$ sciendo

Proceedings on Privacy Enhancing Technologies ;

2019 (1):172-191

Thang Hoang*, Muslum Ozgur Ozmen, Yeongjin Jang, and Attila A. Yavuz

Hardware-Supported ORAM in Effect: Practical
Oblivious Search and Update on Very Large

Dataset

Abstract: The ability to query and update over en-
crypted data is an essential feature to enable breach-
resilient cyber-infrastructures. Statistical attacks on
searchable encryption (SE) have demonstrated the im-
portance of sealing information leaks in access patterns.
In response to such attacks, the community has pro-
posed the Oblivious Random Access Machine (ORAM).
However, due to the logarithmic communication over-
head of ORAM, the composition of ORAM and SE
is known to be costly in the conventional client-server
model, which poses a critical barrier toward its practical
adaptations.

In this paper, we propose a novel hardware-supported
privacy-enhancing platform called Practical Oblivious
Search and Update Platform (POSUP), which enables
oblivious keyword search and update operations on large
datasets with high efficiency. We harness Intel SGX to
realize efficient oblivious data structures for oblivious
search/update purposes. We implemented POSUP and
evaluated its performance on a Wikipedia dataset con-
taining > 229 keyword-file pairs. Our implementation
is highly efficient, taking only 1 ms to access a 3 KB
block with Circuit-ORAM. Our experiments have shown
that POSUP offers up to 70x less end-to-end delay with
100x reduced network bandwidth consumption com-
pared with the traditional ORAM-SE composition with-
out secure hardware. POSUP is also at least 4.5x faster
for up to 99.5% of keywords that can be searched com-
pared with state-of-the-art Intel SGX-assisted search
platforms.

Keywords: Secure Enclaves, Intel SGX, Oblivious Data
Structures, Oblivious Search/Update.

DOI 10.2478/popets-2019-0010
Received 2018-05-31; revised 2018-09-15; accepted 2018-09-16.

*Corresponding Author: Thang Hoang: EECS, Oregon
State University, E-mail: hoangmin@oregonstate.edu.
Muslum Ozgur Ozmen: EECS, Oregon State University,
E-mail: ozmenmu@oregonstate.edu.

Yeongjin Jang: EECS, Oregon State University, E-mail:
yeongjin.jang@oregonstate.edu.

Attila A. Yavuz: CSE, University of South Florida, E-mail:
attilaayavuz@Qusf.edu. Part of this work done while the author
was at Oregon State University.

1 Introduction

The data privacy and utilization dilemma is a com-
mon problem in various applications, including, but not
limited to, data outsourcing and breach-resilient sys-
tems. Recent data breach incidents targeting online ap-
plications (e.g., Apple iCloud, Equifax, British Airways)
have shown the importance of protecting data confi-
dentiality on the untrusted cloud environment. A naive
approach is to leverage standard encryption techniques
such as AES. Unfortunately, such techniques also pre-
vent the user from performing even simple queries (e.g.,
search or update) on encrypted data, thereby diminish-
ing the data utilization.

Searchable Encryption (SE) techniques have been
proposed to offer data confidentiality and search/update
functionalities simultaneously. This is achieved by cre-
ating an encrypted index (EIDX), which represents the
keyword-file relationships in encrypted files (EDB), both
of which are outsourced to the cloud. One area of SE
research focuses on designing new SE schemes (e.g.,
[14, 43, 55, 68]) with provable security that offer var-
ious trade-offs in terms of security, functionality, and
efficiency. The other area of research aims to enable en-
crypted queries that are compliant with legacy infras-
tructure such as database management systems (e.g.,
mySQL, mongoDB) [1, 2, 4, 33, 41, 47, 58-60]. De-
spite their merits, all these techniques leak access pat-
terns, which results in statistical analysis attacks (e.g.,
[13, 13, 31, 40, 50, 54, 61, 82]).

The Oblivious Random Access Machine
(ORAM) [29] can hide access pattern and, therefore,
it can seal the leaks in SE. Unfortunately, because
ORAM is bandwidth-heavy, using ORAM for SE is
costly in the conventional client-server model. To re-
duce this communication overhead, recent studies have
investigated the support of ORAM with secure hard-
ware [3, 24, 51, 63, 65]. Initial studies designed custom
hardware (e.g., FPGA) to enhance ORAM perfor-
mance, and therefore, they might not be easily inte-
grated into commercial server systems with a legacy ar-
chitecture (e.g., [24, 51, 63]). With the advent of trusted
execution environments on commodity hardware, the
deployment of such hardware-supported cryptographic
primitives becomes more feasible. Intel SGX [17, 37, 38]

Brought to you by | University of South Florida Tampa Campus Library

Authenticated
Download Date | 12/5/19 11:54 PM

Hardware-Supported ORAM in Effect: Practical Oblivious Search and Update on Very Large Dataset = 173

has been explored to enable efficient cryptographic oper-
ations such as oblivious memory access primitives [3, 65]
and functional encryption [23].

Our Objective. The goal of this paper is to take the
ORAM supported by a commodity secure hardware
to the next level, in which we develop oblivious data
structures using Intel SGX to offer practical oblivi-
ous search/update operations on very large datasets.
We implemented our techniques to demonstrate their
efficiency compared with state-of-the-art approaches.

1.1 Motivation

We elaborate on some of the key challenges of enabling
oblivious search and update operations on large en-
crypted outsourced data as follows.

ORAM-SE Composition in Standard Client-
Server Model. Due to the ORAM logarithmic band-
width blowup, the performance of ORAM and SE com-
position in the standard network setting was shown to
be inefficient [7, 35, 53]. Naveed et al. [53] conducted an
analytical analysis and concluded that this combination
is worse than streaming the entire outsourced data for
some keyword distributions. Hoang et al. [35] performed
real experiments on the cloud environment and further
demonstrated the inefficiency of a direct ORAM and SE
composition in the client-server model. Our experiment
in this paper further confirms that the ORAM and SE
composition incurs high delays for a large dataset with
standard network settings. Our experiment in section 6
has shown that this approach incurs one to two orders
of magnitude more client-server bandwidth overhead for
both keyword search and update operations.

State-of-the-art Hardware-Supported Oblivious
Search Platforms. Existing systems [25, 73] require
secure hardware (e.g., Intel SGX) to process the en-
tire outsourced data (e.g., encryption/decryption) for
each search query to completely hide the access pattern.
Unfortunately, this approach might also incur a high
delay when dealing with a large amount of outsourced
data since its cost grows linearly with the database size.
Moreover, state-of-the-art solutions did not fully inves-
tigate the update capability, which seems an essential
feature of data-outsourcing applications.

ZeroTrace [65] proposed efficient oblivious memory
primitives by harnessing recursive Circuit-ORAM with
Intel SGX. This design is efficient for generic oblivi-
ous access purposes, where it does not require storing
the position map and uses Circuit-ORAM, which is more
computation-efficient than Path-ORAM when harnessed
with secure hardware. Since the authors focus on generic

oblivious memory primitives, oblivious search and up-
date functionalities were not investigated in this work.

1.2 Our Contributions

In this paper, we design a new hardware-assisted
privacy-enhancing platform that we refer to as Prac-
tical Oblivious Search and Update Platform (POSUP).
Our proposed POSUP enables oblivious (single/multi)-
keyword search and update operations on very large
datasets in a much more efficient and practical manner
compared with existing techniques.

Our system design is inspired from ZeroTrace [65],
where we synergize SGX-supported ORAM with Obliv-
ious Data Structure (ODS) [78] to enable oblivious
keyword search and update operations on encrypted
data. This synergy (¢) addresses the network bandwidth
and communication hurdles of ORAM-SE composition
in the client-server setting; (i) eliminates the cost of
processing the entire database inside Intel SGX as in
[25, 73]; and more importantly, (i) allows for operation
on a large outsourced database without being restricted
by Intel SGX memory as in [3]. This composition also
enables efficient oblivious keyword update capacity. We
further outline our contributions as follows:

(1) New oblivious search and update platform design
with SGX: We construct ODS instantiations for
EIDX and EDB by harnessing Intel SGX with
Path-ORAM [71] and Circuit-ORAM [76]. POSUP al-
lows for some query types such as single keyword
and multi-keyword queries. Moreover, POSUP sup-
ports an efficient oblivious update via our optimiza-
tion tricks that exploit some special characteristics
of the underlying oblivious data structures.

(2) Full-fledged implementation and evaluation: We im-
plemented POSUP and evaluated its performance
on commodity hardware with a large dataset (e.g., a
full-size Wikipedia English corpus) containing hun-
dreds millions of keyword-file pairs and millions of
files. Our implementation is efficient, taking only 1
ms to obliviously access a 3 KB block with SGX
hardware. Our experimental results showed that
POSUP incurs much lower end-to-end delay than
state-of-the-art solutions as follows:

e Compared with the ORAM-SE composition in
the conventional client-server model (without a
secure hardware), POSUP incurs 100x less net-
work bandwidth overhead and and 1000x fewer
network communication round-trips. As a re-
sult, the end-to-end delay of POSUP is two or-
ders of magnitude lower than that of this ap-
proach for both keyword search and update op-
erations (see section 6 for detailed experiments).

Brought to you by | University of South Florida Tampa Campus Library

Authenticated
Download Date | 12/5/19 11:54 PM

Hardware-Supported ORAM in Effect: Practical Oblivious Search and Update on Very Large Dataset = 174

— Compared with processing the entire database
in Intel SGX (e.g., [25, 73]), POSUP requires
less data to be processed by the enclave
(i.e. O(log N) vs. O(N), where N is the size of
outsourced database). This results in POSUP
having 10x lower end-to-end delay than the ex-
isting techniques for up to 99.5% of keywords
(see section 6). If the number of searched files
is small, POSUP can be 100x faster. Moreover,
POSUP allows oblivious updating, which does
not seem to be fully investigated in state-of-the-
art SGX-assisted platforms (e.g., [25]).

(3) Putting hardware-supported ORAM in real effect:
We take the concept of hardware-supported ORAM
primitives to the next level, wherein we develop
oblivious data structures and routines with opti-
mizations to provide practical search and update
functionalities on large databases, which was not in-
vestigated by existing hardware-supported memory
primitives (e.g., ZeroTrace). Our implementation
will be available at: www.github.com/thanghoang/
POSUP.

2 POSUP Overview

We first outline our objective and then describe our sys-
tem model followed by our threat model.

Objective. POSUP’s objective is to utilize a public
cloud server, which is equipped with commodity secure
hardware, as secure storage that supports search and
dynamic update operations over very large encrypted
datasets. To this end, POSUP aims at deploying a prac-
tical oblivious encrypted search and update platform
to guarantee data confidentiality and no access pat-
tern leakage during search and update operations, along
with a trusted execution. Specifically, to defeat attacks
against data confidentiality and access pattern leak-
ages, POSUP creates a commodity hardware-supported
ORAM and Oblivious Data Structure (ODS) platform,
which enables oblivious searches and updates efficiently,
even for very large datasets. To defeat attacks against
the server’s execution logic, POSUP runs its ORAM and
ODS controllers in an enclave protected by Intel SGX.

2.1 System Model

We first describe our system composition and then sum-
marize our POSUP workflow.

System Composition. Figure 1 illustrates the com-
ponents of POSUP and its composition: a client, an un-
trusted server, and a trusted enclave on the server.

CLIENT

Untrusted
Memory

:% 8
Keywords .

Keyword
i\Hash Table

(3]

Index Paths
oDS :

50 |
Access £1—File IDs] |

/ P

i(File Position["} .. Recursive [5) !
(Map U:: " orRAM 2| V/Fite Paths 3
3 I] : !

3 oDS & 0H
/—JG[@@ 3 ‘: Access £ Files /@'
Files S R :

T

Fig. 1. An overview of POSUP workflow. Encrypted data struc-
tures (e.g., ODS-IDX, ODS-DB) stored at the server’s untrusted
memory are created by the client in the initialization phase
(described in subsection 4.1). @-@: The client encrypts the
(search/update) query with session key (Ks) and sends it to the
enclave. @-@: The enclave performs oblivious accesses (e.g.,
ODS, recursive ORAM) on encrypted data structure components
to retrieve/update files involved with the query. @—@: The en-
clave encrypts the query results with K and sends back to the
client.

