
1

Ultra Lightweight Multiple-time
Digital Signature for the Internet of Things Devices

Attila A. Yavuz, Member, IEEE, Muslum Ozgur Ozmen

Abstract—Digital signatures are basic cryptographic tools to
provide authentication and integrity in the emerging ubiquitous
systems in which resource-constrained devices are expected to op-
erate securely and efficiently. However, existing digital signatures
might not be fully practical for such resource-constrained devices
(e.g., medical implants) that have energy limitations. Some other
computationally efficient alternatives (e.g., one-time/multiple-
time signatures) may introduce high memory and/or commu-
nication overhead due to large private key and signature sizes.

In this paper, our contributions are two-fold: First, we de-
velop a new lightweight multiple-time digital signature scheme
called Signer Efficient Multiple-time Elliptic Curve Signature
(SEMECS), which is suitable for resource-constrained embedded
devices. SEMECS achieves optimal signature and private key
sizes for an EC-based signature without requiring any EC
operation (e.g., EC scalar multiplication or addition) at the
signer. We prove SEMECS is secure (in random oracle model)
with a tight security reduction. Second, we fully implemented
SEMECS on 8-bit AVR microprocessor with a comprehensive
energy consumption analysis and comparison. Our experiments
confirm up to 19× less battery-consumption for SEMECS as
compared to its fastest (full-time) counterpart, SchnorrQ, while
offering significant performance advantages over its multiple-
time counterparts in various fronts. We open-source our imple-
mentation for public testing and adoption.

Index Terms—Applied cryptography; Digital signatures;
Lightweight cryptography; Internet of Things Security; Embed-
ded device security.

I. INTRODUCTION

Resource-constrained devices (e.g., low-end sensors, smart-
cards, RFID-tags) play an important role in emerging ubiqui-
tous systems like Internet of Things and Systems (IoTS) and
Wireless Sensor Networks (WSNs). Using service oriented ar-
chitecture (SOA) further broadens the horizons of IoTS, open-
ing up many applications where resource-constrained devices
can participate as service consumers and/or providers. [1]–[3]
It is vital for such systems to operate securely and efficiently.
Hence, it is necessary to provide authentication and integrity
for resource-constrained devices. For instance, guaranteeing
the integrity and authentication of financial transactions in
a smart-card or RFID-tag is critical for any commercial
application. However, this is a challenging task due to the
memory, processor, bandwidth and battery limitations of these
devices.

Attila A. Yavuz and Muslum Ozgur Ozmen are with the Department of
Computer Science and Engineering, University of South Florida, Tampa, FL,
USA.
E-mail: attilaayavuz@usf.edu, ozmen@mail.usf.edu

Part of this work is completed when Attila A. Yavuz and Muslum Ozgur
Ozmen were with the Department of Electrical Engineering and Computer
Science, Oregon State University, Corvallis, OR, USA.

It is also important to be able to publicly verify the
authentication tags produced by resource-constrained devices.
This enables any resourceful device (e.g., a laptop or a base
station) to publicly audit transactions and system status.

Symmetric cryptography primitives such as Message Au-
thentication Codes (MACs) are computationally efficient and
therefore are preferred for resource-constrained devices in
small-scale systems. However, such primitives are not scalable
for large-distributed systems and are not publicly verifiable [4],
[5]. They also cannot achieve the non-repudiation property,
which is necessary for various applications (e.g., transportation
payment systems, medical implants, logical/physical access
with tiny devices) that may need public auditing.

Digital signatures rely on public key infrastructures for the
signature verification [6], [7]. They are publicly verifiable,
scalable for large systems and achieve non-repudiation. There-
fore, they are highly useful authentication tools for security-
critical applications such as medical devices, payment systems,
secure auditing in embedded devices and security systems
(e.g., building access control). However, existing digital sig-
natures also have some limitations that might prevent them to
be fully practical for highly resource-constrained devices.

In the following, we first briefly discuss some promi-
nent digital signature alternatives and their limitations when
employed on resource-limited devices. We then present our
contributions by summarizing the desirable properties of our
scheme, followed by its limitations.

A. Limitations of Signer Efficient Signatures

The existing digital signature alternatives do not offer small
private key size, small signature size, and high efficiency at
the signer, at the same time. We elaborate on some of these
alternatives below.
Traditional Signatures: RSA [8], one of the most well-
known signature schemes, is computationally efficient at the
verifier’s side. However, it requires an expensive operation1 at
the signer’s side and have large key/signature sizes. Hence,
it may not be suitable for resource-constrained embedded
devices (e.g., medical implants).

Elliptic Curve (EC) based schemes are highly popular on
such devices due to their small key and signature sizes,
along with better efficiency compared to RSA [11]–[13]. Var-
ious different curves, and signature schemes on these curves
have been proposed, which offer improved computational
efficiency and security [14]–[18]. Some of these curves are

1We refer to operations such as modular exponentiation [6], elliptic
curve scalar multiplication [9] or pairing [10] as expensive operations.



also implemented in embedded devices [19]–[21] such as 8-bit
AVR microprocessors. However, these signature schemes still
require an expensive operation (i.e., EC scalar multiplication)
at the signer’s side. This requirement may hinder an efficient
adoption of these schemes to low-end microprocessors with
critical battery limitations (e.g., medical implants).
Online/Offline Signatures: Many techniques have been pro-
posed to improve the efficiency of traditional signatures.
These include online/offline signatures that eliminate expen-
sive operations in signature generation via pre-computed to-
kens generated offline [22], [23]. Although these schemes are
computationally efficient, they incur large storage overhead to
the signer. Later, Shamir et al. in [24] proposed an improved
online/offline signature that is more space efficient. However,
by nature, these schemes require linear storage with respect
to the number of signatures that can be generated, which is
impractical for storage-limited signers.
One-time Signatures (OTSs): These schemes rely on one-
way functions without trapdoors and offer very efficient com-
putations [25]–[27]. Specifically, Lamport [25] proposed the
first one-time signature scheme, where for each bit of the hash
of the message, two hash outputs were stored as the public key
that resulted in a very large size. Then, in HORS signature
scheme [26], special message encoding techniques have been
considered to significantly reduce the public while preserving
the computational efficiency. Hash-based schemes also offer
post-quantum security that is lacked in most of the traditional
signatures. On the other hand, they have a large signature
and very large public key sizes. Some EC-based OTSs also
exist [28] that offer small signature size, but with a trade-off
between private key size and signature generation efficiency.
Moreover, in OTSs, a private/public key pair can be used only
once. This may require costly private key generations at the
resource-limited device for each message to be signed.
Multiple-time Signatures: For these schemes, after K signa-
tures, the key pair must be re-generated. Therefore, we refer
to these schemes as K-time signatures. Inherently, OTSs (e.g.,
Lamport [25], HORS [26]) can be used as K-time signatures
if K key pairs are generated at the key generation phase. Some
hash-based multiple-time signatures were proposed [29]–[32]
based on HORS signature [26]. However, these schemes either
suffer from large key/signature sizes [29]–[31], or provide
security only for a short-limited amount of time [32]. Some
stateless hash-based schemes were also proposed [33], ex-
tending these multiple-time signatures to full-time (traditional)
signature schemes. Although it is shown that they can be
implemented on resource-constrained devices [34], it is highly
computationally costly at the signer’s side, and it also requires
the transmission of large signatures (e.g., up to 41 KB).

Our proposed scheme also falls into this category and inher-
its some of the limitations of K-time signatures (e.g., after K
signatures, the key must be re-generated). However, due to the
unique construction of our scheme that leverages Fiat-Shamir
transform with compact and efficient elliptic curves, it offers
the highest signer efficiency among all the aforementioned
K-time signatures (including the use of OTSs as K-time
signatures). For instance, as shown in Table I, our scheme
outperforms HORS [26] (most efficient counterpart) 6× at

signature generation and 12× at signature size on an 8-bit
microprocessor.
Lattice-based and Code-based Signatures: The main ad-
vantage of these schemes is post-quantum security. Al-
though some of these schemes offer computational efficiency,
they are still relatively computationally expensive (e.g., re-
quire heavy operations such as Gaussian Sampling [35])
and key/signature sizes might be prohibitive for resource-
constrained devices [35]–[39]. Since these schemes provide
long-term security (security against quantum attackers), they
might be ideal for resource-constrained devices in the future,
if the sizes are reduced.
There is a need for a signer efficient digital signature that
prioritizes the signer efficiency by achieving optimal private
key and signature sizes without requiring any expensive
operations for the signature generation.

B. Our Contribution

In this paper, we create a new multiple-time signature
scheme, which we refer to as Signer Efficient Multiple-time
Elliptic Curve Signature (SEMECS). We summarize some
desirable properties of SEMECS below. A detailed performance
analysis is given in Section V.
• High Computation & Energy Efficiency at the Signer:

SEMECS only requires two hash function calls, a single
modular multiplication, and a modular subtraction to
generate a signature. Therefore, its cost is even comparable
to symmetric hash-based MACs that are not suitable
for large and distributed systems. SEMECS offers very
fast signature generation, (1.23 microseconds on an i7
Skylake processor). On a resource-constrained processor,
this translates into high energy efficiency. Our experiments
confirmed that SEMECS signature generation has 6× lower
energy consumption compared to its closest counterpart
and 118× lower than Ed25519 [17], [19] on 8-bit AVR
microprocessor (see Table I).
• Compact Private Key & Signature: SEMECS only re-

quires storing a 32-byte private key (that can be derived
from a 16-byte seed with a PRF) and incurs an additional
32 Bytes to the message as the signature, for κ = 128-
bit security level. SEMECS has two signature components
of 32 Bytes, where one of them is used to recover the
first 32 Bytes of the message. Therefore, the transmission
overhead is just 32 Bytes, that is optimal for EC-based digital
signatures (as in BLS [12]). Thus, SEMECS is also lightweight
in terms of signer storage and transmission. Due to its small
signature size, SEMECS is also very energy efficient in terms
of communication, in addition to its high energy efficiency in
signer computation. Moreover, since SEMECS does not require
any EC operation at the signer’s side, the signer does not need
to store any curve parameters and codes. This is specifically
important for resource-constrained devices that have limited
space for the code (e.g., AVR ATmega 2560 has 256 KB).
• Open-source Implementation and Comprehensive Analysis:

