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Abstract— In this paper, we address a finite-horizon stochas-
tic optimal control problem with covariance assignment and
input energy constraints for discrete-time stochastic linear
systems with partial state information. In our approach, we
consider separation-based control policies that correspond to
sequences of control laws that are affine functions of either
the complete history of the output estimation errors, that is,
the differences between the actual output measurements and
their corresponding estimated outputs produced by a discrete-
time Kalman filter, or a truncation of the same history. This
particular feedback parametrization allows us to associate
the stochastic optimal control problem with a tractable semi-
definite (convex) program. We argue that the proposed proce-
dure for the reduction of the stochastic optimal control problem
to a convex program has significant advantages in terms
of improved scalability and tractability over the approaches
proposed in the relevant literature.

I. INTRODUCTION

We consider a finite-horizon stochastic optimal control

problem for discrete-time stochastic linear systems with

partial state information subject to a constraint on the ter-

minal state covariance (covariance assignment constraints)

and another constraint on the expected value of the ℓ2-norm

of the utilized control sequence (input energy constraint). To

streamline the analysis of the problem and simplify the com-

putation of its solution, we will only consider (admissible)

control policies that correspond to sequences of feedback

control laws that can be expressed as affine combinations of

either the complete history of output residuals or a truncation

of the latter history. In this context, the term “output residual”

is used to describe the difference between the measured

output of a system and its estimated output as computed

by a discrete-time Kalman filtering algorithm. The proposed

feedback control parametrization is based on the famous

principle of separation between estimation and control [1].

Literature Review: Finite-horizon and infinite-horizon

stochastic control problems with terminal constraints on the

state covariance for stochastic linear systems in both the

discrete-time and continuous-time frameworks have received

a lot of attention in the literature [2]–[8]. Recently, a series

of recent papers on this topic [9]–[11] addressed similar

finite-horizon stochastic control problems for continuous-

time linear, Gaussian (stochastic) systems. Similar problems

with those in the previous references but in the discrete-

time framework have been studied recently for both the
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cases of complete and partial state information in [12], [13]

and [14], [15], respectively. In particular, in our previous

work in [14], [15], we have leveraged certain tools and

ideas from [16] to develop systematic approaches for the

reduction of stochastic optimal control problems with co-

variance assignment constraints for discrete-time stochastic

linear systems with partial state information to (determin-

istic) tractable convex programs. The methods proposed in

[14], [15] utilize a special family of control policies in which

the feedback control law at each stage is an affine function of

the history of all the output measurements up to the current

stage without explicitly using state estimators. Consequently,

the dimension of the resulting convex programs can be

significantly large especially for multi-stage problems. It

should be mentioned at this point that, despite the fact that

stochastic optimal control problems subject to different types

of constraints (especially, in the infinite-horizon case) can

be addressed, in principle, by means of stochastic model

predictive control (SMPC) solution techniques [17]–[21], to

the best of the author’s knowledge, problems with covariance

assignment constraints have never been studied within the

framework of SMPC in the literature.

Main Contribution: The main contribution of this work is

the presentation of a systematic approach for the reduction

of stochastic optimal control problems subject to covariance

assignment constraints for discrete-time linear systems with

partial state information to convex programs that are more

tractable than those proposed in the relevant literature. To this

aim, we propose a particular feedback control parametriza-

tion according to which the admissible control policies are

sequences of control laws that are affine functions of the his-

tory of the output residuals of the discrete-time system whose

state is estimated by a recursive Kalman filter algorithm. One

of the key advantages of this parametrization is that it allows

one to reduce the size of the convex program that corresponds

to the stochastic optimal problem by restricting the feedback

control laws at each stage to depend on a truncated history of

the most recent output residuals in lieu of the whole history.

The flexibility in determining the size of the convex program

by truncating accordingly the history of past and present state

information is a feature of the proposed approach that is

missing from the approaches proposed in [14], [15]. This

is because in these references, the decision variables of the

convex program are determined by the original parameters

of the control policy after the application of a certain bilinear

transformation [16] to them, which is agnostic to the length

of the truncated sequence.

