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Oblivious Random Access Machine (ORAM) allows a client to hide the access pattern when accessing sensitive
data on a remote server. It is known that there exists a logarithmic communication lower bound on any passive
ORAM construction, where the server only acts as the storage service. This overhead, however, was shown
costly for some applications. Several active ORAM schemes with server computation have been proposed to
overcome this limitation. However, they mostly rely on costly homomorphic encryptions, whose performance
is worse than passive ORAM. In this article, we propose SSORAM, a new multi-server ORAM framework,
which features O(1) client bandwidth blowup and low client storage without relying on costly cryptographic
primitives. Our key idea is to harness Shamir Secret Sharing and a multi-party multiplication protocol on
applicable binary tree-ORAM paradigms. This strategy allows the client to instruct the server(s) to perform
secure and efficient computation on his/her behalf with a low intervention thereby, achieving a constant client
bandwidth blowup and low server computational overhead. Our framework can also work atop a general k-ary
tree ORAM structure (k > 2). We fully implemented our framework, and strictly evaluated its performance
on a commodity cloud platform (Amazon EC2). Our comprehensive experiments confirmed the efficiency
of S*ORAM framework, where it is approximately 10x faster than the most efficient passive ORAM (i.e.,
Path-ORAM) for a moderate network bandwidth while being three orders of magnitude faster than active
ORAM with O(1) bandwidth blowup (i.e., Onion-ORAM). We have open-sourced the implementation of our
framework for public testing and adaptation.
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1 INTRODUCTION

Recent data breach incidents (e.g., Apple iCloud, Equifax, British Airways) have shown the impor-
tance of preserving user privacy on the cloud. An important aspect of enhancing user privacy is
applying encryption on sensitive data. For instance, standard encryption (e.g., AES) can provide data
confidentiality. However, this might not be sufficient to preserve user privacy. Specifically, sensitive
information can still be inferred by observing user access patterns, even when the query and the
outsourced data are both encrypted [24]. To conceal the access pattern, Oblivious Random Access
Machine (ORAM) has been proposed [19]. ORAM plays an important role for privacy-preserving
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cloud applications thanks to its strong privacy features (e.g., confidentiality, access pattern obfus-
cation). However, some state-of-the-art ORAM schemes might still be costly for certain real-life
applications due to their high communication and/or computation overhead [1, 6, 23, 30, 31]. In the
following, we outline the state-of-the-art ORAM schemes and their limitations, and then present
our research objective toward mitigating some of these limitations.

1.1 The Limitations of the State-of-the-art and Our Objectives

The first ORAM scheme was proposed by Goldreich et al. [19], who later proved that any ORAM
construction must incur an asymptotically logarithmic communication lower bound of Q(log N),
where N is the number of outsourced data blocks. Since then, a number of ORAM schemes have
been proposed in attempts to achieve the established lower bound (e.g., [17, 33, 36, 40]). The most
efficient and simple ORAM is Path-ORAM [41], whose bandwidth overhead met the Goldreich and
Ostrovsky’s ORAM lower bound (i.e., O(log N) transmitted blocks per access). Despite its merits,
Path-ORAM has been shown costly for some cloud applications [6, 31, 37]. It has recently been
re-confirmed that there is a logarithmic communication lower bound in any secure passive ORAM
construction, where the server offers only the storage facility (i.e., no computation). Therefore,
to bypass this communication barrier, several active ORAM schemes with server computation
have been proposed (e.g., [11, 27, 34]). However, most of these ORAM designs cannot surpass
the logarithmic bandwidth overhead asymptotically, some of which [11, 27] incur a significant
computation cost such as single-server Private-Information Retrieval (PIR) [42]. To the best of our
knowledge, the state-of-the-art ORAM schemes with O(1) bandwidth overhead rely on either Fully
or Partially Homomorphic Encryption (HE) (e.g., [32]). (e.g., Onion-ORAM [12], Bucket-ORAM
[14], and [3]). Unfortunately, it has been shown that [1, 29] HE computation takes much longer
execution time than streaming O(log N) blocks in Path-ORAM.

To avoid costly computation, ORAM in the distributed setting has been explored. Although
the first multi-server ORAM scheme [38] can achieve O(1) client-server communication with
the cost of O(log N) server-server communication, it requires the client to store O(VN) blocks,
which might not be suitable for storage-constraints clients such as mobile devices. Later multi-
server ORAM schemes leveraged multi-server PIR (e.g., [9]) to reduce the bandwidth overhead
asymptotically without using costly HE operations. Abraham et al. [1] indicated that there exists
an asymptotically sub-logarithmic communication lower bound of Q(log,, N) for the ORAM and
PIR composition, where ¢, D are the numbers of blocks stored by the client and performed by PIR
operations, respectively. As a result, although the scheme in [28] claimed to achieve O(1) bandwidth
overhead under O(1) blocks of client storage, it has been shown to violate the bound with two
concrete attacks [1] .

Our objectives. In many practical scenarios, it may not be possible to guarantee a reliable and
high bandwidth network connection between the client and server. This is particularly true in
the case of home networks and mobile devices with wireless network connectivity (e.g., Wi-Fi,
LTE). Given that ORAM with O(log N) client bandwidth overhead (e.g., Path-ORAM [41]) may not
be suitable for such contexts, there is a significant need to design a new ORAM scheme that can
achieve O(1) client bandwidth overhead. It is also important that the proposed ORAM is suitable
for resource-limited clients and only incurs a low delay to provide a desirable quality of service.

Our objective is to create an efficient ORAM scheme that simultaneously achieves (i) a low client
communication overhead (i.e., O(1) bandwidth overhead), (ii) low computational overhead at both
client- and server-side, and (iii) low storage.
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Table 1. Summary of SSORAM schemes and some of their counterparts.

Schem [ Bandwidth Overhead [ Block Server Client 4 server
cheme ‘ Client-server ‘ Server-server H Size* Computation Block Storage: servers
Path-ORAM [41] O(log N) - Q1) - O(log N) 1
Ring-ORAM [34] O(log N) - Q(1) XOR O(log N) 1
Onion-ORAM [12] o(1) - Q(log® N) Additively HE [10] o(1) 1
‘ Dist. OblivStore [38] H o) ‘ O(logN) H Q(1) ‘ Permutation and IND-CPA encryption H O(VN) H 2 ‘
‘ 2-Server ORAM [25] H O(log N) ‘ - H Q(1) ‘ Permutation and cuckoo hashing H o(1) H 2 ‘
3 0 2
S"ORAM o OllogN) Q(log™N) Secure addition and o) 3
S3ORAMC o) O(log N) Q(log N) multiplication of SSS values O(log N)

o We refer reader to §7 for the detail experimental and analytical comparisons between S°ORAM schemes and their counterparts.

F Bandwidth overhead denotes the number of blocks being transmitted between the client and the server(s) or between the servers. Due to the
eviction, the server-server bandwidth overhead of SSORAMC is O(Alog N), where 1 is the statistical security parameter. Since the eviction is
performed every 1/2 access requests, the amortized server-server bandwidth overhead of S*ORAM® is O(log N).

# This indicates the minimal block size needed to absorb the transmission cost of the retrieval query and the eviction data, thereby meeting the
expected client-bandwidth overhead. In this table, we consider all the ORAM schemes in the non-recursive form, where the position map is stored
at the client.

# Client block storage is defined as the number of data blocks being temporarily stored at the client. This is equivalent to the stash component
used in [34, 41], which, therefore, does not include the cost of storing the position map of size O(N log N). Notice that all the ORAM schemes in
this table, except the one in [25], require the position map component.

1.2 Our Contribution

In this paper, we present S’ORAM, a new distributed ORAM framework, which features O(1) client
bandwidth blowup, low storage and efficient computation at both client- and server-side. Our
proposed framework consists of two multi-server active ORAM schemes including S*ORAM® and
S*ORAM?C, in which the former minimizes the client storage requirement while the latter optimizes
the computation and storage overhead at the server-side. We first present our main idea and then
outline the desirable properties of our proposed framework as follows.

Main idea. Most efficient ORAM schemes to-date follow the tree paradigm by Shi et al. [36].
In this paradigm, there are two main procedures for each ORAM access: retrieval and eviction.
Our intuition is to harness the homomorphic properties of Shamir secret sharing along with a
secure multi-party multiplication protocol to perform these procedures in an oblivious manner. To
achieve O(1) client-bandwidth overhead, it is imperative to ensure that each procedure only incurs
a small constant number of data blocks to be transmitted between the client and the server(s). In the
standard (single-server) ORAM setting, we observe that both Onion-ORAM [12] and Circuit-ORAM
[43] schemes require low client storage and offer elegant retrieval and eviction strategies that can
be further implemented with SSS homomorphic computation to achieve O(1) client-bandwidth
overhead. Therefore, the main idea of SSORAMPO and S?’ORAMC schemes in our S’ORAM framework
is to harness SSS and SMM protocol to perform the retrieval and eviction operations in the line
of Onion-ORAM and Circuit-ORAM, respectively, but in a significantly more computation- and
client bandwidth-efficient manner. By doing this, SSORAMO (resp. S>ORAMC) inherits all desirable
properties of Onion-ORAM (resp. Circuit-ORAM) regarding the low client storage cost, while
achieving O(1) client-bandwidth overhead without the costly homomorphic operations but instead
requiring only a lightweight computation and suitability for small block sizes. Table 1 outlines a
high-level comparison of S°ORAM and its counterparts.

Desirable properties. Our SSORAM framework offers the following properties.

o Low client-server communication: All schemes in S’ORAM framework offer O(1) client band-
width blowup, compared with O(log N) of Path-ORAM [41] and Ring-ORAM [34] (with a fixed
number of servers). SSORAM schemes feature a smaller block size (i.e., Q(log N) in SSORAM®,
Q(log N) in SSORAMC), than state-of-the-art O(1) bandwidth blowup ORAM schemes that
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require Fully or Partially HE operations (e.g., Q(log® N) in Onion-ORAM [12], Q(log® N) in
Bucket-ORAM [14]).

o Low client and server computation: SSORAM schemes require the servers to perform only light-

weight modular additions and multiplications, which are much more efficient than partial HE
operations (e.g., [10]). In particular, we show in §7 that, the server computation of SSORAM
schemes is three orders of magnitude faster than that of Onion-ORAM.
The client in S°ORAM schemes only performs lightweight computations for retrieval and evic-
tion operations. Thus, it is more efficient than Onion-ORAM, which requires a number of HE
operations. For example, SSORAM requires only a few milliseconds compared to minutes of
Onion-ORAM to generate an encrypted access query (see §7). Moreover, since data blocks in
S*0ORAM schemes are single-layered “encrypted”, the “decryption” process is less costly so that
it is faster than other ORAMs (e.g., [12, 38]), whose blocks are multi-layered encrypted.

o Low end-to-end delay: Due to low bandwidth and computation overhead, SSORAM schemes are
approximately three orders of magnitude faster than Onion-ORAM, while it is one order of
magnitude faster than Path-ORAM in networks with moderate client bandwidth. We notice
that for SSORAM to provide all its advantages, it is assumed that good network throughput is
available between the servers. In our detailed analysis in §7.2.3, we show that if the inter-server
bandwidth is limited and the client has access to a high-speed Internet connection, state-of-
the-art (single-server) ORAM schemes (i.e., Path-ORAM, Ring-ORAM) are more efficient than
S*ORAM (see §7.2.3 for a detailed analysis).

e Low client storage: SSORAMO scheme features O(1) blocks of client storage, compared with O(A)

blocks in Path-ORAM/Ring-ORAM, and O(VN) blocks in [40]. SSORAMC scheme achieves the
same block of client storage with Path-ORAM/Ring-ORAM (i.e., O(1))

e High security: All SORAM schemes achieve information-theoretic statistical security. The sta-

tistical bit comes from the tree-paradigm by Shi et al. [36]. The information-theoretic property
comes from SSS and its multi-party multiplication protocol.

Full-fledged implementation and experiments: We fully implemented S’ORAM® and S?*ORAM®
schemes in our SSORAM framework and evaluated their performance in an actual cloud envi-
ronment (i.e., Amazon EC2). The detailed experiments in §7 showed that both SSORAM schemes
are efficient in practice and they can be deployed on mobile devices with a limited computation
capacity and low network connection. We have released the source code of SSORAM framework
for public use and testing (see §6).