We fully implemented SEMECS on a laptop and the signature
generation of SEMECS on an 8-bit AVR microprocessor. We
open-sourced all of our implementations for broad testing,

2



TABLE I: Signer-side performance of SEMECS and its counterparts on 8-bit AVR microprocessor

Scheme K
Signature Generation

Time (CPU cycle)
Private Key

(Byte)
Signature
Size (Byte)

Computation energy
(mJ)

Communication energy
(µJ)

Full-time signatures
SPHINCS [33] 2κ 2 681 600 389 1088 41000 16760.00 6115.56
ECDSA [11] 2κ 48 188 992 32 64 301.18 9.55

Ed25519 [17], [19] 2κ 23 211 611 32 64 145.07 9.55
µKummer [16], [20] 2κ 10 404 033 32 64 65.03 9.55
SchnorrQ [18], [21] 2κ 3 740 000 32 64 23.38 9.55

K-time signatures

HORS [26] 1 1 180 618 16 384 7.38 57.28
217

HORSE [30] 1 1 180 618 16384 384 7.38 57.28
217 19 644 106 278528 122.78

XMSS [31] 1 10 233 600 16 2080 63.96 310.25
217 101 509 850 2592 634.44 386.62

Zaverucha et al. [28] 1 6 250 660 16 48 39.07 7.16
217

SEMECS
1 195 776 32 32 1.22 4.77

217

The cost of hash-based schemes are estimated based on the cost of a single hash operation.

benchmarking and adoption purposes. We also analyzed and
compared the efficiency of SEMECS with a wide variety of
efficient signature schemes (see Section V) on both platforms.
• Provable Security with a Tight Reduction: We prove that

SEMECS is existentially unforgeable against chosen-message
attacks in Random Oracle Model (ROM) [40]. In Section IV,
we show that SEMECS has a tight reduction to the Discrete
Logarithm Problem (DLP), without the need for the forking
lemma [41], as Fiat-Shamir type signatures do. In our security
analysis, we exploit the fact that SEMECS is a multiple-time
signature, and therefore it has higher security for a limited
number of queries (as the nature of multiple-time signatures).

All the above properties show that SEMECS is potentially
an ideal alternative to provide authentication and integrity for
resource-constrained devices.
Differences of this work with its preliminary version
appeared in WiSec 13’ [42]: (i) In this work, we developed
a new signature scheme that we refer to as SEMECS that
reduces the signature/private key size of our preliminary
scheme ETA [42], and thereby achieves optimal signature
and key sizes for an EC-based signature scheme. Moreover,
SEMECS generates private key components deterministically,
and therefore offers improved security against weak pseudo-
random number generators. (ii) In this work, we provided a
full-fledged open-source implementation of SEMECS on 8-
bit AVR ATmega 2560 microprocessor with a comprehen-
sive energy consumption analysis and comparison. We also
gave comprehensive performance comparison of SEMECS with
some of the most recent and efficient digital signatures (in-
cluding but not limited to Ed25519 [17], SchnorrQ [15],
[18], SPHINCS [33], XMSS [31], HORS [26]). (iii) In this
work, we provided an improved security proof that achieves
a significantly tighter security reduction compared to that of
ETA.
Limitations: Despite all its merits, SEMECS also has its
limitations that are inherent to multiple-time signatures: (i) It
can sign up to a pre-determined K messages, but then needs
to be bootstrapped. (ii) It is a stateful signature scheme. (iii)
In SEMECS, the public key size is linear with respect to K.
This requires verifiers to be storage resourceful.

Potential Use-cases: Remark that for our envisioned appli-
cations, the signer computational/storage/communication effi-
ciency is much more important than the verifier storage effi-
ciency alone. Furthermore, these applications permit verifiers
to be storage resourceful (e.g., a cloud server for medical
systems, base stations in WSNs, control centers in cyber-
physical systems). Similarly, it is feasible to perform the key
generation phase offline in these applications. In the following,
we discuss some of the potential applications for SEMECS.

Medical implants are equipped with resource-constrained
microprocessors (e.g., 8-bit AVR [43], as we used in our
experiments) that need to report sensitive data to doctors,
hospital servers, etc. Symmetric key authentication (MACs)
is usually preferred for these systems. However, these mech-
anisms lack non-repudiation, and public verification that are
highly desirable for some medical systems, because of digital
forensics and legal issues [44], [45]. Thus, there is a need for
low-cost public key primitives (e.g., authentication) for these
systems [46]. SEMECS can be considered as an ideal alter-
native for medical implants due to its signer efficiency. Our
experiments on 8-bit AVR showed that SEMECS consumes less
energy compared to its counterparts. In practice, this translates
into a longer battery life that is critical for medical implants.

Additionally, SEMECS is highly suitable to provide authen-
tication for SOA based IoT systems. SOA based IoT infras-
tructures are comprised of networked, resource-constrained de-
vices [1], [2] that require efficient authentication mechanisms.
Some essential applications of SOA based IoT includes but
not limited to e-health, smart product management and smart
events for emergency management [2], [47], [48]. Similarly
with medical implants, non-repudiation and public verification
are critical for these applications. Moreover, a server (or a
broker - i.e., coordinators that operate between the server
and the devices) is usually utilized the connected resource-
constrained devices to provide these services [3]. Servers
and brokers are usually equipped with higher-end processors,
compared to the IoT devices, that has expandable memories.
Therefore, in such SOA based IoT applications, we believe that
the server or broker can tolerate the storage of a larger public
key in exchange of a significantly higher signer efficiency

3



that translates into longer battery life for resource-constrained
devices.

Many secure WSN protocols such as clone detection [49],
secure code dissemination [50] and secure logging [51] include
a low-end signer that reports to resourceful servers, and base
stations. SEMECS can substantially increase the lifespan of
WSNs by serving as the authentication mechanism for such
protocols. Moreover, SEMECS can be deployed in some token-
based logical/physical access control systems.

II. PRELIMINARIES

In this section, we first give our notation and definitions.
We then describe our system and security models.

A. Definitions and Algorithms

Notation. || denotes the concatenation operation. |r| denotes
the bit length of variable r. r $← S denotes that variable r
is randomly and uniformly selected from set S. We denote
by {0, 1}∗ the set of binary strings of any finite length.
AO0,...,Oi(·) denotes algorithm A is provided with oracles
O0, . . . ,Oi. For example, ASGN .Sigsk (·) denotes that algo-
rithm A is provided with a signing oracle of signature scheme
SGN under a private key sk . Hi : {0, 1}∗ → Z∗q , i ∈ {0, 1}
are distinct Full Domain Hash Functions [52], where q is a
large prime.

Definition 1 A K-time signature scheme SGN is comprised of
a tuple of three algorithms (Kg , Sig ,Ver) defined as follows:
- (sk ,PK ) ← SGN.Kg(1κ,K),: The key generation algo-

rithm takes the security parameter 1κ and the maximum
number of messages to be signed K as the input. It returns
a private/public key pair (sk0,PK ) as the output.

- σj ← SGN.Sig(sk j ,Mj): The signature generation algo-
rithm takes the private key sk j , 0 ≤ j ≤ K − 1 and a
message Mj to be signed as the input. It returns a signature
σj on Mj as the output, and then updates sk j to sk j+1.

- b ← SGN.Ver(PK ,Mj , σj): The signature verification
algorithm takes PK , message Mj and its corresponding
signature σj , 0 ≤ j ≤ K − 1 as the input. It returns a
bit b, with b = 1 meaning valid, and b = 0 otherwise.

SEMECS, and its preliminary version ETA in [42], are
inspired from the Schnorr signature scheme [13], which is
described in the algorithm below.

B. Models

We give our system and security models as below.
System Model: There are two types of entities in the system.

1) Resource-constrained Signers: Signers are storage, com-
putational, bandwidth and power limited devices (e.g.,
medical implants, wireless sensors, RFID-tags). The ob-
jective of SEMECS is to minimize the cryptographic
overhead of signers.

2) Resourceful Verifiers: Storage resourceful verifiers (e.g.,
a laptop, base station) that can be any (untrusted) entity.

We assume that the key generation/distribution is performed
offline before deployment. For instance, a key generation

Algorithm 1 Schnorr Signature Scheme

(y, Y )← Schnorr.Kg(1κ):
1: Generate large primes q and p > q such that q|(p− 1).
2: Select a generator α of the subgroup G of order q in Z∗p.

3: return a private/public key pair (y
$← Z∗q , Y ← αy mod

p) and system-wide parameter I ← (q, p, α) as the output.

(s, e)← Schnorr.Sig(y,M): Given y, compute signa-
ture σ on a message M as follows:

1: R← αr mod p.
2: e← H0(M ||R).
3: s← (r − e · y) mod q, where r $← Z∗q .
4: return σ = (s, e).

b← Schnorr.Ver(Y,M, 〈s, e〉):
1: R′ ← Y eαs mod p.
2: if e = H0(M ||R′) then return b = 1
3: else return b = 0

center can generate private/public keys and distribute them
to each entity in the system. Otherwise, the signer can also
perform the key generation, before deployment, when it does
not have any battery limitations.
Security Model: A standard security notion for a signature
scheme is Existential Unforgeability under Chosen Message
Attack (EU -CMA) [53]. We define K-time EU-CMA ex-
periment (in random oracle model [40]) for SGN as be-
low. In this experiment, Adversary A is provided with two
oracles: (i) A random oracle RO(.) from which A can
request the hash of any message M of their choice up to
(polynomially unbounded) K ′ messages. (ii) A signing oracle
SGN.Sigsk(.) from which A can request a SGN signature on
any message M of their choice up to (pre-determined constant)
K messages.

