes, has been targeted with a number of
side-channel attacks [18,22]. Secure implementation approaches might mitigate
some of these side-channel attacks; however, they are deemed to be a highly
challenging and error-prone task [16].

Rejection Sampling: This operation is required in lattice-based signatures to
ensure signatures do not leak information about the private key. The number of
rejections can significantly decrease the performance of a scheme. For instance,
in pgNTRUsign [25], the probability that the signature lies in a desired range
is only 6%. Aside from the performance burdens, an efficient variant of this
algorithm is shown to be prone to side-channel attacks [18,22]. These attacks
showed the vulnerability of the Bernoulli-based algorithm for rejection sampling
in BLISS signature.

Ezponentiation and PRNG: There has been many attacks on the efficient expo-
nentiations and elliptic curve scalar multiplications [13,20,29]. While counter-
measures were proposed in [36], similar to the blinding technique, they incur
performance sacrifice. The security of PRNGs is highly dependent on the hard-
ware. Although one can find secure PRNGs in well-developed CPUs, the PRNG
implementations in low-end IoT processors are prone to attacks. Therefore, it
is a desirable property for a signature scheme to be deterministic (i.e., do not
require any fresh randomness in signature generation phase) [9].

FAAS instantiations do not require any of the above operations in their sign-
ing algorithm. Therefore, we believe FAAS instantiations can offer improved side-
channel resiliency and easy implementation as compared to some of their under-
lying schemes.

6 Performance Evaluation and Comparison

We first give the analytical costs of FAAS instantiations and their counterparts in
terms of computational overhead and key/signature sizes. We then outline our
experimental setup, parameters and provide a detailed experimental comparison.

6.1 Analytical Performance Analysis

Key Generation: Key generation of FAAS instantiations require the computation
of two tables, and therefore, it is more expensive than their base schemes. Specif-
ically, to generate the two tables, 2° 4 ¢ signatures of the underlying aggregate
signature schemes should be computed.

12



Signature Generation: FAAS signature generation requires signature aggregations
(k+ L) - ASig.Agg(-), message aggregations k - Agg(-) and hash calls k- H(-).

paNTRUsign [25] requires Gaussian sampling and polynomial multiplication
to generate a signature. This is reduced to polynomial additions and mapping
functions Hy in FAAS-NTRU. We present a variant of FAAS-NTRU (referred to as
FAAS-NTRU') to improve the efficiency of signature generation with the cost of
an increased private key size. Our implementation (see §6.2) showed that the
mapping function in FAAS-NTRU takes a significant time. FAAS-NTRU’ stores the
results of the mappings as the private key to eliminate this overhead. Aside from
the Gaussian sampling, pgNTRUsign also requires a rejection sampling to ensure
that signatures do not leak information about the private key distribution. Due
to rejection sampling, the signature generation of this scheme does not have a
constant time, whereas FAAS instantiations do not require any rejection sampling
during signature generation.

FAAS-RSA signing only requires a few hash calls and modular multiplications
over n, while RSA takes an exponentiation with a large exponent d.
Signature Verification and Delay: FAAS instantiations add a slight overhead to
the verification of their base schemes, which is equal to L message aggregations.
However, since message aggregation is efficient, this only incurs a slight overhead,
especially considering the overall gain in terms of the total delay due to the highly
improved signature generation.
Storage and Transmission Overhead: FAAS requires two tables to be stored at
the signer’s side, with the size of (2° 4+t + 1) - |0;| + x where o; < ASig.Sig().
Moreover, in addition to their base scheme, FAAS requires an aggregated ran-
domness which makes the total signature size |s| + |u|. Note that, in FAAS-NTRU,
the signature size changes from |s| bits to |v’| bits, since the ‘t-side’ of the vector
should be transmitted for aggregate verification in pqNTRUsign [25]. Therefore,
the signature size of FAAS-NTRU increases slightly more. The public key size of
FAAS instantiations is the same with that of their base signature schemes.

