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Abstract—Efficient authentication is vital for IoT applications
with stringent minimum-delay requirements (e.g., energy delivery
systems). This requirement becomes even more crucial when the
IoT devices are battery-powered, like small aerial drones, and the
efficiency of authentication directly translates to more operation
time. Although some fast authentication techniques have been
proposed, some of them might not fully meet the needs of the
emerging delay-aware IoT.

In this paper, we propose a new signature scheme called
ARIS that pushes the limits of the existing digital signatures,
wherein a commodity hardware can verify 83,333 signatures per
second. ARIS also enables the fastest signature generation along
with the lowest energy consumption and end-to-end delay among
its counterparts. These significant computational advantages
come with a larger storage requirement, which is a favorable
trade-off for some critical delay-aware applications. These de-
sirable features are achieved by harnessing message encoding
with cover-free families and a special elliptic curve based one-
way function. We prove the security of ARIS under the hardness
of the elliptic curve discrete logarithm problem in the random
oracle model. We provide an open-sourced implementation of
ARIS on commodity hardware and 8-bit AVR microcontroller
for public testing and verification.

Keywords—Authentication; Internet of Things; digital signa-
tures; delay-aware systems; applied cryptography.

I. INTRODUCTION

IoT systems often need authentication for applications that
need to verify a large volume of incoming transactions or
commands. While symmetric key primitives (e.g., HMAC)
can provide very fast authentication, they fail to offer non-
repudiation which is often vital for these applications. For
instance, Visa handles millions of transactions every day
[1]. Each transaction corresponds to multiple authentications
of the user’s request and card information on merchant’s
side, payment gateway and credit card issuer [2]. Therefore,
creating more efficient solutions can significantly reduce the
overall authentication overhead of such systems that results in
substantial financial gains.

The need for efficient authentication becomes even more
imperative for applications in which IoT devices must operate
in safety-critical settings and/or with battery limitations. For
instance, battery-powered aerial drones [3] might communi-
cate and authenticate streams of commands and measurements
with an operation center in a short period of time. A fast
and energy-efficient authentication can improve the flight and
response time of such aerial drones [4]. Other IoT applications
such as smart grid systems, which involve battery-powered
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sensors, will also benefit from fast and energy-efficient digital
signatures which minimize the authentication delay/overhead
and improve the operation time of the sensors [5]. Addi-
tionally, in vehicular networks, safety significantly hinges on
the end-to-end delay [6], and therefore attaining a signature
scheme with the lowest end-to-end delay is always desired.

A. Our Contributions

In this paper, we propose a new efficient signature scheme
called ARIS. ARIS makes use of an Elliptic Curve Discrete
Logarithm Problem (ECDLP) based one-way function and
exploits the homomorphic properties of such functions to (i)
linearly add the private key elements to attain a shorter signa-
ture and (ii) mask this addition with a one-time randomness r
to achieve a (polynomially-bounded) multiple-time signature
scheme. We outline the main properties of ARIS as below.

o Fast Verification: ARIS provides the fastest signature
verification among its counterparts. More specifically,
ARIS pushes the limits of elliptic curve (EC) based sig-
nature schemes by providing nearly 2x faster verification
as compared to its fastest counterpart [7].

o Fast Signing: The signature generation of ARIS avoids
expensive computations such as fixed-base scalar multi-
plication. Therefore, ARIS achieves 33% faster signing
as compared to its fastest counterpart [7].

o Low End-to-End Delay: Due to having the fastest
signature  generation and verification algorithms,
ARIS achieves nearly 40% lower end-to-end delay,
as compared to its fastest counterpart [7]. This might
encourage the potential adoption of ARIS for applications
that require delay-aware authentication.

o Energy Efficiency: By avoiding any computationally ex-
pensive operation in the signing and verification algo-
rithms, ARIS achieves the lowest energy consumption
as compared to its state-of-the-art efficient counterparts.
Specifically, as shown in Figure 1, the verification algo-
rithm in ARIS attains 40% lower energy consumption as
compared to its most energy efficient counterpart. This
makes ARIS potentially suitable for IoT applications
wherein the battery-powered devices authenticate teleme-
try and commands (e.g., aerial drones).

o Tunable Parameters: ARIS enjoys from a highly tunable
set of parameters. This allows ARIS to be instantiated
with different properties for different applications. For
instance, the parameters set that we considered for our
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Fig. 1: Energy consumption (mJ) for signature generation
of ARIS and its counterparts on AVR microcontroller

implementation on AVR microcontroller enjoys from a
smaller public key and private key pair, and if the same
scheme is implemented on commodity hardware, it can
enjoy from a faster signature generation (2x faster than
the scheme in [7]) by incurring a few microseconds on
the verification algorithm.