Structure of the paper: The constrained stochastic optimal



control problem is formulated in Section II. A systematic

procedure for the reduction of the latter problem to a tractable

convex program is presented in Section III. Section IV

concludes the paper with a number of remarks and ideas

for future research.

II. PROBLEM FORMULATION

A. Notation

We denote by R
n and R

m×n the set of real n-dimensional

(column) vectors and real m × n matrices, respectively.

We write Z
+ and Z

++ to denote the set of non-negative

integers and strictly positive integers, respectively. Given τ1,

τ2 ∈ Z
+ with τ1 ≤ τ2, we define the discrete interval from

τ1 to τ2 as follows: [τ1, τ2]d = [τ1, τ2] ∩ Z
+. We denote

by E [·] the expectation operator. In addition, we denote by

vec(X0:N ) the vector that is formed by concatenating the

(column) vectors that comprise X0:N , that is, vec(X0:N ) :=
[x(0)T, . . . , x(N)T]T. If A ∈ R

n×n, then we denote its

trace by trace(A) and by A−1 its inverse (provided that the

latter is well defined). We write 0 and I to denote the zero

matrix and the identity matrix. The space of real symmetric

n × n matrices will be denoted by Sn. Furthermore, we

will denote the convex cone of n × n (symmetric) positive

semi-definite and (symmetric) positive definite matrices by

S
+
n and S

++
n , respectively. Given a matrix A ∈ S

++
n (resp.

A ∈ S
+
n ), we will also write A ≻ 0 (resp., A � 0). Finally,

we write bdiag(A1, . . . ,Aℓ) to denote the block diagonal

matrix formed by the matrices Ai, i ∈ {1, . . . , ℓ}, which

have compatible dimensions.

B. Vectorization of the State Space Model of a Discrete-Time

Stochastic Linear System

We consider a discrete-time stochastic linear system that

is described by the following equations:

x(t+ 1) = Ax(t) +Bu(t) + w(t), (1a)

y(t) = Cx(t) + v(t), (1b)

for t ∈ [0, N − 1]d, where X0:N := {x(t) ∈ R
n : t ∈

[0, N ]d} is the state (random) process, U0:N−1 := {u(t) ∈
R

m : t ∈ [0, N − 1]d} is the input process acting together

with the noise process W0:N−1 := {w(t) ∈ R
n : t ∈ [0, N−

1]d} upon the system, Y0:N−1 := {y(t) ∈ R
p : t ∈ [0, N −

1]d} is the output process, and finally, V0:N−1 := {v(t) ∈
R

p : t ∈ [0, N − 1]d} is the measurement noise process. In

addition, W0:N−1 and V0:N−1 are sequences of independent

and identically distributed normal random variables with

E [w(t)] = 0, E
[
w(t)w(τ)T

]
= δ(t, τ)W, (2a)

E [v(t)] = 0, E
[
v(t)v(τ)T

]
= δ(t, τ)V, (2b)

for all t, τ ∈ [0, N − 1]d, where W ∈ S
++
n , V ∈ S

++
p ,

and δ(t, τ) := 1, when t = τ , and δ(t, τ) := 0, otherwise.

In addition, W0:N−1 and V0:N−1 are independent, which

implies that

E
[
w(t)v(τ)T

]
= 0, E

[
v(t)w(τ)T

]
= 0, (3)

for all (t, τ) ∈ [0, N − 1]d × [0, N − 1]d. Similarly, x0 is

independent of both W0:N−1 and V0:N−1, that is,

E
[
x0w(t)

T
]
= 0, E

[
w(t)xT

0

]
= 0, (4a)

E
[
x0v(t)

T
]
= 0, E

[
v(t)xT

0

]
= 0, (4b)

for all t ∈ [0, N − 1]d.