Definition 2 EU-CMA experiment for SGN is as follows:
Experiment ExptEU -CMA

SGN (A)
(sk0, PK)← SGN.Kg(1κ,K),
(M∗, σ∗)← ARO(.),SGN.Sigsk(.)(PK),
If SGN.Ver(PK,M∗, σ∗) = 1 and M∗ was not queried to
SGN.Sig, return 1, else, return 0.
The EU-CMA-advantage of A is defined as

AdvEU -CMA
SGN (A) = Pr[ExptEU -CMA

SGN (A) = 1].

The EU-CMA-advantage of SGN is defined as

AdvEU -CMA
SGN (t,K ′,K) = max

A
{AdvEU -CMA

SGN (A)},

where the maximum is over all A having time complexity t,
making at most K ′ queries to RO(.) and at most K queries
to SGN.

The security of SEMECS relies on the intractability of
Discrete Logarithm Problem (DLP) [53], which is defined
below.

4



Definition 3 Given a cyclic group G of order prime q and a
generator α of G, let A be an algorithm that returns an element
of Z∗q . Consider the following experiment:

Experiment ExptDL
G (A)

y
$← Z∗q ,

Y ← αy mod p,
y′ ← A(Y ),
If αy

′
mod p = Y , return 1, else, return 0.

The DL-advantage of A in this experiment is defined as

AdvDL
G (A) = Pr[ExptDL

G (A) = 1].

The DL-advantage of (G,α) in this experiment is defined as

AdvDL
G (t) = max

A
{AdvDL

G (A)},

where the maximum is over all A having time complexity t.

III. THE PROPOSED SCHEME

Some DLP-based signatures (e.g., ECDSA [22],
Schnorr [13]) can eliminate expensive operations from
the signature generation by pre-computing the component
R = αr mod p for a random r

$← Z∗q during the key
generation. The signer stores (r,R) and then use them to
compute signatures during the online phase, without any
expensive operation. However, this approach incurs linear
storage to the signer’s side (i.e., one token per message).

It is highly desirable to construct a multiple-time signature
scheme, which has constant signer storage and yet avoids
expensive operations. However, this is a challenging task due
to the nature of the aforementioned schemes. That is, in these
schemes, the token R is directly used during the signature
computation and therefore its storage cannot be trivially off-
loaded to the verifier’s side. This forces the signer either to
store or to compute a token for each message.

A. Preliminary Scheme: Efficient and Tiny Authentication

In our preliminary work Efficient and Tiny Authentication
(ETA) [42], we designed a signature scheme that can shift
the storage of ephemeral public keys to the verifier’s side
without disrupting the security and verifiability of signatures.
We outline our preliminary scheme ETA in Algorithm 2 for
the sake of completeness.

In the following, we focus on our newly proposed
SEMECS digital signature scheme and also highlight the
differences between ETA and our improved scheme SEMECS.

B. Signer Efficient Multiple-time Elliptic Curve Signature
(SEMECS)

We first discuss the challenges of eliminating ephemeral
keys from the signature generation in Schnorr-like signatures,
which is an important step to achieve signer optimal elliptic
curve signatures. We then explain our strategies in SEMECS to-
wards addressing these challenges.

Algorithm 2 Efficient and Tiny Authentication (ETA) Scheme

(sk0,PK , I )← ETA.Kg(1κ,K):
1: (y, Y, 〈q, p, α〉)← Schnorr.Kg(1κ).
2: r0

$← Z∗q
3: for j = 0, . . . ,K − 1 do
4: Rj ← αrj mod p.
5: rj+1 ← H(rj).
6: Generate verification tokens as vj ← H(Rj).
7: return The private and public key, as sk0 ← (y, r0) and

PK ← (Y,−→v = v0, . . . , vK−1), respectively.

σj ← ETA.Sig(sk j ,Mj): Given sk j = (y, rj), compute
signature σj on a message Mj as follows:

1: xj
$← {0, 1}κ.

2: ej ← H(Mj ||j||xj).
3: sj ← rj − ej · y mod q.
4: The signature σj on Mj is σj ← (sj , xj , j).
5: Update rj as rj+1 ← H(rj), erase rj (to save memory).
6: if j > K−1 then return ⊥ (i.e., the limit on the number

of signatures is exceed).
7: else return σj

b← ETA.Ver(PK ,Mj , σj): If j ≥ K then return b = 0
and abort. Otherwise, continue as following:

1: R′j ← Y H(Mj ||j||xj) · αsj .
2: if vj = H(R′j) then return b = 1
3: else return b = 0

1) Challenges of Removing Ephemeral Key from Signature
Generation: In Schnorr-like signatures [11], [17], [18], an
expensive operation is required to compute the ephemeral key
(R = αr mod p, r

$← Z∗q). This ephemeral key is an essential
part of the signature generation and proof of security, and
therefore it is a challenging task to remove it from signing
without disrupting the security. For example, R is committed
to the signature as s ← r − H(M ||R) · y mod q in Schnorr
signatures [13]. The ephemeral key enables programming of
random oracle and also used in Forking Lemma [41] in the
security proof of Schnorr-like signatures [17], [18].

2) Eliminating Expensive Operations from Signature Gen-
eration: We first pre-compute K ephemeral keys as rj ←
H0(y||j), Rj ← αrj mod p and store their hash commitments
at the verifier as βj ← H1(Rj) for j = 0, . . . ,K−1 (Steps 3-7
in Algorithm 3 SEMECS.Kg). This permits the derivation of ri
to be used in signature sj deterministically without requiring
any expensive operation, which will later to be verified by its
corresponding βj . Since Rj is not required in the signature
generation, we avoid expensive operations, but only rely on a
few hash calls and a single modular addition/multiplication.

Our next step is to ensure that the correctness and provable
security are still achieved in the absence of the ephemeral
key in the signature generation. In ETA [42], we mimicked
the role of Rj in ej by replacing it with a random num-
ber xj ← {0, 1}κ as ej ← H(Mj ||j||xj) (Steps 1-2 in
Algorithm 2 ETA.Sig). However, this requires the explicit

5



Algorithm 3 Signer Efficient Multiple-time Elliptic Curve
Signature (SEMECS) Scheme

(sk0,PK )← SEMECS.Kg(1κ,K):
1: (y, Y, 〈q, p, α〉)← Schnorr.Kg(1κ).
2: for j = 0, . . . ,K − 1 do
3: rj ← H0(y||j).
4: Rj ← αrj mod p.
5: zj ← H1(y||j).
6: γj ← zj ⊕H0(Rj).
7: βj ← H1(Rj).
8: return sk0 ← y and PK ← (Y, α,−→v = (〈γ0, β0〉, . . . ,
〈γK−1, βK−1〉,K).

σ ← SEMECS.Sig(sk j ,Mj): Given sk j = (y, j) com-
pute the signature as follows:

1: if |Mj | < |q| then set (M j =Mj , M̃j = 0),
2: else split Mj into two as (M j ||M̃j) such that |M j | = |q|.
3: rj ← H0(y||j).
4: zj ← H1(y||j).
5: cj ←M j ⊕ zj .
6: ej ← H0(cj ||M̃j).
7: sj ← rj − ej · y mod q.
8: if j > K−1 then return ⊥ (i.e., the limit on the number

of signatures is exceeded).
9: else return The signature σj on Mj is σj ← (sj , cj),

where the sender transmits (σj , M̃j) to the receivers.

b← SEMECS.Ver(PK , M̃j , σj): If |cj | > |q| or j ≥
K then SEMECS.Ver return 0 and aborts. Otherwise,
continue as following:

1: R′j ← Y H0(cj ||M̃j) · αsj mod p.
2: if βj 6= H1(R

′
j) then return b = 0.

3: else return b = 1 and recover the message Mj as follows:
4: M j ← γj ⊕H0(R

′
j)⊕ cj .

5: if M̃j = 0 then set Mj =M j .
6: else set Mj = (M j ||M̃j).

transmission of an extra κ-bit randomness and therefore is
not optimal in terms of signature size. Moreover, this random
number must be generated online, so requires a strong random
number generator to be present in a low-end device.

In the following (Section III-B3), we first outline how
SEMECS improves the signature generation of ETA by reduc-
ing the private key and signature sizes. We then elaborate on
how SEMECS achieves the correctness and a tight security
reduction in Section III-B4.

3) Achieving Compact Key and Signature Sizes: Our idea
is to embed randomness into the message itself by creating a
“randomized message recovery” strategy, thereby avoiding an
explicit transmission of randomness.

We first split message Mj into two pieces as (M j ||M̃j) such
that |M j | = |q| and M̃j is the rest of message. If |Mj | < |q|
then we simply set M j = Mj and M̃j = 0 (Steps 1-2 in
Algorithm 3 SEMECS.Sig). We then deterministically derive

zj ← H1(y||j), generate a randomness as cj ←M j ⊕ zj and
compute the hash of the message as ej ← H0(cj ||M̃j). Finally,
we compute sj ← rj − ej · y mod q (Step 7 in Algorithm 3
SEMECS.Sig).

Our signature σj on Mj is σj = (sj , cj), where the sender
transmits (σj , M̃j) to the receivers. Remark that, we only
transmit cj that carries |q|-bit part of the message since cj ←
M j ⊕ zj . Therefore, the only component of the signature that
introduces cryptographic transmission overhead is sj ∈ Z∗q ,
which is optimal for an elliptic curve based signature scheme2.
This is as small as some of the most compact signatures (e.g.,
BLS [12]) but without requiring expensive operations at the
signer’s side. Morever, it is also smaller than SchnorrQ [15],
[18] and ETA [42] that transmit ej and xj , respectively, as an
extra information on top of sj .
SEMECS achieves a small private key y ∈ Z∗q , which is

identical to that of traditional Schnorr-like signatures [11],
[17], [18] and only a half of the size that of ETA’s private
key. The small and constant private key size is achieved by
generating the random values with a deterministic function
(e.g., a hash function) just using a seed value (y). Therefore,
the signer doesn’t need to store all the random values generated
at key generation, but only stores the seed and deterministi-
cally derives all random values from it (SEMECS.Sig Step
3-4). Moreover, unlike ETA, SEMECS signature generation
does not require any fresh randomness and therefore avoids
potential hurdles of weak pseudo-random number generators
on the signer device [54], [55].