6.2 Performance Evaluation

Experimental Setup: We implemented FAAS instantiations on a laptop equipped
with Intel i7 Skylake 2.6GHz processor and 12 GB RAM. Our operating system
was Ubuntu 16.04 with gcc version 5.4.0.
Software Libraries and Implementation: We developed FAAS instantia-
tions® in C. We implemented FAAS-RSA with GMP due to its optimized modular
arithmetic operations [21]. We used the open-source pqNTRUsign implementa-
tion available in NTRU open-source project [25] to develop FAAS-NTRU. We used
Blake2 as our hash function (as in SPHINCS [8]), due to its high efficiency [6].
We ran the open-source implementations of our state-of-the-art counterparts
in our experimental setup, to draw a fair comparison. We benchmarked the
ECDSA in MIRACL library [39] and RSA in GMP library [21]. We benchmarked
Ed25519 and SPHINCS using their Supercop implementations. Lastly, we used
the open-source implementation of pgNTRUsign [25].

Swww.github.com/ozgurozmen/FAAS
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Parameters We selected parameters to achieve xk = 128-bit security.

PQ Secure Schemes: We used the suggested parameters providing x ~ 128-bit
security for pgNTRUsign [25]. More specifically, 6 = 107, N = 512, and ¢ =
216 1 1 and d = 77 to achieve x = 128. For SPHINCS, we refer the reader for
the suggested parameters to [8].

Traditional Schemes: We selected |n| = 3072 bit, |e| = 17 bit and |d| ~ 3072 bit
for RSA-based schemes. We chose |p/| = |¢'| = 256 bit for ECC-based schemes.
FAAS Parameters: FAAS parameters are selected as (b, L) = (8,32) and (k,t) =
(32,256) for lg = l; = 256. The security of these parameters depend on how many
different combinations one can derive with k-out-of-t precomputed components,

that is () = (2;) With current parameters, there are 214! different combinations
that can be created. Another important aspect is to keep the indexes secret. As
discussed in §4, this ensures that presented attack cannot be applied to FAAS.
Since we are concatenating a secret (z) in the hash call (H7), the indexes will
remain as secret. On the other hand, one can attack Hy and try to obtain an
m™ such that Hy(m||u) corresponds to the same indexes as Ho(m*||u). However,
since u is a random value derived based on secret indexes, the attacker must
conduct a target collision attack to find such m*. Since, any permutation of the
indexes would correspond to a collision on Hy, there are k! different possible
index permutations. Thus, the probability to find such an m* is QLTL With the

current parameter selection, the probability for this is 27138, Since the underlying
signature schemes’ parameters are selected to provide x = 128-bit security, all
in all, FAAS instantiations offer k = 128-bit security.

Experimental Comparison: Table 1 shows numerical evaluation and compar-
ison of FAAS instantiations and their counterparts.

FAAS instantiations offer notably faster signing over their base schemes with a
slightly slower verification. (i) FAAS-NTRU and FAAS-NTRU’ improve pgNTRUsign
[25] signature generation by 29.67x and 105.29x, respectively. (ii) For FAAS-RSA, sig-
nature generation is over 40x faster than traditional RSA.

However, FAAS instantiations require storing a private key up to 1 MB (Ta-
ble 1). With their improved side-channel resiliency and fast signature genera-
tion, FAAS instantiations can be preferred for delay-aware applications where
the signer can tolerate storing up to 1MB of private key. We observed that the
signing cost of FAAS-NTRU was dominated by the mapping functions, which map
messages to vectors. We also noticed that these vectors can be stored as a pri-
vate key component, instead of being deterministically generated during signing.
This resulted in a trade-off between the signing time and private key size, where
signing speeds up 3.55x with a 2x increased private key size (Table 1).

