TrustSAS: A Trustworthy Spectrum Access System
for the 3.5 GHz CBRS Band

Mohamed Grissa*, Attila A. Yavuz*, and Bechir Hamdaoui*

* Oregon State University, grissam,hamdaoui @oregonstate.edu
¥ University of South Florida, attilaayavuz@usf.edu

Abstract—As part of its ongoing efforts to meet the increased
spectrum demand, the Federal Communications Commission
(FCC) has recently opened up 150 MHz in the 3.5 GHz band
for shared wireless broadband use. Access and operations in this
band, aka Citizens Broadband Radio Service (CBRS), will be
managed by a dynamic spectrum access system (SA.S) to enable
seamless spectrum sharing between secondary users (SUs) and
incumbent users. Despite its benefits, SA.S’s design requirements,
as set by FCC, present privacy risks to SUs, merely because
SUs are required to share sensitive operational information (e.g.,
location, identity, spectrum usage) with SAS to be able to learn
about spectrum availability in their vicinity. In this paper, we
propose TrustSAS, a trustworthy framework for SAS that syn-
ergizes state-of-the-art cryptographic techniques with blockchain
technology in an innovative way to address these privacy issues
while complying with FCC’s regulatory design requirements.
We analyze the security of our framework and evaluate its
performance through analysis, simulation and experimentation.
We show that TrustSAS can offer high security guarantees with
reasonable overhead, making it an ideal solution for addressing
SUs’ privacy issues in an operational SAS environment.

Index Terms—Spectrum access system, Citizens Broadband
Radio Service, spectrum databases, Blockchain, privacy.

I. INTRODUCTION

He Federal Communications Commission (FCC) con-

tinues its effort towards promoting dynamic access to
spectrum resources, and has recently promulgated the creation
of the Citizens Broadband Radio Service (CBRS) in the 3.5
GHz band (3550 - 3700 MHz) [1]. This opens up previously
protected spectrum, used by the US Navy and other DoD
members, for dynamic and opportunistic spectrum sharing.
In its CBRS report [1], [2], FCC prescribes the use of a
centralized spectrum access system (SAS) to govern CBRS
sharing among incumbent and secondary users. Like the case
of TV white space (TVWS) access, SAS comprises multiple
geolocation spectrum databases (DBs), operated (typically)
by different administrators and are required to communi-
cate amongst themselves to ensure frequency use information
consistency. Also, like in TVWS, SUs need to query the
DBs using their exact location information to be able to learn
about CBRS spectrum opportunities in their vicinity.

SAS supports three types of users: primary users (PUs),
priority access license (PAL) users, and general authorized
access (GAA) users. PUs are top/first tier users with the high-
est priority, while new CBRS users, considered as secondary
users, operate either at the second tier as PAL users or at the
third tier as GAA users [3]. PAL users are assigned through
competitive auction and have priority over GAA users, but
they are required to vacate the spectrum upon the return of
PUs. GAA users, on the other hand, operate opportunistically,

in that they need to query the DBs to learn about which
spectrum portions are available—not being used by higher tier
(PU or PAL) users. Even though both PAL and GAA users
are considered as secondary users, in the remaining parts of
this paper, for ease of illustration, SU refers to a GAA user,
since only GAA users need to query DBs to learn spectrum
availability; PAL users acquire spectrum access via bidding.

A. Key SAS Requirements

As stipulated by FCC [1], SAS’s capabilities will exceed
those of TVWS [4], allowing a more dynamic, responsive
and generally capable support of a diverse set of operational
scenarios and heterogeneous networks [5]. While some of
FCC’s design requirements for SAS, such as the ability
to authenticate users, hold users accountable for rule and
policy violation, and to protect against unauthorized database
access and tampering, are similar to TVWS systems, other
requirements are only specific to SAS, which include [2]:

e Information gathering and retention: SUs must keep
SAS informed about their current operating parameters and
channel usage information at all time, so that SAS can
maintain accurate and up-to-date frequency usage information.
While this is mandatory in SAS, it is only optional in TVWS.
o Coexistence: SAS is required to coordinate the interactions
among PAL and GAA users to ensure interference-free coex-
istence among all CBRS users [2], [6]. This is different from
TVWS systems, which focus primarily on protecting PUs,
and not on ensuring coexistence among SUs.

e Auditability: SAS must maintain audit logs of all system
operations [7], including DB write operations, user member-
ship status changes, etc. SAS uses these logs to verify and
ensure compliance with regulatory rules and policies.

It is then important that these requirements be met when
designing SAS. The challenge, however, is that meeting them
gives rise to some serious privacy issues, thereby impacting
the adoption of this promising technology.

B. Privacy Issues in SAS

A subtle privacy concern arises in SAS, which pertains
merely to the fact that SUs are required to share sensitive
operational information with DBs in order for them to obtain
spectrum availability information [2]. This information, which
may include SUs’ sensitive data, such as their locations,
identities, spectrum usage, and transmission parameters, may
be collected by an adversary or a malicious SAS administrator
and be exploited for economic, political, or other purposes [8].
For instance, fine-grained location information can easily

reveal other personal information about SUs including their
behavior, health condition, personal habits or beliefs [9].

It may not be acceptable for most users to expose such a
sensitive information, especially in the presence of malicious
entities that can exploit it for malicious purposes [9]-[11].
Such privacy risks may hinder the wide adoption of this
promising spectrum sharing technology. Calls are starting to
arise within the wireless community to raise awareness about
this issue as it is the case with Federated Wireless in their
comments to FCC regarding its report and order [2]. Therefore,
it is necessary to design mechanisms that can protect SUS’
sensitive information while at the same time abiding by FCC’s
rules and policies prescribed for SAS.

C. Contributions and Paper Organization

Most of SAS’ rules require SUs to share a great deal of
their sensitive information, which conflict with SUs’ privacy
objectives. As a result, we are facing a dilemma: On one hand,
all SAS entities need to comply with SAS’s requirements
to have a stable, interference-free radio environment. On the
other hand, it is important to offer privacy guarantees to
SUs so as to promote this new spectrum sharing technology.
This dilemma makes the task of designing SAS mechanisms
that provide privacy guarantees while complying with SAS’s
requirements and rules very challenging.