Security limitations of SSORAM. S*ORAM harnesses the distributed setting to achieve constant
client bandwidth overhead with efficient computation and the server-side simultaneously. It should
be clear, however, that the use of standard secret sharing techniques and, in particular, Shamir
secret sharing, renders our protocol vulnerable to collusion attacks (as it is standard in this setting).
It should be observed that this vulnerability does not exist in the standard single-server ORAM
model. Therefore, as it is also standard in this model, we note that SSORAM cannot offer any
security guarantee if the number of colluding servers exceeds the privacy threshold. Another
limitation of S’ORAM is that it only offers security in the semi-honest setting (see [12] for the
exemplified active attack). To make S’ ORAM secure against malicious adversaries, we can apply
the “cut-and-choose” trick proposed in [12]; however, this may incur very high communication
and computation overhead at the client. We leave the efficient extension of S°ORAM to malicious
security as an open research question.
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Improvements over the CCS’17 conference version [22]. This article is the extended version
of [22], which includes the following improvements. First, from the algorithmic point of view, we
introduce a new SSORAM variant called SSORAMC, which reduces the storage and computation
overhead at the server side at the cost of small client storage. Second, following recent optimizations
on tree-ORAM (e.g., [1, 17]), we show that our SSORAM schemes can be extended to work on top
of k-ary tree layout, where k > 2 is a free parameter, to achieve sub-logarithmic overhead. We also
show that although allowing the tree degree to be adjusted provides asymptotic improvements in
the complexity of the algorithm, it turns out that the practical improvement is not significant, in
which the tree-ORAM only works best with the small k (i.e., k € {2, 3}). Third, we improved the
implementation of SSORAM and revised all the experiments with more appropriate parameters to
better capture the security and the performance of SSORAM in real-world applications. In summary,
our main objective in this article is to harness state-of-the-art efficient eviction strategies proposed
for Tree-ORAM paradigm (i.e., [12, 43]) with multi-party computation techniques (i.e., Shamir secret
sharing [35]), and demonstrate via extensive experiments that this integration with optimizations
offers one of the most efficient ORAM frameworks for data outsourcing. Finally, we have released
the improved source-code of all SSORAM schemes for public use and adaptation. The code is
publicly available at

’ https://github.com/thanghoang/S30RAM ‘

2 PRELIMINARIES AND BUILDING BLOCKS
Notation. x < S denotes that x is randomly and uniformly selected from set S. |S| denotes the
cardinality of set S. |x| denotes the size of variable x. For any integer [, (xy, ..., x;) & S denotes

(x1 <$— S,....x] <i S). We denote a finite field as F,, where p is a prime. Given u and v as vectors
with the same length, u - v denotes the dot product of u and v. Given an n-dimensional vector u and
a matrix I of size n X m, v = u-I denotes the matrix product of u and I resulting in an m-dimensional
vector v. u[i] denotes accessing the i-th component of vector u. I[i][*] and I[*][j] denote accessing
the row i and column j of matrix I, respectively. I[«][i .. . j] denotes accessing the columns from i
to j of matrix L.

2.1 Model of Computation

Following the literature in distributed secure computation (e.g., [5, 18]), we assume a synchronous
network, which consists of a client and ¢ > 2t + 1 semi-honest servers S = {8, ..., S¢}. Itis also
assumed that the channels between all the players are pairwise-secure, i.e., no player can tamper
with, read, or modify the contents of the communication channel of other players. We assume that
all parties behave in an “honest-but-curious” manner in which parties always send messages as
expected but try to learn as much as possible from the shared information received or observed.
Notice that in this paper, we do not allow parties to provide malicious inputs, i.e., parties are not
allowed to behave in a Byzantine manner.

A protocol is t-private [5] (see [18] for similar definitions in the context of distributed PIR) if
any set of at most ¢ parties cannot compute after the protocol execution more than they could
compute individually from their set of private inputs and outputs. Alternatively, the parties have
not “learned” anything. Our protocols in general, offer information-theoretic guarantees unless
something is said explicitly to the contrary. This implies that our solutions are secure against
computationally unbounded adversaries. As it is standard, we require that all computations by the
servers and client be polynomial time and efficient. Finally notice that in this paper, not only is
the interaction between the servers and client performed in such a way that information-theoretic
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SSS.Create(a, t):

1: (ag, ..., ar) ﬁFp
2: fori=1,...,¢do )
3: [a]i « a+ th-:l aj - x{ > x; € F};: public identifier of party P;

4: return ([a]li, - - -, [a]¢)

SSS.Recover(A, t):

1: Randomly pick ¢ + 1 < £ shares {[a]x,, - - ., [a]x,,, } in A
2: g(x) « Lagrangelnterpolation ({(x;, [a]x;)}!2])

3: a « ¢g(0)

4: return o

Fig. 1. Shamir secret sharing scheme [35].

security is guaranteed but also the database being accessed is shared among the servers in a way
that no coalition of up to ¢ servers can find anything about the database contents (also in an
information-theoretic manner).

2.2 Shamir Secret Sharing

We recall (¢, £)-threshold Shamir Secret Sharing (SSS) scheme [35], which comprises two algorithms
SSS.Create and SSS.Recover as presented in Figure 1. To share a secret a € F, among ¢ parties,
a dealer generates a random polynomial f, where f(0) = a and evaluates f(x;) for party #; for
1 <i < {, where x; € F, is a deterministic non-zero element of F, that uniquely identifies party
#; and it is considered public information (SSS.Create algorithm). f(x;) is referred to as the share
of party P;, and it is denoted by [«];. To reconstruct the secret «, the shares of at least t + 1 parties
have to be combined via Lagrange interpolation (SSS.Recover algorithm).

We extend the notion of secret share for a value into the share for a vector in a natural way as
follows: Given a vector v = (vy, . ..,vp), [v]i = ([v1]is - - - » [on];) indicates the share of v for party
P;, which is a vector whose elements are the shares of the elements in v. Similarly, given a matrix
L, [[1] denotes the share of I, which is also a matrix with each cell [I[i, j]] being the share of the cell
I[i, j]. In some cases, to ease readability, we drop the subscript i, when the party is understood from
the context.

Shamir [35] showed that SSS is information-theoretic secure and ¢-private in the sense that
no set of t or less shares reveals any information about the secret. More precisely, Vm, m’ € Fp,
VI C {1,...,¢} such that |[7| < t and for any set A = {ay,...,a;7|} where a; € F,, the
probability distributions of {sl-e] : (s1,...,8¢) < SSS.Create(m, t)} and {S;ez S A
SSS.Create(m’, t)} are identical and uniform:

Pr({sier} = A) = Pr({s;.;} = A).
Ben-Or et al. [5] showed that SSS can be used to obtain ¢-private protocols. Lemma 1 summarizes
the homomorphic properties of SSS and it was first described in [5].
Lemma 1 (SSS homomorphic properties [5]). Let [a]]g.t) be the Shamir share of value a € F, with
privacy level t for P;. SSS offers additively and multiplicatively homomorphic properties:
e Addition of two shares

[[(Xlﬂs-t) + [[azﬂg.” = [[0(1 + a'z]]gt). (1)
o Multiplication w.r.t a scalar ¢ € F),
c- [[a]]gt) = [e- a}]gt). 2)
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o Input: P; owns [[al]](it), [[ag}](it) and wants to compute [a; - ag]](it)
o Output: Each P; obtains [[ﬁ]](l[) where f = a; - a2

1: for each P; € {P1, ..., Pas+1} do

2 [ [l [l

3 (A1), — 95 Create([B] ", 1)

4 Distribute [f]\" toall P} € {P1, ..., Pors1}\ P

5: for each P; € {P1, ..., P21} do

o 1Y S VI
z

Fig. 2. Multi-party multiplication protocol on SSS shares [16].

e Partial share multiplication
[[al]]ﬁ-t) : [[az}]ﬁ-” = [ '052]](,-20- 3)

The two-share partial multiplication (Eq. 3) in Lemma 1 results in a share of a; - a,, which is
t-private and represented by a 2¢-degree polynomial. It was first observed in [5] that the resulting
polynomial is not uniformly distributed. In order to achieve the uniform distribution and computa-
tion consistency over [ - 2], it is required to reduce the degree of the polynomial representation
of [a1 - @] from 2t to t and re-share the polynomial. This multiplication operation with degree
reduction can be achieved via a secure multiplication protocol shown in the following section®.

2.3 Secure Multi-party Multiplication

Gennaro et al. [16] presented a Secure Multi-pary Multiplication (SMM) protocol for two Shamir
secret-shared values among multiple parties. Given ay, a; € F,, shared by (¢, £)-threshold SSS as

[[al]](l.t) and [[azﬂg.t) for 1 < i < ¢ respectively, 2t + 1 parties P; among ¢ parties would like to

compute the multiplication of @3, a; without revealing the value of @; and @,. The protocol requires
a Vandermonde matrix V,,, of size (2t + 1) X (2t + 1) having the following structure.

0 1 2t
x%) x11 . x%
xy x, ... x5t
V{x1,~-~,X2t+1} = : : .. : 4 (4)
0 1 2t
Xot+1  Xar+1 Xot+1

where x; € F,, are unique identifiers of participating party #;. We refer to V~! as the inverse
of Vandermonde matrix. Each party P; locally multiplies [[al]](l.[) and [[az]](it) yielding [o; - az]]E.Zt) ,
and creates shares of [a; - agﬂgzt) by a new random polynomial of degree t for 2t + 1 parties and

distributes them to other 2t parties. Finally, each party locally performs the dot product between

the received shares and V?;_}[l, *] to obtain a new share of a; - @, which is now represented by a

polynomial of degree t as [o; - az]]gt). Figure 2 presents this multiplication protocol.

Lemma 2 (SMM protocol privacy [16]). The SMM protocol in [16] (denoted as * operator) offers homo-
morphic property for full multiplication between two SSS-shares, whose result is t-private as:

[ar - ] = [ar]" * [a] " 5)

1 Benor et al. [5] proposed a secure multiplication protocol, however the protocol of Gennaro et al. [16] is more efficient and
thus, is the subject of §2.3.
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Table 2. Notations.

Symbol Description
T S’ORAM tree structure.
zZ Bucket size.
T[i], T[][/] i-th bucket of SSORAM tree T and j-th slot in the i-th bucket of T.
|bl, b, ¢ Block size, block and block chunk, respectively.
N, m Number of blocks and number of chunks in a block.
H Height of the SSORAM tree.
pm Position map.
(pID, pldx) « pm[id] | Precise location (i.e., path ID and path index) of the block id.
I <« P(pID) Set of indexes of buckets residing in the path pID.

2.4 Multi-server Private Information Retrieval

Private Information Retrieval (PIR) enables retrieval of a data item from an (unencrypted) public
database without revealing which item being fetched. We follow the presentation of [4, 18] as
follows.

Definition 1 (Multi-server PIR [4, 9, 18]). Let DB = (b1, ..., b,) be a database consisting of n items
being stored in £ servers. A multi-server PIR protocol consists of three algorithms: PIR.CreateQuery,
PIR.Retrieve and PIR.Reconstruct. Given an item b; in DB to be retrieved, the client creates queries
(e1,...,ep) < PIR.CreateQuery(i) and distributes e; to server S;. Each server responds with an
answer a; < PIR.Retrieve(e;, DB). Upon receiving { answers, the client computes the value of
item b; by invoking the reconstruction algorithm b < PIR.Reconstruct(ay, . . ., ar).

The security of the protocol is defined in terms of correctness and privacy. A multi-server PIR pro-
tocol is correct if the client computes the correct value of b from any ¢ answers via PIR.Reconstruct
algorithm with probability 1. The concept of t-privacy for protocols is applied naturally to the PIR
setting and follows directly from the ¢-privacy of SSS and the fact that among the servers they only
have access to t shares of the query vector [18].

2.5 Multi-server ORAM Security

We now define the security of multi-server ORAM in the semi-honest setting proposed in [1] as a
straightforward extension of the definition in [1] to the multi-server setting.