We can write equations (1a)-(1b) compactly as follows:

x = X0x0 +Xuu+Xww, (5a)

y = Y0x0 +Yuu+Yww + v, (5b)

where x := vec(X0:N ) ∈ R
(N+1)n, u := vec(U0:N−1) ∈

R
Nm, w := vec(W0:N−1) ∈ R

Nn, y := vec(Y0:N−1) ∈
R

Np and v := vec(V0:N−1) ∈ R
Np. In addition, X0 ∈

R
(N+1)n×n, Xu ∈ R

(N+1)n×Nm, and Xw ∈ R
(N+1)n×Nn.

In particular,

X0 :=
[
I, AT, . . . , (AN−1)T, (AN )T

]T
,

whereas Xu and Xw are block lower triangular matrices; in

particular, Xu = M(B;A, N) and Xw = M(I;A, N) with

M(N;A, N) :=




0 0 . . . 0

N 0 . . . 0

AN N . . . 0
...

... . . .
...

AN−1N AN−2N . . . N



. (6)

Furthermore, Y0 := YxX0, Yu := YxXu, Yw := YxXw

where Yx ∈ R
Np×(N+1)n is a block lower triangular matrix

with

Yx := [bdiag(C, . . . ,C),0]. (7)

Note that for the derivation of (5b), we have used the

fact that y = Yxx + v, which follows from (1b) and itself

implies, in view of (5a), that

y = YxX0x0 +YxXuu+YxXww + v,

from which (5b) follows readily.

The following basic assumption will be useful in the

subsequent discussion.

Assumption 1: The pair (A, B) is controllable, that is,

rank(
[
B . . . An−1B

]
) = n. (8)

In addition, the pair (C, A) is observable, that is,

rank(
[
CT . . . CT(An−1)T

]T
) = n. (9)

Remark 1 The controllability assumption given in (8) will

ensure that the expected value of the state can be steered

to any vector in R
n with the application of an appropriate

control sequence, at least, in the absence of input constraints.

In addition, the observability assumption is made to ensure

that the output measurements will always contain the amount

of information needed to extract good state estimates from

them.



C. State Estimator Dynamics

We assume that a recursive state estimator provides es-

timates of the current state of the control system based on

its output measurements. The state of the estimator and its

corresponding output, which are denoted by x̂(·) and ŷ(·),
respectively, satisfy the following equations:

x̂(0) = x̂(0| − 1) +Λ◦(0)
(
y(0)−Cx̂(0| − 1), (10a)

x̂(t+ 1) = Ax̂(t) +Bu(t) +Λ◦(t)
(
y(t+ 1)

−CAx̂(t)−CBu(t)
)
, (10b)

for t ∈ [0, N − 1]d, and

ŷ(0) = Cx̂(0), ŷ(t) = Cx̂(t), (11)

for t ∈ [1, N − 1]d, where x̂(0| − 1) = E(x0) = µ0 and

Λ◦(t) denotes the optimal estimation gain (or “Kalman”

gain) matrix at time t, which is determined by the following

recursive scheme [22], [23]:

P(0| − 1) = E[(x0 − µ0)(x0 − µ0)
T] = Σ0, (12a)

P(t|t− 1) = AP(t− 1|t− 1)AT +W, (12b)

Λ◦(t) = P(t|t− 1)CT
[
CP(t|t− 1)CT +V]−1, (12c)

P(t|t) =
[
I−Λ◦(t)C

]
P(t|t− 1), (12d)

for t ∈ [0, N − 1]d. Now, let us denote by e(t) the state

estimation error, where e(t) := x(t)− x̂(t), for t ∈ [0, N ]d.

In addition, we denote by ψ(t) the output estimation error,

which is also known as the output residual, where ψ(t) :=
y(t) − ŷ(t), for t ∈ [0, N − 1]d. In light of (1a)-(1b) and

(10a)-(11), we have that

e(t+ 1) = Ae(t)e(t) +Be(t)w(t) +De(t)v(t), (13a)

ψ(t) = Ce(t) + v(t), (13b)

for t ∈ [0, N − 1]d, with

Ae(t) := A−Λ◦(t)CA,

Be(t) := I−Λ◦(t)C,

De(t) := −Λ◦(t).