We strongly envision that the public’s (long-term) accep-
tance of the SAS paradigm will greatly depend on the ro-
bustness and trustworthiness of SAS vis-a-vis of its ability
to address these privacy concerns. Therefore, in this work, we
propose TrustSAS, a trustworthy SAS design framework that
aims to achieve these two conflicting goals. More specifically,
TrustSAS combines and synergizes state-of-the art crypto-
graphic techniques with blockchain technology in an inno-
vative way to address these privacy issues while complying
with FCC’s regulatory design requirements. To the best of our
knowledge, this work is the first to address such issues within
the context of SAS and CBRS.

We first provide in Section II a high-level overview of our
framework to help grasp the big picture. Then, in Section III,
we provide a detailed description of the framework. The
security analysis and performance evaluation are provided in
Sections IV and V, and the paper is concluded in Section VI.

II. SYSTEM AND FRAMEWORK OVERVIEW

In this section, we present the system architecture and
provide a high-level overview of TrustSAS. Fig. 1 can be
referred to throughout this section to facilitate the description.

A. Architectural Components

As illustrated in Fig. 1, TrustSAS comprises three main
architectural entities: FCC, multiple DBs, and multiple SUs.
Without loss of generality, throughout the paper, we use FCC
to refer to FCC itself, or to any trusted third-party entity
that is appointed by FCC to act on its behalf. In TrustSAS,
FCC is responsible for enforcing compliance with regulatory
requirements, providing system keying materials, handling the
registration of SUs, and granting them permissions to join

Multlple spectrum databases

Boolstra ing Phase
PPIng A@ Requests to join TrustSAS

®Permission granted

—
- ~o @System parameters I I I I

Peering with DBs Phase R
'\ @ Leaders peer with DBs via /Y

anonymous authenhcatlop_ _

Global Blockchaln

A Hb! A

©@sus peermg with other SUs
via anonymous authentication

@System setup

Cluster
Keying
@ sUs form clusters @'@@ Generation
Peering & Clustering Phase

TrustSAS Architecture and Initial Operations

Local Blockchain

Fig. 1.

TrustSAS. TrustSAS leverages and relies on the existence
of multiple DBs for spectrum access, each typically run
by a different administrator. These DBs are assumed to be
synchronized and to be sharing the same content, as mandated
by FCC. Also, TrustSAS supports multiple SUs, including
a set of pre-registered SUs to be deployed specifically for
playing the role of anchor nodes. These anchor SUs serve to
establish a backbone peer-to-peer (p2p) network that can be
discoverable and joinable by new SUs.

The content of each DB can be viewed/modelled as an
r X b matrix D of size 7 bits, where 7 is the number of
records in the database, each of size b bits. Each record in
D is a unique combination of a cell number, representing the
location, a channel number, and other transmission parameters
(e.g., max transmit power, duration, etc). In TrustSAS, each
record in D contains a smart contract that is to be created
by DBs to define channel usage rules, such as the maximum
number of SUs allowed to transmit simultaneously in a given
location, SU’s maximum transmit power, etc. With these smart
contracts, TrustSAS ensures fair sharing of the spectrum
resources, and limits the interference among SUs, thus sat-
isfying the coexistence requirement, stated in Section I-A. For
simplicity, we assume that channel usage is permitted over a
fixed duration independently from the channel, and that SUs
need to query DBs for an updated channel availability infor-
mation periodically every Tcpoch, Where Tepocn iS a tunable
system design parameter. The geographical area serviced by
TrustSAS is modeled as a grid of N x NN cells of equal sizes,
and an SU’s location is expressed through the grid’s cell index.

B. TrustSAS Initial Setup

The first phase needed for setting up TrustSAS is bootstrap-
ping (see Fig. 1), during which FCC creates the system param-
eters and keys, specific to TrustSAS, and shares them with
DBs. Also, SUs first need to register and request SAS access
privileges from FCC before they can join TrustSAS. Once
registered, FCC provides the joining SU with the anchor
SU list, membership keys, and the procedure necessary for
the SU to authenticate with and join TrustSAS. Note that,
in TrustSAS, all messages communicated between the SUs
and the DBs are established over secure channels, so as to
ensure that the spectrum queries are authenticated, private, and
not tampered with. Secure channels will be established via

traditional mechanisms, and such mechanisms are ignored in
this framework to keep the focus on the other security aspects.
This phase is detailed in Section III-Al.

The second setup phase consists of establishing the un-
derlying network infrastructure. Registered SUs that join
TrustSAS will maintain communication with one an-
other via an overlay p2p network, and a newly joining
SU will rely on anchor SUs to discover and join the p2p
network. TrustSAS relies on an anonymous digital signature
technique, explained in Section III-A, to enable all these
SUs to anonymously authenticate and verify each other’s
legitimacy when peering with one another. This anonymous
authentication will also enable SUs to enjoy system services
anonymously, yet in a verifiable way, to break the link between
their sensitive operational data and their true identities.

TrustSAS adopts a clustering approach, where joined SU's
group themselves into clusters and elect cluster leaders, with
the leaders being responsible for representing their SU's for in-
teracting with other system entities. Not only will this improve
TrustSAS scalability, but also protect SUs’ privacy, as it will
limit the interaction with DBs to only cluster leaders. Once
clusters are established, SU's within each cluster distributively
and collaboratively generate their cluster-specific keys, which
will be used later for blockchain related operations inside the
cluster and for signing cluster-wise spectrum agreements. This
phase is detailed in Section III-A2.

Once clusters are formed, the last setup phase is for the
leaders to anonymously authenticate with DDBs, and upon
successful authentication, these DBs will join and be part
of the established p2p network. This way, DBs will not be
involved in the initial clustering of SUs, and therefore they
will not be able to infer the SUs’ location information. This
phase is detailed in Section III-A3.

C. TrustSAS Main Operations

1) Querying Spectrum Availability Information: Each clus-
ter leader acts on behalf of its SU members and privately
queries DBs for spectrum availability information. Even
though the true identities of all SUs, including leaders, are
hidden in TrustSAS, this is not sufficient to preserve their
operational privacy. In fact, since each record in DBs is asso-
ciated with a unique location, DBs may infer the location of
the leaders from their queries and can still use this information
for tracking purposes. To prevent this, TrustSAS protects the
leaders’ queries through the adoption of multi-server private
information retrieval (PIR) protocol [12], which enables a user
to retrieve a record from multiple databases while preventing
the databases from learning any information about the record
or the user requesting it. After learning the spectrum avail-
ability information, members of each cluster will distributively
reach an agreement on how the spectrum resources are to be
shared among them. Detailed description of this operation is
provided in Section III-C.