Definition 2 (Multi-server ORAM with server computation ). Letx = ((opl, idq, data,), ..., (opq, idg, dataq))
be a data request sequence of length g, where op; € {Read, Write}, id; is the identifier to be
read/written and data; is the data identified by id; to be read/written. Let ORAM;(x) represent the

ORAM client’s sequence of interactions with the server S; given a data request sequence x.
Correctness. A multi-server ORAM is correct if for any access sequence x, {ORAM1 x),..., ORAMg(x)}
returns data consistent with x except with a negligible probability.

t-security. A multi-server ORAM is t-secure if VI C {1,...,¢} such that |7| < t, for any two

data access sequences x,y with |x| = |y|, their corresponding transcripts {ORAMiE I(x)} and
{ORAM;c1(y)} observed by a coalition of up to ¢ servers {S;c 7 } are (perfectly/statistically/computationally)
indistinguishable.

3 THE PROPOSED S?ORAM FRAMEWORK

S*ORAM follows the typical procedure of tree-based ORAMs [36]. Specifically, given a block to be
accessed, the client first retrieves it from the outsourced ORAM structure via a secure retrieval
operation. The retrieved block is then assigned to a random path, and written back to the root
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Fig. 3. Tree-ORAM paradigm by Shi et al. [36].

bucket. Finally, an eviction operation is performed in order to percolate data blocks to lower levels in
the ORAM structure. The intuition behind SSORAM access protocol is as follows: (1) We integrate SSS
with a multi-server PIR protocol to perform a private retrieval operation with some homomorphic
properties; (2) We leverage these homomorphic properties of SSS and a SMM protocol to perform
block permutation and to preserve t-privacy level of ORAM structure in the eviction phase, without
relying on costly partial HE operations. Notice that the idea of using PIR to implement the ORAM
retrieval phase was first suggested in [27], and later in some subsequent works such as [1, 11, 12, 21].
In Table 2, we outline the notation used in the SSORAM schemes and throughout the rest of the

paper.

3.1 Overview of SSORAM Framework

3.1.1 Data Structure. SSORAM schemes follow the tree paradigm proposed by Shi et al. [36], in
which the outsourced database is split into size-equal blocks and then organized to a balanced
binary tree (T) with a height of H (Figure 3). Each node in T is called a bucket with Z slots so that it
can store up to Z data blocks. Thus, T can store up to N < Z - 27 data blocks.

At the client-side, the client maintains a position map component (pm) to keep track of the
assigned path (pID) for each data block in the tree. Additionally, the client stores the location of
each data block in its assigned path. Hence, pm is of structure pm := (id, {pID, pldx)), where id is
the block ID, 1 < pID < 2 is the assigned path of the block, and 1 < pldx < Z - (H + 1) is the
location of the block in its path. The client also maintains a so-called stash component (denoted as
S) to temporarily store accessed block(s) from the tree.

In the SSORAM framework, the tree structure is SSS-shared among ¢ servers. Figure 4 presents
the Setup algorithm to construct data structures in SSORAM schemes given a database input DB.
First, the client organizes DB into N data blocks, and then initializes every slot in each bucket of
the tree (T) with a 0’s string of length |b| (lines 1-2). The client arranges all blocks into T, wherein
each block (b;) is independently assigned to a random leaf bucket of T. Notice that |b| can be larger
than [log, p] and therefore, it might not be suitable for arithmetic computation over F,. To address
this, the client splits the data in each slot of T into equal-sized chunks ¢; € F,, (line 9)*. Finally, the
client creates shares of T via SSS.Create algorithm for each chunk in each slot in T (line 10). The
S?ORAM distributed data structure consists of ¢ shares of T as {[T]s,. .., [T]¢}-

Figure 5 presents the general access operation of SSORAM schemes following the tree-ORAM
paradigm. Basically, there are two main subroutines in the SSORAM.Access algorithm: Retrieve
(line 1) and Evict (line 6). The former is to obliviously retrieve the block of interest from the

“We assume implicitly that we choose an appropriate prime p such that every string c¢; when interpreted as an element of
Fp is less than p.
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S30ORAM. Setup(DB):
1: Split DB into blocks (b1, . . ., bnr) with corresponding IDs (idy, . . ., idn7)
2: T[i][j] « {o}?! for1 <i<2H* and1<j<Z
3:fori=1,...,Ndo
4 oz &, 2H
5 Put b; into an empty slot indexed y of the leaf bucket in path z;
6 pmlid;] « (zi, H - Z + y)
7: fori=1,...,2H" —1do
8 forj=1,...,Zdo
9 (cg.l;, cees cg.';l)) «— T[i, j], where cg.kj) €eF,p
. (k) (k) (k)
10: ([Ci,jﬂl’ e, [[ci’j]]() — SSS.Create(ci’j, t)yforl1 <k <m
11: [TL A1 @eD0r - eI for1 <1< €
12: return ([T]y, - . ., [T]¢) >Send [T]; to S;for1 <i <¢

Fig. 4. SSORAM setup algorithm.

S3ORAM. Access(op, id, b*):
: b « SP0ORAM.Retrieve(id)
: pmlid].pID & (1, ..., KH*1)
: if op = write then
b b*
S—Sub
: Execute S’ORAM.Evict()
: return b

Fig. 5. General access procedure in SSORAM schemes.

ORAM-tree stored on the cloud, while the latter is to obliviously write the retrieved block back to
the ORAM-tree. Once the block is retrieved, it is assigned to a new random path (line 2), updated if
needed (line 3), and then stored in the stash (line 5) to be pushed back later via the Evict protocol.

In our S’ORAM framework, we select the eviction path deterministically, which follows the
reverse lexicographical order proposed in [17]. Specifically, given a binary tree of height H, where
edges in each level are indexed by either 0 (left) or 1 (right) as exemplified in Figure 3, the collection
of edges of the eviction path at the n.-th eviction operation is calculated by the following formula.

v = DigitReverse,(n, mod 2, (6)

where DigitReverse, denotes the order-reversal of the binary string representation of the decimal
integer input.

In the following, we present the main scheme in our S*0ORAM framework called S’ORAMO,
which features the low client storage overhead. We describe another S’ORAM scheme called
S?0ORAME, which offers efficient computation and low server storage overhead with the cost of
client storage afterward.

3.2 S®ORAMPO: S2ORAM with Low Client Storage

We introduce S’ORAMPO, an S’ORAM scheme that does not require the client to maintain the stash
component, thereby saving a factor of O(1) client storage overhead. To achieve this, SSORAM®
follows the Triplet Eviction strategy in [12]. To enable O(1) client-bandwidth blowup, S*ORAM®
harnesses homomorphic properties of SSS, which allows the client to “instruct” the servers to
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PIR.CreateQuery(j):
1: Lete:=(ej, ..., ey), whereej < 1,e; < Ofor1 <i#j<n
2: fori=1,...,ndo
3: ([[eiﬂ(t), R, [[ei]](gt)) « SSS.Create(e;, t)

: [[e}](it) = (IIel]](it), U [[en]](it>), forit<i<¢

5: return ([[e}](t), e [[e]]gf))

'S

PIR.Retrieve([e] "), [DB]'"):
6 [6]%" — [e]\" - [DB]"
7: return [[b]](in)

PIR.Reconstruct([[b]]&Zt), e ﬂb]](;t)):

8 b — SSS.Recover([[b}](lzﬂ, RN [[b]](gt), 2t)
9: return b

Fig. 6. SSS-based PIR scheme.

perform efficient retrieval and eviction operations in a secure manner without having to download
and upload O(log N) data blocks.
In the following, we describe in detail the retrieval and eviction protocol of S*0ORAMP scheme.

3.2.1 Retrieval subroutine. To achieve O(1) client bandwidth blowup, the retrieval protocol in
S*ORAMO scheme requires an efficient PIR protocol to privately retrieve the block of interest. We
first describe the PIR protocol based on SSS as follows.

SSS-based PIR scheme. Our objective is to privately retrieve a block of interest residing in the
queried path on the SSORAM® tree. Recall that in the single-server HE-based ORAM schemes
(e.g., [3, 12]), the PIR query is encrypted with additive/fully HE. In SSORAMO, the tree is SSS-
shared among ¢ servers, which features highly efficient additive and multiplicative homomorphic
properties. We observe that the multi-server PIR scheme in [4, 18] relies on SSS to create PIR queries
and, therefore, it can serve as a suitable private retrieval tool to be used for S30ORAMP scheme. We
describe SSS-based PIR scheme in Figure 6, and further outline it as follows:

Assume that each server S; stores a share of the database DB containing n blocks denoted as
[DB];, which can be interpreted as a vector with each i-th component being the share of the i-th
item in DB. Let j be the index of the block in DB to be privately retrieved. The client executes the
PIR.CreateQuery algorithm, which creates an n-dimensional unit vector with all zero coordinates
except the j-th coordinate being set to 1 (line 1) and then, secret-shares it with SSS (lines 2-3).
The client then distributes these shares to the corresponding servers, each answering with the
result of the dot product between the received share vector and its share of DB by executing the
PIR.Retrieve algorithm (line 6). Finally, the client executes the PIR.Reconstruct algorithm, which
invokes the SSS.Recover algorithm over ¢ answers to recover the desired block (line 8). Since DB
in this context is SSS-secret shared instead of plaintext as in [4, 18], our PIR.Reconstruct algorithm
requires at least 2t + 1 shares (instead of ¢ + 1) to recover the item correctly.

We present the retrieval protocol in SSORAM® in Figure 7, which employs three algorithms
of the above SSS-based PIR scheme. Given the block to be read, the client first determines its
location in the SSORAMO tree via the position map pm (line 1) and then, privately retrieves it
using the SSS-based PIR protocol. In this case, the server interprets all slots in the retrieval path as
the database input DB in the PIR.Retrieve algorithm. Hence, the size of DB and the length of the
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S30ORAMP Retrieve(id):

Client:
1: (s, j) « pml[id]
2: ([[e]](lt), R [[e]]([”) « PIR.CreateQuery(j)
3: Send (s, [[e}](it)) to server Sj,for1 <i < ¢

Server: each S; € {8y, ..., S¢} receiving (s, [[e]](it)) do
4: T — P(s)
5:forj=1,...,mdo
6: Let [[cj]](il) contain j-th chunk of Z slots in [[T[i’]]](il), Vi‘e I
7: [[Cj]](in) — PIR.Retrieve([[e]](i[), [[cj]](l.t))

8: Send ([[cl]}(iz”, R [[cm]}(i“)) to client
Client: On receive ({[[cll](iz”}f:l, R, {[[cm]}(i“)}f:l)
9: ¢j PlR.Reconstruct(ﬂcj]](th), RN [[cj]](fz”) fori<j<m

10: b — (c1, .. .»Cm)
11: return b

Fig. 7. SSORAMDO retrieval subroutine.

S3ORAMO.Evict():

: (¢1, - - ., Cm) < b, where b is the block that has just been retrieved

: ([ejl1s - - -5 [cj]e) < SSS.Create(cj, t)for1 < j <m

: Write ([e1])s, - - - [em] i) to slot [T[1, n, + 1]]); in server S; for1 <i < ¢

ny < nr,+1 mod A > n, is initialized with 0
: if n, = 0 then

v « DigitReverse,(n, mod 2H)

Execute S’ORAMO . EvictAlongPath(v) protocol

Ne « ne +1 mod 2H > N is initialized with 0

Fig. 8. SSORAM®O eviction subroutine.

query vector is n = Z - (H + 1). Since there are m separate chunks in each slot, the servers execute
the PIR.Retrieve algorithm m times with the same PIR query but over different DB;, where each
DB; contains the j-th chunk of all slots in the retrieval path (lines 5-7). Finally, the client obtains
the desired block by recovering all chunks upon receiving their corresponding shares using the
PIR.Reconstruct algorithm (line 9).

3.2.2  Eviction subroutine. To eliminate the need of maintaining the stash component at the client-
side, SSORAMO follows the Triplet Eviction strategy proposed in [12]. The SSORAMO.Evict algo-
rithm in Figure 8 presents the eviction procedure in SSORAMO scheme. Specifically, after the block
is privately retrieved via the SSORAM®.Retrieve protocol, the client creates new SSS-shares for
it (lines 1-2), and then writes the share to an empty slot in the root bucket of the correspond-
ing server (lines 3). After A < Z successive retrievals, the client selects a deterministic eviction
path following the reverse lexicographical order (line 5) as presented in §3.1, and executes the
S3ORAMP. EvictAlongPath protocol, to obliviously percolate the blocks from upper levels (e.g., root
bucket) to deeper levels (e.g., leaf buckets).