In addition, e(0) = e0, with e0 ∼ N (0, Σ̃0) where the error

covariance matrix Σ̃0 satisfies the following equation [23]:

Σ̃0 := Σ0 −Σ0C
T(CΣ0C

T +V)−1CΣ0. (14)

A well-known property of the Kalman filter is that the state

estimation error is orthogonal to the state estimate, which

implies that

E
[
x̂(t)e(t)T

]
= 0, E

[
e(t)x̂(t)T

]
= 0, (15)

for all t ∈ [0, N ]d.

Now, let E0:N := {e(t) ∈ R
n : t ∈ [0, N ]d} and

Ψ0:N−1 := {ψ(t) ∈ R
p : t ∈ [0, N − 1]d} and let

e := vec(E0:N ) and ψ := vec(Ψ0:N−1). Then, we can write

equations (13a)–(13b) compactly as follows:

e = E0e0 +Eww +Evv, (16a)

ψ = Ψ0e0 +Ψww +Ψvv, (16b)

where E0 ∈ R
(N+1)n×n, Ew ∈ R

(N+1)n×Nn and Ev ∈
R

(N+1)n×Np. In particular, E0 is defined as follows:

E0 :=
[
I Φe(1, 0)

T . . . Φe(N, 0)
T
]T
,

where Φe(t, τ) := Ae(t − 1) . . .Ae(τ), for all (t, τ) ∈
[1, N ]d × [0, N − 1]d with t > τ (note that Φe(t, τ) :=
Ae(t − 1), when t = τ + 1) and Φe(t, t) = I, for all t ∈
[1, N ]d. In addition, Ew and Ev are block lower triangular

matrices, and in particular, Ew := M(Be(·);Φe(·, ·), N)
and Ev := M(De(·);Φe(·, ·), N), where

M(P(·);Φe(·, ·), N) :=


0 0 . . . 0

P(0) 0 . . . 0

Φe(2, 1)P(0) P(1) . . . 0
...

... . . .
...

Φe(N, 1)P(0) Φe(N, 2)P(1) . . . P(N − 1)



.

Furthermore, we have that

Ψ0 := YxE0, Ψw := YxEw, Ψv := YxEv + I.

For the derivation of (16b), we have used the fact that

ψ = Yxe+ v,

which follows from (13b) and itself implies, in view of (16a),

that

ψ = YxE0e0 +YxEww + (YxEv + I)v,

from which the result follows readily.

D. Formulation of the Stochastic Optimal Control Problem

with Covariance Assignment Constraints

Our objective is to find a control policy that minimizes

the expected value of a finite sum of convex quadratic

functions (costs per stage) of the state x(t) of the stochastic

linear system (1a)-(1b), subject to an inequality constraint

on the squared ℓ2-norm of the input (random) sequence

U0:N−1. We will assume that the set of admissible control

policies, which is denoted by P , consists of all control

policies π := {µ(·; t); t ∈ [0, N − 1]d}, where at each

stage t, the control law µ(·; t) is a causal (non-anticipative),

measurable function of the elements of the output process

Y0:t and in particular, an affine combination of the elements

of the latter process (or more precisely, the complete filtration

of the sigma field generated by the elements of Y0:t). In

particular, for each t ∈ [0, N − 1]d, the control law µ(·; t)
will map a given (random) finite-length sequence Y0:t to

a (random) m-dimensional input vector u(t). We write

π = {µ(Y0:t; t) : t ∈ [0, N − 1]d}. Next, we give the

precise formulation of the stochastic optimal control problem

with incomplete and imperfect state information subject to

covariance assignment constraints.