2) Notifying about Spectrum Usage: Once a spectrum
assignment agreement is reached, the cluster leader will notify
the DBs about the spectrum portions used by its cluster

members, as well as about other information, such as aggregate
transmit power on each used channel, duration of channel use,
etc., as required by FCC. TrustSAS uses this information to
build knowledge of the spectral environment and to maintain
an accurate availability information to comply with the in-
formation gathering and retention requirement. As we discuss
in more details in Section III, TrustSAS ensures that cluster
leaders report an accurate and non-altered spectrum usage
information that is easily verifiable. Other leaders and DBs
will distributively reach an agreement about the validity of this
information, which, if valid, will be updated to DBs’ records.
Detailed description of this is provided in Section III-D.

III. THE PROPOSED FRAMEWORK: TrustSAS

TrustSAS relies on permissioned blockchains [13] to keep
track of system and cluster activities. Blockchains are also
used as a platform to handle agreements between entities at
both the cluster and system levels. This is achieved thanks to
permissioned blockchains’ underlying Byzantine fault tolerant
(BFT) consensus mechanism [13], which enables participants
to reach agreements on block updates even when Byzantine
nodes are present. Throughout the description of TrustSAS,
before an entity submits and adds a block to a blockchain,
we assume that the block is first signed by the entity and then
validated via BFT by the validators of the blockchain. We now
describe the different algorithmic components of TrustSAS.

A. System Setup

The first component of TrustSAS, depicted in Alg. 1,
consists of setting up the system parameters and the required
keys at initialization, which is done in three phases.

1) Bootstrapping Phase (Alg. 1, steps 2-10): TrustSAS en-
sures that SUs activities are anonymous, yet verifiable, by
leveraging Intel’s anonymous digital signature, known as en-
hanced privacy ID (EPID) [14]. EPID allows any SU to prove
its membership legitimacy to other TrustSAS entities, without
revealing its true identity, using zero-knowledge proof [15].
EPID also enables access revocation of misbehaving SUs
anonymously, by maintaining and using a revocation list
L based on SUs’ signatures. EPID typically runs four pro-
cedures. The first, EPID.SETUP, is run by the FCC as the
first step of the Bootstrapping phase (step 2, Alg. 1) and
outputs two system keys: Membership Verification Public Key
(Kpr) and Membership Issuing Secret Key (Ksi). The first
key, Kpr, is shared among all entities of TrustSAS, and used
by SUs and DBs to anonymously verify the membership
legitimacy of another SU. The second key, K., is kept
secret and used only by FCC to create a unique Membership
Private Key, skgsy, for each joining SU, a key that the
SU uses to prove its membership legitimacy to the other
system members anonymously. We iterate again that FCC will
be used throughout to refer to either FCC itself or any third-
party entity that is appointed by FCC to govern on its behalf.

The second procedure, EPID.JOIN, is run interactively
between each joining SU and FCC, and takes as input K., and
FCC’s public key Krcc, as illustrated in steps 4 and 9 of

Alg. 1. It results in SU obtaining K,y and skgy. The third
procedure, EPID.SIGN, allows an SU to anonymously prove
its membership legitimacy and that it does not belong to the
revocation list (i.e., its signature over a challenge message, m,
does not belong to £). Note that EPID signatures produced
by the same SU are linkable; this prevents any malicious
SU from forging multiple signatures on behalf of other SUs.
To validate the EPID signature of joining SU, a verifier uses
the fourth procedure, EPID.VERIFY, using the membership

Algorithm 1 TrustSAS setup

1: function TWOWAYEPID(A, B, K., £)

User A sends a challenge m 4 to user B

User B sends a challenge mp to user A

A: (X 4, PA) <EPID.SIGN(sk 4, K:pk, mp, L)
B: vy <-EPID.VERIFY(K,mp, X 4,Pa, L)
B: (Y'p,Pg) «+EPID.SIGN(sk 3, Kok, ma, L)
A: vp <EPID.VERIFY(K,i, ma, XY B, PB, L)
return v4 A\ vp

Bootstrapping phase

FCC: (Kpi, Ksi) < EPID.SETUP(k) b &: security level
FCC shares KCp,;, with DBs
(SkSU, ka)(—EPID.JOIN(ICpk,ICF(jc) vVSUe A
for SU k € A do
for SUl e A\ {k} do
TwOWAYEPID(k,)

All SUs € A peer up with each other
JOiIliIlg SU: (Sk‘SU,ICpk) — EPID.JOIN(ICpk, Kpcc)
FCC shares A4 with joining SU

R A R o

4

Peering and clustering phase

11: SU joins and discovers the p2p network through A

12: SU runs TWOWAYEPID() with each peer

13: SUs of the overlay network form clusters {C(i)}lgignc
14; SUs € C™ elect a leader SU(Li), V1<i<ne

15: SUs € C") maintain a local blockchain BC(")

16: SUs € C™ run steps 2-6 of REKEYING(C(V) (Alg. 2)

Peering with DBs

17: DBs form validators set V

18: Global blockchain BC is created with validators € V
19: DBs € V and FCC maintain full copy of BC

20: fori=1,--- ,nc do

21: SU" authenticates with DBs using EPID

22: SU é) peers up with DBs and becomes a validator
23: SUY submits y@ to BC

24: SU Li) requests a beacon $(*) from a DB

25: DB sends an EPID challenge m to SU(Li)

2. SUV(2,,PL)«EPID.SIGN(sk 1, Kpk, m, L)

27: DB verifies (X1, Py,) with EPID.VERIFY()

28: DB issues 8 to SU(Li) and submits it to BC

29: SU(Li) selects SUs € C into R

30: Every T3, SUs € R transmit (; for a duration d

public key, ICpj, by checking that SU’s signature is not in L.
TrustSAS also requires that some SUs be appointed
to serve as anchor nodes. These SUs need to run the
TwWOWAYEPID subroutine (Alg. 1, step 1) among themselves
to authenticate each other anonymously before they peer up
and initiate the overlay p2p network. Later on, every joining
SU, that obtained its skgy through EPID.JOIN, will also get
the list of anchor nodes, denoted by A throughout, from FCC.

2) Joining and Clustering Phase (Alg. 1, steps 11-16):
Every joining SU uses the list A to discover and join the on-
going p2p network. The joining SU then needs to authenticate
with its peers and verify their legitimacy via TWOWAYEPID
(Alg. 1, step 1). After enough SUs have joined TrustSAS,
these SUs will form clusters based on their locations; this
may require the SUs to expose their locations to other SUs,
but it should be no issue at this point since DBs are not part
of the p2p network yet. The members of each C(*) will also
maintain a cluster (local) blockchain, BC @ to log and keep
track of key events taking place in the cluster.