4) Signature Verification and Tight Security Reduction:
The verifier first checks the range of randomness cj ∈ Z∗q
and the limit on number of permitted signatures. The verifier
then computes R′j ← Y H(cj ||M̃j) · αsj and checks whether it
matches with βj = H1(R

′
j) ∈ PK . If it does not hold, the

verifier returns b = 0. Otherwise, the verifier returns b = 1 and
uses auxiliary value γj to recover the q-bit piece of message
M j from cj as M j ← γj ⊕H0(R

′
j)⊕ cj forming the original

message as Mj = (M j ||M̃j).
Note that the verifier should either know which public key

component (βj) it should use at SEMECS.Ver Step 2 or have
a simple search operation among all βs to see if there is
one that matches the calculated H1(R

′
j). Therefore, there is

a trade-off between a verifier computation and transmission
overhead. However, both of these costs are almost negligible.
Since j is a value up to K (K = 217 in our experiments), the
transmission of it only incurs 2-3 Bytes of extra overhead.
If the verifier computation is preferred, this only adds an
overhead of a binary search operation, that has a complexity
of log2(K). In the binary search option, we basically assume
that the verifier stores the public key sorted, and after the value
H1(R

′
j) is calculated, binary search is made on sorted βs.

We now elaborate the design rationale behind the use of two
separate verification tokens (βj , γj) in SEMECS, as opposed
to only one token vj in ETA, for j = 0, . . . ,K − 1.

(i) In Schnorr-like schemes, the randomness incorporated
into message hashing is released with sj but not before. This

2cj does not offer confidentiality. After σj = (sj , cj) is released, the
message and zj are publicly recovered to permit signature verification.

6



Fig. 1: High-level description of SEMECS algorithms.

is useful to construct an indistinguishable simulation in the
security proof of Schnorr-like signatures3. In SEMECS, cj that
randomizes the message hash as H0(cj ||M̃j), is computed
from zj as cj ← M j ⊕ zj . Our idea is to store zj at the
verifier’s side as γj ← zj⊕H0(Rj) so that it can be recovered
only after sj is released. We avoid an online transmission of
zj but yet randomize the message hash via cj including q-bit
part of the message M j (with no extra transmission overhead).
After σj = (cj , sj) is released, the verifier computes zj from
γj via H0(Rj). Note that βj = H1(Rj) does not reveal zj but
yet permits the verification of R′j ← Y H0(cj ||M̃j) ·αsj mod p.

(ii) In SEMECS, we present an improved security proof with
a reduction to DLP with a much tighter bound compared to
that of ETA. The security of ETA is reduced to Schnorr signa-
tures, whose security proof relies on Forking Lemma [41].
Intuitively, if there is an adversary A making at most K ′

RO(.) queries, and forging signatures with probability ε, then
the Forking Lemma states that one can compute discrete
logarithms with constant probability by rewinding the forger
O(K ′/ε) times. Therefore, the security reduction loses a factor
O(K ′) that can be very large [56].

Our key observation is that, since SEMECS is a K-time
signature with pre-determined ephemeral public keys, we can
avoid using Forking Lemma and obtain a reduction to DLP.
That is, the hash of ephemeral keys are committed at the
key generation phase as {βj}K−1j=0 ∈ PK . At the forgery
phase, if A outputs a forgery on PK as (M∗, σ∗), where
σ∗ = (s∗j , c

∗
j ), 0 ≤ j ≤ K − 1, by validity condition, this

forgery has to be on a βj ∈ PK . Therefore, F can extract
private key y without a need of rewinding A . This permits
us to avoid a large factor of O(K ′) but only need a small
constant factor O(K) in our security reduction. We stress that

3 In our security proof for SEMECS in Theorem 1, the simulator F programs
random oracle RO(.) such that the probability that adversary A querying
RO(.) on cj ||Mj before querying it to the signature oracle SEMECS.Sigsk
is as difficult as random guessing cj ∈ Z∗q . Hence, the probability that
simulator F aborts during the query phase is negligible in terms of κ (see
success probability analysis in Theorem 1).

this is possible due to special K-time nature of SEMECS, but it
does not apply to polynomially unbounded Schnorr signature
variants as proven in [56].

The detailed description of SEMECS is given at Algorithm 3
and further outlined in Figure 1.

IV. SECURITY ANALYSIS

We prove that SEMECS is a K-time EU-CMA signature
scheme in Theorem 1 (in the random oracle model [40]). We
ignore terms that are negligible in terms of κ.

Theorem 1 AdvEU -CMA
SEMECS (t,K ′,K) ≤ AdvDL

G (t′), where t′ =
O(t) + (2K) ·O(κ3) + (6K +K ′) · RNG.

Proof: Let A be a SEMECS attacker. We construct a DL-
attacker F that uses A as a sub-routine. That is, we set
(y′

$← Z∗q , Y ′ ← αy
′
mod p) as defined in DL-experiment

(i.e., Definition 3) and then run the simulator F by Definition 2
(i.e., EU -CMA experiment) as follows:

Algorithm F(Y ′)
- Setup: F keeps three lists

−→
M,

−→
L , and

−→
L′, all initially

empty.
−→
M is a message list that records each Mj queried to

ETA.Sig oracle.
−→
L [j] and

−→
L′[j] record (Mj , i) queried to

RO(.) oracle and its corresponding RO(.) answer (hj , i),
respectively, for cryptographic hash functions Hi, i ∈ {0, 1}.
(hj , i) ←

−→
L′[Mj , i] denotes the retrieval of RO(.) oracle

answer of (Mj , i) that has been queried before. If (Mj , i)

has not been queried before then ⊥←
−→
L′[Mj , i]. F sets

counters (l← 0, n← 0) and continues as follows:

• h ← H -Sim(M, l,
−→
L ,
−→
L′, i): F implements a function

H -Sim to handle RO(.) queries. That is, cryptographic
functions Hi, i ∈ {0, 1} are modeled as random oracles
via H -Sim . If ∃j : (M, i) =

−→
L [j] then H -Sim returns

−→
L′[j]. Otherwise, it returns h $← Z∗q as the answer for
given Hi, assigns (

−→
L [l] ← (M, i),

−→
L′[l] ← (h, i)) and

l← l + 1.

7



• F creates a simulated SEMECS public key PK as follows:
- Y ← Y ′,
- For j = 0, . . . ,K − 1,

a) (sj , ej , zj)
$← Z∗q

b) Rj ← Y ej · αsj mod p

c) γj ← zj ⊕H -Sim(Rj , l,
−→
L ,
−→
L′, 0)

d) βj ← H -Sim(Rj , l,
−→
L ,
−→
L′, 1)

- PK ← (Y, α,−→v = (〈γ0, β0〉, . . . , 〈γK−1, βK−1〉,K).
- Execute (M∗, σ∗)← ARO(.),SEMECS.Sigsk(.)(PK ):
• Queries: F handles A ’s queries as follows:

(i) A queries RO(.) on a message M for Hi, i ∈ {0, 1}.
F returns h← H -Sim(M, l,

−→
L ,
−→
L′, i).

(ii) A queries SEMECS.Sig oracle on a message Mn. If
n > K − 1 then F rejects the query (i.e., the query limit
is exceeded). Otherwise, F continues as follows:
a) If |Mn| < |q| set (Mn =Mn, M̃n = 0), else split Mn

into two as (Mn||M̃n) such that |Mn| = |q|.
b) F generates cn ← zn ⊕ Mn and checks if

(cn||Mn, 0) ∈
−→
L . If it holds then F aborts (i.e., the

simulation fails). Otherwise, F continues as follows.

c) F inserts (
−→
L [l]← (cn||Mn, 0),

−→
L′[l]← (en, 0)).

d) F returns σn ← (sn, cn) to A , sets
−→
M[n]←Mn and

then increments (n← n+ 1, l← l + 1).
• Forgery of A : Eventually, A outputs a forgery on PK as
(M∗, σ∗), where σ∗ = (s∗j , c

∗
j ), 0 ≤ j ≤ K − 1. By

definition 2, A wins the K-time EU -CMA experiment
for SEMECS if SEMECS.Ver(PK , M∗, σ∗) = 1 and
M∗ /∈

−→
M hold. If these conditions hold, A returns 1,

else, returns 0.
- Forgery of F : If A loses in the K-time EU -CMA exper-

iment for SEMECS, F also loses in the DL experiment,
and therefore F aborts and returns 0. Otherwise, if
(c∗j ||M∗) ∈

−→
L then F aborts and returns 0 (i.e., A wins

the experiment without querying RO(.) oracle). Otherwise,
F sets s∗j ←

−→
L′[c∗j ||M∗] and continues as follows:

Recall that Rj ≡ Y ej · αsj mod p holds, where 0 ≤ j ≤
K − 1. Moreover, since SEMECS.Ver(PK ,M∗, σ∗) = 1
holds, Rj ≡ Y ej

∗ · αs
∗
j mod p also holds. Therefore, we

write the following equations:

Rj ≡ Y ej · αsj mod p,

Rj ≡ Y ej
∗
· αs

∗
j mod p,

F then extracts y′ = y by solving the below modular linear
equations (note that only unknowns are y and rj), where
Y = Y ′ as defined in simulation:

rj ≡ y′ · ej + sj mod q,

rj ≡ y′ · e∗j + s∗j mod q,

Note that Y ′ ≡ αy′ mod p holds, since A ’s forgery is valid
and non-trivial on Y ′ = Y . Therefore, by Definition 3, F
wins the DL-experiment .

The execution time and probability analysis of the above
experiment are as follows:
Execution Time Analysis: In this experiment, the running time
of F is that of A plus the time it takes to respond qH
RO(.) queries and K ETA.Sig.
• Setup phase: F draws 3K random numbers, performs

2K modular exponentiations, K XOR operations, and
then invokes RO(.) 2K times by drawing additional 2K
random numbers. Hence, the total cost of this phase is
(2K) · O(κ3) + (5K) · RNG, where O(κ3) denotes the
cost of modular exponentiation and RNG denotes the cost
of drawing a random number. We omit the costs of XOR
operations.