Limitations: All of the desired properties and efficiency gains
in ARIS come with the cost of larger key sizes. For instance,
in the verification efficient instantiation of ARIS (as in Table
I), which has the largest key sizes, the size of the public
key and private key could be as large as 32KB. However,
this can be decreased to 16KB and 8KB for the private key
and public key sizes (respectively) while still maintaining
the fastest signature generation and verification algorithms
among its counterparts. We have shown that even with these
parameters sizes, ARIS can be implemented on 8-bit AVR
while enjoying from the most computation and energy efficient
algorithms as shown in Figure 1, Figure 2 and Table II.

II. RELATED WORK

One-time signatures (e.g. HORS [8]) have been proposed
to offer fast signing and verification. Following HORS, many
schemes with different performance and security trade-offs
such as time valid one-time signatures (i.e., TV-HORS [9])
have been proposed. However, these schemes suffer from
security and performance penalties incurred due to the need for
time-synchronization and their low tolerance for packet loss.
Multiple-time hash-based signatures (e.g., XMSS [10]) utilize
Merkle-Tree and can sign multiple messages by keeping the
signer’s state. Recently, stateless variations (e.g., SPHINCS
[11]) have been proposed, however such schemes suffer from
large signatures (= 41 KB) and slow signing algorithms.

Recently, a polynomially-bounded multiple-time signature
scheme based on HORS design is proposed [12]. The scheme
utilizes the additive homomorphic property of the underlying
one-way function to obtain fast signatures where the signer
only aggregates private key components during the online
phase. However, despite its efficiency, it cannot meet the
stringent delay requirement of some IoT applications. Another
proposed scheme called CEDA [13] exploits the aggregatable
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Fig. 2: Energy consumption (mlJ) for signature verification
of ARIS and its counterparts on AVR microcontroller

property of RSA-based one-way permutation functions and
message encoding (as proposed in [8]) to attain efficient
signing. However, the large parameter sizes not only incur
very large public keys but also make the exponentiations
that takes place during signature generation and verification
quite costly. Therefore CEDA, while being among the most
efficient schemes, does not surpass the latest implementations
of signatures on fast elliptic curves.

In the line of proposing fast elliptic curves, Renes et al.
[14] presented an efficient instantiations of the scheme in [15]
based on Kummer surface that shows significant performance
gains as compared to its base scheme [15]. In 2016, Costello
et al. [7] proposed a new implementation of [15] based on
another elliptic curve called FourQ which shows to even
outperform the implementation in [14].

III. PRELIMINARIES

Notation. Given two primes p and ¢ we define a finite field
F, and a group Z,. We also work on E(F,) as an elliptic
curve over F,. We commonly denote P € E(F,) as a

generator of the points on the curve. x & S denotes randomly
selecting = from a set S. We denote scalars as small letters
(e.g., x) and points on curve as capital letters (e.g., P). We
denote tables/matrices as bold capital letters (e.g., P). We
define the bit-length of a variable as |z|, i.e., |z| = log, x.
Scalar and point multiplication is denoted as xP. We de-
fine two Pseudo Random Functions PRF; : {0,1}* — Z,
and PRFy : {0,1}* — {0,1}" and three hash function
Hy : {0,1}* x Z, — {0,1}", By : E(F,) — {0,1}, and
Hz : {0,1}* x {0,1}2 — {0,1}* for some integers /; and lo,
to be defined in Section VI.

Definition 1. (Elliptic Curve Discrete Logarithm Problem) For
E(F,) as an elliptic curve over a finite field Iy, given P, Q €
E(F,), the Elliptic Curve Discrete Log Problem (ECDLP) asks
to find k € Z,, if it exists, such that Q = kP.

Definition 2. A signature scheme consists of three algorithms
SGN = (Kg, Sig, Ver) defined as follows.

— (sk, pk) «+ SGN.Kg(1"): Given the security parameter
K, it outputs the private and public key pair (sk, pk).