A client (the box on the left side) is a remote entity
that generates and manages recursive ORAM and ODS
components on the untrusted server via an encryption
key k,. After initializing the system, the client can send
a query to update data on the server or to search data
and then receive the search results from the server.

The server comprises two parts: an untrusted server
and a trusted enclave. (i) The untrusted server provides
storage for recursive ORAM and ODS data structures.
(ii) The enclave is a trusted part of the server and ex-
ecutes ORAM and ODS controller (while protected by
Intel SGX). On behalf of the client, the enclave per-
forms all oblivious search/update operations upon the
client’s request on the encrypted data structures stored
on the untrusted server. To do this, the enclave receives
the encryption key k, from the client via a secure chan-
nel at the initialization.

POSUP Workflow. Figure 1 outlines the overview of
oblivious search and update in POSUP.
e [nitialization: The client first performs the remote at-
testation of the enclave (provided by Intel SGX), which
is running on the untrusted server. This attestation step
not only verifies that the program running in the enclave
is intact but also exchanges cryptographic keys (a ses-
sion key Kj) to establish a secure (encrypted) channel
between the client and the enclave. After establishing
the secure channel, the client also sends a key k, to the
enclave, which will be used for ORAM operations.
Upon receiving the key, the enclave on the server
will initialize encrypted data structures. Our POSUP is

Brought to you by | University of South Florida Tampa Campus Library

Authenticated
Download Date | 12/5/19 11:54 PM

www.github.com/thanghoang/POSUP
www.github.com/thanghoang/POSUP

Hardware-Supported ORAM in Effect: Practical Oblivious Search and Update on Very Large Dataset = 175

composed of two main encrypted data structures:
ODS-IDX, which is an encrypted index that represents
keyword-file relations, and ODS-DB, which stores en-
crypted files. Both data structures are stored in the
server’s untrusted memory. We employ the ODS tech-
niques proposed in [77] to instantiate ODS-IDX and
ODS-DB. This data structure initialization step happens
only at the first connection. In other words, to perform
search and update operations, the client requires only
that a session key (K) be exchanged with the enclave.
o Oblivious Search/Updates Queries: @ The client en-
crypts the search (resp. update) query with the session
key K, and sends it to the enclave (through the un-
trusted server). @ Upon receiving the encrypted query,
the enclave decrypts it with K,. @ The enclave scans
the entire keyword hash table! to retrieve block IDs and
their location (path) in ODS-IDX that correspond to the
query. @ If the query is to search, the enclave performs
ODS accesses on ODS-IDX using the ORAM key k,
to get matching file IDs. @ The enclave determines the
location of file IDs in ODS-DB by executing recursive
ORAM accesses with ORAM key k, on the file position
map structure. @ The enclave performs ODS accesses
on ODS-DB with k, to retrieve file(s) associated with
the query. @ The enclave encrypts retrieved files with
K, and sends them to the client. @ The client recov-
ers encrypted files with K. The enclave performs the
same procedure as search for handling the update query,
where it first performs a keyword hash table scan and
ODS accesses on ODS-IDX to update blocks in the en-
crypted index, followed by a recursive ORAM access on
the file position map and an ODS access on ODS-DB to
update file blocks in the encrypted files.

All these strategies enable us to achieve oblivious
keyword search/update operations more efficiently than
processing the entire ODS-DB and ODS-IDX in the en-
clave [25, 73]. Our system is also more efficient than
the direct application of existing SGX-ORAM memory
primitives [65] because we harness the ODS technique
for both ODS-DB and ODS-IDX, which reduces the num-
ber of recursive calls when executing an oblivious key-
word search/update query.

2.2 Threat Model

We build POSUP based on the following assumptions as
its threat model. The client is fully trusted and transfers
only the ORAM encryption key k, to the enclave after
establishing a secure channel with the enclave (There-
fore, untrusted parts of server cannot obtain this key).

1 Since keyword universe is arbitrarily large, it is mandatory
to maintain a hash table that uniquely matches each keyword
to a block ID in the encrypted index for a given dataset (see
subsection 4.1 for more details).

To establish this secure channel, we rely on the remote
attestation protocol provided by Intel SGX. Thus, we
need a trusted authority (right now, it is Intel) for this
remote attestation protocol; however, this does not have
to be Intel if we utilize a different kind of secure enclave
(e.g., Sanctum [18]). We assume the server is untrusted
except for the enclave. Specifically, we do not trust any
of the server’s logic that includes a virtual machine mon-
itor, operating system and drivers, software that man-
ages storage, etc. This is a general assumption for a sys-
tem that utilizes an enclave because Intel SGX isolates
and applies encryption to the enclave’s memory space
using hardware mechanisms.

attacks against Intel SGX.
Intel SGX does not come without limitations; it suf-
fers from various side-channel attacks in cache ac-
cess [10, 30, 32, 49], memory access [11, 81], regis-
ters [48], etc [42, 80]. Unfortunately, preventing side-
channel attacks against Intel SGX entirely is a very
challenging task. Instead of making POSUP side-channel
free, we aim only to make POSUP secure against sev-
eral known side-channel attacks on Intel SGX, which
are mentioned above. For simplicity, we do not focus
on securing POSUP against size and timing information
leakage, which can be easily achieved via padding. We
refer the reader to subsection 4.4 for a more detailed
discussion.

Side-channel

3 Building Blocks

3.1 ORAM
The security of ORAM can be defined as follows.

Definition 1 (ORAM security [71]). Let ¥ =
(op;, ui,data;)!_, be a data request sequence, where
op; € {read(u;,data;), write(u;, data;)}, u; is the logi-
cal address to be read/written and data; is the data at
u; to be read/written. Let AP(T) be an access pattern
observed by the server given a data request sequence .

An ORAM scheme is secure if for any two data re-
quest sequences & and § of the same length, their access
patterns AP(Z) and AP(F) are (computationally or per-
fectly or statistically) indistinguishable.

Path-ORAM. Stefanov et al. proposed Path-ORAM [71],
the most efficient and simple ORAM scheme, which
follows the tree paradigm by Shi et al. [66]. In this
paradigm, there are three components: (i) a complete
binary tree (stored at the server) with N leaf nodes that
can store up to N data blocks. Each node in the tree is
called a bucket, which can store up to Z blocks, all of
which are IND-CPA encrypted; (i) a position map (pos)
that associates each data block with a random leaf node

Brought to you by | University of South Florida Tampa Campus Library

Authenticated
Download Date | 12/5/19 11:54 PM

Hardware-Supported ORAM in Effect: Practical Oblivious Search and Update on Very Large Dataset = 176

(i.e., path ID); (¢i%) a stash component (S) to temporar-
ily store some blocks. Both pos and S are maintained
by the client. To access a block with Path-ORAM, the
client retrieves its path from pos and then performs a
read operation (ReadPath) on its path, in which all real
blocks in the path are fetched into S. The client updates
the retrieved block with a new random path in pos and
then performs an eviction operation (Evict) to push the
blocks in S back to the read path such that each block
resides somewhere in an intersection node between the
read path and its assigned path toward the leaf. No-
tice that the pos component can be stored on the server
in the form of smaller ORAMs via recursion [66, 71].
In Path-ORAM, the stash size was proven to be upper-
bounded by the security parameter A as |S| = O()\)
blocks, which characterizes the overflow probability and
statistical security. We describe the detailed algorithms
of Path-ORAM in the Appendix.

Circuit-ORAM. Circuit-ORAM [76] reduces the circuit
complexity of Path-ORAM by minimizing the number
of blocks that are involved during read and eviction.
Each bucket has meta-data that store the information
about real blocks and their path ID.

Read: Similar to the original tree ORAM in [66], the
client reads all data in the path, but keeps only the block
of interest in the stash and removes it from the path.
The removal process can be implemented efficiently by
flipping only one bit in the bucket meta-data.
Eviction: The client prepares a list of blocks to be
pushed down in the eviction path by scanning the meta-
data of buckets in the path. The client picks one block
in the stash (if any) that can be pushed to the deepest
level of the tree and then traverses from the root to
the leaf node. In each level, the client drops the on-
hold block and picks at most one block to be put into
a deeper level. For each data access, the client invokes
two eviction procedures, with the eviction path being
selected randomly or deterministically, as in [28] (see
the Appendix for details).

Circuit-ORAM incurs approximately 1.25x more I/O
accesses than Path-ORAM. However, it has a smaller
circuit size, and therefore, it is more efficient to be
implemented with Intel SGX [65]. Circuit-ORAM has a
smaller bucket size (Z = 2 vs. Z = 4 in Path-ORAM)
and, therefore, incurs less server storage. Similar to
Path-ORAM, the stash size in Circuit-ORAM was proven
to be upper-bounded by the security parameter, i.e.,

|S| = O()\) blocks.

3.2 System Building Blocks

We use Intel SGX as a trusted execution environment
to protect the execution of the ORAM controller on

the untrusted server. We run the logic in an SGX en-
clave, which guarantees the isolation and confidential-
ity of its execution, to protect the ORAM controller
logic from attacks. We utilize the remote attestation
protocol of Intel SGX to check the integrity of our logic
and securely exchange/provision secret keys for storing
ORAM data structures, as well as to protect communi-
cation channels between the enclave and the client. We
also implement our logic in the enclave using oblivious
primitives in the Intel processor such as CMOV and SETE
instructions to prevent potential access pattern leakage.

As building blocks of POSUP, we utilize the follow-
ing components of Intel SGX:

e FEnclave: An enclave is a trusted execution unit
of Intel SGX, and it is protected by isolation and in-
tegrity /confidentiality guarantees. Intel SGX isolates
the enclave’s execution by providing a private memory
called the enclave page cache (EPC), which resides in a
reserved space in DRAM (the processor reserved mem-
ory, PRM) [17]. The EPC is isolated from the other soft-
ware security domains by SGX’s hardware mechanism.
Thus, SGX blocks any software attempt to read/write
enclave’s memory from user-level as well as privileged-
level (including operating systems and virtual machine
monitor) attackers. Moreover, because SGX encrypts
(with integrity check) the data before storing it on to
DRAM, EPC stores only encrypted data on it. There-
fore, any hardware attempt to read enclave’s memory
will not leak any meaningful information, and any tam-
pering to enclave’s memory will be detected (and then
SGX stops the enclave’ execution).

e Remote attestation and key exchange: SGX sup-
ports the remote attestation of the enclave to authen-
ticate whether the configuration of the enclave is cor-
rect and to share a secret key for secure communica-
tion [17, 39] only after the authentication. When a re-
mote attestation request initiated by a client is delivered
to the enclave, the SGX subsystem will run the trusted
quoting enclave, which creates a measurement (i.e., hash
of configurations, loaded program with a nonce, and a
public key material for key exchange) of the enclave and
signs it (with the quoting enclave’s key). This measure-
ment will be submitted to the Intel Attestation Service
(IAS) to verify the quoting enclave’s signature; the re-
sult will be signed by IAS and then will be delivered to
the client. By verifying TAS’s signature on the result,
the client ensures that a correct enclave is running on
the server. The attestation message also includes public
key parameters of the Diffie-Hellman key exchange of
the client and the enclave so that a client can securely
communicate with the enclave after this process, by en-
crypting data using the shared secret.

Brought to you by | University of South Florida Tampa Campus Library

Authenticated
Download Date | 12/5/19 11:54 PM

Hardware-Supported ORAM in Effect: Practical Oblivious Search and Update on Very Large Dataset = 177

e Privacy concerns on relying on Intel SGX: The
root of trust of Intel SGX relies on an infrastructure
provided by Intel (e.g., the Intel Attestation Service and
the quoting enclave). Our current implementation uses
Intel SGX for its secure enclave; therefore, its privacy
is bound to Intel’s discretion. However, we believe that
this is just an implementation-specific issue and that
the use of alternative open-source secure enclaves such
as Sanctum [18] on the RISC-V architecture [79] could
relax this restriction, e.g., by distributing trust over the
Public Key Infrastructure (PKI), similar to how Trans-
port Layer Security (SSL/TLS) works in practice.

e System calls: Because an enclave is a part of the
user-level process, Intel SGX does not provide any pro-
tection on privileged operations such as system calls,
e.g., file and network I/0, etc. Because such operations
have to be performed by the untrusted OS, the en-
clave must encrypt data before transferring them to the
OS. For example, a network communication between the
client and the enclave should apply encryption to their
connection, and a file write operation should store only
encrypted data. For this purpose, Intel provides cryp-
tographic libraries and tools for secure data migration
between the enclave and the OS so the enclave can se-
curely communicate across the security boundary if it
is provisioned with a secret key for the encryption; this
can be done securely via remote attestation.