Recall that, SCRA [44] does not use a masking strategy, and therefore, leaks
its private key (as shown in §3). Since FAAS uses an efficient and constant-size
aggregate masking strategy, its signature generation requires only twice as much
signature aggregations and k message aggregations compared to insecure SCRA.
This results in an approximately three times slower signature generation. The
signature verification times of the both schemes are highly similar. Moreover,
since FAAS relies on an efficient message encoding (see §4), the private key of
FAAS is Lx smaller than that of SCRA. In practice, since L is selected as 32,
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this results in a significant improvement in terms of private key size. Therefore,
FAAS addresses the flaws of SCRA with a small computation overhead and a
more compact private key size.

7 Related Work

Online/offline signatures [19,33,38,43] offer fast signing since they precompute
tokens for each message to be signed in the offline phase. In the online phase,
these precomputed tokens are used to provide efficient signature generation.
However, such methods incur linear storage with respect to the number of mes-
sages to be signed. Moreover, as tokens are depleted, they should be renewed
that might introduce further overhead. Therefore, we believe they may not be
practical for real-time networks that require continuous signature generation.
There are many schemes that leverage signature aggregation to ensure au-
thentication and integrity in outsourced databases (e.g., [31,32,40]). In such ap-
plications, the signatures of a small set of messages with well-defined indexes
(e.g., signatures belonging to some row elements in a database table) are ag-
gregated to obtain compact signatures for the response of database queries [32].
Despite their merits, potential security issues that stem from the homomor-
phic properties of these signatures were pointed out [30,32]. Specifically, it has
been shown that since aggregate signatures are mutable, one can create “new
signatures” on data items that have not been explicitly queried by combining
previously obtained aggregate signatures. To prevent this, immutable signatures
(e.g., [30,32]) have been developed, which generally rely on one-time masking
and/or sentinel signatures. Recently, signature schemes that depend on secure
aggregation (e.g. RA [43] and SCRA [44]) have been proposed. However, as dis-
cussed, RA [43] is an online/offline signature with a dependency on predefined
structures in messages. In this paper, we showed that an adversary can forge
signatures on any message in SCRA by observing a small number of signatures.

8 Conclusion

We first presented an attack to SCRA signature scheme that can forge signa-
tures over any message by observing only 8161 signatures. We fully implemented
our attack and forged signatures in only a few milliseconds after a one-time 2.5-
hour preparation phase. We then proposed a new generic signature scheme (i.e.,
FAAS) that can transform any secure single-signer aggregate signature into a
signer efficient signature scheme. We proposed two instantiations of FAAS called
FAAS-RSA and FAAS-NTRU that can offer up to 42x and 105x faster signature
generation as compared to their base signature schemes, respectively. Moreover,
FAAS instantiations do not require some operations that are vulnerable to side-
channel attacks, and therefore, they provide an improved side-channel resiliency,
where FAAS-NTRU also provides a post-quantum promise.
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Appendix A Security Definitions

Definition 6. Aggregate Ezistential Unforgeability under Chosen Message At-
tack (A-EU-CMA) for a single user aggregate signature is as follows.

Expfsi[] CMA(ln) .
L <0 Sigh,, ()
(sk, PK) + Asig.Kg(1") vi < Asig.Sig(m;, sk) fori=1,...,j
(m*,0%) « ARG C)EOC) (PR o« Asig.Agg(vi,---,7;)
Ly < Ly U

We say A wins in time ¢, and after gg and ¢, queries if ((Asig.Ver

(m*, 0%, PK) A (m* N Ly, = 0)). The A-EU-CMA advantage of A is defined
as Ad”ﬂ'i}ég&CMA(t,QS,Qh) = pr[ExpfS—ilgUACMA —1].

FAAS requires that the underlying aggregate signature achieves k-element
Aggregate Extraction (AE) property [10,14], which is defined in the following.

Definition 7. For a given aggregate signature s < S'LgASk(m) computed on k

individual data items m = (mq,...,my), it is difficult to extract the individ-
ual signatures (y1,...,7) of (m1,... ,mk) provided that only s is known to the
extractor.

Initially, Boneh et al. [10] assumed that it is a hard problem to extract indi-
vidual BLS signatures given an aggregate BLS signature, which was then proven
to hold in [14] under the Computational Diffie-Hellmann assumption. We note
that C-RSA [31] and pgNTRUsign [25], which are used in FAAS instantiations,
achieve this property (see Appendix B for a discussion on pgNTRUsign).