TrustSAS requires SUs of each cluster to serve as wit-
nesses with respect to any cluster-related statement that is
shared by the leader with the system. This is to prevent the
leader from maliciously reporting incorrect information that
was not validated by members of the cluster. To ensure this,
TrustSAS adopts the robust (t,n)-threshold BLS (TBLS)
signature scheme [16]. TBLS requires no more than (any)
ti + 1 of the n; SUs in C to collaboratively create a
cluster signature over a statement. For this, members of each
€ will have to run the REKEYING operation described in
Alg 2, among the n; SUs of C(%), to jointly generate the keys
required for performing such distributed (¢;,n;)-TBLS sig-
natures within C(Y). This is achieved by running TBLS’s
distributed key generation (DKG) [17] operation which will
result in each SU j in C*) obtaining three keys: Cluster Public
Key, y(¥), which is shared among all SUs in C¥), Cluster User
;Z), and Cluster User Public Key, z](.’) = g”"y).
The Cluster User Secret Keys (x(li), e ,ngi)) are a (t;,mn;)-
threshold secret sharing of the private key z(?) = log, y@.
These shares are constructed using Shamir secret sharing [18]
such that any subset of t; + 1 SUs from C*) can recover
x(using Lagrange interpolation. Cluster User Public Keys
represent SUs’ pseudonyms within C(?) and are also used to
identify SUs’ transactions in the local blockchain, BC@ . In
addition to DKG, TBLS comprises four other operations:

o SIGNSHAREGEN: It enables each SU j to compute the
signature share o’§1) over a message m to be signed by C(%).

o SIGNSHAREVERIF: It enables members of C™ to verify
SU j’s signature share aj(-l) against its public key z](-z).

e SIGNRECONSTRUCT: The leader of a cluster collects a set
of t; + 1 signature shares of a message m, H;, verified
using SIGNSHAREVERIF, from ¢; + 1 SUs. It combines
these shares using Lagrange interpolation, via the Lagrange
coefficients that were calculated in DKG, and reconstructs
the complete cluster signature.

o« GROUPSIGNVERIF: Used to verify the cluster-generated

Secret Key, x

signature against C(")’s public key y(*).

Note that TBLS does not require reconstructing (") during
the signing process. Even after repeated signing, no SU could
learn any information about () that would enable it to create
signatures without ¢; other SUs [19]. We refer the reader
to [16] for more details about TBLS.

Algorithm 2 Rekeying within C(*)

procedure REKEYING(C(V)

1:

2 {y® 2 x%),z}’, - 280} « TBLS.DKG(I)

3 for SU j € C

4 (55, P;) EPID SIGN(sk j, Kpk, 2 ¢ @ oLy

5 0;j — TBLS.SIGNSHAREGEN(z; W 5P

6 SU j sends tuple (o;, %, P],z]) to SU(i)
SU(Li) submits {(o;, X; Pj,zj)}gch to BC®

®

SUS submits 3 to BC

To handle system-wise access revocations, TrustSAS re-
quires that each SU’s Cluster User Public Key is associated
with its EPID signature over some statement that is known
by all cluster members. To achieve this, each SU j signs its
Cluster User Public Key zj(l) itself, which is known to all SU's
in the cluster, using EPID.SIGN with its EPID Membership
Private Key, sk; (Alg 2, step 4). This serves to create a
cryptographic binding between SU’s EPID signature and its
Cluster User Public Key. This binding will then have to be
submitted as a transaction to be included in BC("). This is done
by making SU sign the binding from the previous step usm%
TBLS.SIGNSHAREGEN with its Cluster User Secret Key,
(Alg 2, step 5). Then each SU will send the 51gnatures
obtained in steps 4 and 5 of Alg 2, to the leader S Ut L which
will collect all these signatures and include them in BC().
Later, when an SU j is detected to be malicious, the leader
will add SU’s Cluster User Public Key zj(»l) along with its
EPID signature to the revocation list L.

3) Peering with DBs Phase (Alg. 1, steps 17-30): Each
cluster leader will anonymously authenticate with DBs using
EPID. Once a leader is authenticated by the DBs, these DBs
join the established p2p network.

During this phase, a global blockchain BC is also created
to keep track of the key system-wise events. Only DBs and
cluster leaders can participate in the validation and addition of
blocks to BC. To submit a cluster-related block for inclusion in
BC, the leaders will need to have a key that identifies them and
their clusters but also could be used to verify the correctness
of the submitted block. This is exactly why each leader is
required to submit its Cluster Public Key, y(?), to BC to be
shared with DBs and other leaders. On top of that, the leader
will also share a (¢;,n;)-TBLS signature of y*) to show that
the Cluster Public Key was actually generated in collaboration
with members of the cluster using TBLS.DKG. The validators
will validate the TBLS signature through a round of BFT
consensus by verifying the signature against y(*).

In TrustSAS, an operational cluster is required to transmit
a beacon for a certain duration, every 73 period, so that the
cluster could be discovered by nearby joining SUs, as in [20].
T is a system design parameter that could be adjusted based
on system dynamics and on how frequent SU's join the system.
A leader SU L) needs to request this beacon from one of
the DBs and can acquire it only if it successfully proves its
legitimacy to DB through EPID as depicted in steps 24-28
of Alg.1. This is achieved by creating an EPID signature of
a challenge message m that DB has created for this purpose.
If the EPID signature is successfully verified, DB issues a
beacon to SU (LZ) and submits the beacon to BC so that it
is accessible by all TrustSAS entities. SU (Ll) picks some
representatives from C(¥) to transmit the beacon every T, for
a specific duration over a system control channel that is known
a priori and is assumed to be reserved for this purpose.

Note that SUs in C”) only need to have a light copy of
BC containing the latest state of the system including the
current number of clusters and their corresponding beacons.
Note also that a secure session is maintained between DBs
and the leader of C(") as long as EPID revocation list is
not updated. This is to avoid running the EPID verification
protocol for every block or transaction submitted by SU %)

B. Joining TrustSAS

As depicted in Alg. 3, when an SU desires to join
TrustSAS, it needs to tune to the control channel and scans
it to detect any beacons transmitted by any nearby cluster.
Failure to detect any beacons means that either no cluster is
nearby or all nearby clusters are not accepting new SUs. In
either case, SU will start a new cluster and will request a
beacon from one of the DBs and will itself start accepting
new members, as described in Alg. 1.