Secure operations inside enclave.
oblivious assignment (oupt) and oblivious equality com-
parison (ocmp) functions based on CMOV and SETE in-
structions proposed in prior works [57, 62], which do
not leak access patterns via control-flow side-channel
attacks when POSUP executes the ORAM controller in-
side the enclave as follows.
e pred < ocmp(x,y): It takes as input two values x, y,
and outputs pred = 1 if z = y or pred = 0 otherwise.
e z < oupt(pred, z,y): It takes as input two values z,
y and a boolean pred. It assigns z < y if pred = 1,
and z < x otherwise.
We refer interested readers to prior works [57, 62] for
a detailed description of these functions. Note that our
ocmp function slightly differs from what was originally
proposed in [57], where we employ SETE instead of SETG
instruction for equality checking.

We implement

B « 0Get(S, bID):

1: B+l

2: fori=1,...,|S| do

3 v < ocmp(S[i].bID, bID)
4: B « oupt(v, S[i], B)
5

: return B

Fig. 2. OGet function in POSUP.

O
oF X

@ (5 Real index blocks @ ©) Real file blocks

— Pointer to next block — Pointer to next block

Keyword Block ID | Path | Count Block ID Path
| (bID) | (pID)| (9) (bID) (pID)
hello 1 2 15 1
i world 3| 8 4

‘ File position map
i (stored at the server recursively
in small ORAMSs)

Keyword position map
(stored at the server
in encrypted form)

Fig. 3. lllustration of ODS-IDX and ODS-DB packaged into
ORAM tree in POSUP. Blanked nodes denote dummy blocks,
while colored nodes denote real file/index blocks. In colored
nodes, pattern-filled nodes denote the head block of linked lists.

ZeroTrace [65] proposed OReadPath and OEvict,
which are secure versions of ReadPath and Evict tree-
based ORAM functions, respectively, both of which are
executed by the enclave without leaking side-channel ac-
cess patterns. We implemented our version of OReadPath
and OEvict and refer readers to ZeroTrace [65] for a de-
tailed description. In OReadPath and OEvict, we scan
the entire stash and path and then use ocmp and
oupt to put real blocks from the path to the stash,
or vice versa. This results in Path-ORAM being more
computation-expensive than Circuit-ORAM as follows.
Since Path-ORAM pushes all real blocks from the path
to the stash or vice-versa, its OReadPath and OEvict in-
cur two nested loops, where we must scan the entire
stash for each path slot access to hide the access pat-
tern. CircuittORAM processes only one targeted block
at a time and only incurs two separate loops that scan
the entire path once to get target blocks and the entire
stash. As a result, Circuit-ORAM is more computation-
efficient than Path-ORAM when dealing with a large
dataset and large block size (see section 6). We then
implement the OGet function (Figure 2), which reads
a block ID from the stash S into the enclave without
leaking access patterns via ocmp and oupt.

4 The Proposed Platform

We
POSUP. We then present the oblivious search and up-
date protocol in detail.

first describe the oblivious data structures in

4.1 Oblivious Data Structures

Figure 3 presents the overview of ODS-IDX and ODS-DB
in POSUP. ODS-IDX and ODS-DB follow the tree

Brought to you by | University of South Florida Tampa Campus Library

Authenticated
Download Date | 12/5/19 11:54 PM

Hardware-Supported ORAM in Effect: Practical Oblivious Search and Update on Very Large Dataset = 178

ODS.Setup(DB):

1: B« 0;B +0

2: W:= (w1 ...,wpr) < Extract all unique keywords in DB

3: Construct inverted index IDX <« ((wi, iai)fil), where
id; == ((idi,, 1) ..., (id;,,, 1)) are file IDs containing w;

4: for each file f; € F do

5: Split f; into m; chunks of size | B|

6: B;;.DATA j-th chunk; B;;.pID < [2L] ¥j € [m]

7 forj=1,...,m; — 1 do

8 Bij.NextID — Blj+1b|D

9 B,-]-.NextPath — Bij+1.p|D

10: posf[Bil.bID] < Bj;1.pID

11: B%BU{Bil,...,Bimi}

12: ODS-DB < BuildORAMTree;,_ (B)

13: BuildRecursiveORAM(pos)

14: for each keyword w; € W do

15: id; « IDX[w;]

16: Split id; to m}, chunks (ci1,. .., ¢,) each of size |B’|

17 BJ;.DATA « cij; Bj,.pID & [22'] Vj € [m’)
18: for j=1,...,m,—1do

19: Bl’.j.NextID — B§j+1.bID

. / /
20: Bj.NextPath — Bij+1.p|D
21: B’<—B’U{B;1,..,,B£m;}

22: ODS-IDX <— BuildORAMTreey, (B')
23: TW[UJQ] «— (B“le,le[ﬂD, ‘Cil‘) for each w; € w

Fig. 4. Setup algorithm to construct oblivious data structures in
our system. 2-3: Construct inverted index (IDX) from files (DB).
4-12: Build ODS-DB from DB. 13: Build recursive ORAM struc-
ture for file position map (posf). 14-22: Build ODS-IDX from
IDX. 23: Build keyword hash table (TW). All data in ORAM
structures (12,22) are encrypted with ORAM key k. B, B’ de-
note an ORAM block in ODS-DB and ODS-IDX, resp. L and L’
denote the height of ODS-DB and ODS-IDX, resp. | B| denotes
the size of B. [z] denotes {1,...,z}.

ORAM paradigm in [66] because POSUP harnesses
Path-ORAM and Circuit-ORAM as oblivious access cryp-
tographic primitives. We create a search index (IDX)
from a set of plaintext files (DB) and then package IDX
and DB into ODS-IDX, ODS-DB, respectively, as follows.
Encrypted index. We construct IDX as an inverted
index, in which given DB as the input, we extract unique
keywords and associate each keyword w; with the list of
corresponding file IDs id;; that w; appears in as w; :=
(idi1 cey idin). We divide the list of each keyword in IDX
into multiple chunks of the same size and package them
into separate tree ORAM blocks. We use the pointer
trick (i.e., linked list in [78]) to connect these blocks with
each other, where the information of successive blocks
is stored in their predecessors. Thus, each block is in
the form of B := (le, DATA, NextID, NextPath), where
bID is the block ID; DATA := ({id1,01),...,(idn,0n))
is the block data, which contains a partial list of file IDs
(id) as well as their state (o € {0,1}) indicating whether

they are added or deleted; NextID and NextPath are the
ID and the path of the next block, respectively. Finally,
we create ODS-IDX by putting all constructed blocks
into a tree ORAM structure.

Keyword position map. Since keywords are arbi-
trary and can be of any length, POSUP maintains a
hash table data structure (TW) to map each arbitrary
keyword to an ORAM block ID (bID) as well as its path
(pID) in ODS-IDX. Additionally, POSUP stores a counter
(8;) for each keyword in TW to indicate the actual num-
ber of (id, 8) pairs that are stored in the head block of
the list. So, TW is of the form (key,value), where key
is the hash of the keyword and value contains a triplet
(bID, pID,). We denote the access operation to the
value component in TW as (bID, pID, 3) < TW/[w;].

In POSUP, we maintain TW under the encrypted
form in the storage server. This allows the client to be
stateless and easily extensible to the multi-client setting
(see subsection 4.3 for further discussion). Since, to the
best of our knowledge, there is no oblivious hash table
mechanism, the enclave performs a linear scan on TW
for reading/writing component(s) in TW to hide the ac-
cess pattern. Notice that recursive-ORAM might not be
applied on TW because it requires deterministic indexes
to operate, while keywords to be accessed are arbitrary.

Encrypted files. We apply the same principle as in
the encrypted index construction to build ODS-DB from
DB. Since each file is organized into a linked list, we set
B.bID = id, where B is the first block in the list and id is
the ID of the file that B represents. Given that the size
of IDX is generally smaller than that of DB, we build
ODS-IDX and ODS-DB as two separate oblivious data
structures, where the block size of ODS-IDX is smaller
than that of ODS-DB.

File position map. POSUP maintains the file posi-
tion map to keep track of the path of the head block in
each ODS linked list. Note that we can index file IDs
with an integer from 1 to IV, where N is the total num-
ber of files in DB since POSUP focuses on search and up-
date functionalities on keywords appearing in DB. This
allows us to maintain the file position map via a re-
cursive ORAM in the server side. Our design needs to
perform only recursive ORAM access to get the path of
the starting block, while the path of other blocks in the
linked list is obtained from their predecessor due to the
ODS technique. This reduces the number of recursive
calls on the file position map compared with the direct
application of oblivious memory primitives (e.g., [3, 24])
for enabling oblivious query functionality.

We present the detailed algorithm to construct
ODS-IDX and ODS-DB in Figure 4. We encrypt
ODS-IDX and ODS-DB with ORAM key k, and store
both ODS-IDX and ODS-DB on the server’s untrusted

Brought to you by | University of South Florida Tampa Campus Library

Authenticated
Download Date | 12/5/19 11:54 PM

Hardware-Supported ORAM in Effect: Practical Oblivious Search and Update on Very Large Dataset = 179

memory. The stash components required by underlying
ORAM schemes are also encrypted with k, and stored
in the server’s untrusted memory. They are loaded and
decrypted in the enclave when needed.

4.2 Update and Search Protocols

Since search operations require us to clear stale data
that might arise due to previous update operations, we
first introduce the oblivious update protocol in POSUP
and then describe the oblivious search.

4.2.1 Oblivious Update

For simplicity, we assume that the file to be updated
(fia) is already present at the client side. The update
operation incurs fig to be added/deleted/modified from
EDB, and some keyword-file pairs to be added/deleted
from EIDX. Intuitively, for each keyword (w;) to be up-
dated in fig, the client requests the enclave to add id
along with the update state (add/delete) to an empty
data slot in the head block of the linked list, which rep-
resents the search result of w; in EDB. If there is no
available slot, the enclave picks an empty block? in EDB,
adds update information into it and then links it with
the current head block of the linked list by updating
its NextID and NextPath values. This strategy results in
blocks close to the head of the list containing the latest
updated file IDs. Figure 5 outlines the oblivious update
protocol with the following details.

1) Update ODS-IDX: The client updates the file content,
and forms a list of keywords () to be added or deleted
in the updated file (fiq) (@). The client encrypts the
update query (¢) containing id and @ with K, and sends
it to the enclave. The enclave decrypts ¢ with K, (@)
and then accesses the entire keyword position map (TW)
to retrieve the block ID (bID), path (pID), and current
counter () of updated keywords (@). For each updated
keyword (w;), the enclave checks whether there is an
empty slot in the head block of w; in ODS-IDX (@).
If this does not hold, the enclave gets the ID and the
path of an empty block in ODS-IDX (@) and updates
this block as the new head of the linked list of w; in
TW (@). Notice that POSUP performs all comparison
and update operations in the oblivious manner using
ocmp and oupt functions described in subsection 3.2 to
prevent instructional leakage. Once the target block is
determined, the enclave performs an ORAM access on
ODS-IDX to add id and the update state (o) into it
(@®). Specifically, for each updated keyword (w;), the
enclave first executes OReadPath with path pID; (@) to

2 ID of empty blocks can be stored in a separate data structure
(e.g., list).

Secure
Enclave
K;: Session key
k,: ORAM key

e
» (W, fia) < Decg; (q)

Client

Untrusted
Memor
fia =Update (f'iq)

W « GetUpdtKW(fiq)

q < Encx (W, fig)

[# = (Wi, 1), o) Wiy T)) |

4 A \
1 - © [(51D,, pTD,) < getEmptyBlk(TW)) !
: (bID;, pID;, ;) <« TW[w;] 1

1
! 1
1 O |vi < ocmp(By, |BI)

7) Load : Keywc;rd : : :
entireq | Has bID; « oupt(v;, bID;, bID;) :
TWio | 1| Table © | B ouptw, fi+11) |1

Enclave | ! ™ __ 1

: pID; «{1,..,N} :

1] 1

! O frwtu < (5,060 |

N - - U R U I U G U [———

- pID; ki

: (o, [0

1 1

2) ORAM ! © |B; « OGet(s, bID;) !

access | 1 - !

on ODS—< : lODS-IDX 0[Add (id, 5;) to B;. DATA l :
x|+ 10 [

I| Stash s B;. NextID « oupt(v;, B;. NextID, bID;) |

1 B;.NextPath « oupt(v;, B;. NextPath, pID;) |,

1]

! S, B; 1

| ®

/7

®/ b= id
7 (e R ‘I
Recursive 1
access File : : f14) !
. Position ﬁ 1
Sl == . '
position ap o I
map \\ ~—mr— .
{ bID’, pID’, fiq l
____________________________ "
1
1
B I
A Follow similar logic from | |
ORAM Access on ODS-IDX | 1
Tt in steps @-® :
4 0Ds :
access on 1
1
ODS-DB o) ,
1
bID'; « B'.NextID | |
pID’; « B'.NextPath | |
1
1
1
1
ack msg

Fig. 5. Our oblivious update protocol. @-@: Generate (en-
crypted) update query. @-@: Access on entire keyword hash ta-
ble (TW). @-®: Update encrypted index (ODS-IDX) via ORAM
access. (B Recursive ORAM access on file position map to
retrieve location of updated file. {-): Update the file via ODS
access on encrypted files (ODS-DB).