— 0 + SGN.Sig(m,sk): Given the message m and the
signer’s private key sk, it outputs the signature o.

-{0,1} <« SGN.Ver(m,o,pk): Given a message-
signature pair (m, o), and the claimed signer’s public key
pk, it outputs a decision bit d <+ {0, 1}.

In the following definition, we define the security of signa-
ture schemes based on the methodology proposed in [16]. Af-
ter the initialization phase i.e., SGN.Kg(+), The adversary A is
given access to the signature generation oracle. A wins, if it
outputs a valid message-signature pair (that was not previously
outputted from the sign oracle) after making polynomially-
bounded number of queries.

Definition 3. Existential Unforgeability under Chosen Mes-
sage Attack (EU-CMA) experiment E:):ptéﬁ{*CMA is defined
as follows.

— (sk,pk) + SGN.Kg(1"¥)

_ (m*,a*) <_.létS(sN.s,ig;(-)(pk)

— If 1 « SGN.Ver(m*,o*, pk) and m* was not queried
to SGN.Sig(+), return 1, else, return 0.

The EMU-CMA advantage of A is defined as AdvES ™ =
Pr[BzptEY-O0MA = q),

IV. PROPOSED SCHEME

ARIS leverages the homomorphic property of its underlying
ECDLP-based one-way function, which is due to the expo-
nent product of powers property, to achieve (polynomially-
bounded) multiple-time signatures from the one-time signature
scheme proposed in [17], with more compact signatures. More
specifically, in ARIS, the private key consists of ¢ randomly
generated values x; (generated using a x bit seed z) and
the corresponding public key consists of all Y; < z; P for
ie{l,...,t}

To sign a message, the signer obtains k indexes (i1, ..., k)
by hashing the message (and a random input), uses the indexes
(i1,...,1k) to retrieve the corresponding private key elements
(ie., x;, where j € {1,...,k}) and sums them along with a
one-time randomness r. The signature consists of s and h,
which is obtained by applying the hash function Hy(-) on
R, that is computed as the output of applying the one-way
function on the one-time randomness .

Verification takes place by computing the summation of the
corresponding public key elements (i.e., ;) and their subtrac-
tion from the output of the ECDLP-based one-way function
applied on s. The verifier outputs valid if the subtraction yields
the same value of R as computed in the signature generation.
Additionally, ARIS uses the BPV method in [18] to convert an
EC scalar multiplication to only k£ (where kK = 18 or £ = 28
for our proposed parameter sets) EC point additions with the
cost of storing a small, constant-size table.

Our scheme consists of the following algorithms.
(sk, pk) <+ ARIS.Kg(1®): Given the security parameter
K, this algorithm selects parameters (t, k) such that (;) > 2~

and z & Z,, and works as follows.

1) Compute z; < PRF;(z,4) and Y; « z;P for i €
{1,...,t} and set Y < {YV;}!_,.

2) Compute r; < PRFs(z,i) and R; < r;P for i €
{1,...,t} and set R + {R;}!_,.

3) Output pk < Y and sk < (z,R) as the public key and
private key, respectively.

o < ARIS.Sig(m, sk): Given a message m € {0,1}* to be
signed, this algorithm works as follows.

1) Compute (if,...,7}) « Hi(m,z) where || < [¢| for

jed{l,... k}
2) Compute 7;r < PRF(z,i}) for j € {1,...,k}, set r +
k
Zi’:l Tir.

3) Retrieve R;: < R[i}] for j € {1,...,k}, compute R <
Sk Ry and h < Hy(R).
4) Compute (i1,...,4) < Hz(m, h) (where |i;| < |t]) and
x; < PRFy(2,1;) for j € {1,... k}.
5) Compute s <—r — Y., «; and output o < (s, h).
{0,1} + ARIS.Ver(m,o,pk): Given a message-signature
pair (m, o) and pk, this algorithm works as follows.

1) Parse (s,h) < o and compute (i1, ..
where |i;] < [t| for j € {1,...,k}.

2) Retrieve Y; < Y[i;] for j € {1,...,k}) and set ¥ <
> Yie

3) Compute R’ + sP +Y and check if Hy(R') = h holds
output valid, and invalid otherwise.

., ig) < Hz(m, h),

V. SECURITY ANALYSIS

We prove that ARIS is EU-CMA secure, as defined in
Definition 3, in the Random Oracle Model (ROM) [19]. The
proof uses the Forking Lemma [20].