• Query phase: F draws K random numbers to handle A ’s
ETA.Sig queries, whose cost is K ·RNG. F also draws
K ′ random numbers to handle A ’s RO(.) queries, whose
cost is at most K ′ · RNG.

Therefore, the approximate total running time of F is t′ =
O(t) + (2K) ·O(κ3) + (6K +K ′) · RNG.

Success Probability Analysis: F succeeds if all below events
occur.
- E1 : F does not abort during the query phase.
- E2 : A wins the K-time EU -CMA experiment for SEMECS.
- E3 : F does not abort after A ’s forgery.
- Win: F wins the K-time EU -CMA experiment for DL-

experiment.
- Pr[Win] = Pr[E1 ] · Pr[E2 |E1 ] · Pr[E3 |E1 ∧ E2 ]

• The probability that event E1 occurs: During the query
phase, F aborts if (Mj ||xj) ∈

−→
L , 0 ≤ j ≤ K−1 holds, before

F inserts (cj ||Mj) into
−→
L (i.e., the simulation fails). This

occurs if A guesses the randomized output cj and then queries
(cj ||Mj) to RO(.) before querying it to SEMECS.Sig. The
probability that this occurs is 1

2|q|
, which is negligible in terms

of κ. Hence, Pr[E1 ] = (1− 1
2|q|

) ≈ 1.
• The probability that event E2 occurs: If F does not abort,
A also does not abort since the simulated view of A is indistin-
guishable from the real view of A (see the indistinguishability
analysis). Therefore, Pr[E2 |E1 ] = AdvEU -CMA

SEMECS (t,K ′,K).
• The probability that event E3 occurs: F does not abort

if the following conditions are satisfied:
i A wins the EU -CMA experiment for SEMECS on a

message M∗ by querying it to RO(.). The probability that
A wins without querying M∗ to RO(.) is as difficult as a
random guess.

ii After F extracts y′ by solving modular linear equa-
tions, the probability that Y ′ 6≡ αy

′
mod p is neg-

ligible in terms κ, since (Y = Y ′) ∈ PK and
SEMECS.Ver(PK ,M∗, σ∗) = 1. Hence, Pr[E3 |E1 ∧
E2 ] = AdvEU -CMA

SEMECS (t,K ′,K).
Omitting the terms that are negligible in terms of κ, the upper
bound on EU -CMA-advantage of SEMECS is as follows:

AdvEU -CMA
ETA (t,K ′,K) ≤ AdvDL

G (t),

Indistinguishability Argument: The real-view of A is com-
prised of the public key PK = (Y, α, p, q,−→v = (〈γ0, β0〉, . . . ,
〈γK−1, βK−1〉,K), the answers of SEMECS.Sigsk(.) as

8



TABLE II: Private/public key sizes, signature size and signature generation/verification costs of SEMECS and its counterparts

Scheme Signer Verifier
Private Key

Size
Signature

Size
Signature

Generation
Public Key

Size
Signature

Verification
Full-time signatures

SPHINCS [33] nS
nS(kS(|tS |

−xS + 1) + 2xS )
(2tS − 1) ·H nS

(kS((log tS)− xS + 1)
+2xS − 1) ·H

ECDSA [11] |q| 2|q| EMul |q| 1.3 · EMul
Ed25519 [17] |q| 2|q| EMul |q| 1.3 · EMul
Kummer [16] |q| 2|q| EMul |q| 1.3 · EMul
SchnorrQ [18] |q| 2|q| EMul |q| 1.3 · EMul

K-time signatures
HORS [26] κ κ · u (u+ 1) ·H t · |H| ·K (u+ 1) ·H

HORSE [30] (κ · t · log2(K)) κ · u (u · log2(K) + 1) ·H t · |H| (u+ 1) ·H

XMSS [31] κ
(l + log2(K))

·|H|
(((log2(K) + 2) · (log2(K)

+l · (w + 2)))/2 + 4 · log2(K)) ·H
(2(log2(K) + log2(l))

+1) · |H|
(log2(K) + l
·(w + 1)) ·H

Zaverucha et al. [28] κ κ+ |q| (m/2) · (Addq +H) m · |q| ·K 1.3 · EMul

SEMECS |q| |q| 2 ·H +Mulq + Subq (2K + 1) · |q| 1.3 · EMul

K denotes the number of signatures that can be generated using a single key pair for K-time signature schemes.
Emul and Eadd denote the costs of EC scalar multiplication over modulus p′, and EC addition over modulus p′, respectively. ECDSA [11], Ed25519 [17], Kummer [16], and
SchnorrQ [18] only differ from each other in terms of the underlying curve. The operations that are required are the same for these schemes. H and Mulq denote a
cryptographic hash and a modular multiplication over modulus q, respectively. We omit the constant number of negligible operations if there is an expensive operation (e.g.,
integer additions are omitted if there is an Emul). We use double-point scalar multiplication for verifications of ECC based schemes (1.3 ·Emul instead of 2 ·Emul [9]). tS ,
kS and xS are SPHINCS [33] parameters where tS is the number of secret key elements, kS is the number of revealed secret key elements and xS is a small integer.
SPHINCS [33] parameter nS denotes the bit length of hashes. Zaverucha et al. [28] parameter m should be selected such that

( m
m/2

)
≥ 22κ. Integers t and u denote the

parameters used in HORS [26] and HORSE [30]. w is the Winternitz parameter and l is the tree parameter in XMSS [31].
Remark: For HORS [26] and Zaverucha et al. [28], similarly to SEMECS, we deterministically generate the necessary private key components from a seed (i.e., using a keyed
hash) to have a small constant private key that can be deployed to low-end devices.

−→σ = (sj , cj) for j = 0, . . . ,K−1, and the answer of RO(.) as−→
L = (h0, . . . , hK′−1) on corresponding Hi, i ∈ {0, 1},
respectively. That is,

−→
Areal = 〈PK ,−→σ ,

−→
L〉, where all values

are generated/computed by SEMECS algorithms as in the real
system. All variables in

−→
A are computed from the values

{y, rn, zn, hj , α, p, q}K−1,K
′−1

n=0,j=0 . Hence, the joint probability
distribution of all other variables in

−→
A are determined by the

joint probability of these values. All these are random in Z∗q .
Therefore, the joint probability distribution of

−→
A is,

Pr[
−→
A real =

−→a ] = Pr[y = y|r0 = r0∧, . . . , hK′−1 = hK′−1]

=
1

(q − 1)1+2K+K · (p− 1)2

We denote the simulated view of A is as
−→
A sim , and it

is equivalent to
−→
A real except that in the simulation, values

(sj , ej , zj , cj) for j = 0, . . . ,K − 1 are randomly selected
from Z∗q . Note that the joint probability distribution of these
variables are identical to original signature and hash outputs
(since hash function is modeled as RO). Hence, we write
Pr[
−→
A real =

−→a ] = Pr[
−→
A sim = −→a ]. �

V. PERFORMANCE ANALYSIS AND COMPARISON

In this section, we first present the analytical analysis of
SEMECS and its counterparts. Then, we present the results
of our experiments on a commodity laptop and an 8-bit
AVR embedded processor. Our evaluation metrics include
key sizes, signature size, and computation costs. On the 8-
bit microprocessor, we focus on the signer cost (i.e., private
key, signature size, signature generation) since our system
model includes resource-constrained devices as signers. For
our counterparts, we consider state-of-the-art K-time signature
schemes as well as some traditional (full-time) signatures.
Remark: Our envisioned applications require high signer
efficiency to be practical on resource-constrained devices.
Hence, optimizing the online signer efficiency is the essential

performance objective for SEMECS. Recall that we assume
verifiers are resourceful entities, which is a reasonable as-
sumption for our envisioned applications (see Section I). Also
note that in SEMECS system model, private/public keys are
generated before the system deployment (see Section II-B).
Hence, the key generation cost (i.e., offline cost) is not a
critical performance metric for SEMECS.

A. Analytical Performance Analysis

Here, we describe the analytical costs of our scheme, where
the online costs are summarized in Table II.
Key Generation: Key generation of SEMECS requires K
EC scalar multiplications that is higher than its full-time
counterparts. For instance, for EC-based signature schemes
(e.g., ECDSA [11], Ed25519 [17], Kummer [16], and
SchnorrQ [18]) keys are generated with only one EC scalar
multiplication. However, it is comparable to its K-time coun-
terparts as their key generation also depends on K. Note that
in our system model, key distribution is performed before
the deployment. Thus, we believe that this does not pose a
limitation for our considered use-cases.
Signer Overhead: In SEMECS, signer stores a small pri-
vate key that is the same size as its full-time elliptic curve
counterparts. The private key of some K-time signatures
can be deterministically derived from a κ-bit seed, which
is 2× smaller than that of SEMECS. However, this makes
a small difference in practice (i.e., 16 Bytes vs 32 Bytes).
Signature generation of SEMECS only requires 2 hash function
calls, a single multiplication, and subtraction under mod q.
This introduces a significantly smaller overhead compared to
its alternatives. The counterparts of SEMECS either require
expensive operations (i.e., EC scalar multiplication) or a very
large number of hash function calls for signature generation.
Only HORS [26] and Zaverucha et al. [28] have comparable
signature generation speed. However, when we generate the

9



TABLE III: Experimental performance comparison of SEMECS and its counterparts on a commodity hardware

Scheme K
Signature Generation

Time (CPU cycle)
Private Key¶

(Byte)
Signature

Size (Byte)
Signature Verification

Time (CPU cycle) Public Key‡ End-to-End
Delay (CPU cycle)

Full-time signatures
SPHINCS [33] 2κ 37 466 005 1088 41000 1 051 562 1056 38 517 567
ECDSA [11] 2κ 1 510 320 32 64 1 932 650 32 3 442 970
Ed25519 [17] 2κ 146 620 32 64 286 750 32 433 370
Kummer [16] 2κ 58 450 32 64 98 560 32 157 010
SchnorrQ [18] 2κ 30 481 32 64 54 241 32 84 722