Brought to you by | University of South Florida Tampa Campus Library

Authenticated
Download Date | 12/5/19 11:54 PM

Hardware-Supported ORAM in Effect: Practical Oblivious Search and Update on Very Large Dataset = 180

fetch the block (B;) of ID bID; from ODS-IDX into the
stash (5). Second, it reads B; from S via OGet (@) and
then adds (id, o) to the block data (B;.DATA) (@). If B;
was previously empty, it updates the pointer of B; to
link it with the current block head of w; (@). Finally,
the enclave performs OEvict to write the updated B;
back to ODS-IDX (®).

2) Update ODS-DB: Given the ID (id) of the updated

file (®), the enclave executes recursive ORAM accesses
on the file position map to retrieve the location of id
in ODS-DB (@). The enclave splits the updated file fiq
into several chunks and then executes ODS access on
ODS-DB to update the ORAM data blocks in the linked
list of fig with these chunks (B-®).

We can see that the deletion in POSUP does not
actually delete some real data in ODS-IDX but instead
performs addition with the state bit (¢ = 0). This lazy
deletion enables the efficient update, which only requires
O(1) access on the encrypted index compared with O(r)
in the actual deletion due to the search, where r is the
number of files in which the updated keyword appears.
The price to pay for this efficiency is the cost of increas-
ing the actual size of the search index and the search
complexity. To mitigate this impact, after k (system pa-
rameter) successive updates, POSUP performs a dummy
search on the most frequently updated keyword to do
garbage collection, since the search operation in POSUP
will clear stale data appearing in blocks toward the tail
of the linked list, as described in the next section.

4.2.2 Oblivious Search

Figure 6 presents the oblivious search protocol in
POSUP. First, the client executes the remote attesta-
tion protocol with the enclave to establish a secure
communication channel with a session key (Kj). The
client then encrypts the search query of the form ¢ =
W1 *1 -+ *m—1 Wiy, With K, where x; € {V,A} (@) and
sends it to the enclave. The enclave decrypts g with K
to obtain the list of searched keywords (w;) and per-
forms the following operations.

1) Access on keyword hash table (TW): The enclave
scans TW entirely to get the block ID (bID;) and its
path (pID,) in the index (ODS-IDX) of each w; (@).

2) ODS access on ODS-IDX: For each (bID;, pID;) pair,
the enclave performs an ODS access on ODS-IDX (con-
taining multiple ORAM accesses) to retrieve all blocks
in the linked list, all of which form the entire list of
file IDs (R;) matching w; (@-@®). According to our up-
date strategy (see subsubsection 4.2.1), blocks toward
the head of the oblivious linked list will contain file
IDs with the most up-to-date update state. Hence, dur-
ing the block update operation (@), the enclave will

Secure

Enclave
K: Session key
ko,: ORAM key

Client

Untrusted
Memor

lq’ = (Wy *1 o H oy Win) l
q <Ence(q) | @

1 =I| (W1 *1 o *m_q win) < Decy, (q) ‘
(fa I-=~"""--~-=-==-=-=-=-=q------- |
1) Load | 1 t/ 1
entire | ! | Keyword (2} (bID;, pID;) < TW[w;] ;

1
TWto) | Hash TW[w;]. pID; & {1, ..., N} !
Enclave : Table TW (for1 <i<m) :
S e S DU !

5 g B

| & 3] DPID; Y
o OReadPath,, l S :

1
. 1
| O |B; < OGet(S, bID;) I
1{ODS-IDX :
s O [Add B, DATAto R, :
1
: Stash § @ | Update block B; 1
1
2) ORAM ! L7) S.B ;
ascess on | :

- I~~~

: Ql v; < ocmp(B;. NextID, 0) ‘ :
| I 1
I bID; « oupt(v;, B;. NextID, bID;, ;) :
: pID; « oupt(v;, B;. NextPath, pIDsy4)| |
| [1
: @’ i < oupt(v,i,i+1) ‘ :
1
: |
| 1
S W fyes]
® [®ID), ., bIDY) « Rity ks R |
) [A 1
Recursive || ﬁ :
ORAM |1) OReadPathy, {4~ :
access 1| _File : : ® I
e | 1| Position _I I
“omo '
position |1 2 1
map '\ 0—— o _d______ I
®/((bID}, pID}), .., (bID}, pID})) /
[aiionits digii il sl Al \
1 1

1
1 Follow similar logic from :
4 ODS< : ODS Access on ODS-IDX in 1
accesson steps @ - @ for each pair !

1
0DS-DB | |) (bID, pID)),1<i<n :

1
.)

Fig. 6. Detailed search protocol. @-@ Generate encrypted search
query (q). @-® ODS access on ODS-IDX to retrieve file IDs
matching with ¢. - Recursive ORAM access on file position
map to get the location of matched files. (B-i ODS access on
ODS-DB to retrieve all matched files and send to the client.

clear stale file IDs in the accessed block if they are al-
ready present in R;, or their most recent update status
is “delete.” Once the block becomes empty (meaning it
does not contain any file IDs left), the enclave will store
its ID in the empty list in TWso that it can be re-used

Brought to you by | University of South Florida Tampa Campus Library

Authenticated
Download Date | 12/5/19 11:54 PM

Hardware-Supported ORAM in Effect: Practical Oblivious Search and Update on Very Large Dataset = 181

later in the update operation. After the block is accessed
with ORAM, the enclave determines if it links with an-
other block via ocmp (@). If this holds, the enclave gets
the next block information (@) and continues the obliv-
ious access as above. Otherwise, it processes the next
searched keyword ().

Note that we perform all these conditional checks
and processing in an oblivious manner via ocmp and
oupt functions. This prevents POSUP from leaking the
information regarding size of individual searched key-
words (@) but only the total amount of data that are
processed due to the search query.

3) Recursive ORAM access on file position map: After
the file IDs (stored in R;) of each keyword w; are re-
trieved, the enclave performs union/intersection on R;
according to *; to get the final list of file IDs matching
q (®)3. For each block bID/ in the joint list, the enclave
performs recursive ORAM access (®) on the file posi-
tion map structure to retrieve the corresponding path
pID} of bID’ in ODS-DB (®).

4) ODS access on ODS-DB: The enclave performs a se-
quence of ODS accesses on ODS-DB with the same logic
as ODS-IDX accesses to retrieve the file content of each
bID} (®-@). Finally, the enclave encrypts all the re-
trieved files with the session key K (®), and sends
them to the client for decryption (@).

Discussion. One might observe that although POSUP
can support boolean queries, the strategy we have ap-
plied is simple, in which we conduct an oblivious search
on each keyword present in the query first, followed
by taking the union/ intersection over all the search
results. This trivial strategy is not (sub)optimal and
might be inefficient for some complex boolean forms,
in which each keyword appears in a large proportion
of databases, but the final combination only returns a
few results. Nonetheless, our main focus in this paper
is to demonstrate the effectiveness of using secure hard-
ware to improve the performance of searchable encryp-
tion and ORAM composition in practice. Therefore, we
build the POSUP platform by leveraging a simple obliv-
ious data structure in the form of a single linked list,
which seems only optimal for single keyword queries and
efficient update. We leave the POSUP optimization for
other query functionalities (e.g., ranked query, conjunc-
tive query) as open research questions.

Another limitation of POSUP is the linear scan of
the keyword hash table in the enclave due to our col-
lision concern when obliviously mapping arbitrary key-
words to a finite set (block IDs). To improve this, one
might consider using the power of two choices hash-
ing technique [64] to minimize the collision probability,

3 Since the file ID (id) is assigned to the ID (bID) of the head
block in the linked list, we use id and bID interchangeably.

thereby enabling (recursive) ORAM operations atop the
keyword hash table. We will also leave this as an open
research question to be investigated in the future work.

4.3 Extension to Multi-user Setting

In POSUP, the client is stateless. Thus, it is easy to
extend POSUP into the multi-user setting including a
data owner (who owns n outsourced files), a storage
server, and k users (who want to search/update on n
files) as follows. The data owner creates an access con-
trol data structure (ACDS) to grant permission (e.g.,
search/update) for k users on n files. The data owner en-
crypts and sends ACDS to the enclave, along with the en-
crypted index (ODS-DB) and encrypted files (ODS-DB)
that are constructed, as described in subsection 4.1, all
of which are stored in the server’s untrusted memory
(e.g., SSD).

Given that a user wants to search for a keyword,
he/she will authenticate with the enclave using, for ex-
ample, the user identifier and password. If authenti-
cated, the enclave performs oblivious access on ODS-IDX
(as described in subsubsection 4.2.2) to obtain file IDs
matching the query. For each file ID, the enclave ac-
cesses ACDS with ORAM to check whether the user has
the read permission on the file. If so, the enclave per-
forms oblivious access on ODS-DB to retrieve the file
and sends it to the user. The same principle applies to
the file update procedure. Roughly speaking, the en-
clave first authenticates the user and then obliviously
accesses ACDS to check whether the user has the up-
date permission on the file. If permitted, the enclave
executes the oblivious update protocol as presented in
subsubsection 4.2.1.

4.4 Security

ODS and ORAM. We design and build POSUP by
using ODS and ORAM, and therefore, its security is
inherited from the security of these tools. Specifically,
these tools guarantee that POSUP hides all access pat-
terns on ODS-IDX and ODS-DB, given that they have
the same length as in Definition 1.

In POSUP, we can observe from Figure 5 and Fig-
ure 6 that search and update operations incur the same
oblivious access procedures on encrypted data struc-
tures. In particular, given a search/update query, the en-
clave first performs (7) access on the entire keyword hash
table and then, (i) ODS access(es) on ODS-IDX; fol-
lowed by (%) recursive ORAM access(es) on the file po-
sition map, and finally (iv) ODS access(es) on ODS-DB.
In the update protocol, add and delete operations also
invoke the same oblivious access procedure, where they
differ from each other only in terms of the state bit

Brought to you by | University of South Florida Tampa Campus Library

Authenticated
Download Date | 12/5/19 11:54 PM

Hardware-Supported ORAM in Effect: Practical Oblivious Search and Update on Very Large Dataset = 182

value (o), which is encrypted in the view of the attacker.
Hence, in general, any search/update queries that are of
the same size and incur the same number of (recursive)
ORAM and ODS accesses are indistinguishable.

Size information leakage. Since ORAM and our
linked list ODS do not hide the number of oblivious
accesses, POSUP might leak the size of the query, which
can allow the attacker to distinguish access patterns,
thereby learning information about the query. The size
information can be inferred in several points when the
enclave performs oblivious operations as follows. In the
search protocol (Figure 6), the size can be learned by
an attacker from (i) the search query (@); (i) the num-
ber of accesses on the keyword hash table (@) and the
encrypted index (@,®); (i) the number of recursive
ORAM accesses on the file position map (®,®) and
encrypted files (@); (iv) and the result returned to the
client (@®). Similarly, in the update protocol (Figure 5),
the size can be leaked from the update query (@,8),
or the number of accesses on encrypted data structures
@.®).