Theorem 1. In the ROM, if adversary A can (qs, qu )-break
the EU-CMA security of ARIS after making qp and qg
random oracles and signature queries, respectively; then we
can build another algorithm B that runs A as a subroutine
and can solve an instance of the ECDLP (as in Definition 1).

Proof. We let Y* & E(F,) be an instance the ECDLP for

algorithm B to solve. On the input of Y* and 2 & Zp, B works
as follows.
Setup: B keeps three lists £; for i € {1,2,3} to keep track of
the outputs of the random oracles and a list £,, to store the
messages submitted to the sign oracle. B sets up the random
oracle RO-Sim(-) to handle the hash functions and generates
the users’ public keys as follows.
e Setup RO-Sim(-): B implements RO-Sim(-) to handle
queries to hash functions H;,H; and Hs, which are
modeled as random oracles, as follows.

1) ag «+ RO-Sim(m,z,Lq1): If (m,z) € L4, it returns
the corresponding value «;. Else, it returns oy i
{0,1}" as the answer and adds (m, z,a1) to L.

2) as + RO-Sim(R,L3): If R € Lo, it returns the

corresponding value as. Else, it returns oo & {01}t
as the answer and adds (R, as) to Lo.




3) ag < RO-Sim(m,h,L3): If (m,h) € Ls, it returns

. . $

the corresponding value «g. Else, it returns ag <
{0,1}4 as the answer and adds (m, h, a3) to L3.

o Setup Public Key: Given the parameters (p,q, P,t, k),
B works as follows to generate the user public key.

1) Select j & [1,t] and sets the challenge public key
element Y; < Y.

2) Generate z; & Z, for i € {1,...,t} and i # j.

3) Compute Y; < ;P for i € {1,...,t} and i # j.

4) Set sk < {@i}i_ ;»; and pk « {Y1,...,Y;}.
A’s Queries: A queries the hash functions H; for i € {1,2,3}
and the sign oracle for up to gy and gg times, respectively.
B works as follows to handle these queries.

e Hash Queries: A’s queries to hash functions Hy, Ho and
Hz are handled by the RO-Sim(-) function described
above.

o Signature Queries: 13 works as follows to answer A’s
signature query on message m. If m € L,,, B retrieves
the corresponding signature from £,, and returns to A.
Else, if m ¢ L,,, it works as follows.

1) Select s & Z, and compute S < sP.

2) Select k indexes (i1, ... i) & [1,...,t.
3) Set R+ S — Y. Vi and oy « {0,1}" and add
(R, 042) to Lo.
4) If  ((i1,...9),h) € L3 abort. Else, add
(m, h, <i1, [P Zk>) to ,Cg.
5) Output o = (s,h) to A and add (m, o) € Ly,.
A’s Forgery: Eventually, A outputs a forgery o* = (s*, h*)

on message m* and public key pk. Following the EU-CMA
definition (as in Definition 3), A only wins the game if
ARIS.Ver(m*,o*, pk) returns valid and m* was never
submitted to signature queries in the previous stage (i.e.,
m* ¢ L)

Solving the ECDLP: If A does not output a valid forgery
before making gy hash queries and ¢g signature queries,
B also fails to solve the instance of ECDLP. Otherwise, if
A outputs a valid forgery (m*,o* = (s*,h*)), using the
forking lemma, B rewinds .4 with the same random tape as
in [20], to get a second forgery (m’,o’ = (s’,h')) where,
with an overwhelming probability s* # s and h* = h'.
Based on [20, Lemma 1], H3(m*, h*) # Hz(m*, h'), therefore,
given (m*,h*) € L3 and (m*,h') € L3, B can solve a
random instance of the ECDLP problem (i.e., Y*) if one of
the following conditions hold.

e Case 1: For (if,...,i5) <« Hz(m*,h*) and
(z’l,,zﬁﬂ) = Hs(m*, k') we have j € (if,...,4}) and
G (i),

o Case 2: For (if,...,i}) < Hz(m* h*) and
(4h,...,1)) < Hg(m*,h') we have j ¢ (iF,...,7;) and
je(h,...,i).

If any of the above cases holds, B works as follows. If Case
N k k
L holds, z; <= s* =3 | xz;z D S }Cnod D.
. / *
Else, if Case 2 hold, z; - s' =37 | . xiy —s" =30 ml["]

mod p.