K-time signatures

HORS [26] 1 16 823 16 384 8 975 32 KB 25 798
217 4 GB

HORSE [30] 1 16 823 16384 384 8 975 32 KB 25 798
217 280 247 278 528 287 503

XMSS [31] 1 137 856 16 2080 115 239 416 253 095
217 1 367 431 2592 120 983 1504 1 488 414

Zaverucha et al. [28] 1 89 180 16 48 52 872 4160 142 052
217 520 MB

SEMECS
1 2 425 32 32 52 872 96 55 297

217 8 MB
‡ The sizes are in terms of Bytes, if otherwise not specified.
¶ System wide parameters I (e.g., p,q,α) for each scheme are included in their corresponding codes, and private key size denote to specific private key size.
The cost of hash-based schemes are estimated based on the cost of a single hash operation.

private key components from a seed, these hash function calls
dominate the signature generation cost for these schemes due
to their large private key size.
Signature Transmission: Signature size of SEMECS is the
smallest compared to its counterparts. Note that since the
signature component cj contains the information to recover
the first |q| Bytes of the message, we do not consider its trans-
mission as an overhead. SEMECS only requires additional |q|
Bytes to be transmitted. Since the transmission of signatures
introduces an overhead to the energy consumption of signer
(and verifier), we believe it is essential to minimize its size.
Verifier Overhead: In SEMECS the public key is linear
with the messages to be signed with a single key pair.
Therefore, it increases as K increases (similar to its K-time
counterparts except HORSE [30]). Considering that the verifier
device is a resourceful device (e.g., server, command center)
in SEMECS applications, we believe this is tolerable. The
signature verification of SEMECS requires an EC double scalar
multiplication (can be accelerated with Shamir’s trick [9]).
Parameters: We selected parameters to provide κ = 128-bit
security for both SEMECS and its counterparts. For elliptic-
curve based schemes (including SEMECS), we selected |q| =
256-bit. For Zaverucha et al., we selected m = 260, for HORS
and HORSE, we selected t = 1024 and u = 24 to provide
the desired security level. For XMSS and SPHINCS, we used
the parameters suggested in the base papers. We refer the
interested readers to the base papers of these schemes for the
detailed explanation of their parameter choice.

B. Performance Evaluation on Commodity Laptop

We implemented SEMECS on a laptop and compared its
cost to its state-of-the-art counterparts.
Hardware Configurations and Software Libraries: As our
commodity hardware, we used a laptop equipped with an Intel
i7 Skylake 2.6 GHz CPU with 12 GB RAM.

We implemented SEMECS on FourQ curve [15] to offer fast
verification. We used the open-source implementation of this

curve which can be found at4. We used our hash function
as blake due to its high efficiency and high security [57].
Specifically, we used blake2s due to its optimization on low-
end devices. We open-source our implementations at

www.github.com/ozgurozmen/SEMECS

We ran the open-sourced implementations of our counter-
parts on our hardware setting, if possible. For the hash-based
constructions, we conservatively simulated their costs with
blake2s hash function, to be fair with them.
Experimental Results: Table III shows the benchmarks
and specific key/signature sizes for SEMECS and its counter-
parts. We observe that SEMECS is 7× faster than its closest
counterpart (HORS [26]) in terms of signature generation.
Specifically, it takes only 1.23 microseconds to generate a
signature with SEMECS. Moreover, it has a compact private
key of 32 Bytes and the smallest signature (32 Bytes) among
its counterparts. Signature verification of SEMECS is also fast
since we used the optimized FourQ [15] curve to implement
our scheme. Therefore, only HORS [26] and HORSE [30]
offer faster verification. The main limitation of SEMECS is its
public key size. Specifically, when K = 217, which allows
signing a message in every 20 minutes for 5 years without
a key replacement, the public key size is 8 MB. However,
this is much smaller than some of the most efficient K-time
counterparts such as HORS, and Zaverucha et al., that have 4
GB and 520 MB public key, respectively. We also implemented
the key generation of SEMECS on this experimental setting
and observed that generating the key for K = 217 takes 1.75
seconds.

C. Performance/Energy Evaluation on 8-bit Microprocessor

We fully implemented the signature generation of
SEMECS on an 8-bit microprocessor to assess its energy and
time efficiency on low-end embedded devices.
Hardware Configurations and Software Libraries: We
used 8-bit AVR ATmega 2560 microprocessor to measure

4https://github.com/Microsoft/FourQlib

10

www.github.com/ozgurozmen/SEMECS
https://github.com/Microsoft/FourQlib


99.11%

77.63%

94.84%

85.29%

48.31%

0.89%

22.37%

5.16%

14.71%

51.69%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

SEMECS

Zaverucha

HORS

SchnorrQ

Ed25519

Pulse Sensor Signing

(a) Energy of Signature Generation vs Pulse Sensor

96.86%

49.04%

83.59%

61.66%

20.58%

3.14%

50.96%

16.41%

38.34%

79.42%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

SEMECS

Zaverucha

HORS

SchnorrQ

Ed25519

Pressure Sensor Signing

(b) Energy of Signature Generation vs Pressure Sensor

Fig. 2: Energy consumption of signature generation vs IoT sensors

the signer efficiency of our scheme compared to its counter-
parts. We selected this low-end device due to its low energy
consumption and extensive use in practice, especially in IoT
applications and medical devices [43], [58], [59]. It is equipped
with 256 KB flash memory, 8 KB SRAM, 4 KB EEPROM,
and its maximum clock frequency is 16 MHz.

We implemented SEMECS using Rhys Weatherley’s crypto
library [60] that offers high-speed operations for low-end
devices. Specifically, we used its blake2s implementation and
modified its reduction algorithm to compute mod q (where q
is FourQ parameter) using Barrett reduction. We also open-
source our 8-bit implementations at the link given above to
facilitate the test and broad adoption of SEMECS.

We used the results of our counterparts that were given in
8-bit AVR microprocessors, if possible. For instance, we used
the results provided in [19] for Ed25519, [20] for µKummer
and [21] for SchnorrQ. We ran the ECDSA implementation
of microECC [61] on our hardware. Similar to the laptop im-
plementation, we measured the cost of a single hash (blake2s)
call on our microprocessor and conservatively estimated the
hash-based schemes’ cost.
Experimental Results: As summarized in Table I, our anal-
ysis confirmed that SEMECS is highly efficient at the signer’s
side. Signature generation of SEMECS is performed with less
than 200 thousand cycles, which is 6× faster than HORS [26]
and 19× faster than SchnorrQ (its fastest counterparts). In
addition to this, SEMECS requires a small private key and a
signature size that is the smallest among its counterparts. This
makes SEMECS very desirable for applications that include
resource-limited signers.
Energy Consumption Analysis: We analyzed the energy con-
sumption of SEMECS and its counterparts on our experimental
setting and compared with the energy consumption of two
common IoT sensors (a pulse and a pressure sensor). We first
derived a generic energy consumption estimation (as in [62]
that offers an estimation for MICAz) for 8-bit AVR ATmega
2560 based on our SEMECS implementation and used it to
estimate the energy consumption of our counterparts (similarly
with [21] that uses [62]). We also calculated how much energy
is required to operate IoT sensors. We took into consideration
(i) energy drawn by the sensor (ii) energy drawn by the
microprocessor to read data from the sensor and (iii) energy
drawn by the microprocessor during the idle time.

We powered our microprocessor with a 2200 mAh power
pack. This allowed us to use an ammeter/power meter con-
nected between the battery and the microprocessor. We mea-
sured 5V of voltage and 20mA of current on load, which
is verified by the datasheet of the processor5. Then, we
used the formula E = V · I · t to calculate the energy
consumption in Joules (as in [63]). We also considered the
potential deployment of nRF24L01 Single Chip 2.4 GHz
Transceiver to 8-bit ATmega for signature transmission. Based
on its datasheet, we also estimated the energy consumption
of signature transmission with this low-power transceiver.
Specifically, nRF24L01 operates at 3.3 V, 11.3 mA and support
a transmission rate of 2Mbps. Our results showed that 8-bit
AVR ATmega 2560 consumes roughly 6.25nJ per cycle of
computation and 18.65nJ per bit of transmission.

We also calculated how much energy is necessary to operate
IoT sensors. Specifically, we used a pulse sensor6 (that could
serve as an example of a medical sensor) and a BMP183
pressure sensor7 (that could be an example of a daily IoT
application). In our energy calculations, we considered a
sampling frequency of 10 seconds for the pulse sensor and 10
minutes for the pressure sensor, due to the difference/urgency
in their usage. Figure 2 shows how many percentage of the
battery is spent on the IoT sensor, compared with that of the
cryptographic operations (i.e., signing) of different schemes.
One can observe that for pulse sensor (see Figure 2a), HORS
and SchnorrQ require the 5.16% and 14.71%, whereas, with
SEMECS, this is decreased to a negligible level (0.89%). For
the pressure sensor, the energy consumption of SEMECS is
only 3.14% where the closest counterpart is 16.41%. This
shows that preferring SEMECS as the authentication mech-
anism in 8-bit AVR microprocessors significantly reduces the
impact of cryptographic operations on battery life.

Based on this analysis, we noticed that SEMECS out-
performs its counterparts for both computation energy and
communication energy at the signer’s side. We believe that
this is essential in practice to extend the battery lives of critical
embedded devices such as implantable medical devices.

5http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-Microcontroller-
ATmega640-1280-1281-2560-2561 datasheet.pdf

6https://pulsesensor.com/
7https://cdn-shop.adafruit.com/datasheets/1900 BMP183.pdf

11

http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561_datasheet.pdf
http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561_datasheet.pdf
https://pulsesensor.com/
https://cdn-shop.adafruit.com/datasheets/1900_BMP183.pdf


VI. CONCLUSION

In this paper, we proposed a new signature scheme called
SEMECS, which achieves several desirable properties that
are critical for resource-constrained devices. Specifically,
SEMECS only requires two hash, a modular multiplication,
and a modular subtraction to compute a signature. Moreover,
it has a constant-small private key and signature, that is optimal
for an EC-based signature scheme. Our experiments on both
laptop and 8-bit AVR confirmed the energy and computational
efficiency of SEMECS. Therefore, we believe SEMECS is
an ideal alternative for providing authentication and integrity
services for resource-constrained devices.