To mitigate the impact of size leakage, we can apply
padding to all aforementioned positions. For instance,
for the query that requires less than n’ total ORAM
accesses, one can add dummy ORAM accesses on both
ODS-IDX and ODS-DB, and dummy recursive ORAM
accesses on the file position map to quantize the total
number to be n/, thus making the query size indistin-
guishable by the attacker. We can further apply padding
to obfuscate the actual size of the search/update query
as well as the size of (search) results being sent from the
enclave to the client at the end of the protocol. However,
we notice that such padding strategies are generally
application-specific, which fully depends on the char-
acteristics of a particular dataset and user preferences,
and also might incur heavy bandwidth and processing
overhead as the trade-off. This is because padding will
increase the cost of oblivious operations less than n’
(suppose the number of required operations is n) to be
equal to that of n’ actual operations (where n’ > n).
We refer the reader to Ryoan [36] for its parts of data-
oblivious communication as well as quantizing process-
ing time to learn more on how the size quantization by
padding can thwart such a side channel attack.

Other side-channel attacks against enclave. Al-
though the enclave of Intel SGX provides security guar-
antees such as data confidentiality and integrity against
direct memory access attacks, it is not free from side-
channel attacks. POSUP does not aim to defeat all
sorts of side-channel attacks, which seems to be a very
difficult task; instead, we try to build POSUP as a
best-effort approach to make it secure against known
side-channel attacks. The use of recursive ORAM and

ODS in POSUP naturally defeats side-channel attacks
on data access patterns such as cache side-channel at-
tacks [10, 30, 32]. Employing oblivious data comparison
(ocmp) and oblivious data assignment (oupt) in POSUP
(see subsection 3.2) defeats attacks on the control-flow
side channel [11, 49, 81] because these primitives elimi-
nate conditional branches on processing secrets. There-
fore, such attacks cannot measure a difference in control-
flow for different secrets.

5 Implementation

We implemented POSUP with C/C++ using the
Intel SGX SDK v1.7. Our implementation contains a
total of around 4.9K lines of code for trusted and
untrusted modules. For cryptographic operations in-
side the enclave, we leveraged Intel SGX SDK library
functions including sgx_aes_ctr_encrypt for encrypt-
ing ORAM with AES-CTR mode and sgx_read_rand
for pseudo-random number generation. We imple-
mented Path-ORAM and Circuit-ORAM controllers in
an enclave to execute ODS access on ODS-DB and
ODS-IDX. As mentioned in section 4, our platform stores
ORAM stashes encrypted in the untrusted memory
(RAM/SSD), and they are loaded into the enclave when
needed.

6 Evaluation

We first describe our configuration and evaluation
methodology, followed by the main experimental results.

6.1 Configuration and Methodology

Hardware. We evaluated the performance of our sys-
tem on a commodity HP Desktop, which supports Intel
SGX and is equipped with Intel E3-1230 v5 @ 3.4 GHz
CPU, 16 GB RAM and 512 GB SSD.

Dataset. Our dataset is the full Wikipedia English
corpus enwiki v.20180120. To extract text data from the
corpus, we used WikiExtractor [5] Python script and ex-
tracted 5,554,594 distinct text-only articles (i.e., files
in our term) from enwiki. To collect the keywords
for the search, we implemented a standard tokeniza-
tion method to extract unique alphabetical and non-
alphabetical keywords from the dataset. The total num-
ber of unique keywords in the dataset is 7,075,917 and
the total number of keyword-file pairs is 863,782,383.
The total size of the database (DB) is 27 GB (on the
disk), and the total size of the search index (IDX) is
6.9 GB. Figure 7 presents the size distribution of text
articles in the enwiki dataset.

Brought to you by | University of South Florida Tampa Campus Library

Authenticated
Download Date | 12/5/19 11:54 PM

Hardware-Supported ORAM in Effect: Practical Oblivious Search and Update on Very Large Dataset = 183

0.9 -
0.8 |-
0.7 -
0.6 -
0.5 -
0.4
0.3 -
0.2 -
0.1

Fraction of files

| | | | | | | |
0220 218 216 214 212 210 28 26 24 22 20

File size (bytes) in log scale

Fig. 7. File size distribution in enwiki dataset in CDF. An (z,y)
point denotes that y fraction of files are sized larger than = bytes.
Based on this distribution, we choose the block size of ODS-DB
as 3 KB because more than 50% of files are smaller than 3 KB.

Network. To assume a general use case of a mobile
client and a cloud server, we use Wi-Fi as the commu-
nication channel between the client and the server and
then mimic the bandwidth and latency of using Ama-
zon EC2 from our lab. The average network latency and
transmission throughput are 18 ms and 150 Mbps, re-
spectively.

Configurations and Methodology. We compare
POSUP with the implementation of existing designs,
namely ORAM-SE and EntireSGX. The following repre-
sents the configuration of each implementation and how
we compare each with POSUP.

e POSUP configuration We constructed ODS-IDX and
ODS-DB with ORAM tree structures with 24 and 23
levels, respectively, to store the entire files (7,075,917
< 223). Because more than 50% of files in our dataset
are smaller than 3 KB (shown in Figure 7), we selected
the block size of ODS-DB to be 3 KB to balance the ef-
ficiency and storage overhead. Likewise, we selected the
block size of ODS-IDX to be 512 B, because the major-
ity of search keywords appears in less than 512 files (see
Figure 8c). We represent a file identifier with a 4-byte
integer. This results in ODS-IDX being obliviously ac-
cessed up to four times for most search cases. We set
the stash size of both ORAM schemes as 80 to achieve
negligible overflow probability [71, 76].

o ORAM-ODS-SE - Direct ORAM-SE composition in
a traditional client-server model (without secure hard-
ware). In this setting, we used the same configuration
as in POSUP, where we integrate ODS into the ORAM-
SE composition for fair comparison with POSUP. We
also set the size of ODS-IDX and ODS-DB to be iden-
tical to POSUP. ORAM-ODS-SE differs from POSUP
in terms of the ORAM communication channel (over
network wvs. local bus) and the keyword position map

Table 1. Execution time of a single ODS on ODS-IDX and
ODS-DB, and recursive ORAM on file position map in POSUP.
We ran each operation 500 times and took the average value.

Execution Time (us)

Operation Path-ORAM _ Circuit-ORAM
ODS access on ODS-IDX

1/O Access 134 144

Enclave Process 2,362 686

Total 2,496 830
ODS access on ODS-DB

1/O Access 156 285

Enclave Process 3,909 746

Total 4,065 1,031

Recursive ORAM on file position map

1/O Access 34 41
Enclave Process 13,246 4,631
Total 13,280 4,672

location (client wvs. server). For the ORAM scheme,
we employed Path-ORAM for ORAM-ODS-SE because
it requires less access to ORAM, so it is more efficient
than Circuit-ORAM in the conventional client-server net-
work setting. For the evaluation, we measured all delays
when a client is accessing ODS and recursive ORAM on
ODS-IDX and ODS-DB stored on the Amazon EC2 with
the above network throughput and latency (18 ms and
150 Mbps). Note that our analysis is conservative, be-
cause we tend not to take into account the impact of
side factors (e.g., disk I/O).

e EntireSGX - Processing the entire outsourced data in
Intel SGX. We measured the search delay by decrypting
the entire EIDX and EDB inside the enclave. We used the
maximum heap size (i.e., 95 MB) allowed to the enclave
to subsequently decrypt EIDX and EDB to maximize its
performance. In other words, EIDX and EDB are loaded
and processed (decrypt/encrypt) in 95 MB chunks se-

quentially inside the enclave. For the update cost, we
measured the delay of decryption and re-encryption of
the entire EIDX and EDB inside the enclave. Notice
that in POSUP, we selected the size of ODS-IDX and
ODS-DB that have sufficient empty spaces for later ad-
dition of the same amount of dataset size in the setup
phase (i.e.,, 27GB file with 6.9 GB index). Hence, we
double the size of EIDX and EDB in EntireSGX to as-
sume it can also support addition, similar to POSUP,

for fair comparison between two techniques.

Brought to you by | University of South Florida Tampa Campus Library

Authenticated
Download Date | 12/5/19 11:54 PM

Hardware-Supported ORAM in Effect: Practical Oblivious Search and Update on Very Large Dataset =—— 184

6.2 Experiment Results

6.2.1 Micro Benchmark

POSUP is efficient, where it takes less than 1 ms to
access a 3 KB block in Circuit-ORAM-sized 107 GB.

We first conducted a micro benchmark of POSUP to
investigate the delay of performing a single recursive
ORAM and ODS access. Three factors cause delay in
each operation: (i) the time to read/write ORAM data
from the hard disk to the memory and vice versa (i.e.,
I/0 access); (ii) the time for an enclave to secure ORAM
operations, such as applying encryption and decryp-
tion on the data (i.e., encryption overhead); (iii) the
amount of data to be processed in each ODS operation
on ODS-IDX and ODS-DB, expressed as:

Dops = H -|B|-Z -k, (1)

where H and |B]| are the height and block size of
ODS-IDX (or ODS-DB), respectively; and (Z,k) = (4,2)
are the bucket size and the number of read/write opera-
tions in Path-ORAM, respectively. When Circuit-ORAM
is used, (Z,k) = (2,5). The amount of data (in bytes)
to be processed for each recursive ORAM on the file
position map posy is:

Dpos, = zl: (\B\-Z-k- (10g2 (%) +1)), 2)

1=

where N is the total number of files, R = |B|/4 is the
compression ratio (assume that a path ID is represented
by 4 bytes) and [= |logp N|.

Table 1 presents the execution time of each ODS
access on ODS-IDX and ODS-DB and recursive ORAM
on pos; in our current configuration. Note that the per-
formance changes for the different parameter configura-
tions (e.g., for a different H, |B|, Z, or k) according to
Equation 1 and Equation 2.

I/O Access. The I/O access in POSUP is efficient be-
cause we implemented the caching technique proposed
in [51], where we cache the first K levels of the ORAM
tree structures on the RAM. In this experiment, we used
4 GB of memory to cache 2/3 levels of both ODS-IDX
and ODS-DB, which significantly reduced 1/O delay
from 520-767us to <285us. Compared to Path-ORAM,
Circuit-ORAM incurs 1.25x more I/O access, and there-
fore, its I/O latency is slightly higher than that of
Path-ORAM. Because the recursive ORAM structure of
the file position map is small (i.e., =0.2 GB), we store
the entire map directly on the RAM. This results in its
I/0 access delay being negligible (i.e., <41 us).

Enclave Process.
has more effect on the access delay than I/O access

Processing data in the enclave

because it handles encryption and decryption when
reading data from ORAM. Another point that we ob-
served from Table 1 is that the cost of executing the
Path-ORAM controller in the enclave is much higher
than that of Circuit-ORAM because its read/eviction is
more aggressive. Specifically, when using Path-ORAM
controller, the enclave must perform O(log N) - |S| num-
ber of encryptions/decryptions, where |S| = 80 is
the stash size. In contrast, using the Circuit-ORAM
controller requires O(log N) + |S| number of encryp-
tions/decryptions. Therefore, our benchmarked result
has shown that integrating Path-ORAM with secure
hardware is much less efficient than Circuit-ORAM due
to the multiplied factor |S|, which is 80. The processing
delay of recursive ORAM is high because this requires
the enclave to perform additional ORAM encryptions
and decryptions on O(log N) recursion levels.

Table 1 also illustrates that it takes 830 wus to
obliviously access a 512B block in ODS-IDX with
Circuit-ORAM. That is, the latencies of performing
single-keyword searches on ODS-IDX in many cases are
likely similar to each other, and they are mostly dom-
inated by the number of files to be returned (see sub-
subsection 6.2.2).

We now illustrate the formula for calculating the
number of ODS and recursive ORAM accesses incurred
in each search and update query. Given a search query
q with n keywords w;, let m; and m’ be the num-
ber of files matching w; and the final ¢, respectively.
The search ¢ on POSUP incurs » " | (%1 accesses on
ODS-IDX plus m’ recursive ORAM accesses on pos; and

plus ZZ1 “lg,“] accesses on ODS-DB, where B, B’ are
block sizes of ODS-IDX and ODS-DB, respectively, and
|fi| is the size of file f; in m/ files. Given an updated file
f with m updated keywords in it, the cost is m accesses

on ODS-IDX plus one recursive ORAM access on pos;

plus [%] accesses on ODS-DB.