VI. PERFORMANCE EVALUATION

We have fully implemented ARIS on Four() curve [21]
which is known to be the fastest EC that provides 128-bit
of security. We provide implementations of ARIS on both
commodity hardware and 8-bit microcontroller to evaluate its
performance since most IoT applications are comprised of
them both (e.g., commodity hardware as servers or control
centers and microcontrollers as IoT devices connected to
sensors). We compare the performance of ARIS with state-of-
the-art digital signature schemes on both of these platforms,
in terms of computation, storage and communication. Our
implementation is open-sourced at the following link.

https://github.com/rbehnia/ARIS

A. Performance on Commodity Hardware

1) Hardware Configurations: We used a laptop equipped
with Intel i7 Skylake processor @ 2.60 GHz and 12 GB RAM.

2) Software Libraries: We implemented ARIS using the
open-sourced Four() implementation [21], that offers the
fastest EC operations, specifically EC additions that is critical
for the performance of ARIS. We used an Intel processor
as our commodity hardware and leveraged Intel intrinsics to
optimize our implementation. Specifically, we implemented
our PRF functions with Intel intrinsics (AES in counter mode).
We used blake2 as our hash function [22] due to its efficiency.

We ran the open-source implementations of our counterparts
on our hardware to compare their performance with ARIS.

3) Parameter Choice: Since we implement ARIS on Four@
curve, we use its parameters given in [21], which provide 128-
bit security. Other than the curve parameters, the choice of ¢, k
also plays a crucial role for the security of ARIS. Specifically,
k-out-of-t combinations should also provide 128-bit security
to offer this level of security overall. On the other hand, we can
tune these parameters to achieve our desired security level with
different performance trade-offs. If we increase ¢ and decrease
k, this results in a larger storage with faster computations,
and vice versa. For our commodity hardware implementation,
we choose t = 1024 and k£ = 18, that we believe offers a
reasonable trade-off between storage and computation as well
as offering the desired 128-bit security level. We set I; = 180
and [, = 256.

4) Experimental Results: We present the results of our
experiments in Table I. We observe that ARIS offers very
fast signature generation and verification. It only takes 9
microseconds to generate a signature and 12 microseconds to
verify it. This is the fastest among our counterparts, where
the closest is SchnorrQ. Furthermore, if we use the same
parameters set as for the AVR microcontroller, we can further
speed up the signature generation to 6.5 microseconds, with
the cost of a few microseconds on the verification speed.
In SchnorrQ, a scalar multiplication is required in signature
generation and a double scalar multiplication in verification.
In ARIS, EC additions are required for signature generation
and verification is done with a scalar multiplication and
EC additions. This corresponds to a 33% faster signature



TABLE I: Experimental performance comparison of ARIS and its counterparts on a commodity hardware

Scheme Sign Generation | Private Key? | Signature | Signature Verification | Public Key | End-to-End
Time (us) (KB) Size (KB) Time (us) (KB) Delay (us)
SPHINCS [11] 13458 1.06 41000 370 1.03 13828
TACHYON [12] 138 0.016 4.4 18 864 156
RSA [24] 8083 0.75 0.41 48 0.38 8131
CEDA [13] 55 0.41 0.41 115 384.38 170
ECDSA [23] 725 0.03 0.06 927 0.03 1652
Ed25519 [15] 132 0.03 0.06 335 0.03 467
Kummer [14] 23 0.03 0.06 38 0.03 61
SchnorrQ [7] 12 0.03 0.06 22 0.03 34
[ ARIS I 9 [ 3203 | 006 | 12 [ 32 [ 21 ]

t System wide parameters (e.g., p,q,cx) for each scheme are included in their corresponding codes, and private key size denote to specific private key

size.

TABLE II: Experimental performance comparison of ARIS and its counterparts on 8-bit AVR microcontroller

Scheme Signature Generation | Private Key | Signature | Signature Verification | Public Key | End-to-End
Time (s) (KB) Size (KB) Time (s) (KB) Delay (s)
ECDSA [23] 1.77 0.03 0.06 1.80 0.03 3.57
Ed25519 [15], [25] 1.45 0.03 0.06 2.06 0.03 3.51
pKummer [14], [26] 0.65 0.03 0.06 1.02 0.03 1.67
SchnorrQ [7], [27] 0.27 0.03 0.06 0.60 0.03 0.87
[ ARIS I 0.19 [ 16 [ 0.06 [ 0.37 [ 8 [ 0.56 |

generation and 83% faster verification for ARIS, compared
to SchnorrQ. Therefore, we believe ARIS can be an ideal
alternative for real-time applications.