When the new SU detects a beacon, it invokes the
TwOWAYEPID procedure with the cluster leader to ensure
that the SU is legitimate and can be allowed to join the cluster,
and that the leader is also in a good standing. If the two-
way verification is successful, the new SU is admitted to the
cluster and will immediately request BC(") from the cluster
leader and peer with the SUs in the cluster. Newly admitted
SUs will have to wait until the next 7epocn period to be able
to participate in the cluster and enjoy spectrum resources.

Note that the admission of a new SU to a cluster is also
subject to interference constraints. Members of the cluster
must ensure that the entry of this new SU does not lead
to an aggregate interference that is harmful to higher tier
users or to other SUs in the cluster to satisfy coexistence.
This could be resolved by adjusting grants and transmission
parameters of the other SUs in the cluster, or simply denying
the entry of a new SU to the cluster in the extreme case. These
scenarios could be enforced by the cluster leader and agreed
upon through consensus among members of the cluster.

Clusters will also need to perform rekeying operation when
new SUs are added to their clusters, and this takes place at
the end of each T¢pocr, period, where again Tepocn is a System
design parameter that could be adjusted. Clusters could also

Algorithm 3 Join C(¥)
1: SU scans control channel for beacons in B
2: if a beacon BV of C() is found then

3 SU requests to join C(*) ‘

4 v < TWOWAYEPID(SU, SU(LZ))

5 if v == T'rue then

6: SU is added to C(¥

7 SU peers with SUs in C(Y) and downloads BC()
8 SUs € C run REKEYING(C™) in next Topoch
9: else .

10: SU forms new C*) and becomes a leader SU (LZ)

11: SU(Li) requests 3() as in Steps 24-30 of Alg. 1

choose to perform rekeying when malicious and/or faulty SU s
are detected. The rekeying steps are shown in Alg. 2.

C. Querying for Spectrum Availability

We now focus on describing the different steps required
to privately query DBs for spectrum availability in a specific
cluster. These steps are also summarized in Alg. 4.

Algorithm 4 Private Spectrum Query

SU (Li) expresses interest to query DBs

DBs send an EPID challenge m to SU(Li)

SUY: EPID.SIGN(sk,, Ky, m, £)

SU%) requests other 7 — 1 SUs to EPID.SIGN m

SU% sends 7 EPID signatures of m to DBs

DBS verify the 7 signatures with EPID.VERIFY()

if any signature 1s not valid then
DB adds SUY ;. to L; break

if SUs e C() experience timeout from SU (Li) then
SUs € ¢\ {SUPY elect new leader SU*
SUs € C\ {SU"} run REKEYING()

12: SUD* requests B@ as in steps 24-30 of Alg. 1

13: SU{;)* adds SU'" to £ and becomes SU""

14: go to Step 1

15: SUY): D, < BATCHPIR(DBs, (, t,7, 5, q)

16: SUi submits Dy as block Bepocn to BC(0)

17: SUs € C run BFT consensus to validate Bepocn,

18: SU (Li) triggers smart contracts to divide resources

19: SUs € C) are assigned channels for current Tepoch

R A A

[E—
= O

In TrustSAS, the cluster leaders will be in charge of
querying DBs for spectrum availability on behalf of their
SU members, and a leader will query DBs only when: (i)
Period allocated for using some channel(s) expires, (ii) quality
of currently assigned channels degrades, or (iii) currently used
channels need to be vacated (e.g., when requested by PUs).

1) Authentication and permission: In TrustSAS, in order
for a leader to query DBs, its cluster is required to have a
minimum of 7 SUs, where 7 is a system parameter that could
be tuned depending on the desired robustness and security
levels within each cluster. Therefore, before querying the DBs,
a cluster leader, SU %), needs to show that its cluster C(*) meets

this requirement by providing 7 EPID signatures created by
different legitimate SUs over a challenge message m that
DBs created for this purpose; this is depicted in steps 2-5
of Alg. 4. Note that EPID prevents SU (LZ) from forging these
T signatures without being detected. Also, TrustSAS will not
require these 7 EPID signatures later unless a change in the
membership of C i) takes place. If this verification is suc-
cessful, then § U proceeds with querying DBs for available
channels. Otherwise, DBs will label SU (LZ) as malicious and
add it to the revocation list, £. To ensure robustness against a
leader’s failures, a timeout period could be considered beyond
which if the SU members do not receive spectrum availability
information from their leader, the leader would be labeled as
malicious and added to the revocation list, £, and a new leader
will be elected. The REKEYING procedure is then run among
the cluster members, and the new leader will request a new
beacon for the cluster as in steps 24-30 of Alg.1.

2) Spectrum querying: To enable private querying of DBs,
TrustSAS adopts multi-server private information retrieval
(PIR) protocol [21], termed BATCHPIR, which leverages the
multiple DBs, inherently available by SAS design, to enable
the cluster leaders to efficiently retrieve data records from
DBs while preventing DBs from learning anything about the
records being retrieved. It guarantees information-theoretic pri-
vacy, i.e. privacy against computationally unbounded servers,
to cluster leaders as long as the spectrum database content,
D, is replicated among ¢ > 2 non-colluding DBs [12].
The main idea consists of decomposing each leader’s query
into several sub-queries each processed by a different DB to
prevent leaking any information about the queried record.
BatchPIR also supports batching of the queries, i.e. retrieving
multiple blocks simultaneously, which is a desirable feature for
TrustSAS. Tt takes as input the list of DBs, the maximum
allowed number of colluding servers, the dimensions of D,
and the indices of records of interest. For this, we assume that
leaders can learn the index of the records of interest through
an inverted index mechanism agreed upon with DBs.

A cluster leader SU (LZ), collects queries from the SUs in
its cluster C(¥), batches them together, and invokes BATCHPIR
with its peered DBs. SU L) then submits the query response,
Dy, as a block Bepoen for inclusion in BC®. SUs in V) run
BFT consensus to validate this Bepocp, by simply verifying
the digitally signed database records against the public key of
DBs. This is to prevent the leader from maliciously sharing
altered availability information.