According to the Triplet Eviction policy, for each level in the eviction path, all blocks from the
source bucket (T[i]) will be obliviously moved to all its children (i.e., T[2i], T[2i + 1]). We follow the
same terminology used in [12] to denote the buckets involved in each Triplet Eviction operation: If
the child of the source bucket resides in the eviction path, it is called the destination bucket while
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VAL, [T A HL L [T ALY, [T]s (1) Send permutation matrices
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.3 . Source bucket
5 O Destination bucket

O Sibling bucket
= Eviction path
! (2): Blocks in source bucket are pushed down via matrix product

B R C L LR PP T > T (3): Blocks in source bucket are copied to (non-leaf) sibling bucket

Fig. 9. The Triplet Eviction using SSS and SMM protocol.

the other child is called the sibling bucket (see Figure 9 for clarification). In our SSORAMO scheme,
the move is performed by computing the matrix product, in which the client creates permutation
matrices and requests the servers to jointly perform the matrix product between such matrices and
vectors containing data along the eviction path in the SSORAM® tree. We present the algorithmic
description of this strategy in the SSORAMO.EvictAlongPath protocol in Figure 10 with details as
follows.

Source to destination. Let [u] be a 2Z-dimensional share vector formed by concatenating all
data in the source bucket and the destination bucket. The client creates a permutation matrix
I € {0,1}2%*Z (line 2) such that the matrix product between [u] and I will result in a Z-dimensional
vector [v], in which data at position i in [u] is moved to position j in [v]. That is, I is a matrix,
where I[i, j] « 1 if the block at position i in [u] is expected to move to position j in [v] (line 7).
As aresult, I[i + Z, i] « 1if the block currently at position i in [v] remains (line 12). To hide the
location information of real blocks after permutation, the client “encrypts” every single element of
I with SSS resulting in a share matrix [I] € IF?,Z *Z (line 13). Note that the matrix product between
these two shares results in a share vector with each element being represented by a degree-2¢
polynomial. To maintain the consistency and privacy of the SSORAM® tree structure, servers will
jointly perform the SMM protocol in §2.3 to reduce the degree of the polynomial of each component
in [v] from 2t to t (line 22 and line 26).

Source to sibling. We can apply the same trick as in the source-to-destination above to obliviously
move real blocks in source buckets to their sibling buckets. However, since the non-leaf sibling
buckets are guaranteed to be empty due to previous evictions passing on them (see Lemma 3),
this process can be further optimized as discussed in [12] as follows. For each non-leaf sibling
bucket in the eviction path, the client simply requests servers to copy all the data in the source
bucket to the sibling bucket (line 19) and then, updates locally the path location of blocks in the
position map (pm) accordingly (line 9-10). For the leaf sibling bucket, since it is not guaranteed to
be empty at any time, we use the matrix permutation to move blocks from the source bucket to it as
described above. This optimization can halve the client-server and server-server bandwidth cost as
well as the server computation. Generally, we can see that our eviction approach requires only one
client-server communication and guarantees that all data after eviction are consistently “encrypted”
by degree-t polynomials. Figure 9 visualizes this new SSS-based Triplet Eviction strategy.

3.2.3  Asymptotic cost analysis. We analyze the cost of SSORAM® pertaining to the block size (|b]),
number of blocks (N), and statistical security parameter (1). We consider other system parameters
(e.g., prime field F,,, number of servers £) to be fixed.
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S3ORAMPO . EvictAlongPath(v):

Let (u1, . . ., upr) be the (ordered) indexes of source buckets along the eviction path v
Client:
1: forh=1,...,Hdo

2: Let I}, be a 2Z X Z matrix, set I, [, ] « 0

3 for each real block with id in the source bucket T[uy] do
4 if id can legally reside in the destination bucket of T[uy] then
5 (pID, pldx) « pm[id]
6: Let y (1 < y < Z) be the index of an empty slot in the destination bucket of T[up]
7 IL[x][Z + y] « 1, where x « pldx mod Z
8 pmlid'].pldx — Z - h+y > Update the new location of the block in the path
9: else > id can legally reside in the sibling bucket of T[uy,]
10: pml[id].pldx « pml[id].pldx + Z
11: for each real block with id” in the destination bucket of T[uy] do
12: In[x + Z][x] « 1, where x < pm[id’].pldx mod Z

13: [Ix[x, y]ﬂ(lt), e [Tal, y]}](;) « SSS.Create(Ip[x, y], t)for1 <x <2Z,1<y<Z

14: Repeat lines 2-13 (excluded lines 9-10) to create [I' 7], the share of permutation matrix for source to sibling bucket
at the leaf level (h = H)

15: Send ([0, 1%, ]V, .. ., 1)) to Sifor1 < i < €

1
Server: each S; € {Sy, . .., S¢} receiving ([[I}{]]gt), [[Il]]<it), e, [[IH]](it)) do
18: forh=1,...,Hdo
19: Copy all data from source bucket [[T[uh]]](it) to its non-leaf sibling bucket
20: forj=1,...,mdo

21: Let ﬂch,j]}(it) be a vector containing j-th chunks of [[T[uh]]]i.t) and its destination bucket
22 [en 1  Len 157 % DAl
23: Update j-th chunks of the destination bucket of [[T[uh]]}(it) with [[éh,j]}(it)

24: forj=1,...,mdo
25: Let [[c'H,j]](it) be a vector containing j-th chunks of source bucket [[T[uH]}](it) and its (leaf) sibling bucket

N A e 7 [ | 8

27: Update j-th chunks of the sibling bucket of [[T[uH]]](i[) with [&; j]](il)

Fig. 10. SSORAM®O Triplet Eviction with SSS scheme and SMM protocol.

Communication. In the SSORAMP retrieval phase, each PIR query being sent to £ servers is of
size (Z - (H + 1) - [log, p]) bits. The client exchanges one block of size |b| with each server. The
Triplet Eviction is performed after every A subsequent retrievals. In this operation, the client sends
H + 1 permutation matrices to ¢ servers. Each matrix is of size 2Z% - [log, p] bits. The servers
exchange the shares of H + 1 buckets with each other, each being of size Z - |b| bits. Therefore, given
H = O(logN),Z = A = O(4) and ¢, p are constants, the amortized client-server communication
complexity is O(|b|+A-log N). The amortized server-server communication overhead is O(|b|-log N).

o Achieving O(1) client-server bandwidth blowup: The client bandwidth blowup is defined as the
ratio between the cost of client-server communication by using ORAM to access the block vs. the
base case where the block is insecurely accessed without ORAM. Our analyzed communication
complexity of SSORAM® above indicates that the size of the PIR query and the permutation matrices
is independent of the block size parameter |b|. Therefore, the O(1) client bandwidth blowup can be
achieved in S’ORAMO by selecting a suitable value of |b|. That is, by selecting |b| = Q(A - log N)?,
S*ORAM achieves O(1) client bandwidth blowup.

3 In the ORAM community, A = O(log N) is commonly used. With this assumption, the block size in SSORAMO is Q(log® N)
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Computation. In the retrieval phase, the servers compute the dot product between the Z - (H + 1)-
dimensional PIR query vector and the block vector containing Z - (H + 1) blocks of size |b|. In
the Triplet Eviction phase, the servers compute H + 1 times the matrix product between a vector
containing 2Z blocks of size |b| and a permutation matrix of size 2Z X Z. The matrix product incurs
re-sharing and computing the degree reduction in the SMM protocol on Z - (H + 1) blocks each
being of size |b|. In total, the amortized server computation complexity is O(|b| - A - log N).

The client executes the SSS.Create algorithm Z - (H + 1) times and 222 - (H + 1) times to create
the PIR query and H + 1 permutation matrices, respectively. The client executes the SSS.Recover
and SSS.Create algorithms to reconstruct and re-share a block of size |b|, respectively. Thus, the
amortized client computation complexity is O(|b| + log N).

Storage. S’ORAM® layout is a full binary tree of height H, which has a total of Z - (2f*! - 1)
slots and can store up to N < A - 2F~1 real blocks. Given A = Z = ©(J) for statistical security (see
Lemma 3), the server storage blowup cost is O(1). Notice that the share of the value has the same
size as the value (i.e., no ciphertext expansion as in Onion-ORAM), the server storage of SSORAM
is constant and does not increase after a sequence of access operations.

Similar to Onion-ORAM, S>ORAM®C does not require the stash component since the retrieved
block is immediately written back to the root bucket. Hence, the client block storage in S30RAMPC
is O(1). The client locally stores the position map whose cost is O(N - (log N + loglog N)).

e Achieving O(1) client storage via recursion: For theoretical interest, SSORAMO can achieve (in
total) O(1) client storage by storing the position map in smaller ORAMs using the recursion
technique in [40] and the bucket metadata structure in [12]. Specifically, for each bucket in the
S3ORAMP tree, we create a metadata that stores the current index (pldx) and the assigned path (pID)
of blocks residing in it. For each SSORAM access, the metadata of buckets along the retrieval/eviction
path will be read first to get the path and the location of blocks of interest. This information will be
used to create the PIR query and permutation matrices. Next, we construct a series of S>ORAM®
structures S*ORAMO, . .., S*ORAM®o; n, where SSORAMC, stores database blocks and each
block j in SSORAM®, ; stores the path information (pID) of the blocks (j—1)r, . . ., jr in SSORAMO;
and r > 2 is the compression ratio. We refer the reader to [12, 40] for the detailed descriptions.

For simplicity, we assume that r = 2 and let H = log N be the height of SSORAM®. In S’ORAM®;
(i = 1), the size of meta-data is A(H — i), the block size is 2(H — i + 1), and the path length is H — i.
There are log N recursive levels so that the total bandwidth overhead for each recursive SSORAM®
retrieval is A Zfif)l 2+ Zil 2(H - i + 1) = O(Alog® N). Due to amortization, the asymptotic cost
of eviction is similar to the retrieval as analyzed above. Therefore, to achieve O(1) client bandwidth
blowup, the block size of S’0ORAMP, needs to be Q- log3 N). So, using the recursion technique to
get rid of the client position map increases the regular block size a factor of O(log” N) and O(log N)
communication rounds.

The regular block size in recursive SSORAM® is a factor of log” N times larger than other
(recursive) tree-based ORAM schemes featuring O(log N) bandwidth (e.g., Path ORAM, Ring-
ORAM, Tree-ORAM) and (at least) log N times smaller than (recursive) tree-based ORAM with O(1)
bandwidth (e.g., Onion-ORAM [12], Bucket-ORAM [14], OVS [3]) due to the following reasons. As
analyzed above, to keep the original asymptotic communication overhead intact when applying the
recursion technique, the regular block size must be large enough to absorb the cost of transmitting
the blocks and the meta-data components from O(log N) small (recursive) ORAM structures. In
ORAM schemes with O(log N)) bandwidth, since the size of small blocks in their recursive structures
is O(log N), the regular block size is Q(log? N) to absorb the cost of downloading O(log? N) small
blocks (there is no meta-data component in these schemes). On the other hand, the regular block
size of O(1)-bandwidth ORAM schemes does not increase when applying the recursion, since it is
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already larger than the total amount needed to absorb the cost of downloading the blocks and the
meta-data of small ORAM structures (e.g., Q(log® N)-Q(log® N) block size vs. Q(log® N) needed).
Given that the recursion technique significantly increases the regular block size, it is recom-
mended to maintain the position map locally assuming that its size is small enough. This choice
allows the implementor to gain the full performance advantages that SSORAM offers in practice.

3.3 S®ORAMC: SSORAM with Low Server Storage and Computation Overhead

In this section, we present S’0RAMC, a SORAM scheme that achieves lower computational
complexity than SSORAMO due to its smaller bucket size parameter Z (e.g., O(1) vs. O(1)). The
price to pay for such achievement is that it requires maintaining the stash at the client-side to
temporarily store blocks that cannot be pushed back to the tree due to the small bucket size. The
intuition of SSORAMC is to implement the access protocol of Circuit-ORAM proposed by Wang et
al. [43] using the homomorphic properties of SSS as follows.