Because the delay in I/O access and encryption in
an enclave is stable (i.e., does not change between ac-
cesses), our measurement of the actual search and up-
date delay in POSUP respected the above formulas and
Moreover, as ex-
plained in subsection 4.1, each search/update operation
in POSUP additionally incurs one-time decryption and
re-encryption of the entire keyword hash table (TW),
which costs 210 ms for 188 MB-sized TW constructed
from the enwiki dataset.

In the following, we present actual benchmarked de-
lay for search and update operations to showcase the ef-
ficiency of our system compared with other techniques.

the micro benchmark in Table 1.

Brought to you by | University of South Florida Tampa Campus Library

Authenticated
Download Date | 12/5/19 11:54 PM

Hardware-Supported ORAM in Effect: Practical Oblivious Search and Update on Very Large Dataset ——

109 F— T T T E— 3
I —=— POSUP (Circuit-ORAM) v E
108 £ - ¢ - POSUP (Path-ORAM) 1 v" .
F EntireSGX : 7 .-
7 | - - ORAM-ODS-SE 4 > g
" 10 F ~ - E
/UT ? 7—;’:
\E/ = B
g F .
) F E
A r —|
f
F E
102 L—1 \ \ \ \ * \ \ ! L

20 92 24 96 98 910 gI2 9ld 916 918 920 922

Number of files returned
(a) End-to-end delay in POSUP and its counterparts regarding
how many files are returned in a single-keyword search.

1
0.9
0.8
0.7
0.6
0.5 |-
0.4
0.3 |-
0.2
0.1}

Fraction of keywords (CCDF)

B T 3

| | | |
210 212 214 216 218 220 222

20 22 24 26 28
Number of files returned
(c) Keyword distribution in enwiki dataset. An (z,y) point de-
notes that y fraction of keywords appear in less than z files.

/b?) T T T T T T T T

2 - Y
= 1g6 | —=— POSUP (Circuit-ORAM) , _-vT
= -6~ POSUP (Path-ORAM) | PRt

S 105 |- EntireSGX : = -
— - - ORAM-ODS-SE o

g v

s 10% - -7 | |
5108 | e : i
: ?

= 20 g7 N
2 10 v v :

"g I

s 10} ! |
Q |

) |

g 0 B Y #

Z ‘

2 | | | | | I | | | |

Amount of data (MB) (log)

185

20 92 94 96 98 910 912 914 916 918 920 922

Number of files returned

(b) Network bandwidth increase of POSUP and its counterparts.
Hardware-assisted techniques do not incur network overhead.

T T T T T T T T T T
—x— POSUP (Circuit-ORAM) :
| -¢ -POSUP (Path-ORAM) | o

] 4
10 EntireSGX ! ST e

108 |- - v- ORAM-ODS-SE e 7
10° o i
104 1)
108 1)
102 | 1)
10 |- ‘)

I
Oy - -¥--¥--9--9--V--y--V--9Y--9--9--y
| | | | | I | | | |
20 22 24 26 28 210 212 214 216 218 220 222

Number of files returned

(d) Amount of data being accessed and processed by SGX of
POSUP and its counterparts.

Fig. 8. Detailed search delay of POSUP and its counterparts. In (a), the delay of POSUP and EntireSGX was included with the time
to transmit files to the client with 150 Mbps network throughput and 18 ms latency. POSUP is more efficient than both EntireSGX
and ORAM-ODS-SE for 99.5% of keywords, as indicated by the red dashed lines.

6.2.2 Search Delay

POSUP consumes 100x less network bandwidth and
requires 1,000x fewer communication round-trips
than ORAM-ODS-SE. POSUP incurs 4.5x - 245x less
processing time in the enclave than EntireSGX for re-
turning < 2!'2 files as the search result, which falls in
> 99.5% fraction of keywords that can be searched in
our dataset. This results in the search delay of POSUP
being up-to 74x and 232x lower than ORAM-ODS-SE
and EntireSGX, respectively.

Figure 8a presents the end-to-end delay of pro-
cessing a keyword search query in POSUP, com-
pared with ORAM-ODS-SE and EntireSGX techniques.
POSUP (the blue line) is hundreds of times faster than
ORAM-ODS-SE (the purple line) for any search query
being performed. This is mainly because POSUP per-
forms ORAM-controlling operations in an enclave, so it
does not incur significant network communication over-

head like ORAM-ODS-SE, as shown in Figure 8b; in-
stead, the enclave reads a large amount of data from
the memory, which is faster and cheaper than accessing
over the network. ORAM-ODS-SE incurs overhead not
only in bandwidth (i.e., 100x more than POSUP) but
also in generating a large number of network round-trips
(i-e., 1000x more than POSUP) due to multiple rounds
incurred in the recursive ORAM and ODS operations.
This is the main bottleneck of ORAM-ODS-SE, given
that the network latency is hard to improve in practice.

When compared with EntireSGX, POSUP is one to
two orders of magnitude faster than EntireSGX for more
than 99.5% of keywords that can be searched. In Fig-
ure 8a, when searching keywords that returns < 2'2
files, POSUP is more efficient than EntireSGX. Figure 8c
presents the (accumulative) keyword distribution on
enwiki. The Zipf’s law distribution [56] shown in Fig-
ure 8c indicates that the cases returning < 212 files are
the majority (99.5%), and this indicates that POSUP is

Brought to you by | University of South Florida Tampa Campus Library

Authenticated
Download Date | 12/5/19 11:54 PM

Hardware-Supported ORAM in Effect: Practical Oblivious Search and Update on Very Large Dataset =—— 186

more efficient than EntireSGX for a large fraction of key-
words in practice. This is because the enclave in POSUP
only works with a small amount of data per ORAM ac-
cess, while EntireSGX works with the entire index and
dataset as its working set, as presented in Figure 8d. For
a small fraction of keywords (< 0.5%), the end-to-end
delay of POSUP is slower than that of EntireSGX.This
is because a large number of ORAM and ODS accesses
on ODS-IDX and ODS-DB require data processing in en-
clave more than processing the entire dataset. The cost
of executing Path-ORAM and Circuit-ORAM in POSUP
is C-r-8logy(N) and C'-r-101log, N, respectively, where
r is the number of file blocks matched with the search
query, N = 223 is the total number of file blocks in
ODS-DB, and C' is a constant factor. This formula im-
plies that if r > opfi—y, where k € {8,10}, then
processing the entire database in the enclave is bet-
ter than performing ORAM. Our benchmark result in
Figure 8a respects this formula. Theoretically, POSUP
should incur more memory accesses than accessing the
entire memory when it processes more than 2!° files.
The graph shows that overhead start to become signif-
icant when 23 files are returned, we can assume the
constant C' as 4, and then POSUP processes more than
m file blocks in the enclave.

Padding overhead. Padding so that a search query
has the same size as another query will result in a to-
tal delay of two queries becoming similar. For example,
padding on one-file-involved queries to make their size
the same to four-file-involved queries incurs 46% extra
delay (239ms) compared with the non-padding case.

6.2.3 Update Delay

The update delay of POSUP is 40x lower than
ORAM-ODS-SE. This is because of the network band-
width and round-trip overhead of ORAM-ODS-SE, as
discussed in subsubsection 6.2.2.

We selected the file with the largest size (i.e., 290 KB)
in enwiki and performed the update benchmark on that
file for a different number of unique keywords that can
be updated (add/delete) in it. Figure 9 presents the
end-to-end update delay of POSUP and its counter-
parts. POSUP is one order of magnitude faster (40x)
than ORAM-ODS-SE because it does not increase band-
width and round-trip overhead, as analyzed in subsub-
section 6.2.2. POSUP with Circuit-ORAM produces the
highest throughput so that it achieves the lowest update
delay among its counterparts. POSUP is up to 3,300x
faster than EntireSGX due to the inevitable overhead in
I/0 writing required by the design of EntireSGX. An up-
date in EntireSGX requires re-encrypting the entire data
and write them back to the disk. Therefore, the update

107 ¢]
108 | o

= VoA

S —x— POSUP (Circuit-ORAM) v
2 [~ ¢ -POSUP (Path-ORAM) 7 i
— 10 E EntireSGX . w7~ E
é’ - - ORAM-ODS-SE A4 277
= I v Py
= 4 | v |
% 10 VE‘VJV*‘V‘V’VAV E
A F _% B
I 0P 8
103 g 0= 0-0 0-00 E

102 | | | | | | |
20 22 24 26 28 210 212 214

Number of updated keywords

Fig. 9. End-to-end delay of updating a 290 KB file with a differ-
ent number of updated keywords involved.

delay of POSUP is three orders of magnitude faster than
EntireSGX.

6.2.4 Storage Overhead

The server storage overhead of EntireSGX is more effi-
cient than that of POSUP and ORAM-ODS-SE. This is
because, in POSUP and ORAM-ODS-SE, IDX and EDB
are arranged as tree-ORAM structures, which incur a
constant (e.g., 1.5x-2x) size blowup. Specifically, the
total server storage of POSUP is |TW| + |ODS-IDX| +
|ODS-DB| + |poss| = 0.19 + 34 + 97 + 0.19 ~ 131 GB
if POSUP uses Circuit-ORAM. The corresponding over-
head is 0.19 4+ 68 4+ 194 + 0.38 =~ 262 GB if POSUP uses
Path-ORAM. Note that some capacity of the ORAM
structure is reserved to enable oblivious update (e.g.,
addition/deletion). Therefore, our server storage over-
head presented above can allow the further addition of
3x more IDX and DB presented in subsection 6.1.

7 Related Work

Searching on encrypted data. Searchable Encryp-
tion (SE) [67] enables the client to conduct search op-
erations on encrypted data. Curtmola et al. [19] pro-
posed a secure Symmetric SE (SSE) scheme that sup-
ports a single-keyword search, followed by refinements
with improved search functionalities (e.g., [12, 72, 75])
and security (e.g., [16, 46]). Kamara et al. [44] pro-
posed a Dynamic SSE (DSSE) scheme that supports
update functionality. Afterward, several DSSE schemes
proposed offering different features in terms of secu-
rity (e.g., [9]), efficiency (e.g., [14, 22, 45]), and query
functionalities (e.g., [15, 43, 74]). Another line of re-
search focuses on developing encrypted query techniques
that are compliant with legacy systems. For instance,

Brought to you by | University of South Florida Tampa Campus Library

Authenticated
Download Date | 12/5/19 11:54 PM

Hardware-Supported ORAM in Effect: Practical Oblivious Search and Update on Very Large Dataset = 187

ShadowCrypt [33] and Mimesis Aegis [41, 47] propose
encrypted search/update operations as an intermedi-
ate cryptographic service layer, which allows the client
to interact with online applications without modify-
ing server infrastructure. CryptDB [59] and its variants
(e.g., [1, 2, 4, 58, 60]) leverage property-preserving en-
cryptions (e.g., [6, 8]) to perform encrypted structured
queries (e.g., SQL) to legacy database management sys-
tems (e.g., MongoDB).

Security vulnerability of encrypted search so-
lutions.
cess pattern, which results in various types of statisti-
cal inference attacks. For instance, by exploiting access
pattern leakages in DSSE, it is possible to determine
which keyword has been searched with high probability
(e.g., [13, 40, 50, 82]). The legacy-compatible encrypted
search techniques leak substantial additional informa-
tion beyond the access pattern because of property-
preserving encryption techniques [13, 31, 54, 61].

All the aforementioned techniques leak ac-

Solutions to remedy security vulnerabilities.
ORAM [29] can hide both read and write access pat-
terns, and therefore, it has been considered to seal such
leakages in oblivious storage [7, 69, 70] and search-
able encryption [26, 53]. Despite its merits, ORAM
incurs a poly-logarithmic bandwidth blowup [71, 76],
which has been shown to be costly for searchable
encryption in the standard client-server network set-
ting [7, 53, 68]. Although ORAMSs with constant client-
server bandwidth blowups have been proposed recently
(e.g., [20, 34]), they either incur higher delay than
bandwidth-logarithmic ORAMs because of homomor-
phic encryption (e.g., [27]), or require multiple comput-
ing servers, which increases the deployment cost in prac-
tice.