ARIS signature size is the same with its EC-based counter-
parts [23], [15], [14], [7] , that is significantly lower than its
RSA-based and hash-based counterparts [24], [13], [11]. On
the other hand, ARIS comes with a larger private and public
key, that is 32 KB.

B. Performance on 8-bit AVR

1) Hardware Configurations: We used an 8-bit AVR AT-
mega 2560 microcontroller as our IoT device to implement
ARIS. ATmega 2560 is equipped with 256 KB flash memory,
8 KB SRAM and 4 KB EEPROM, with a maximum clock
frequency of 16 MHz. ATmega 2560 is extensively used in
practice for IoT applications (especially in medical implanta-
bles) due to its energy efficiency [28].

2) Software Libraries: We implemented ARIS on AT-
mega 2560 using the 8-bit AVR implementation of Four@
curve [27], that provides the basic EC operations and a
blake2 hash function. We implemented our scheme with IAR
embedded workbench and used its cycle-accurate simulator for
our benchmarks.

As for our counterparts, we used their open-sourced imple-
mentations [25], [26], [27], [29]. Note that we only compare
ARIS with its EC-based counterparts, due to their commu-
nication and storage efficiency. Moreover, resource-contrained
processors such as ATmega 2560 may not be suitable for heavy
computations (e.g., exponentiation with 3072-bit numbers in
RSA [24] and CEDA [13]).

3) Parameter Choice: As mentioned, ARIS can be instan-
tiated with different ¢, k£ values that offers a trade-off between
storage and computation. Since ATmega 2560 is a storage-
limited device, we select our parameters as t = 256 and
k = 28 to offer storage efficiency. Moreover, this allows

us to store the private components (x; and r;), instead of
deterministically generating them at signature generation, and
still have a tolerable storage even for an 8-bit microcontroller.
We also set [; < 224 and [y < 256.

4) Experimental Results: Table Il shows the performance
of ARIS compared with its counterparts. The speed improve-
ments of ARIS can also be observed for ATmega 2560.
ARIS is 42% faster in signature generation and 76% faster
in signature verification compared to its closest counterpart
[7]. This can translate into a significant practical difference
when considered real-time applications that require fast au-
thentication. Note that these benchmarks are obtained with
a more “storage friendly” parameter choice, and can be
further accelerated with different parameter choices where the
microcontroller is not memory-constraint.

One may notice that due to our parameter choice, the key
sizes in our 8-bit microcontroller implementation are smaller.
As aforementioned, this is because we select a different param-
eter set for ¢, k. Moreover, we store the private components as
well, that correspond the 8 KB of the signer storage. Since we
store these keys on the flash memory of ATmega 2560, they
only correspond to 6% and 3% of the total memory, for private
key and public key, respectively. Therefore, although we have
significantly larger keys than our EC-based counterparts, it is
still feasible to store them even on highly resource-constrained
8-bit microcontrollers.

5) Energy Efficiency: 1t is highly desirable to minimize
the energy consumption of cryptographic primitives in IoT
applications to offer a longer battery life. For microcontrollers,
energy consumption of the device can be measured with the
formula £ =V % [ xt, where V is voltage, [ is current and ¢
is the computation time [30]. Considering that the voltage and
the current of a microcontroller are constant when the device
is active, the energy consumption linearly increases with the
computation time. Since ARIS offers the fastest signature



generation and verification, energy consumption of ARIS is
the lowest among its counterparts, and therefore would be
preferred in applications that require longer battery life.

VII. CONCLUSION

In this paper, we presented a new efficient signature scheme
to meet the strict minimum delay requirements of some
real-time IoT systems. This is achieved by harnessing the
homomorphic property of the underlying ECDLP-based one-
way function and the precomputation technique proposed
in [18]. Our experimental results showed that the proposed
scheme outperforms its state-of-the-art counterparts in signing
and verification speed as well as in energy efficiency. The
proposed scheme is shown to be secure, in the Random Oracle
Model, under the hardness of the ECDLP. We open-sourced
our implementation to enable public testing and verification.
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