Each record in DBs contains a smart contract that defines
its usage rules. Once Bepocp, is validated by SUs and added to
BC™, the scripts of the included smart contracts will reside in
BCY. SU (Ll) will issue a transaction to trigger the execution
of these smart contracts, which will take as input the list
of SUs in the cluster, their cell indices, and the spectrum
availability information. All this information is already stored
in BC) and is accessible by all SUs in C(*). Once triggered,
these smart contracts run independently and automatically in
a prescribed and deterministic fashion on every SU’s copy of

BC® in accordance with the data that was enclosed in the
triggering transaction. The execution of these smart contracts
will result in the automatic assignment of spectrum resources
in a way that follows TrustSAS’s guidelines while ensuring
coexistence between SUs. This assignment will be valid for
the duration of the 7cpocn period.

D. Notifying about Spectrum Usage

Algorithm 5 Spectrum Usage Notification

SUY constructs block B; with usage information

%) sends B; to SUs in C(¥) for validation and signing
(B,,O’B)<—TBLS.SIGNRECONSTRUCT(H;, L1, -, Ly)
SUL submits (B;,03,) to BC
V:wal+~TBLS.GROUPSIGNVERIF(B;, 05,,y")) w/ BFT
if val == T'rue then

B; is added to BC

DBs update their records
else _

DBs flag SU(LI) as malicious

SU (LZ) is added to revocation list £ in BC

DBs remove 3 from list of valid beacons on BC

R A T e

—_ — =
N2

Once spectrum resources are allocated among SUs, the
leader SU (LZ) shares with the DBs the allocation information,
including the channels to be used by the members of C(, the
locations where these channels will be used, and aggregated
transmit power over those chosen channels. The leader can
also collect the received signal strengths in the used and
adjacent frequencies, the received packet error rates, and other
standard interference metrics for all SUs in the cluster. The
leader will propose a block B; containing this information to
the members of the cluster for validation. They will verify the
correctness of this information and sign the block using TBLS.
If the validators successfully verify that 3; was agreed upon
and signed by members of C(*) via BFT consensus combined
with TBLS, then B; is added to BC and DBs will include this
information in their records. Otherwise, SU L) will be flagged
as malicious and its EPID signature of y(*) will be added to
L. These steps are summarized in Alg. 5.

IV. SECURITY ANALYSIS

1) Threat Model: TrustSAS assumes that DBs are honest-
but-curious, in that they act “honestly” and follow the protocol
in terms of handling queries and sharing spectrum availability
information, but they are also “curious” about SUs’ infor-
mation and try to infer it from the messages they receive
from SUs. TrustSAS also assumes that these DBs do not
collude with each other, nor with the SUs. We refer to a
SU that faithfully follows the protocol as honest; otherwise,
it is referred to as Byzantine. TrustSAS assumes that these
Byzantine SU's do not collude with DBs, and for each cluster
C, at least t; of the n; SUs participate in the signature, and
no more than f; = (n; —t;) SUs are Byzantine. These ¢; SUs
serve as witnesses for the cluster to make sure that the leader
does not communicate compromised information.

2) Security Objectives: Given the above threat model,
TrustSAS aims to achieve the following security objectives:
e Private Spectrum Availability Querying: SUs can query
DBs privately, without revealing their operational information.
e Private Spectrum Usage Notification: SUs can notify DBs
about their channel usage and transmission parameters pri-
vately, without revealing their operational information.

e Robustness to Failures: All security guarantees are main-
tained, even when a system entity fails or is compromised.

o Immutable Public Log for Auditability: A globally consis-
tent, tamper-resistant log is maintained, where each system
event, once produced and logged, cannot be altered or deleted.
o Anonymity and Membership Verifiability: SUs’ authenticity
can be verified before the SU's are granted system access, and
SUs cannot be identified at any stage of protocol execution.
e Location Privacy Protection of SUs: SUs’ physical loca-
tion information is kept private at all times from all DBs.

3) Security Results: All proofs of the security results stated
in this section are omitted here due to space limitation, and
can be provided if and when requested.

Corollary 1. TrustSAS achieves unforgeability and robust-
ness of TBLS signatures against an adversary that can
corrupt any f; < n(9/2 SUs within a cluster C¥) as long
as the Gap-Diffie-Hellman problem is intractable.

Corollary 2. TrustSAS ensures consistency and resistance to
fork attacks for a permissioned blockchain BC") running BFT
consensus in every CD if t; > 2f; 41, where t; is the number
of signature shares required to construct a group signature for
CY, and f; satisfies n; > 3f; + 1 for BFT mechanisms [22].

Corollary 3. TrustSAS guarantees unforgeability and ro-
bustness of TBLS signatures while ensuring consistency and
resistance to fork attacks for BC' of C\") against an adversary
that can corrupt any f; < n(¥) /3.

Corollary 4. TrustSAS guarantees SUs with information-
theoretic, private spectrum availability querying from DDBs.

Corollary 5. TrustSAS guarantees anonymous membership
verification through EPID as long as the Decisional Diffie-
Hellman and the strong RSA assumptions hold and the under-
lying primitives they use are secure.

Corollary 6. TrustSAS is robust against Byzantine failures
of both DBs and SU's alike.

Corollary 7. TrustSAS guarantees location privacy informa-
tion protection to all SU's.

V. PERFORMANCE EVALUATION

We assess the effectiveness of TrustSAS by evaluating
the performance of its building blocks and algorithms. These
evaluations are performed both analytically and empirically
via either implementations or benchmarking of the underlying
math and crypto operations using MIRACL library [23].
Experiments are carried out on a testbed that we built on Geni
platform [24] using percy++ library [25]. The testbed consists
of 7 VMs deployed on different Geni sites, each playing the

role of a DB, and a Lenovo Yoga 3 Pro laptop with 8§ GB
RAM running Ubuntu 16.10 with an Intel Core m Processor
5Y70 CPU 1.10 GHz to play the role of a cluster leader.

1) Distributed Key Generation (DKG): Running DKG re-
quires performing a number of elliptic curve point multipli-
cations that is proportional to the number of SUs within the
cluster. Using the benchmarking results that we derived with
the MIRACL library [23], we provide in Table I an estimate
of the average processing time experienced by each SU when
running DKG. In terms of communication overhead, DKG re-
quires 2 rounds of broadcasts, yielding O(n;) messages per
SU, or O(n?) messages per cluster C*), when assuming no
faulty SUs. Despite its relatively high cost, DKG presents no
bottleneck to the system, as it is only executed at initialization
or when group membership changes occur.