The ORAM communication lower bound has been
well-established [29, 76]. Thus, recent studies start to
look for the support of secure hardware to make ORAM
for client-server applications more practical. The idea of
ORAM and secure-hardware composition was first sug-
gested by concurrent studies in [24, 51, 63]. With the ad-
vent of widely available trusted execution environments
on commodity hardware (e.g., Intel SGX), the deploy-
ment of hardware-supported cryptographic primitives
has become more feasible. For instance, ZeroTrace [65]
and Obliviate [3] leveraged Intel SGX with ORAM to
enable oblivious memory primitives and file access op-
erations, respectively. Intel SGX was also used to de-
sign a functional encryption framework in [23]. Eskan-
darian and Zaharia proposed ObliDB [21], which har-
nesses Intel SGX and Path-ORAM to enable oblivious
SQL queries on database systems. Concurrent with this
work, Mishra et al. proposed Oblix [52], an oblivious
search and update platform that harnesses Intel SGX,

Path-ORAM and oblivious data structures as similar to
POSUP.

8 Conclusion

In this paper, we developed a new SGX-supported
oblivious search and update platform called POSUP.
We achieved this by realizing efficient SGX-assisted
oblivious data structures that enable practical oblivi-
ous search and update operations. We implemented and
deployed POSUP on commodity hardware and evalu-
ated its performance on a very large dataset (full-size
English Wikipedia corpus). The experiments showed
that POSUP achieves two to three orders of magnitude
less bandwidth blowup and communication round-trips
than the conventional client-server models for oblivious
search and updates. Similarly, POSUP offers one order of
magnitude less processing blowup over alternatives that
process the entire outsourced database inside SGX.

Acknowledgments

We would like to thank all the anonymous reviewers for
their insightful comments and suggestions to improve
the quality of this paper. This work is partially sup-
ported by the NSF CAREER Award CNS-1652389.

References

[1] Always encrypted. https://docs.microsoft.com/en-us/sql/
relational-databases/security /encryption/always-encrypted-
database-engine/.

[2] Google encrypted big query. https://github.com/google/
encrypted-bigquery-client/.

[3] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee. Obliviate:
A data oblivious file system for intel sgx. In Symposium on
Network and Distributed System Security (NDSS), 2018.

[4] A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann,
R. Ramamurthy, and R. Venkatesan. Orthogonal security
with cipherbase. In CIDR. Citeseer, 2013.

[6] attardi. WikiExtractor. https://github.com/attardi/
wikiextractor.

[6] M. Bellare, A. Boldyreva, and A. O'Neill. Deterministic and
efficiently searchable encryption. In Annual International
Cryptology Conference, pages 535-552. Springer, 2007.

[7] V. Bindschaedler, M. Naveed, X. Pan, X. Wang, and
Y. Huang. Practicing oblivious access on cloud storage:
the gap, the fallacy, and the new way forward. In Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pages 837-849. ACM, 2015.

[8] A. Boldyreva, N. Chenette, Y. Lee, and A. O'neill. Order-
preserving symmetric encryption. In Annual International
Conference on the Theory and Applications of Cryptographic

Brought to you by | University of South Florida Tampa Campus Library

Authenticated
Download Date | 12/5/19 11:54 PM

https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine/
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine/
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine/
https://github.com/google/encrypted-bigquery-client/
https://github.com/google/encrypted-bigquery-client/
https://github.com/attardi/wikiextractor
https://github.com/attardi/wikiextractor

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

Hardware-Supported ORAM in Effect: Practical Oblivious Search and Update on Very Large Dataset =—— 188

Techniques, pages 224—241. Springer, 2009.

R. Bost, B. Minaud, and O. Ohrimenko. Forward and back-
ward private searchable encryption from constrained crypto-
graphic primitives. Technical report, IACR Cryptology ePrint
Archive 2017, 2017.

F. Brasser, U. Miiller, A. Dmitrienko, K. Kostiainen, S. Cap-
kun, and A. Sadeghi. Software Grand Exposure: SGX Cache
Attacks Are Practical. In Proceedings of the 11th USENIX
Workshop on Offensive Technologies (WOOT), Vancouver,
BC, Canada, Aug. 2017.

J. V. Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and

R. Strackx. Telling Your Secrets without Page Faults:
Stealthy Page Table-Based Attacks on Enclaved Execution.
In USENIX Security, 2017.

N. Cao, C. Wang, M. Li, K. Ren, and W. Lou. Privacy-
preserving multi-keyword ranked search over encrypted cloud
data. IEEE Transactions on parallel and distributed systems,
25(1):222-233, 2014.

D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-
abuse attacks against searchable encryption. In Proceedings
of the 22nd ACM CCS, pages 668-679. ACM, 2015.

D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-
C. Rosu, and M. Steiner. Dynamic searchable encryption in
very-large databases: Data structures and implementation.
IACR Cryptology ePrint Archive, 2014:853, 2014.

D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Rosu,
and M. Steiner. Highly-scalable searchable symmetric en-
cryption with support for boolean queries. In Advances in
Cryptology—CRYPTO 2013, pages 353-373. Springer, 2013.
M. Chase and S. Kamara. Structured encryption and con-
trolled disclosure. In Advances in Cryptology - ASIACRYPT
2010, volume 6477 of Lecture Notes in Computer Science,
pages 577-594, 2010.

V. Costan and S. Devadas. Intel SGX explained. Cryptology
ePrint Archive, Report 2016/086, 2016. http://eprint.iacr.
org/2016/086.pdf.

V. Costan, |. Lebedev, S. Devadas, et al. Secure Processors
Part Il: Intel SGX security analysis and MIT Sanctum Ar-
chitecture. Foundations and Trends® in Electronic Design
Automation, 11(3):249-361, 2017.

R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky.
Searchable symmetric encryption: improved definitions and
efficient constructions. In Proceedings of the 13th ACM
CCS, pages 79-88. ACM, 2006.

S. Devadas, M. van Dijk, C. W. Fletcher, L. Ren, E. Shi,
and D. Wichs. Onion oram: A constant bandwidth blowup
oblivious ram. In Theory of Cryptography Conference, pages
145-174. Springer, 2016.

S. Eskandarian and M. Zaharia. An oblivious
general-purpose SQL database for the cloud.
abs/1710.00458, 2017.

M. Etemad, A. Kiipcii, C. Papamanthou, and D. Evans.
Efficient dynamic searchable encryption with forward privacy.
Proceedings on Privacy Enhancing Technologies, 2018(1):5—
20, 2018.

B. Fisch, D. Vinayagamurthy, D. Boneh, and S. Gorbunov.
Iron: functional encryption using intel sgx. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 765-782. ACM, 2017.

C. W. Fletcher, M. v. Dijk, and S. Devadas. A secure pro-
cessor architecture for encrypted computation on untrusted
programs. In Proceedings of the seventh ACM workshop on
Scalable trusted computing, pages 3—-8. ACM, 2012.

CoRR,

[25]

[26]

[27]

28]

[29]

30]

(31]

(32]

33]

(34]

(35]

(36]

37]
(38]

(39]

[40]

B. Fuhry, R. Bahmani, F. Brasser, F. Hahn, F. Kerschbaum,
and A.-R. Sadeghi. Hardidx: practical and secure index with
sgx. In IFIP Annual Conference on Data and Applications
Security and Privacy, pages 386—408. Springer, 2017.

S. Garg, P. Mohassel, and C. Papamanthou. Tworam:
Round-optimal oblivious ram with applications to searchable
encryption. IACR Cryptology ePrint Archive, 2015:1010,
2015.

C. Gentry. A fully homomorphic encryption scheme. PhD
thesis, Stanford University, 2009.

C. Gentry, K. A. Goldman, S. Halevi, C. Julta, M. Raykova,
and D. Wichs. Optimizing oram and using it efficiently for
secure computation. In International Symposium on Privacy
Enhancing Technologies Symposium, pages 1-18. Springer,
2013.

O. Goldreich. Towards a theory of software protection and
simulation by oblivious rams. In Proceedings of the nine-
teenth annual ACM symposium on Theory of computing,
pages 182-194. ACM, 1987.

J. Gotzfried, M. Eckert, S. Schinzel, and T. Miiller. Cache
Attacks on Intel SGX. In Proceedings of the 10th European
Workshop on Systems Security (EuroSec), 2017.

P. Grubbs, T. Ristenpart, and V. Shmatikov. Why your
encrypted database is not secure. In Proceedings of the
16th Workshop on Hot Topics in Operating Systems, pages
162-168. ACM, 2017.

M. Hahnel, W. Cui, and M. Peinado. High-Resolution Side
Channels for Untrusted Operating Systems. In Proceedings
of the 2017 USENIX Annual Technical Conference (ATC),
Santa Clara, CA, July 2017.

W. He, D. Akhawe, S. Jain, E. Shi, and D. Song. Shad-
owcrypt: Encrypted web applications for everyone. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, pages 1028-1039. ACM,
2014.

T. Hoang, C. D. Ozkaptan, A. A. Yavuz, J. Guajardo, and
T. Nguyen. S3oram: A computation-efficient and constant
client bandwidth blowup oram with shamir secret sharing.
In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 491-505.
ACM, 2017.

T. Hoang, A. Yavuz, and J. Guajardo. Practical and secure
dynamic searchable encryption via oblivious access on dis-
tributed data structure. In Proceedings of the 32nd Annual
Computer Security Applications Conference (ACSAC). ACM,
2016.

T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel. Ryoan:
A distributed sandbox for untrusted computation on secret
data. In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
Savannah, GA, Nov. 2016.

Intel Corporation. Intel Software Guard Extensions Program-
ming Reference (revl), Sept. 2013. 329298-001US.

Intel Corporation. Intel Software Guard Extensions Program-
ming Reference (rev2), Oct. 2014. 329298-002US.

Intel Corporation. Intel Software Guard Extensions

SDK for Linux OS (Developer Reference), 2016. https:
//download.01.org/intel-sgx/linux-1.7 /docs/Intel _SGX_
SDK__Developer__Reference_ Linux_1.7__Open__Source.pdf.
M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern
disclosure on searchable encryption: Ramification, attack
and mitigation. In NDSS, volume 20, page 12, 2012.

Brought to you by | University of South Florida Tampa Campus Library

Authenticated
Download Date | 12/5/19 11:54 PM

http://eprint.iacr.org/2016/086.pdf
http://eprint.iacr.org/2016/086.pdf
https://download.01.org/intel-sgx/linux-1.7/docs/Intel_SGX_SDK_Developer_Reference_Linux_1.7_Open_Source.pdf
https://download.01.org/intel-sgx/linux-1.7/docs/Intel_SGX_SDK_Developer_Reference_Linux_1.7_Open_Source.pdf
https://download.01.org/intel-sgx/linux-1.7/docs/Intel_SGX_SDK_Developer_Reference_Linux_1.7_Open_Source.pdf

(41]

(42]

(43]

(44]

45]

[46]

(47]

(48]

(49]

50]

[51]

(52]

53]

(54]

(55]

(56]

[57]

Hardware-Supported ORAM in Effect: Practical Oblivious Search and Update on Very Large Dataset =—— 189

Y. Jang. Building Trust in the User I/O in Computer Sys-
tems. Georgia Institute of Technology, Aug. 2017.

Y. Jang, J. Lee, S. Lee, and T. Kim. SGX-Bomb: Locking
Down the Processor via Rowhammer Attack.
ings of the 2nd Workshop on System Software for Trusted
Execution (SysTEX), Shanghai, China, Oct. 2017.

S. Kamara and T. Moataz. Boolean searchable symmetric
encryption with worst-case sub-linear complexity. In Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, pages 94—124. Springer, 2017.

S. Kamara, C. Papamanthou, and T. Roeder. Dynamic
searchable symmetric encryption. In Proceedings of the
2012 ACM Conference on Computer and Communications
Security, pages 965-976. ACM, 2012.

K. S. Kim, M. Kim, D. Lee, J. H. Park, and W.-H. Kim.
Forward secure dynamic searchable symmetric encryption
with efficient updates. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security, pages 1449-1463. ACM, 2017.

K. Kurosawa and Y. Ohtaki. UC-secure searchable symmet-
ric encryption. In Financial Cryptography and Data Security
(FC), volume 7397 of Lecture Notes in Computer Science,
pages 285—-298. Springer Berlin Heidelberg, 2012.

B. Lau, S. P. Chung, C. Song, Y. Jang, W. Lee, and

A. Boldyreva. Mimesis aegis: A mimicry privacy shield-a sys-
tem’s approach to data privacy on public cloud. In USENIX
Security Symposium, pages 33-48, 2014.