3.3.1 Retrieval subroutine. S’ORAMC has the same retrieval procedure like S30RAMP scheme,
where we leverage SSS-based PIR Scheme presented in §3.2.1 to privately retrieve the block in the
retrieval path of the SSORAMC tree (Figure 11).

S3ORAMC .Retrieve(id)

1: b «— S*ORAMPO Retrieve(id)
2: return b

Fig. 11. SSORAMC retrieval subroutine.

3.3.2  Eviction subroutine. SSORAMC implements the eviction principle in Circuit-ORAM scheme
with additive and multiplicative homomorphic properties of SSS. Similar to SSORAM® scheme,
S3ORAME selects a deterministic eviction path following the reverse lexicographical order (Eq. 6)
proposed in [17] (Figure 12), which was proven to achieve the negligible overflow probability with
a lower bucket size parameter compared with the random path (e.g., 2 vs. 3).

Intuitively, the client first scans the position map to prepare the target array that indicates which
blocks to be pushed down to which levels in the eviction path. Afterward, the client goes through
each level of the eviction path, picks the desired block and drops it to the target level. Notice that
at any time, the client holds and drops at most one block. This policy is guaranteed by computing a
target array that indicates whether to pick/drop the block in each level by scanning the position
map. We refer the reader to [43] for the detailed description and explanation.

Figure 13 visualizes the high-level idea of the eviction in SSORAMC, which implements the
push-down strategy in [43] using SSS and SMM protocol. Figure 14 describes the detailed algorithm
with the high-level idea as follows. For each level (h) in the eviction path, the client creates a
permutation matrix (I) of size (Z + 1) X (Z + 1). We use the last column of the matrix (I [*][Z + 1])

S?ORAMC . Evict():
1: v « DigitReverse,(n, mod 2H)
2: Execute SSORAMC . EvictAlongPath(w) protocol
3t Ne «— ne +1 mod 2H
4: Repeat lines 1-3

Fig. 12. SSORAMC eviction subroutine.
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Fig. 13. SORAMO eviction based on [43] using SSS and SMM protocol.

to indicate the block to be picked, while the other columns I [*][j] (1 < j < Z) is to indicate the
block to be moved to or hold at j-th slot of the h-leveled bucket. The data vector [c], which will
be computed the matrix product with I, is of size Z + 1 containing the holding block ([cx[1]])
and the data from Z slots of the h-leveled bucket ([vy[2]] ..., [vi[Z + 1]]). So, the client sets
I [x][Z + 1] « 1 to pick the block at slot x (line 15), and Iy[1][x] « 1 to drop the holding block to
the x-th slot of the h-leveled bucket (line 10). If the currently holding block is moved to the next
level (i.e., no pickup/drop-off at this level), the client sets I[1][Z + 1] « 1 (line 13). Similar to
S3ORAM® scheme, the client sets I,[x + 1][x] < 1 to keep blocks indexed x in the h-leveled bucket
in position (lines 17-20). Finally, the client creates the SSS-shares for such permutation matrices
(line 21) and for the block being picked-up in the stash (if any) (line 22), and distributes the shares
to the corresponding servers (line 23). Similar to SSORAMDO, for each level in the eviction path,
the servers jointly perform the matrix product between the share of data vector and the share of
permutation matrix via local addition and the secure multiplication protocol (line 23), and update
the bucket with the newly computed vector (line 25).

3.3.3  Asymptotic cost analysis. Similar to SSORAMO, we analyze the cost of SSORAMC regarding
the block size (|b]), number of blocks (N), and statistical security parameter (1), while other system
parameters (e.g., prime field F,, number of servers £) are treated as constants. S30ORAM® has the
same tree layout, an identical retrieval phase and a similar eviction procedure with the SSORAM®
scheme. S’ORAMC only differs from S’ ORAMDO in terms of the bucket size parameter (Z) and the
eviction frequency, which happens after every retrieval instead of A as in SSORAM®. SSORAM®
also incurs at most three blocks (one for retrieval and two for eviction) to be transmitted in each
ORAM access. Given Z = O(1) in SSORAMC, we summarize the asymptotic cost of SSORAM® as
follows.

Communication. The client-server communication complexity is O(|b| + log N). The server-
server communication overhead is O(|b| - log N). To achieve O(1) client-server bandwidth blowup,
the minimal block size is Q(log N), which is a factor of A times smaller than that of SSORAM®.
Computation. The server computation is O(|b| - log N). The client computation complexity is
O(|b| +1og N).

Storage. S°ORAMC layout is a full binary tree of height H, which has a total of Z - (2H*! — 1) slots
and can store up to N < 2H real blocks. Since Z = O(1), the server storage blowup in SSORAM®
is O(1) similar to S’ORAMO asymptotically, but its constant overhead factor is smaller (i.e., 2
vs. 8). The client requires to maintain the stash, which costs O(1) to achieve negligible overflow
probability. The position map costs O(N(log N + loglog N)). Therefore, the total client storage is
O(A + N(log N +loglog N)). It is possible to achieve O(1) client storage by storing the stash (via
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S3ORAMC . EvictAlongPath(v):
Let (u1, . - ., up+1) be the (ordered) bucket indexes along the eviction path v from the root to the leaf level
Client:
1: (deepest, deepestldx) « PrepareDeepest(v); target < PrepareTarget(v)
2: hold « L, dest «— L, (c1, ..., cm) <« ol?!
3: if target[0] # L then > target[0] and deepestldx[0] denote the stash component
4: hold «— deepestldx[0], dest « target[0]
5 (c15 - - -5 ¢m) <« Slhold], S[hold] « {}
6: forh=1,...,H+1do
7: Let I}, be a (Z + 1) X (Z + 1) matrix, set I, [, ] « 0.
8
9

if hold # L then

if i = dest then > Drop the holding block to this level
10: I,[1][x] « 1 where x is the index of an empty slot in the bucket T[uy]
11: hold « L, dest « L
12: else > Move the holding block to the next level
13: IL[1][Z +1] « 1
14: if target[i] # L then > Pick a block at this level
15: I,[x][Z + 1] « 1 where x « deepestldx[h]
16: hold « x, dest « target][i]
17: for each real block id in T[uy ]| do > Hold the position of other real blocks at this level
18: x « pm[id].pldx mod Z
19: if x # deepestldx[h] then
20: Ip[x +1][x] « 1
21: [Ilx #I)\7, . . o, [Ialx, 1]\ « SSS.Create(Iy [, ], t) for 1 < h < H +1
22: ([[cj]](t), e [[cj}](;)) « SSS.Create(cj, t)for1 < j <m

23: Send (([[cl]](it), el [[cm]](it)), ([[Il}](il), e, [[IHH]](i[))) toS;,for1 <i <€

Server: each S € {Sy, ..., S¢} receiving ({[c1], - - -, [em]), ([l - - -, [Ig+1])) do
18: [x]j < [c]jfor1 <i<m

19: forh=1,...,H+1do

20: forj=1,...,mdo

21: Let [cp, ;] be a Z-dimensional vector containing j-th chunks of bucket [T[u]]

22: [en, ;1 = ([x;]. [en, ;D > Concatenate [x;] with [cp, ;] resulting in a (Z + 1)-dimensional vector
23: [[éh,j]] — [éh,j] * IIIh]]

24: (I w51 [x5D) == [[é,h,jﬂ > Assign the last component of vector [¢'], ; to [x;]
25: Update j-th chunks of bucket [T[u]] with [[¢y, ;]

Fig. 14. SSORAME eviction protocol based on [43]. The details of PrepareDeepest(v) and PrepareTarget(v)
subroutines (line 1) are presented in Figure 21 in Appendix.

SSS shares) on the servers and using the recursion technique to keep the position map in smaller
ORAMs. However, this will significantly increase the computation and communication overhead
for oblivious access to the stash and the position map, respectively.

4 SECURITY ANALYSIS
In this section, we analyze the security of two SSORAM schemes as follows.

S*ORAMP. Tt follows the Triplet Eviction strategy originally proposed in Onion-ORAM [12].
Therefore, it achieves the same failure probability with Onion-ORAM. We refer the reader to [12]
for the detail of the proof.

Lemma 3 (SSORAMO Bucket Overflow Probability). If Z > A and N < A - 2871, the probability that a

(2Z-A)?

bucket overflows after a Triplet Eviction operation is bounded by e™ &, where Z = A = O(A).
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Proor. We refer the reader to [12]. |
It is easy to see that Lemma 3 implies the following fact.

Corollary 1 (Non-leaf Destination Bucket Load). All non-leaf destination buckets are always empty
after the Triplet Eviction takes place, except with a negligible probability.

We present the main security of SSORAM® as follows.

Theorem 1 (SSORAMC Security). SSORAMO is correct and information-theoretically (statistically)
t-secure by Definition 2.

Proor. SPORAMP is correct iff (i) the SSORAMO.Retrieve(-) protocol returns the correct value
of the retrieved block and (ii) the SSORAM® .Evict(-) function is consistent.
o Correctness of SSORAMO . Retrieve(-). For each data request x, let b be the block to be retrieved and
Jj be the location of b in its path (i.e., j := pm[id].pldx where id is the identifier of b). The share of
the PIR query for server S; is of form: [[e]]gt) = ([[e]](lt), ces [[e]}sf)), wheren=2-(H+1)ande; =0
for1 <i#j<n,e =1Let[cy] = ([eur]s- -, [cun]) be the vector consisting of the share of u-th
chunks taken from Z slots in every bucket residing in the retrieval path. For 1 < u < m, the answer
of each server S; is of form:

n

el Teull” = 3 (Fee]” - Lews]”)

k=1
n

= Z[[ek . cu,k]](m) by Eq. 3
k=1

= [[cu’jﬂ(m by Eq. 1

By SSS scheme, at least 2t + 1 shares are required to recover the secret hidden by a random 2¢-
degree polynomial. Our system model presented in §2 follows this and, therefore, the client always
computes the correct value of chunk ¢; by ¢; < SSS.Recover( [[ct}](lm, cees [[ct]]ft), 2t). Since all
chunks of b are correctly computed, b is properly retrieved with the probability 1.

e Consistency of SSORAMP. Evict(-) Corollary 1 shows that the root bucket is empty after the triplet
eviction. The client writes the retrieved block to an empty slot in the root bucket sequentially (line
3, Figure 8). Since Z > A, the root always has enough empty slots to contain all the blocks to be
written before the triplet eviction happens, thereby avoiding the overwritten and inconsistency
issues. After A accesses, the client executes the triplet eviction algorithm (Figure 10) to move
blocks from upper levels (e.g., root) to deeper levels (e.g., leaf). Corollary 1 also shows that non-leaf
sibling buckets are empty due to previous triplet evictions and, therefore, they can contain all data
moved from their source bucket without creating any inconsistency issue. Real blocks from source
buckets are moved to destination buckets via matrix products. These computations are correct due
to homomorphic properties of two-share addition and multiplication offered by SSS and the SMM
protocol, respectively, which were proven correct in [16].

We now prove the security of SSORAM® as follows.

Given a request sequence x of length g, where x; = (op;,id;, data;) as in Definition 2, let
S30ORAMO;(x) be the SSORAMO client’s sequence of interactions with the server S; including
a sequence of retrievals (Figure 7), write-to-root (line 3, Figure 8) and triplet eviction operations
(Figure 10). We have that the write-to-root operation is deterministic, which is performed right after
the retrieval. In this operation, the previously retrieved block is written to a publicly known slot in
the root bucket as shown above. The triplet eviction is also deterministic, which is performed after
every A successive accesses regardless of any data being requested. Since all these operations (i.e.,
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retrieval, write-to-root, triplet eviction) are independent of each other, they can be considered as
separate sequences observed by S; in SSORAMO;(x) as follows

R = (R™....R™)
S'ORAM;(0) = 1 Wi(%) = (W, W), (7)
B = (B, )

where ﬁi(i), VT/l-(f() and E()‘() denote the retrieval, write-to-bucket and triplet eviction sequences,
given a data access sequence x, respectively.