TABLE I _
TBLS OVERHEAD WITHIN CLUSTER C(%)

Operation Analytic Cost

O(n;) - PM
O(n;) messages

Empirical Cost

DKG Computation
DKG Communication

1.05 s
o< 1000 messages

SIGNSHAREGEN 1 Hash +1 Expp 0.63 ms
SIGNSHAREVERIF 2t; - TPO 2.3 ms
Signature size 64 bytes 64 bytes
Private key size 32 bytes 32 bytes
SIGNRECONSTRUCT t; - (Mulpp + Expp) 461 ms
GROUPSIGNVERIF 2-TPO 2.3 ms

Variables: PM: cost of an elliptic curve point multiplication. n; = 1000 SUs,
t; = 1000 SUs. T PO is the cost of one tate pairing. Expp and Mulpp are the
cost of a modular exponentiation and multiplication, respectively, over modulus p.

2) Threshold Signature (TBLS): Table I provides the an-
alytical and empirical cost of the different TBLS operations
executed by SUs in C(Y). SUs repeatedly sign the consensus
statement at each BFT round within the cluster. From an
SU’s perspective, this is relatively fast, as it involves signing
a single message whose cost is dominated by a modular
exponentiation operation, as shown in Table 1. The leader,
SU (LZ), will, however, incur most of the overhead, as it needs
to verify all the signature shares coming from the ¢; signing
SUs of C%), before multiplying them to construct C(’s
signature. These are the most expensive operations involved
in TBLS as they require a number of modular multiplications
and exponentiations that is linear in ¢; as illustrated in Table I.
To estimate the running time of TBLS’s different operations,
we use dfinity’s implementation of TBLS [26].

3) Enhanced Privacy ID (EPID): We evaluate EPID.SIGN
and EPID.VERIFY analytically and empirically (using In-
tel’s publicly available SDK [27]) as depicted in Table II.
EPID.SIGN and EPID.VERIFY both require a number of
modular exponentiations that is linear in the size of the revo-
cations sublists; these revocation sublists are defined in [14].

Even though these delays seem relatively high, they are still
reasonable, especially that these membership proof operations
are independent, unfrequent, and do not occur simultaneously,
once the system setup completes. Note that this proof has
a linear cost in the size of the revocation list and could

TABLE II
EPID COMPLEXITY

Operation Analytical Cost Empirical Cost
EPID.SIGN (662 + 203 + ¢) - Expp 135 ms
EPID.VERIFY (61 + 602 + 263 +¢) - Exzpp 120 ms
Signature size 257 bytes 257 bytes
Private key size 129 bytes 129 bytes

Variables: §; = |£;| for the revocation sublists [14] £ (private key-based list), Lo
(signature-based list), L3 (issuer-based list) with £1 U Lo U L3 = L, and cis a
constant. Cryptographic parameters correspond to 128-bit security level as in [28].

30 Z a0 30
2 |[~PIR W/ batching ‘é —PIR W/ Batching & |~GoSig W/ Byz. Failures
525 PIR W/O batching <18 [PIR W/O Batching . ‘,:25 —GoSig W/O Byz. Failures|
E] yd 30 g g
E20 2 s £20
2 2 E -
g 15 g20 = 15
Q 2 7}
S10 o 210
£ o 10 9
5 & 35
g Bl . © g
0 T 0< 0
0 50 . 100< 0 50 . 100 0 1000 2000 3000
Number of Queries ¢ = Number of Queries q Number of SUs in the cluster

(a) DB PIR delay. (b) SU PIR delay. (c) GoSig BFT delay.
Fig. 2. Overhead of PIR and GoSig

become quite expensive for both signers and verifiers if such
a list becomes large. One possible way to maintain a good
performance of TrustSAS is to impose a threshold on the
list size. In this case, when the list size exceeds the threshold,
FCC can create a new group and perform a rekeying operation,
with each SU needing to prove to FCC that it is a legitimate
member and that its membership was not revoked. This would
be more efficient than carrying a large revocation list indefi-
nitely and run expensive zero-knowledge proof operations on
it. The old list will still be accessible for auditing purposes as
it would have been stored already in BC.

4) Private Information Retrieval (PIR): We use our Geni
testbed to evaluate TrustSAS’s multi-server PIR, BatchPIR.
As the obtained results in Figs. 2a and 2b show, the support
of query batching by BatchPIR, which allows multiple blocks
to be retrieved simultaneously, reduces the overhead at both
DBs’ and cluster leaders’ sides. We summarize the obtained
results and the analytic estimation of the overhead in Table III.

TABLE III
MULTI-SERVER PIR OVERHEAD

Operation Analytical Cost Empirical Cost
Leader SU’s query g - O(£%r) - addy 4.86 s

DB processing q°8 - (%add]y + mulg) -rs 2.66 s
Communication q-(r+s) 25 M B

Variables: £ = 7: number of DBs, ¢ = 25: number of batched PIR queries.
DB size is n = 560 M B, s: number of field F elements per row, addr and mulg
denote the cost of an [F addition and an ' multiplication. In a field F of characteristic
2, additions are equivalent to XOR and multiplications are equivalent to AND.

5) BFT Consensus: Table V shows that the communication
overhead of BFT expressed in terms of number of messages
sent every consensus round is quasi-linear in the size of
the cluster, n;, which translates into a total communication
overhead of O(n?logn;). In this experiment, we also set the
throughput between the nodes to 10 M bps and the propagation
delay among SUs to 20 ms and simulate the protocol to
estimate the time it takes to reach a consensus over a block.

TABLE IV
END-TO-END DELAY OF TrustSAS ALGORITHMS

Algorithm Major Operations Total Cost
Alg. 2 Rekeying within C(Y DKG + TBLS.SIGNSHAREGEN + EPID.SIGN + BFT(n;) TTAT s
Alg. 3: Join C(9) TWOWAYEPID + REKEYING 78.12 s
Alg. 4: Private Spec. Query EPID.SIGN + 7 EPID.VERIFY + BATCHPIR + BFT(n;) 13.15 s

Alg. 5: Spec. Usage Notifica.

t(TBLS.SIGNSHAREGEN+TBLS.SIGNSHAREVERIF)+TBLS.SIGNRECONSTRUCT+BFT (¢+n.) 1.85 s

Parameters: n; = 1000, t = n;/2, n. = 50 £ = 7, 7 = 10, bandwidth = 10Mbps, n = 560M B, r = 106. BFT(x): one round of BFT among z parties.

TABLE V
BFT COMPLEXITY

Operation Analytical Cost Empirical Cost
Communication per user ~ O(n; logn;) o< 3000 messages
Consensus w/o failures O(n?logn;) 4.3 s

Consensus w/ failures O(n? logn;) 6.32 s

Parameters: n; = 1000, bandwidth = 10M bps, 1 signature verification per SU.