J. Lee, J. Jang, Y. Jang, N. Kwak, Y. Choi, C. Choi,

T. Kim, M. Peinado, and B. B. Kang. Hacking in dark-
ness: Return-oriented programming against secure enclaves.
In USENIX Security, pages 523-539, 2017.

S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and

M. Peinado. Inferring Fine-grained Control Flow Inside
SGX Enclaves with Branch Shadowing. In USENIX Security,
2017.

C. Liu, L. Zhu, M. Wang, and Y.-a. Tan. Search pattern
leakage in searchable encryption: Attacks and new construc-
tion. Information Sciences, 265:176—188, 2014.

M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi,

K. Asanovic, J. Kubiatowicz, and D. Song. Phantom: Prac-
tical oblivious computation in a secure processor. In Pro-
ceedings of the 2013 ACM SIGSAC conference on Computer
& communications security, pages 311-324. ACM, 2013.

P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa.
Oblix: An efficient oblivious search index. In Security and
Privacy (S&P), 2018 IEEE Symposium on. |EEE, 2018.

M. Naveed. The fallacy of composition of oblivious ram and
searchable encryption. In Cryptology ePrint Archive, Report
2015/668, 2015.

M. Naveed, S. Kamara, and C. V. Wright. Inference attacks
on property-preserving encrypted databases. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 644—655. ACM, 2015.

M. Naveed, M. Prabhakaran, and C. A. Gunter. Dynamic
searchable encryption via blind storage. In Security and
Privacy (S&P), 2014 IEEE Symposium on, pages 639—654.
IEEE, 2014.

M. E. Newman. Power laws, pareto distributions and zipf's
law. Contemporary physics, 46(5):323-351, 2005.

O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta,

S. Nowozin, K. Vaswani, and M. Costa. Oblivious multi-
party machine learning on trusted processors. In USENIX
Security Symposium, pages 619-636, 2016.

In Proceed-

(58]

[59]

[60]

[61]

62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

A. Papadimitriou, R. Bhagwan, N. Chandran, R. Ramjee,

A. Haeberlen, H. Singh, A. Modi, and S. Badrinarayanan.
Big data analytics over encrypted datasets with seabed. In
OSDI, pages 587-602, 2016.

R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrish-
nan. Cryptdb: protecting confidentiality with encrypted
query processing. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, pages 85-100.
ACM, 2011.

R. A. Popa, E. Stark, J. Helfer, S. Valdez, N. Zeldovich,

M. F. Kaashoek, and H. Balakrishnan. Building web applica-
tions on top of encrypted data using mylar. In NSDI, pages
157-172, 2014.

D. Pouliot and C. V. Wright. The shadow nemesis: Infer-
ence attacks on efficiently deployable, efficiently searchable
encryption. In Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security, pages
1341-1352. ACM, 2016.

A. Rane, C. Lin, and M. Tiwari. Raccoon: Closing digital
side-channels through obfuscated execution. In USENIX
Security Symposium, pages 431-446, 2015.

L. Ren, X. Yu, C. W. Fletcher, M. Van Dijk, and S. De-
vadas. Design space exploration and optimization of path
oblivious ram in secure processors. ACM SIGARCH Com-
puter Architecture News, 41(3):571-582, 2013.

A. W. Richa, M. Mitzenmacher, and R. Sitaraman. The
power of two random choices: A survey of techniques and
results. Combinatorial Optimization, 9:255-304, 2001.

S. Sasy, S. Gorbunov, and C. Fletcher. Zerotrace: Oblivious
memory primitives from intel sgx. In Symposium on Network
and Distributed System Security (NDSS), 2018.

E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivi-

ous ram with o ((logn) 3) worst-case cost. In Advances in
Cryptology—ASIACRYPT 2011, pages 197-214. Springer,
2011.

D. X. Song, D. Wagner, and A. Perrig. Practical techniques
for searches on encrypted data. In Proceedings of the 2000
IEEE Symposium on Security and Privacy, pages 44-55.
IEEE Computer Society, 2000.

E. Stefanov, C. Papamanthou, and E. Shi. Practical dy-
namic searchable encryption with small leakage. In Annual
Network and Distributed System Security Symposium —
NDSS, volume 14, pages 23-26, 2014.

E. Stefanov and E. Shi. Multi-cloud oblivious storage. In
Proceedings of the 2013 ACM SIGSAC conference on Com-
puter & communications security, pages 247-258. ACM,
2013.

E. Stefanov and E. Shi. Oblivistore: High performance obliv-
ious cloud storage. In Security and Privacy (SP), 2013 IEEE
Symposium on, pages 253-267. |IEEE, 2013.

E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren,

X. Yu, and S. Devadas. Path oram: an extremely simple
oblivious ram protocol. In Proceedings of the 2013 ACM
SIGSAC conference on Computer and Communications secu-
rity, pages 299-310. ACM, 2013.

W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y. T. Hou, and
H. Li. Privacy-preserving multi-keyword text search in the
cloud supporting similarity-based ranking. In ACM SIGSAC
AsiaCCS, pages 71-82. ACM, 2013.

W. Sun, R. Zhang, W. Lou, and Y. T. Hou.
Secure keyword search using trusted hardware.
INFOCOM, 2018.

Rearguard:
In IEEE

Brought to you by | University of South Florida Tampa Campus Library

Authenticated
Download Date | 12/5/19 11:54 PM

Hardware-Supported ORAM in Effect: Practical Oblivious Search and Update on Very Large Dataset = 190

[74] B. Wang, S. Yu, W. Lou, and Y. T. Hou. Privacy-preserving PathORAM.ReadPath(z):
multi-keyword fuzzy search over encrypted data in the cloud. 1: fori=1,...,L do
In INFOCOM, 2014 Proceedings IEEE, pages 2112-2120. 2. S « S U ReadBucket(P(z, 1))

IEEE, 2014.

[75] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou. Secure ranked PathORAM.Evict:
keyword search over encrypted cloud data. In IEEE 30th 1: Let x be the read path in PathORAM.ReadPath procedure
International Conference on Distributed Computing Systems, 2: fori=1L,...,1do
pages 253-262. IEEE, 2010. 3: 8 < {(bID,data’) € S: P(x,1) = P(pos[bID],)}

[76] X. Wang, H. Chan, and E. Shi. Circuit oram: On tightness 4: S’ < Select min(|S’|, Z) blocks from S’
of the goldreich-ostrovsky lower bound. In Proceedings 5: S+ S-5
of the 22nd ACM SIGSAC Conference on Computer and 6: WriteBucket(P(z,1), S")

Communications Security, pages 850-861. ACM, 2015.

[77] X. S. Wang, Y. Huang, T. H. Chan, A. Shelat, and E. Shi. Fig. 11. Path-ORAM protocol. The ReadBucket(-) function takes
Scoram: oblivious ram for secure computation. In Proceed- as input a target bucket, reads all blocks in the bucket, and out-
ings of the 2014 ACM SIGSAC Conference on Computer and puts only real blocks.

Communications Security, pages 191-202. ACM, 2014.

[78] X.S. Wang, K. Nayak, C. Liu, T. Chan, E. Shi, E. Stefanov, CircuitORAM.ReadPath(x):
and Y. Huang. Oblivious data structures. In Proceedings 1: for [=0,....L do
of the 20'14 /'\CM SIGSAC Conference on Computer and 9. if (bID, data) < ReadAndRm(P(z,1),bID) L then
Communications Security, pages 215-226. ACM, 2014. 3. S < SU (blD, data)

[79] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic. : ’

The RISC-V Instruction Set Manual, Volume |: Base User- CircuitORAM .Evict:
level ISA. EECS Department, UC Berkeley, Tech. Rep. 1: Let t be a global timestamp initialized with 0O
UCB/EECS-2011-62, 2011. 2: x < order-reversal of base-2 digits of (¢ mod 2%)

[80] N. Weichbrodt, A. Kurmus, P. Pietzuch, and R. Kapitza. 3t t+1
AsyncShock: Exploiting synchronisation bugs in Intel SGX 4: Execute PrepareDeepest(z) and PrepareTarget(z) subrou-
enclaves. In Proceedings of the 21th European Sympo- tines to pre-process arrays deepest and target
sium on Research in Computer Security (ESORICS), Crete, 5: hold + L;dest « L
Greece, Sept. 2016. 6: fori=0,...,L do

[81] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks: 7. towrite := |
Determinist'ic side channels for untrusted 'operating sys'tems. 8 if (hold # 1) and (i = dest) then
In Proceedings of the 36th IEEE Symposium on Security .

i 9: towrite < hold
and Privacy (Oakland), San Jose, CA, May 2015. 10: hold L+ dest < L

[82] Y. Zhang, J. Katz, and C. Papamanthou. All your queries ' ’
are belong to us: The power of file-injection attacks on 11 if target[i] # L then
searchable encryption. In 25th USENIX Security Sympo- 12: hold < read and remove deepest block in P(z, 1)
sium (USENIX Security 16), pages 707720, 2016. 13: dest « target[d]

14: Place towrite into bucket P(z,1) if towrite # L
15: Repeat steps 2-14

Appendix

Figure 10 outlines the general

access procedure

Fig. 12. Circuit-ORAM protocol with deterministic eviction. The
ReadAndRm(+,) function takes a target bucket and the block
ID bID to be accessed (determined in Access function) as input,
reads all real blocks from the bucket input, removes the block
with ID bID if it appears in the target bucket, and outputs bID

that tree-based ORAM schemes (e.g., Path-ORAM,
Circuit-ORAM) follow. We present the detailed algo-
rithms of Path-ORAM [71] in Figure 11. We give the
detailed algorithm of Circuit-ORAM [76] with the de-
terministic eviction strategy [28] in Figure 12, which
execute subroutines in Figure 13.

along with its data data.

Tree-basedORAM.Access(op, bID, data*):
1: x < pos[blD]

2: pos[bID] < [0...25-1]
3: S < ReadPath(z)
4: data < Read block with ID bID from S
5: if op = write then
6
7
8

S + (S — {(bID,data)}) U {(bID, data*)}

: Execute Evict procedure
: return data

Fig. 10. General access procedure in tree-based ORAM schemes.
Brought to you by | University of South Florida Tampa Campus Library
Authenticated

Download Date | 12/5/19 11:54 PM

Hardware-Supported ORAM in Effect: Practical Oblivious Search and Update on Very Large Dataset = 191

PrepareTarget(z):

1: dest < L;src« L, target < (L,..., 1)
2: fori=1L,...,0do

3: if ¢ =src then

4: target[i] < dest; dest <— L; src «— L

5: if ((dest = L and P(z,i) has empty slot) or
(target[i] # L)) and (deepest[i] # L) then

6: src < deepest]]

7 dest < ¢

PrepareDeepest(z):

1: deepest «— (L,..., 1) src <+ L; goal < —1

2: if stash S is not empty then

3: src < 0

4: goal < Deepest level that a block in the stash S can

legally reside on path P(x)
5: fori=1,...,L do
if goal > ¢ then deepest[i] + src
¢ + Deepest level that a block in P(z,%) can legally
reside on path P(z)
8: if ¢ > goal then
9: goal < /¢
10: Src <1

Fig. 13. Circuit-ORAM eviction subroutines.

Brought to you by | University of South Florida Tampa Campus Library
Authenticated
Download Date | 12/5/19 11:54 PM

	Hardware-Supported ORAM in Effect: Practical Oblivious Search and Update on Very Large Dataset
	1 Introduction
	1.1 Motivation
	1.2 Our Contributions

	2 POSUP Overview
	2.1 System Model
	2.2 Threat Model

	3 Building Blocks
	3.1 ORAM
	3.2 System Building Blocks

	4 The Proposed Platform
	4.1 Oblivious Data Structures
	4.2 Update and Search Protocols
	4.2.1 Oblivious Update
	4.2.2 Oblivious Search

	4.3 Extension to Multi-user Setting
	4.4 Security

	5 Implementation
	6 Evaluation
	6.1 Configuration and Methodology
	6.2 Experiment Results
	6.2.1 Micro Benchmark
	6.2.2 Search Delay
	6.2.3 Update Delay
	6.2.4 Storage Overhead

	7 Related Work
	8 Conclusion