Assume that there is a coalition of up ¢ servers {S;c 7} sharing their own transcripts with each
other. Let 7 C {1,...,£} such that | 7| < t. The view of {S;cr} can be derived from Eq. 7 as

=g X1 (x
Reer(0} = (R} (K))
{SORAM ic7 ()} = { (Wier R} = (WS, (Wi,
= A
{Eier®} = ({Erh.  AEITY)
We show that for any two access sequences x and x’ of the same length (ie., |x| = |x'|), the

pairs ({Rier (0}, (Wier (0}, {Ere7(0}) and ({Rier ()}, (Wier &), (Eier(%)}) are identically
distributed.

e Retrieval transcripts: For each access request x; € X, {S;c7} observes a transcript {R(izj}} consist-
ing of a retrieval path P, (access pattern), which is identical for all servers (line 4, Figure 7) and all
data generated by the SSS-based PIR scheme (lines 5-7).

The access pattern of SSORAM© is identical to all other secure tree-based ORAM schemes. Specif-
ically, each block in SSORAM® is assigned to a leaf bucket selected randomly and independently
from each other. Once a block is accessed, it is assigned to a new bucket leaf selected randomly and
independently. Such random assignment along with the selected bucket size parameter (Z) may
result in the bucket(s) in the SSORAM® tree being overflowed with a negligible probability thereby,
impacts the security (see Lemma 3). Therefore, access patterns generated by any data request
sequences of the same length are statistically indistinguishable. We next analyze the probability
distribution of data observed at the server side in each SSORAM? retrieval as follows. For each
retrieval, the client sends to the servers PIR queries generated by PIR.CreateQuery algorithm. Such
queries are SSS shares and, therefore, is t-private. The inner product is also ¢-private due to Lemma 1
with addition and partial multiplicative homomorphic properties by Eq. 3 and Eq. 1, respectively. So,
any data generated in SSORAMO retrievals are identically distributed in the presence of ¢ colluding
servers.

By these properties, for any data request sequence x, the corresponding transcripts (including ac-
cess patterns) generated in the SSORAM® retrieval phase are information-theoretically (statistically)
indistinguishable from random access sequence in the presence of up to t colluding servers.

o Write-to-root transcripts: Data are written to slots in the root bucket according to the sequential

order and, therefore, the write pattern is deterministic and public. Such written data are SSS-shared
with new random polynomials so that they are t-private. Therefore, the write-to-root transcripts
are identically distributed.

o Triplet eviction transcripts: the access patterns of {EZ(IE) 7} and {EI(JE/)I} are public because the triplet
eviction is deterministic, which follows reverse lexicographical order like Onion-ORAM (e.g., [12]),
We show that data generated in such triplet evictions are identically distributed as follows. For
each triplet eviction, the client sends (H + 1) permutation matrices, which are SSS-shares and,
therefore, they are all t-private and uniformly distributed. Data in sibling buckets are t-private
and uniformly distributed because they are merely copied from source buckets deterministically
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(line 19, Figure 10). The matrix product (line 22, Figure 10) is also t-private due to the security
of SMM protocol by Lemma 2 . Therefore, given two request sequences x, y with |x| = |y]|, the
corresponding deterministic triplet eviction sequences observed by {S;cr} are

. ‘ (%g/a)
(Frer(®) = ((E27) - (B
. " (Fq10)
{Eier@} = (B} B}
where (%;,7;) € {0,...,H} for 1 < j < g/A. Since data yielded in {El(}é.)[} and {Eizj})

distributed for all (j, j’) € {%1,...,%g/a} U {1, . .-, Gq/a} as shown above, {E;c7 (%)} and {E;c7(¥)}
are identically distributed.
e Final indistinguishability argument: Given any data request sequence, SSORAMO generates (i)

} are identically

access patterns statistically indistinguishable from a random request sequence of the same length,
and (ii) identically (uniform) distributed data in the presence of up to ¢ colluding servers. This
indicates that SSORAM® scheme achieves information-theoretic statistical t-security according to
Definition 2. ]

S’ORAME. It follows the Circuit-ORAM eviction strategy [1] so that it inherits the same failure
probability as Circuit-ORAM as follows.

Lemma 4 (S°ORAMC Stash Overflow Probability). Let the bucket size Z > 2. Let st(S’ORAMC[s]) be a
random variable denoting the stash size of SSORAMC scheme after an access sequence s. Then, for any
access sequence s, Pr[st(S°ORAMC[s]) > R] < 14 - e R,

Proor. We refer the reader to [43]. o
The security of SSORAMC is given in the following theorem.

Theorem 2 (S°ORAMC Security). SSORAMC is correct and information-theoretically (statistically) t-
secure by Definition 2.

ProOF. The correctness and security proof of SSORAMC can be easily derived from that of
S?*ORAMO scheme so that we will not present it in detail due to the space constraint and the
significant overlap with the proof of Theorem 1. Intuitively, SSORAMC leverages the same principles
as S’ORAMDP, i.e., SSS-based PIR scheme and permutation matrix, to implement the retrieval and
eviction phases, which were proven correct and consistent due to homomorphic properties of
SSS and SMM protocol. We also proved that all the data generated by these operations are t-
private. The access pattern in SSORAMC is statistically indistinguishable due to its negligible stash
overflow probability by Lemma 4. All these properties indicate that SSORAM® scheme achieves
information-theoretic statistical ¢-security by Definition 2. O

5 GENERALIZATION OF S3ORAM OVER k-ARY TREE

It is possible to execute ORAM over a general k-ary tree layout to achieve a sub-logarithmic
asymptotic overhead (i.e., O(log, N), where k is a free parameter). Our proposed S*ORAM schemes
can also be easily extended to work over a general k-ary ORAM layout. However, we later show
that increasing the value of k does not bring much benefit to the actual performance of tree-based
ORAM schemes. We present SSORAM schemes on the general k-ary tree layout, and then provide
the analytical analysis to show that their cost achieves the best at k € {2, 3} as follows.

k-ary SSORAMP. We can leverage the concepts of SSS homomorphic computation and the
permutation matrix presented in §3.2 to implement the eviction strategy in [1], which is the
generalization of the Triplet Eviction used in SSORAMO. Generally speaking, this strategy requires
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to organize each bucket in the SSORAMO k-ary tree layout into k slides, each being of size as a
function of the security parameter (i.e., O(4)). In other words, Z = O(k - A). Each bucket at the leaf
level is connected with a so-called auxiliary bucket of size O(1). The eviction path for k-ary tree is
determined by modifying Eq. 6 to output the order-reversal of base-k digits instead of the binary
string. Once the eviction path is determined, we travel from the root to the leaf and obliviously
move all blocks from the (non-leaf) source bucket to a deterministic slide of all of its children. At the
leaf level, we obliviously move all blocks from the leaf bucket to its corresponding auxiliary bucket.
All these oblivious moves can be implemented using the SSS matrix product principle described in
§3.2. Notice that in this context, the retrieval phase in SSORAM® scheme remains unchanged.

k-ary S3ORAMC. SP0ORAMC scheme in §3.3 supports the k-ary tree layout naturally without
modifying the retrieval and the eviction subroutines. We only need to change Eq. 6 as similar to the
k-ary S’ ORAMO scheme as discussed above to get the eviction path in the k-ary tree layout. It also
only requires to adjust the bucket size parameter (Z) to be a function of the tree degree to achieve
a negligible stash overflow probability. In other words, Z = O(k) for the statistical security.

Cost analysis. We now treat k as a parameter in the asymptotic cost. The cost of k-ary S*ORAM®
can be derived from §3.2.3, where the bucket size parameter (Z) in this context is O(k - 1) instead
of O(A). The k-ary SSORAMC layout is a tree of height O(log, N). The eviction in each level
move all blocks from the source bucket of size O(k - 1) to a slide (sized O(1)) of its k children
buckets. Thus, the (amortized) client-server and server-server bandwidth is O(|b|+ A -k -log; N) and
O(|b|-A-k-log; N), respectively. The (amortized) server and client computationis O(|b|-A-k-log; N)
and O(|b| + k - log;. N), respectively.

Similarly, we can easily derive the cost of k-ary SSORAMC scheme from §3.3.3 , where the bucket
size now becomes Z = O(k). So, the client-server- and server-server-bandwidth of k-ary S>ORAM®
are O(|b| + k - log; N) and O(|b| - k - log;. N), respectively. The server- and client-computation are
O(|b| - k - log, N) and O(|b| + k - log; N), respectively.

So, given that |b|, A, N are unchanged in this context, the computation/bandwidth overhead of
k-ary SSORAM schemes can be written as a function of k as

f(k)=a+ﬁ-k-logkN=a+ﬁ-ﬁ-lnN (8)

where a € {0, b}, € {1,]b],A,A - |b|}. Since k > 2 and k € N, it is easy to see that f(k) is
minimal at k = 3.

For k = 2, our SSORAM® using the Triplet Eviction outperforms a constant factor of two
compared with using the generalization strategy in [1]. This is because in this case, each source
bucket only has one sibling bucket. Due to Eq. 6, once a bucket is being treated as the sibling
bucket, it will be later considered as the destination bucket before being treated as the sibling
bucket again. Meanwhile, once the (non-leaf) bucket is treated the destination bucket, it is always
guaranteed to be empty after the eviction (see Corollary 1). In other words, the bucket is always
empty before being considered as the sibling bucket and, therefore, given a fixed size of O(4), it
always has enough slots to keep the expected load below its capacity. The eviction in [1] does
not exploit this special role-switching when k = 2, but focuses on the general case for any k > 2,
where one bucket must serve as the sibling bucket k — 1 times before being empty. As a result, each
bucket must have k slides each being of size O(A), and the eviction only touches one slide of the
bucket to achieve the sub-logarithmic overhead. Therefore, when k = 2, its (eviction and retrieval)
overhead is doubled compared with that of the Triplet Eviction. Moreover, given the fact that the
generalization eviction with k = 3 only gains 6% improvement over k = 2, while its k = 2 case is
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two times less efficient than the Triplet Eviction as shown above, we conclude that the S30ORAMP®
achieves the best performance with k = 2 and the Triplet Eviction strategy.

For SSORAMC scheme, it achieves the best performance at k = 3 according to Eq. 8. This is
because it supports k-ary layout naturally without modifying eviction and retrieval subroutine but
only adjusting the bucket size parameter. We further demonstrate empirical results to support such
analytical analyses in §7.2.4.

6 IMPLEMENTATION

We fully implemented two S’ ORAM schemes in C++ consisting of roughly 5,000 lines of code. We
used two external libraries in our implementation: (1) The Shoup’s NTL library v9.10.0* for the
pseudo-random number generation and arithmetic operations due to its low-level optimization for
modular multiplication and cross product functions; (ii) the ZeroMQ library® for the network com-
munication. Our implementation supports parallelization via multi-threading to take full advantage
of multi-core CPUs at the server side. We also implemented k-ary tree layout generalization for
both S*ORAM schemes. The implementation of our SSORAM framework is publicly available at

https://github.com/thanghoang/S30RAM

7 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of SSORAM framework in comparison with its coun-
terparts on commodity cloud environments. Our main evaluation metric is the end-to-end delay
and we seek to answer the following questions.

e How is the end-to-end delay of SSORAM schemes compared with recent ORAM schemes for
different database and block sizes? (§7.2.1)

e What factors impact the overall delay of SSORAM schemes? (§7.2.2)

e In which context SSORAM will be outperformed by other ORAM schemes? (§7.2.3)

e Does increasing the tree degree help enhance the end-to-end delay of SSORAM in practice?
(§7.2.4)

e What is the storage overhead of S*ORAM schemes? (§7.2.5)

We first describe the configuration and methodology to conduct our experiments as follows.

7.1 Configuration and Methodology

Hardware setting. We used a 2015 Macbook Pro laptop as the client, which was equipped with
an Intel Core i5-5287U CPU @ 2.90GHz and 16 GB RAM. On the server-side, we used Amazon EC2
with c4.4xlarge type to deploy three server instances. Each server was running Ubuntu 16.04 and
equipped with 16 vCPUs Intel Xeon E5-2666 v3 @2.9 GHz, 30 GB RAM and 1TB SSD.