Our results, depicted in Fig. 2c, show that even for a cluster
of size as large as 1000 SUs, a consensus is reachable in
less than 7 s even if up to 1/3 of the SUs are Byzantine.
The overhead of BFT depends heavily on the number of
participants and the number of signature verifications required
by each participant. Therefore, BFT will have a different
cost for each of TrustSAS’s algorithms. For instance in
REKEYING, BFT will take as long as 76 s since each SU will
need to verify the signatures of all other SUs in C(*) included
in the block submitted by the leader at step 7 of Alg. 2.

6) End-to-end Delay: We provide in Table IV the end-
to-end delays caused by TrustSAS’s different algorithms,
ignoring Byzantine faultiness for simplicity. Observe that the
REKEYING has the highest cost, which is invoked mainly when
a membership change occurs. One way to address this is by
setting REKEYING frequency small, and have joining SUs
wait a little longer before they join the system. Another way to
further reduce the cost in most of these algorithms is by using
different quorums of users every BFT round. This will reduce
the overhead but will also impact the security guarantees and
robustness against failures. Despite the relatively high cost of
these algorithms, note that these operations are expected to be
invoked only every few hours, as it is the case for TVWS,
which requires SUs to query DBs every 24 hours.

VI. CONCLUSION

We propose TrustSAS, a trustworthy framework for
SAS that preserves SUs’ operational privacy while adhering
to regulatory requirements mandated by FCC in the 3.5 GHz
CBRS band. TrustSAS achieves this by synergizing state-of-
the-art cryptographic mechanisms with the blockchain tech-
nology. We show the privacy benefits of TrustSAS through
security analysis, simulation and experimentation.

ACKNOWLEDGMENT

This work was supported in part by the US National
Science Foundation under NSF awards CNS-1162296 and

CNS-1652389.
REFERENCES

[1] FCC, “Report and order and second further notice of proposed rulemak-
ing, number 15-47, gn docket no. 12-354. FCC,” April 2015.

[2] ——, “Order on reconsideration and second report and order, number
16-55, gn docket no. 12-354. FCC,” May 2016.

[3] Y. Ye, D. Wu, Z. Shu, and Y. Qian, “Overview of Ite spectrum sharing
technologies,” IEEE Access, vol. 4, pp. 8105-8115, 2016.

[4] V. Chen, S. Das, L. Zhu, J. Malyar, and P. McCann, “Protocol to access
white-space (paws) databases,” Tech. Rep., 2015.

[5] M. A. Clark and K. Psounis, “Trading utility for privacy in shared spec-
trum access systems,” IEEE/ACM Transactions on Networking (TON),
vol. 26, no. 1, pp. 259-273, 2018.

[6] P. Marshall, Three-tier Shared Spectrum, Shared Infrastructure, and a
Path to 5G. Cambridge University Press, 2017.

[71 W. 1. Forum, “Cbrs communications security technical specification,
winnf-15-s-0065,” April 2017.

[8] ——, “Cbrs threat model technical report, winnf-15-p-0089,” May 2016.

[91 M. Grissa, B. Hamdaoui, and A. A. Yavuza, “Location privacy in
cognitive radio networks: A survey,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1726-1760, 2017.

[10] B. Khalfi, B. Hamdaoui, and M. Guizani, “Airmap: Scalable spectrum
occupancy recovery using local low-rank matrix approximation,” in
Global Communications Conference (GLOBECOM), 2018 IEEE.

[11] M. Grissa, B. Hamdaoui, and A. A. Yavuz, “Unleashing the power of
multi-server pir for enabling private access to spectrum databases,” [EEE
Communications Magazine, vol. 56, pp. 171-177, December 2018.

[12] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private informa-
tion retrieval,” in Foundations of Computer Science, 1995. Proceedings.,
36th Annual Symposium on. 1EEE, 1995, pp. 41-50.

[13] M. Vukoli¢, “Rethinking permissioned blockchains,” in Proceedings of
ACM Workshop on Blockchain, Cryptocurrencies and Contracts, 2017.

[14] E. Brickell and J. Li, “Enhanced privacy id: A direct anonymous attesta-
tion scheme with enhanced revocation capabilities,” IEEE Transactions
on Dependable and Secure Computing, vol. 9, no. 3, pp. 345-360, 2012.

[15] C. Rackoff and D. R. Simon, “Non-interactive zero-knowledge proof
of knowledge and chosen ciphertext attack,” in Annual International
Cryptology Conference. Springer, 1991, pp. 433-444.

[16] A. Boldyreva, “Threshold signatures, multisignatures and blind signa-
tures based on the gap-diffie-hellman-group signature scheme,” in Int’l
Workshop on Public Key Cryptography. Springer, 2003, pp. 31-46.

[17] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure distributed
key generation for discrete-log based cryptosystems,” in Int’l Conf. on
the Theory and App. of Crypto Tech. Springer, 1999, pp. 295-310.

[18] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612-613, 1979.

[19] S. Goldfeder, J. Bonneau, R. Gennaro, and A. Narayanan, “Escrow pro-
tocols for cryptocurrencies: How to buy physical goods using bitcoin,”
in Int’l Conf. on Financial Crypto and Data Security. Springer, 2017.

[20] T. Chen, H. Zhang, G. M. Maggio, and I. Chlamtac, “Cogmesh: A
cluster-based cognitive radio network,” in 2007 2nd IEEE International
Symposium on New Frontiers in Dynamic Spectrum Access Networks.

[21] W. Lueks and I. Goldberg, “Sublinear scaling for multi-client private
information retrieval,” in International Conference on Financial Cryp-
tography and Data Security. Springer, 2015, pp. 168-186.

[22] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
OSDI, vol. 99, 1999, pp. 173-186.

[23] M. Integer and C. Rational Arithmetic, “C++ library (miracl),” https:
//github.com/miracl/MIRACL, 2013, accessed: 2018-06-02.

[24] “Global environment for network innovations,” https://www.geni.net/.

[25] “Percy++ library,” http://percy.sourceforge.net, accessed: 2018-06-14.

[26] “Threshold bls dfinity implementation,” https://github.com/dfinity/
random-beacon, accessed: 2018-06-02.

[27] “The intel(r) enhanced privacy id software development kit,” https:/
github.com/Intel-EPID-SDK, accessed: 2018-06-02.

[28] https://www.keylength.com/, accessed: 2018-06-02.