ACKNOWLEDGMENTS

This work is supported by the NSF CAREER Award CNS-
1652389. We would like to thank Rouzbeh Behnia for his
valuable comments.

REFERENCES

[1] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio, “Interacting
with the soa-based internet of things: Discovery, query, selection, and on-
demand provisioning of web services,” IEEE Transactions on Services
Computing, vol. 3, no. 3, pp. 223–235, July 2010.

[2] I. Chen, J. Guo, and F. Bao, “Trust management for soa-based iot and
its application to service composition,” IEEE Transactions on Services
Computing, vol. 9, no. 3, pp. 482–495, May 2016.

[3] J. Leu, C. Chen, and K. Hsu, “Improving heterogeneous soa-based
iot message stability by shortest processing time scheduling,” IEEE
Transactions on Services Computing, vol. 7, no. 4, pp. 575–585, Oct
2014.

[4] J. Lopez, “Unleashing public-key cryptography in wireless sensor net-
works,” Journal of Computer Security, pp. 469–482, Sep. 2006.

[5] A. A. Yavuz, P. Ning, and M. K. Reiter, “Efficient, compromise resilient
and append-only cryptographic schemes for secure audit logging,” in
Proceedings of 2012 Financial Cryptography and Data Security (FC
2012), March 2012.

[6] J. Katz and Y. Lindell, Introduction to Modern Cryptography. Chapman
& Hall/CRC, 2007.

[7] A. Perrig and J. Tygar, Secure broadcast communication in wired
and wireless networks. Kluwer Academic Publishers, 2003. [Online].
Available: http://books.google.com/books?id=h5qXzbliKNIC

[8] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, pp. 120–126, 1978.

[9] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve
Cryptography. Springer, 2004.

[10] M. Mass, “Pairing-based cryptography,” Master’s thesis, Technische
Universiteit Eindhoven, Department of Mathematics and Computer
Science, 2004.

[11] ANSI X9.62-1998: Public Key Cryptography for the Financial Services
Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA),
American Bankers Association, 1999.

[12] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” in Advances in Cryptology — ASIACRYPT 2001, C. Boyd, Ed.
Springer Berlin Heidelberg, 2001, pp. 514–532.

[13] C. Schnorr, “Efficient signature generation by smart cards,” Journal of
Cryptology, vol. 4, no. 3, pp. 161–174, 1991.

[14] D. J. Bernstein, Curve25519: New Diffie-Hellman Speed Records.
Springer Berlin Heidelberg, 2006, pp. 207–228. [Online]. Available:
http://dx.doi.org/10.1007/11745853 14

[15] C. Costello and P. Longa, “Four Q : Four-dimensional decompositions
on a Q -curve over the mersenne prime,” in Advances in Cryptology
– ASIACRYPT 2015, T. Iwata and J. H. Cheon, Eds. Springer Berlin
Heidelberg, 2015, pp. 214–235.

[16] D. J. Bernstein, C. Chuengsatiansup, T. Lange, and P. Schwabe, “Kum-
mer strikes back: New dh speed records,” in Advances in Cryptology
– ASIACRYPT 2014, P. Sarkar and T. Iwata, Eds. Springer Berlin
Heidelberg, 2014, pp. 317–337.

[17] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y.
Yang, “High-speed high-security signatures,” Journal of Cryptographic
Engineering, vol. 2, no. 2, pp. 77–89, Sep 2012. [Online]. Available:
https://doi.org/10.1007/s13389-012-0027-1

[18] C. Costello and P. Longa, “Schnorrq: Schnorr signatures on fourq,”
MSR Tech Report, 2016. Available at: https://www. microsoft.
com/en-us/research/wp-content/uploads/2016/07/SchnorrQ. pdf, Tech.
Rep., 2016.

[19] M. Hutter and P. Schwabe, “Nacl on 8-bit avr microcontrollers,” in
Progress in Cryptology – AFRICACRYPT 2013, A. Youssef, A. Nitaj,
and A. E. Hassanien, Eds. Springer Berlin Heidelberg, 2013, pp. 156–
172.

[20] J. Renes, P. Schwabe, B. Smith, and L. Batina, “µkummer: Efficient
hyperelliptic signatures and key exchange on microcontrollers,” in Cryp-
tographic Hardware and Embedded Systems – CHES 2016, B. Gierlichs
and A. Y. Poschmann, Eds. Springer Berlin Heidelberg, 2016, pp. 301–
320.

[21] Z. Liu, P. Longa, G. C. C. F. Pereira, O. Reparaz, and H. Seo, “FourQ
on embedded devices with strong countermeasures against side-channel
attacks,” in Cryptographic Hardware and Embedded Systems – CHES
2017, W. Fischer and N. Homma, Eds. Cham: Springer International
Publishing, 2017, pp. 665–686.

[22] D. Naccache, D. M’Raı̈hi, S. Vaudenay, and D. Raphaeli, “Can D.S.A.
be improved? Complexity trade-offs with the digital signature standard,”
in Proceedings of the 13th International Conference on the Theory and
Application of Cryptographic Techniques (EUROCRYPT ’94), 1994, pp.
77–85.

[23] S. Even, O. Goldreich, and S. Micali, “Online/offline digital signatures,”
in Proceedings on Advances in Cryptology (CRYPTO ’89). Springer-
Verlag, 1989, pp. 263–275.

[24] A. Shamir and Y. Tauman, “Improved online/offline signature schemes,”
in Proceedings of the 21st Annual International Cryptology Conference
on Advances in Cryptology, ser. CRYPTO ’01. London, UK: Springer-
Verlag, 2001, pp. 355–367.

[25] L. Lamport, “Constructing digital signatures from a one-way function,”
Tech. Rep. CSL-98, October 1979.

[26] L. Reyzin and N. Reyzin, “Better than BiBa: Short one-time signatures
with fast signing and verifying,” in Proceedings of the 7th Australian
Conference on Information Security and Privacy (ACIPS ’02). Springer-
Verlag, 2002, pp. 144–153.

[27] Y. W. Law, Z. Gong, T. Luo, S. Marusic, and M. Palaniswami, “Com-
parative study of multicast authentication schemes with application to
wide-area measurement system,” in Proceedings of the 8th ACM SIGSAC
symposium on Information, computer and communications security, ser.
ASIA CCS ’13. New York, NY, USA: ACM, 2013, pp. 287–298.

[28] G. Zaverucha and D. Stinson, “Short one-time signatures,” Cryptology
ePrint Archive, Report 2010/446, 2010, https://eprint.iacr.org/2010/446.

[29] J. Pieprzyk, H. Wang, and C. Xing, “Multiple-time signature schemes
against adaptive chosen message attacks,” in Selected Areas in Cryptog-
raphy (SAC), 2003, pp. 88–100.

[30] W. Neumann, “HORSE: An extension of an r-time signature scheme
with fast signing and verification,” in Information Technology: Coding
and Computing, 2004. Proceedings. ITCC 2004. International Confer-
ence on, vol. 1, april 2004, pp. 129 – 134 Vol.1.

[31] A. Huelsing, D. Butin, S.-L. Gazdag, J. Rijneveld, and A. Mohaisen,
“XMSS: eXtended Merkle Signature Scheme,” RFC 8391, May 2018.
[Online]. Available: https://rfc-editor.org/rfc/rfc8391.txt

[32] Q. Wang, H. Khurana, Y. Huang, and K. Nahrstedt, “Time valid one-
time signature for time-critical multicast data authentication,” in IEEE
INFOCOM 2009, April 2009, pp. 1233–1241.

[33] D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederha-
gen, L. Papachristodoulou, M. Schneider, P. Schwabe, and Z. Wilcox-
O’Hearn, “Sphincs: Practical stateless hash-based signatures,” in Ad-
vances in Cryptology – EUROCRYPT 2015, E. Oswald and M. Fischlin,
Eds. Springer Berlin Heidelberg, 2015, pp. 368–397.

[34] A. Hülsing, J. Rijneveld, and P. Schwabe, “Armed SPHINCS - comput-
ing a 41 KB signature in 16 KB of RAM,” in Public-Key Cryptography
- PKC 2016 - 19th IACR International Conference on Practice and
Theory in Public-Key Cryptography, March 2016, pp. 446–470.

[35] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky, “Lattice
signatures and bimodal gaussians,” in Advances in Cryptology –
CRYPTO 2013: 33rd Annual Cryptology Conference. Proceedings, Part
I, R. Canetti and J. A. Garay, Eds. Springer Berlin Heidelberg, 2013,
pp. 40–56.

[36] L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and
D. Stehle, “Crystals – dilithium: Digital signatures from module lattices,”

12

http://books.google.com/books?id=h5qXzbliKNIC
http://dx.doi.org/10.1007/11745853_14
https://doi.org/10.1007/s13389-012-0027-1
https://eprint.iacr.org/2010/446
https://rfc-editor.org/rfc/rfc8391.txt


Cryptology ePrint Archive, Report 2017/633, 2017, http://eprint.iacr.org/
2017/633.

[37] W. Lee, Y.-S. Kim, Y.-W. Lee, and J.-S. No, “pqsigrm,” Submis-
sion to the NIST’s post-quantum cryptography standardization pro-
cess, 2018, https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/round-1/submissions/pqsigRM.zip.

[38] N. T. Courtois, M. Finiasz, and N. Sendrier, “How to achieve a
mceliece-based digital signature scheme,” in Advances in Cryptology
— ASIACRYPT 2001, C. Boyd, Ed. Springer Berlin Heidelberg, 2001,
pp. 157–174.