Appendix B Proof of Theorem 5.1
Theorem 5.1 Advp“sA A(t,qs,qn) is bounded as follows.

A-EU-CMA
AdvFAASA (t7q57qh) S AdvAsiEg,B (t/7qs§’7Q;z)
where t' = O(t) + 2qs(tane + tsig + tagg) » 45 > 2qs and qg = qy-

Proof. We prove that if there exists an adversary A that can break the EU-CMA
security of FAAS signatures as in Definition 2 in time ¢, and after making ¢g and
qu signature generation and hash queries, respectively, then one can use A to
build an algorithm B that can break the A-EU-CMA security of the underlying
aggregate signature scheme ASig signatures as in Definition 6 in time ¢', and
after making ¢ and ¢}; signature generation and hash queries, respectively.
Setup: B is initiated with the public key of the underlying aggregate signature
scheme PK' where (sk’, PK') + Asig.Kg(1")

— B setups the H-Sim function to handle A ’s RO(-) queries. That is, the
cryptographic hash function H is modeled as a random oracle via H-Sim as
follows.
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o h«+ H-Sim(x,Ly,i): If x € Ly then H-Sim returns the corresponding

value h <— Ly(z). Otherwise, it returns h & {0,1}" where i € {0,1,2}
as the answer, inserts (z, h) into Ly, respectively.
— B keeps tables (Ly,L,,) to keep track of random oracle and signature
queries.

— B picks z & {0,1}*, sets PK + PK' and passes PK’ to A as the public key
of FAAS signature scheme.

_AFAAS.Sig(-),RO(:

Execute ) : B replies A’s signature and hash queries as follows.

— To reply a signature queries on m; for i € (1,...,qs) B works as follows:

1. B computes (j1,...,jk)  H-Sim(m;||z, Ly, 2) where each {j;}}_, is in-
terpreted as a |t]-bit integer, then computes (u;, ... u;, ) < H-Sim(j;||z, Ly, 1)
and u; + Agg(uy, ..., ug).

2. B queries oy, < SighA.(uy,...,ur) and stores (u;,op,) in Ly,.

3. B computes (ji,...,j;) + H-Sim(m;||u;, Ly, 0) where each {5}/, in-
terpreted as a |b|-bit integer.

4. B queries oy, < Asig.A ., (j1,...,77) and s < Asig.Agg(oy,,0m,) and
stores (Mg, oy, ) in Ly,.

5. B returns o; = (u, 8;).

— RO(-) Queries: B replies to A’s queries on Hy, H; and Hs hash functions
on input z by initiating the H-Sim(x, Ly,¢) oracle where i € {0,1,2} as
defined in §2.

Forgery of A : After at most gg signature queries, A outputs a forgery (m*, (u*, s*))
under PK. As in Definition 6, A wins if (FAAS.Ver(m*,o* = (u*,s*), PK) A
(m* N Ly, = 0)). Otherwise, A loses in the experiment. If A loses in the experi-
ment, B also loses and outputs 0.

Forgery of B : Given A’s successful forgery (m*, (u*,s*)), B works as follows.

1. First computes (ji,...,j;) « H-Sim(m*||z, Lg,2) and (u;f,,u;f) —
1 k

H-Sim(j||z, Ly, 1) and checks if u* < Agg(u;lfl*, e ,u;;) holds, it outputs 0
(this event can happen with a negligible probability sinkce it is equivalent to
breaking the hash function).

2. B then computes (j,...,53) < H-Sim(m*||u*, Ly,0) where each {j;}L,
is interpreted as a |b|-bit integer.

3. B queries Om — Sigh . (55,173 )s computes 5
< ASig.Agg(s*,Inv(0,,)) (where Inv is the inverting function based on
the mathematical structure of the underlying aggregate signature scheme).