Network setting. We located three servers to be geographically close to each other (same region)
as well as to our client machine, which results in the network latency between them being approxi-
mately 15 ms. The servers were connected to each other via a dedicated network whose throughput
for both download and upload is approximately 1 Gbps. The client used Wi-Fi connecting to
the Internet via a home data plan, which offers the latency of 20 ms and the download/upload
throughput of 55/6 Mbps to the servers.

Database size. We evaluated the performance of all ORAM schemes with a randomly generated
database of size from 0.5 GB to 40 GB and block sizes from 4 KB to 1024 KB.

4 Available at http://www.shoup.net/ntl/download.html
5 Available at http://zeromq.org
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Selected SSORAM counterparts. We selected Path-ORAM [41] and Onion-ORAM [12] as the
main counterparts of SSORAM framework since the former is the most optimal O(log N)-bandwidth
ORAM (without server computation) while the latter achieves O(1) bandwidth blowup (with
server computation). We also chose Ring-ORAM [34] as it is an efficient O(log N)-bandwidth
ORAM scheme with server computation. We consider all ORAM schemes (including our SSORAM
framework) under their non-recursive form, where the position map is stored locally at the client.
This is because storing the position map at the server will incur O(log N) number of communication
rounds of accessing O(log N) smaller SSORAM, which may result in high overhead. In practice, it
is likely that the position map is small enough to be stored locally at the client. Moreover, since
S*ORAM is only secure in the semi-honest setting, we only compared its performance with the semi-
honest version of Path-ORAM, Ring-ORAM and Onion-ORAM. We did not consider alternatives
that (i) failed to achieve O(1) client communication blowup but incurred more delay (e.g., [11, 27]),
(ii) were shown to be insecure (e.g., [28, 30]), or (iii) incurred more cost than the selected ORAM
counterparts above regarding to our configuration and experimental settings (e.g., [3]). We also
did not explicitly compare the performance of SSORAM against the multi-server ORAM scheme
in [38] because of the major difference in terms of client block storage between the two schemes
(O(1) vs. O(VN)). Given a very large outsourced database, the storage required by [38] might not
be suitable for resource-limited devices such as a mobile phone. Moreover, if O(VN) block storage
is acceptable, then the lower bound in [1] might imply a better ORAM strategy than our SSORAM
schemes, in which leveraging only PIR technique suffices to achieve O(1) client bandwidth blowup.
Evaluation methodology. We present the parameter choice and methodology to measure the
performance of SSORAM schemes and their counterparts as follows.

o S’ORAM: For the S’ORAM® scheme, we selected the bucket size Z = 74 and A = Z/2 = 37 and
to achieve the negligible overflow probability of 278 by Lemma 3. We measured the cost for
each S’ORAMO access as the retrieval delay plus the write-to-root delay plus the amortized
delay of the eviction operation. For the SSORAM® scheme, we selected the bucket size Z = 2
suggested in [43] for the negligible stash overflow probability by Lemma 4. We also investigated
the performance of S30RAM framework with k-ary structure, where k > 2. In this case, we fixed
the database size and varied the tree height (H) and the bucket size (Z) parameters. (see §7.2.4
for the detailed configuration).

o Path-ORAM: We selected the bucket size Z = 4 to achieve the negligible stash overflow probability
of 278%. We measured the delay of Path-ORAM as the time to download and upload 4 - log, N
blocks plus the delay of IND-CPA decryption and re-encryption of these blocks at the client. We
used libtomcrypt® to implement AES-CTR as the IND-CPA encryption.

o Ring-ORAM: We selected Ring-ORAM parameters (i.e., Z = 16, S = 25 and A = 20) as stated in

[34] for a negligible stash overflow probability of 273°. We measured the delay of Ring-ORAM
as the total time of (i) one block transmission, (ii) XOR and IND-CPA encryption/decryption
operations at the client, (iii) XOR operations at the server and (iv) the amortized cost of eviction
and early shuffles based on the formula (H + 1)(2Z + S)/A - (1 + PoissCDF(S, A)) given in [34].

o Onion-ORAM: We selected the size of RSA modulus to be 1024 bits for AHE according to [2]. We
selected the bucket size and the eviction frequency of Onion-ORAM as Z = 74 and A = Z/2 = 37
for the negligible bucket overflow probability of 278°. We measured the overall delay of Onion-
ORAM as the time to (1) perform homomorphic computations at the client and server and (2)

6 Available at https://github.com/libtom/libtomerypt
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Table 3. The amount of data to be sent by the client and processed by the server(s) in the retrieval and
eviction phases of SSORAM® and SORAMC schemes.

Retrieval Phase Eviction Phase
# Blocks Query Size (KB) # Computed Blocks | Permutation Matrix Size (KB) | # Computed Blocks
S’ORAMO | SPORAMC | SSORAMP | S’ORAMC | S’ORAMC S’ORAMC S’*ORAMP | SSORAMC
10° 4.05 0.17 518 20 598.93 1.55 76,664 198
10* 6.36 0.23 814 28 941.19 2.11 120,472 270
10° 8.09 0.28 1,036 34 1,197.88 2.53 153,328 324
10° 9.82 0.33 1,258 40 1,454.56 2.95 186,184 378
107 12.14 0.39 1,554 48 1,796.81 3.52 229,992 450
108 13.88 0.44 1,776 54 2,053.50 3.94 262,848 504
10° 15.61 0.48 1,998 60 2,310.19 4.36 295,704 558

transfer O(1) blocks and PIR queries, plus the amortized cost of eviction operation. Since Onion-
ORAM is extremely computationally costly, measuring its delay even on a medium database
takes an insurmountable amount of time. Therefore, we only measured its delay on a small
database (i.e., 1 MB) first, and then extrapolate the delay for larger database sizes.

7.2 Experimental Results

7.2.1 End-to-end delay. We first present the analytical communication and computation overhead
of S’ORAM schemes with databases containing a various number of data blocks in Table 3. We
can see that the size of the retrieval query and permutation matrices by the client as well as the
amount of the data to be computed by the server are much lower than SSORAMP for each access.
This is mainly because SSORAMC has a much smaller bucket size than SSORAMP (i.e., 2 vs. 74).
However, the eviction in SSORAMO is only performed after every 37 accesses compared with one in
S3ORAMC scheme. In fact, this accumulative strategy allows SSORAMO to be less impacted by the
network congestion control (i.e., TCP slow-start) and the client-server/ server-server communication
latency than S’ORAMC. Moreover, SSORAM® incurs only one block to be uploaded per access
compared with two in SSORAMP scheme. All these factors result in the amortized end-to-end
delay of S’ORAMO scheme being comparable with the actual delay of SSORAMC as shown in
Figure 15, even though its analytical overhead looks worse than that of SSORAMC. We also show
in Figure 15 the simulated delay of SSORAM counterparts with different database sizes (from 0.5 to
40 GB) and block sizes (128 KB and 256 KB). Both SSORAM schemes took only 1.3-1.4 (resp. 2.1-2.7)
seconds to access a 128 KB (resp. 256 KB) block in the database of size up to 40 GB. This resulted in
S*0ORAM schemes being approximately 9.3 and 6.4 times faster than Path-ORAM and Ring-ORAM,
where they took 7-14 (resp. 14-26) seconds for each 128 KB (resp. 256 KB) block access. Compared
with Onion-ORAM, our S’ORAM schemes were three orders of magnitude faster. This is mainly
due to the fact that SSORAM schemes only rely on simple arithmetic operations (e.g., modular
addition/ multiplication), while Onion-ORAM leverages Partially/Fully HE (see §7.2.2). One might
also observe from Figure 15 that choosing a larger block size has a small impact on the delay of
S*ORAM schemes. This is clearly illustrated in Figure 16, where we present the impact of block size
on the end-to-end delay of S?ORAM schemes compared with their counterparts. Given any block
size ranging from 4 KB to 1024 KB, S’ORAM schemes always maintain a constant factor of 9.3
and 6.4 times faster than Ring-ORAM and Path-ORAM, respectively. This presents an advantage
to S’ORAM schemes over their counterparts for applications requiring large block sizes such as
image or video storage services.

7.2.2  S’ORAM cost breakdown analysis. In this section, we dissect the overall delay of SSORAM to
explore the factors that contribute the most to the total delay. Figure 17 shows the detailed cost
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Fig. 16. End-to-end for varying block sizes for a 40GB DB.

factors of two SSORAM schemes according to 0.5-40 GB DB with 128 KB blocks. There are five
factors that affect the overall delay of SSORAM schemes as follows.

(1)

(2)

Client computation: In both SSORAM schemes, the client computed the SSS shares of the
retrieval query and the permutation matrices, recovered the requested block and re-shared the
block with SSS. All these incurred only some modular addition and multiplication operations.
These computations are extremely lightweight so that the client computation contributed
only a minimal amount to the total delay (i.e., < 1%), which is hard to observe in both
Figure 17a and Figure 17b.

Server computation: In both S’ORAM schemes, the servers computed the ORAM tree data
with the retrieval query via the dot product and with permutation matrices via the matrix
product, which also incurred a series of modular addition and multiplication operations.
However, unlike the client computation, the cost of these operations at the server-side
depends on the block size. As a result, the server computation contributed a higher amount
to the total delay (i.e., 7-11%) than the client computation. Compared between two S’ORAM
schemes, we can see that SSORAMC had a higher server computation delay than S*ORAM®
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Fig. 17. Detailed cost breakdown of SSORAM on a laptop with home network.

scheme. This is because the block size of SSORAMC is much larger than S’ORAMC (i.e., 74
vs. 2), which significantly impacts the SSS-based PIR computation in the retrieval phase.

Client-server communication: In both SSORAM schemes, this operation contributed the most
to the total delay (over 90%). For each SSORAM access, the client downloaded one block from
the servers and uploaded 1-2 blocks along with one retrieval query and some permutation

matrices. We can observe from Figure 17 that the time to upload the retrieval query and
permutation matrices (yellow-patterned green bars) was much faster than the time to download
and upload a 128 KB data block (unpatterned green bars). This clearly reflects the theoretical
insight of S’ORAM schemes, where the client communication overhead is constant and
mostly dominated by the data block with the poly-logarithmic size. We can also observe that
S30ORAM® (Figure 17b) took a longer time to transmit the retrieval query and permutation
matrices than SSORAM® (Figure 17a). This is because the bucket size parameter in SSORAM®
scheme is much larger than in SSORAMC as explained above, which impacts the size of the
retrieval vector and the eviction matrices. On the other hand, the block transmission time in
S30RAMC® was doubly slower than in SSORAMC. This is because the eviction in S>ORAM®
requires to transmit two blocks for each access, compared with only one in SSORAMO.

(4) I/O access: Due to the cache miss issue and the infrastructure of the selected Amazon EC2

~

instances (i.e., c4.4xlarge), the disk I/O access caused a considerable delay especially in
S30ORAM® scheme. Specifically, we stored the SSORAM tree in a network storage unit called
“Elastic Block Storage” (EBS), which was connected to Amazon EC2 computing unit with
a maximum throughput of 160 MB/s. This resulted in the I/O access being limited by this
throughput, and therefore, causing a high delay. To reduce the I/O access overhead, one
solution is to store the SSORAM tree structure on a local storage unit with high throughput
(e.g., NVMe). Another solution is to apply a caching strategy, where h-top levels of the
S30ORAM tree are stored directly on RAM. As explained above, SSORAM® has a larger bucket
size than SSORAMC so that its reported I/O delay was higher than S’ORAMC.

Server-server communication: This overhead was caused by the SMM protocol when the
servers performed the matrix product operation in the eviction phase. In SSORAMC scheme,
the reported communication delay between the servers was very low, and significantly faster
than in S’ORAMC scheme. This is because of the amortization in SSORAMPC scheme, where
the eviction was performed after every A = 37 subsequent retrievals. This context allowed
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Fig. 18. The delay of SSORAM schemes when servers were geographically distant from each other. The
blurred plots indicate the performance of SSORAM and their counterparts in the original setting.

the network latency (i.e., 15 ms) to be amortized and minimized the impact of the TCP slow
start scheme. In SSORAMC, the eviction must be performed right after each retrieval so that
its reported delay was significantly impacted by those factors.