[39] R. Behnia, M. O. Ozmen, A. A. Yavuz, and M. Rosulek, “Tachyon: Fast
signatures from compact knapsack,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’18. New York, NY, USA: ACM, 2018, pp. 1855–1867.

[40] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm
for designing efficient protocols,” in Proceedings of the 1st ACM
conference on Computer and Communications Security (CCS ’93). NY,
USA: ACM, 1993, pp. 62–73.

[41] M. Bellare and G. Neven, “Multi-signatures in the plain public-key
model and a general forking lemma,” in Proceedings of the 13th ACM
Conference on Computer and Communications Security, ser. CCS ’06.
New York, NY, USA: ACM, 2006, pp. 390–399. [Online]. Available:
http://doi.acm.org/10.1145/1180405.1180453

[42] A. A. Yavuz, “Eta: Efficient and tiny and authentication for
heterogeneous wireless systems,” in Proceedings of the Sixth ACM
Conference on Security and Privacy in Wireless and Mobile Networks,
ser. WiSec ’13. New York, NY, USA: ACM, 2013, pp. 67–72.
[Online]. Available: http://doi.acm.org/10.1145/2462096.2462108

[43] M. Rushanan, A. D. Rubin, D. F. Kune, and C. M. Swanson, “Sok:
Security and privacy in implantable medical devices and body area
networks,” in 2014 IEEE Symposium on Security and Privacy, May
2014, pp. 524–539.

[44] O. J. Rubio, J. D. Trigo, A. Alesanco, L. Serrano, and J. Garcia,
“Analysis of iso/ieee 11073 built-in security and its potential ihe-based
extensibility,” Journal of Biomedical Informatics, vol. 60, pp. 270 – 285,
2016.

[45] C. Camara, P. Peris-Lopez, and J. E. Tapiador, “Security and privacy
issues in implantable medical devices: A comprehensive survey,” Journal
of Biomedical Informatics, vol. 55, pp. 272 – 289, 2015.

[46] M. O. Ozmen and A. A. Yavuz, “Low-cost standard public key
cryptography services for wireless iot systems,” in Proceedings of
the 2017 Workshop on Internet of Things Security and Privacy, ser.
IoTS&P ’17. New York, NY, USA: ACM, 2017, pp. 65–70. [Online].
Available: http://doi.acm.org/10.1145/3139937.3139940

[47] N. Bui and M. Zorzi, “Health care applications: A solution based on the
internet of things,” in Proceedings of the 4th International Symposium
on Applied Sciences in Biomedical and Communication Technologies,
ser. ISABEL ’11. New York, NY, USA: ACM, 2011, pp. 131:1–131:5.
[Online]. Available: http://doi.acm.org/10.1145/2093698.2093829

[48] A. J. Jara, M. A. Zamora, and A. F. G. Skarmeta, “An internet
of things–based personal device for diabetes therapy management in
ambient assisted living (aal),” Personal and Ubiquitous Computing,
vol. 15, no. 4, pp. 431–440, Apr 2011. [Online]. Available:
https://doi.org/10.1007/s00779-010-0353-1

[49] M. Conti, R. D. Pietro, L. V. Mancini, and A. Mei, “Distributed
detection of clone attacks in wireless sensor networks,” IEEE Trans.
on Dependable Secure Compuation, pp. 685–698, 2011.

[50] S. Hyun, P. Ning, A. Liu, and W. Du, “Seluge: Secure and DoS-resistant
code dissemination in wireless sensor networks,” in Proceedings of
the 7th international conference on Information processing in sensor
networks, ser. IPSN ’08. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 445–456.

[51] A. A. Yavuz and P. Ning, “Self-sustaining, efficient and forward-secure
cryptographic constructions for unattended wireless sensor networks,”
Ad Hoc Networks, vol. 10, no. 7, pp. 1204–1220, 2012.

[52] C. Jean-Sébastien, “On the exact security of full domain hash,” in
Advances in Crpytology (CRYPTO ’00). Springer-Verlag, 2000, pp.
229–235.

[53] M. Bellare and P. Rogaway, “Introduction to modern cryptography,”
in UCSD CSE Course, 1st ed., 2005, p. 207, http://www.cs.ucsd.edu/
∼mihir/cse207/classnotes.html.

[54] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Cryptanalytic
attacks on pseudorandom number generators,” in Proceedings of the
5th International Workshop on Fast Software Encryption, ser. FSE
’98. London, UK, UK: Springer-Verlag, 1998, pp. 168–188. [Online].
Available: http://dl.acm.org/citation.cfm?id=647933.740748

[55] P. Q. Nguyen and I. E. Shparlinski, “The insecurity of the elliptic curve
digital signature algorithm with partially known nonces,” Designs, Codes
and Cryptography, vol. 30, no. 2, pp. 201–217, Sep 2003.

[56] Y. Seurin, “On the exact security of schnorr-type signatures in the
random oracle model,” in Advances in Cryptology – EUROCRYPT 2012,
D. Pointcheval and T. Johansson, Eds. Springer Berlin Heidelberg,
2012, pp. 554–571.

[57] J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan, “Sha-3
proposal blake,” Submission to NIST (Round 3), 2010. [Online].
Available: http://131002.net/blake/blake.pdf

[58] P. Szakacs-Simon, S. A. Moraru, and F. Neukart, “Signal conditioning
techniques for health monitoring devices,” in 2012 35th International
Conference on Telecommunications and Signal Processing (TSP), July
2012, pp. 610–614.

[59] P. Szakacs-Simon, S. A. Moraru, and L. Perniu, “Pulse oximeter based
monitoring system for people at risk,” in 2012 IEEE 13th International
Symposium on Computational Intelligence and Informatics (CINTI), Nov
2012, pp. 415–419.

[60] R. Weatherley, “Arduino cryptolibs,” Github Repository, 2016. [Online].
Available: https://github.com/rweather/arduinolibs/tree/master/libraries/
Crypto

[61] K. MacKay, “micro-ecc: Ecdh and ecdsa for 8-bit, 32-bit, and
64-bit processors,” Github Repository, 2014. [Online]. Available:
https://github.com/kmackay/micro-ecc

[62] K. Piotrowski, P. Langendoerfer, and S. Peter, “How public key
cryptography influences wireless sensor node lifetime,” in Proceedings
of the Fourth ACM Workshop on Security of Ad Hoc and Sensor
Networks, ser. SASN ’06. New York, NY, USA: ACM, 2006, pp. 169–
176. [Online]. Available: http://doi.acm.org/10.1145/1180345.1180366

[63] G. Ateniese, G. Bianchi, A. Capossele, and C. Petrioli, “Low-cost Stan-
dard Signatures in Wireless Sensor Networks: A Case for Reviving Pre-
computation Techniques?” in Proceedings of the 20th Annual Network
& Distributed System Security Symposium, NDSS 2013, ser. NDSS2013,
San Diego, CA, February 24-27 2013.

Attila Altay Yavuz (M ‘11) is an Assistant Pro-
fessor in the Department of Computer Science and
Engineering, University of South Florida (August
2018). He was an Assistant Professor in the School
of Electrical Engineering and Computer Science,
Oregon State University (2014-2018). He was a
member of the security and privacy research group at
the Robert Bosch Research and Technology Center
North America (2011-2014). He received his PhD
degree in Computer Science from North Carolina
State University in August 2011. He received his

MS degree in Computer Science from Bogazici University (2006) in Istanbul,
Turkey. He is broadly interested in design, analysis and application of crypto-
graphic tools and protocols to enhance the security of computer networks and
systems. Attila Altay Yavuz is a recipient of NSF CAREER Award (2017).
His research on privacy enhancing technologies (searchable encryption) and
intra-vehicular network security are in the process of technology transfer with
potential world-wide deployments. He has authored more than 40 research
articles in top conferences and journals along with several patents. He is a
member of IEEE and ACM.

Muslum Ozgur Ozmen received the bachelor‘s
degree in electrical and electronics engineering from
the Bilkent University, Turkey and the M.S. degree
in computer science from Oregon State University.
He is currently pursuing a PhD degree in computer
science with the Department of Computer Science
and Engineering, University of South Florida. His
research interests include lightweight cryptography
for IoT systems (drones and medical devices), digital
signatures, privacy enhancing technologies (dynamic
symmetric and public key based searchable encryp-

tion) and post-quantum cryptography.

13

http://eprint.iacr.org/2017/633
http://eprint.iacr.org/2017/633
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/pqsigRM.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/pqsigRM.zip
http://doi.acm.org/10.1145/1180405.1180453
http://doi.acm.org/10.1145/2462096.2462108
http://doi.acm.org/10.1145/3139937.3139940
http://doi.acm.org/10.1145/2093698.2093829
https://doi.org/10.1007/s00779-010-0353-1
http://www.cs.ucsd.edu/~mihir/cse207/classnotes.html
http://www.cs.ucsd.edu/~mihir/cse207/classnotes.html
http://dl.acm.org/citation.cfm?id=647933.740748
http://131002.net/blake/blake.pdf
https://github.com/rweather/arduinolibs/tree/master/libraries/Crypto
https://github.com/rweather/arduinolibs/tree/master/libraries/Crypto
https://github.com/kmackay/micro-ecc
http://doi.acm.org/10.1145/1180345.1180366

	Introduction
	Limitations of Signer Efficient Signatures
	Our Contribution

	Preliminaries
	Definitions and Algorithms
	Models

	The Proposed Scheme
	Preliminary Scheme: Efficient and Tiny Authentication
	Signer Efficient Multiple-time Elliptic Curve Signature (SEMECS)
	Challenges of Removing Ephemeral Key from Signature Generation
	Eliminating Expensive Operations from Signature Generation
	Achieving Compact Key and Signature Sizes
	Signature Verification and Tight Security Reduction


	Security Analysis
	Performance Analysis and Comparison
	Analytical Performance Analysis
	Performance Evaluation on Commodity Laptop
	Performance/Energy Evaluation on 8-bit Microprocessor

	Conclusion
	Acknowledgments
	References
	Biographies
	Attila Altay Yavuz
	Muslum Ozgur Ozmen