4. B outputs (u*,5*) as a successful forgery of the underlying aggregate signa-
ture scheme ASig.

*

Success Probability Analysis: We analyze the events that are needed for B to
win the A-EU-CM A experiment as defined in Definition 6 for ASig as follows.

— Abortl: B does not fail in answering any of A’s queries.
— Forge: A wins the EU-CMA experiment for FAAS.
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— Abort2: B does not abort during the forgery of B .
— Win: B wins the A-EU-CMA experiment of Asig

B wins if all the events happens and therefore, the probability Advfs'ig%’ cMA (', 45, q3,)

decomposes as:

Pr[Win] = Pr[Abortl] - Pr[Forge| Abortl] - Pr[Abort2| Abortl A Forge]

1. Abortl: B responds to each of A’s sign queries by querying the Sigh ., (-) as
defined in Definition 6 twice. Therefore, B only aborts if it cannot receive
a valid signature from the SigA,(-) that only happens with a negligible
probability, and therefore, Pr[Abortl] = 1.

2. Forge: B only aborts if adversary A aborts and since the simulation tran-
script is indistinguishable from that of the actual scheme (based on the
discussion in the indistinguishability analysis), the probability that B does

not abort and A wins the EU-CMA experiment is Pr[Forge|Abortl] =

EU-CMA
AdUFAAs,A (t,qs,qn)-

3. Abort2: As highlighted in the Step 1 in Forgery of B , the probability that
(u*,8%) is not a valid message-signature pair is negligible. Moreover, the
probability that u* N L,, — u* happens is only 2%, since it requires breaking
the underlying hash function. Therefore, after the successful forgery by A ,
B’s forgery will also be valid and non-trivial with an overwhelming proba-
bility and it can be concluded that Pr[Abort2| Abortl A Forge] = 1.

4. Win: B wins the A-EU-CMA experiment of Asig with probability denoted
as Pr{Win] = Advfs’g%'oMA (', d%, q},)- This event only happens when all the
above events happen. This implies that the FU-CMA advantage of FAAS ad-
versary is bounded by the A-EU-CMA advantage of the underlying Asig ad-
versary.

Execution Time Analysis: B’s running time is that of A’s plus all the the time
it takes to respond A’s queries. Each A’s query requires two random number
generator calls (which its cost is denoted by taye) and two Sigh ., (-) calls. Each
Sigh; () call corresponds to a ASig.Sig(-) and a ASig.Agg(-) calls, which cost
tsig and tagg, respectively. Therefore, B’s running time is estimated as t’ = O(t)+
QQS (tRNG + tSig + tAgg)~

Transcript Indistinguishability: A’s view of the actual scheme is the public key
PK, the signatures (o1, ...,0;) for j < ¢gg and the output of the hash functions.
PK = PK'’ is an output of ASig.Kg(1%), which is identical to the actual scheme.
For the signatures {o; = (u;,s;)}jZ,, one can see that the distribution of u is
identical to the actual scheme since it is the output of the Agg(-) algorithm on
the values {u;}¥_ ; which have the same distribution as in the actual scheme,
(due to the RO(:) calls). Moreover, the distribution of {s;}{?; in the simulation
is identical to those in the actual scheme, since they are all the output of the same
ASig.Agg(-). Lastly, the output of the random oracles in the proof is simulated
with the same domain for Hy, H; and H> as in the actual schemes.

Discussion: We note that for the instantiations in §4, the underlying scheme,
C-RSA [31], is proven to be k-element secure as in Definition 7. As for the
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FAAS-NTRU instantiation [25], because of the probabilistic nature of signature
generation due to the sampling step r < x%', the aggregation of each v = vy +
(—1)’ag where u; = pr + Up, and vi = uzh mod ¢ leads to the aggregation
of r in the aggregate signature. The aggregated randomness contributes to the
hardness of the signature extraction problem since to do so, one needs to first
take out the aggregated randomness from the signature.

We also note that since we are only aggregating 64 signatures, which is much
less than even the theoretical bound mentioned in [25], FAAS-NTRU is immune to
attack on batch signatures proposed in [25].
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