7.2.3  The impacts of network quality. We first investigated the impact of inter-server network
quality on the performance of SSORAM schemes. In this setting, we set up three Amazon EC2
servers to be geographically distant to each other (in the form of a triangle between California, Ohio
and Central Canada regions). The average network round-trip latency and throughput between
the servers were 78 ms and 295 Mbps, respectively. The round-trip latency between the client and
the farthest server was 80 ms, while the client throughput to all servers remained unchanged (i.e.,
55/6 Mbps of download/upload speed). Figure 18 presents the delay of SSORAM in this setting
compared with the previous one. We can see that SSORAM schemes performed 0.3-2 s (2x at
most) slower than in the original setting, where all servers were in the same region and close
to the client. This slowdown is mostly due to (i) the higher latency and lower throughput of the
inter-server network link and (ii) the latency when the client communicates with the farthest server.
However, as shown in Figure 18, S30RAM still outperformed the performance of Path-ORAM and
Ring-ORAM in the original setting (i.e., server was placed close to the client). This is because
the server-server communication only contributed a small fraction in the total delay, especially
in SSORAM® scheme (due to the amortization) as already analyzed in §7.2.2. On the other hand,
S?ORAM incurred only one communication round between the client and the servers so that
the impact of the client’s high round-trip latency was minimal. Moreover, the client throughput
remained unchanged and therefore, it did not impact much on the delay of SSORAM schemes in
this context. We observed that SSORAM® was more impacted by the inter-server high network
round-trip latency than S*ORAMO. This is because SSORAMC performed eviction right after each
access, where the servers communicated with each other in O(log N) rounds. Meanwhile, these
rounds were performed once every A = 37 accesses in SSORAM® and therefore, their total latency
was amortized.

Given that the low network quality at both client and inter-server sides did not impact much
on the delay of S’ORAM schemes, we now show that if the client can have a high-speed network
setting, our SSORAM framework might no longer be an ideal choice. We conducted an experiment to
demonstrate that ORAM schemes featuring O(log N) bandwidth overhead are better than S°ORAM
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after a certain threshold of network bandwidth. Figure 19 presents simulated performance of
S*ORAM schemes and their counterparts with different client network bandwidth settings regarding
40 GB database containing 128 KB blocks. With 1 Gbps inter-server network throughput (servers
were at the same region), Path-ORAM and Ring-ORAM surpassed S’ORAM schemes for a client
network throughput of approximately 720 Mbps and 380 Mbps, respectively (Figure 19a). Given
servers were set up geographically distant to each other, the corresponding numbers were 80-300
Mbps and 50-100 Mbps (Figure 19b). This is because Path-ORAM and Ring-ORAM feature O(log N)
bandwidth overhead so that they receive a more benefit from the high network speed. On the
other hand, SSORAM schemes feature O(1) bandwidth overhead and therefore, get less benefit.

7.2.4  The Impact of k-ary tree layout. We performed an empirical analysis to confirm our finding
in §5 that increasing the degree of the ORAM tree receives very little benefit if not worse than the
default setting (i.e., binary tree).

Figure 20 presents the actual end-to-end delay of SSORAM schemes with varied tree degrees
under the fixed 1TB DB with 128 KB blocks configuration. We can see that the actual delay of k-ary
S*ORAM schemes likely matched with the expected overhead (the dash-dotted line). As discussed,
the performance of SSORAMDO following the generalized eviction in [1] achieved the best at k = 3
(the solid purple line). Remark that for the special case where k = 2, such generalized eviction did
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Fig. 20. The impact of tree degree.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.



30 Thang Hoang, Attila A. Yavuz, and Jorge Guajardo

not take into account the bucket load characteristic after each eviction for optimization. Meanwhile,
this characteristic was fully exploited in the Triplet Eviction strategy, which allowed reducing the
end-to-end delay by half (the solid purple point with the dashed purple line). In summary, considering
a little gain that k = 3 can offer and the optimization that can be done with k = 2, we can see that
S?ORAM® scheme achieved the best performance at the default setting (i.e., binary tree layout
with the Triplet Eviction). In SSORAM® scheme, the actual performance followed closely to the
analytical result, which achieved the best performance at around k € {3, 4, 5}. However, the gain
was not so considerable compared with k = 2 (i.e., < 6.5%). At k > 5, the delay of SP0ORAMC scheme
started to increase and became worst than k = 2.

7.25 S’ORAM storage overhead. At the client-side, SSORAM® does not require the stash compo-
nent similar to Onion-ORAM. On the other hand, S’ORAMC requires the stash of size O(A - |b|)
similar to Path-ORAM and Ring-ORAM. Therefore, given a database containing 512 KB blocks,
S30ORAMC scheme needs around 32-33 MB of the client storage for the stash, while S’0ORAMP®
requires nothing. The storage cost for the position map component in both (non-recursive) S?ORAM
schemes is slightly higher than their non-recursive counterparts. For instance, with a 16 TB data-
base of 512-KB blocks (N = 33, 554, 432), SSORAM schemes cost 119 MB while the others (e.g.,
Onion-ORAM, Ring-ORAM, Path-ORAM) cost 100 MB. This is because we store not only the path
information but also the specific location of each block in its assigned path.

At the server side, each server storage overhead in SSORAMP scheme increases by a factor of eight

(i.e., (8N — A) - |b| bits) by Lemma 3. The server storage overhead for SSORAM® scheme increases
by a factor of two (i.e., 2N - |b|), which is equal to Circuit-ORAM. Recall that all SSORAM schemes
need at least three servers. The server storage for Path-ORAM and Ring-ORAM is 4N - |b| bits
and 6N - |b| bits, respectively. The server storage for Onion-ORAM is similar to SSORAMO for one
server but will increase after a sequence of access operation due to the ciphertext expansion of
Additively HE.
Analytical comparison with other distributed ORAM schemes. We analytically compare
S?ORAM schemes with state-of-the-art multi-server ORAM schemes for data outsourcing. The
most notable ORAM relevant to our framework is Multi-Cloud Oblivious Storage (MCOS) [38] as it
also features O(1) client communication overhead at the cost of O(log N) server-server bandwidth
overhead like SSORAM. MCOS is better than SSORAM in the several aspects as follows. First, it
does not require a minimal block size to achieve the constant client communication overhead,
while S°ORAM requires Q(log? N) - Q(log® N) block size. Second, it needs two servers to operate
while S’ORAM requires at least three servers. The main downside of MCOS over S*ORAM is that it
requires the client to store O(VN) data blocks compared with O(1) — O(log N). For instance, with
256 TB database with 2% blocks, the client storage is 15 GB (vs. {0,8} MB in S’ORAM). Another
distributed ORAM relevant to SSORAM is the two-server ORAM scheme by Lu and Ostrovsky et al.
[25]. Due to the hierarchical ORAM paradigm [20], the main advantage of this scheme is that the
client does not need to maintain the position map and the stash components as in partition-based
and tree-based ORAM schemes including S’ORAM and MCOS. However, it incurs O(log N) client
communication overhead as opposed to SSORAM and MCOS. As a result, it can operate on any
block size and all the servers do not need to communicate with each other.

8 RELATED WORK

Single-server passive ORAM (without computation). The first ORAM proposed by Goldreich
et al. [19] was in the context of software protection and followed by refinements (e.g., [20]).
The recent ORAM schemes mainly have been considered in the client-server model to hide the
data access pattern over a remote server (e.g., [33]). Preliminary ORAMs were costly in terms

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: November 2019.



A Multi-server ORAM Framework with Constant Client Bandwidth Blowup 31

of both communication and storage overhead, but recent ORAMs (e.g., [36, 40, 41, 43]) showed
significant improvements. Path-ORAM [41], which follows the tree structure of [36], achieves
O(log N) communication blowup. Various ORAMs relying on Path-ORAM have been proposed
for specific applications such as oblivious data structure (i.e., [45]), secure computation (e.g., ([43],
[44]), Parallel ORAM [8]) and secure processor [26]. However, Path-ORAM based schemes inherit
its logarithmic communication blowup [6, 31].

Single-server active ORAM (with server computation). Ring-ORAM [34] reduced the com-
munication cost of Path-ORAM by 2.5x given that the server performs XOR computations. Some
other alternatives (e.g., [3, 12, 14, 27, 30]) leveraged single-server PIR or fully/partial HE to further
reduce the communication cost. For instance, Onion-ORAM [12] achieves O(1) bandwidth blowup,
where the client and server interactively run partial HE operations. Path-PIR scheme in [27] used
PIR scheme in [42] with Additively HE (AHE) (i.e., [32]) on top of tree ORAM structure [36].
Bucket-ORAM in [14] used AHE on top of the underlying ORAM structure composed of tree ORAM
and hierarchical ORAM. The scheme in [11] used PIR scheme in [42] on top of ObliviStore [39],
which is based on Partition-ORAM in [40]. The TWORAM scheme in [15] constructed a garbled
circuit [46] over the tree ORAM structure, which allows the client and server to perform the secure
computation to access the block.

Multi-server active ORAM. Multi-server ORAM schemes were proposed to eliminate highly
costly fully/partial HE operations. CHf-ORAM [28] attempted to use four non-colluding servers to
achieve O(1) bandwidth blowup under O(1) blocks of client storage. However, CHf-ORAM [28] (as
well as its predecessor [30]) was broken by Abraham et al. in [1] which also showed an asymptotically
tight sub-logarithmic communication bound for composing ORAM with PIR. Abraham et al. in
[1] also presented a scheme using two non-colluding servers to perform XOR computations for
block retrieval over a k-ary ORAM tree structure. Stefanov et al. were among the first to propose a
multi-server ORAM scheme [38] that leverages two non-colluding computational-capable servers
to reduce the client-server bandwidth of Partition ORAM [40]. Very recently, Chan et al. proposed
a perfectly secure 3-server ORAM scheme [7] based on the Hierarchical ORAM paradigm in [20].
Gordon et al. in [21] proposed a simple and efficient 2-server tree-based ORAM, which achieves
O(log N) bandwidth overhead with O(1) communication round. In this scheme, the position map
is static meaning that the path assigned for each data block is deterministic and unchanged, which
can be computed by a pseudo-random function. In a different line of research, distributed ORAM
schemes were proposed for secure multi-party computation (e.g., [13, 25]). In these works, the
access patterns are hidden from all parties so that such ORAM schemes are integrated with some
secure computation protocol (e.g., Yao’s garbled circuit [46]) and, therefore, their cost is higher
than classical client-server ORAM model.

9 CONCLUSION

We developed a new distributed ORAM framework called SSORAM that is comprised of two multi-
server ORAM schemes. Our schemes achieve O(1) client bandwidth blowup with low client storage
and low end-to-end delay while avoiding costly HE operations. The main idea is to exploit the
homomorphic properties of Shamir secret sharing and a secure multi-party multiplication protocol
to efficiently realize retrieval and eviction in tree-based ORAMs. We assessed the efficiency of
S*ORAM schemes by measuring their actual delay when deployed on a commodity cloud system
(i.e., Amazon EC2) with various network settings and database sizes. Our experiments confirmed
the effectiveness of SSORAM schemes compared with state-of-the-art ORAM schemes in many
practical settings.
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APPENDIX

Figure 21 presents the subroutines of Circuit-ORAM [43] that are called in the eviction of SSORAM®
scheme presented in Figure 13.

PrepareTarget(x):

1: dest «— L;src « L, target « (L,...,1)

2: fori=H,...,0do

3: if i =src then

4 target[i] « dest; dest «— L;src « L

5: if ((dest = L and P(x, i) has empty slot) or (target[i] # L)) and (deepest[i] # L) then
6 src «— deepest][i]

7: dest « i

8: return target

PrepareDeepest(x):

1: deepest « (L,...,L); deepestldx « (L,...,L);src « L;goal « —1

2: if stash S is not empty then

3: src «— 0

4 goal < Deepest level that a block in the stash S can legally reside on path P(x)
5 deepestldx[0] « j, where j is the index of the selected deepest block in S

6: fori=1,...,Hdo

7 if goal > i then

8 deepest[i] « src

9 ¢ « Deepest level that a block in P(x, i) can legally reside on path (x)

10 deepestldx[i] « j, where j is the index of the selected deepest block in P(x, i)
11: if £ > goal then

12: goal « ¢

13: Src «— i

14: return (deepest, deepestldx)

Fig. 21. Circuit-ORAM eviction subroutines.
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