Problem 1: Let N , q ∈ Z
++ and Σ0, Σf ∈ S

++
n be

given. In addition, let {Q(t) ∈ S
+
n : t ∈ [0, N − 1]d}

and {R(t) ∈ S
+
m : t ∈ [0, N − 1]d} be given sequences

of positive semi-definite matrices and let also ℓ be a given

positive number. Then, find an optimal control policy π◦ :=



{µ◦(Y0:0; 0), . . . , µ
◦(Y0:N−1;N − 1)} ∈ P that minimizes

the performance index

J(π) := E

[N−1∑

t=0

x(t)TQ(t)x(t)
]

(17)

over all admissible feedback control policies π =
{µ(Y0:0; 0), . . . , µ(Y0:N−1;N − 1)} ∈ P subject to (i)
the difference equation (1a)-(1b), (ii), the following input

constraint:

C(π) ≤ 0, C(π) := E

[N−1∑

t=0

u(t)TR(t)u(t)
]
− ℓ, (18)

and (iii) the following terminal constraints in terms of the

mean and the covariance of the (random) state vector x(t)
at t = N :

h(x(N)) = 0, H(x(N)) � 0,

where

h(x(N)) := E [x(N)] , (19a)

H(x(N)) := Σf − E
[
x(N)x(N)T

]
. (19b)

Remark 2 Note that instead of the positive semi-definite

constraint H(x(N)) � 0, where H(x(N)) is given in

(19b), one should in principle enforce the following ma-

trix equality constraint: H(x(N)) = 0, or equivalently,

E
[
x(N)x(N)T

]
= Σf . Note that the latter matrix equal-

ity constraint together with the vector equality constraint

h(x(N)) = E [x(N)] = 0 imply that the terminal state

covariance should be equal to a prescribed positive definite

matrix (strict covariance assignment constraint). As we have

shown in our previous work in [12], the matrix equality

constraint H(x(N)) = 0 is non-convex, whereas the positive

semi-definite constraint H(x(N)) � 0 corresponds to a con-

vex relaxation of the latter. These remarks will become more

clear later on, when we discuss the process of converting

Problem 1 into a tractable finite-dimensional optimization

problem.

III. REDUCTION OF THE STOCHASTIC OPTIMAL

CONTROL PROBLEM TO A TRACTABLE CONVEX

PROGRAM

A. Set of Admissible Control Policies

Finding the solution to Problem 1 can be a very complex

task. In our previous work [14], [15], we have proposed

solution techniques in which the proposed feedback control

policy was taken to be a sequence of control laws that

were affine functions of the present and all past output

measurements. It turns out that the computation of the latter

feedback policy can incur a significant cost when the number

of stages, N , is large given that the control law at each stage

depends on the present and all past measurements. Herein,

we restrict our search to a subset of P that consists of policies

π = {µ(·; t) : t ∈ [0, N − 1]d}, where

µ(Ψ0:t; t) = ū(t) +
t∑

τ=0

F(t, τ)ψ(t), (20)

for t ∈ [0, N − 1]d, where F(t, τ) ∈ R
m×p for all (t, τ) ∈

[0, N−1]d× [0, N−1]d with t ≥ τ , and Ū0:N−1 := {ū(t) ∈
R

m : t ∈ [0, N − 1]d} is a finite-length sequence of (open-

loop) reference input signals. We will denote this subset of

P as P̂ . Note that the fact that P̂ is a subset of P is a direct

consequence of the fact that the state estimate x̂(t) is an

affine function of the present and past output measurements,

that is, x̂(t) is an affine function of the elements of Y0:t [23].

Note that there is nothing that prevents us from setting

F(t, τ) = 0 for all τ ∈ [0, t−σ−1]d, for some σ ∈ [0, t−1]d.

In this case µ(·; t) will be an affine function of the elements

of the truncated output process Ψt−σ:t, that is,

µ(Ψt−σ:t; t) = ū(t) +

t∑

τ=t−σ

F(t, τ)ψ(t). (21)

For instance, if σ = 1, then µ(·; t) will depend only on

the current and the most recent output residuals, ψ(t) and

ψ(t − 1), respectively, whereas if σ = 0, then µ(·; t) will

depend only on the current output residual, ψ(t). In the

subsequent discussion, we will present the most general

cases in which the control law depends on the whole history

of output estimation errors and satisfies equation (20). The

analysis for the case when the control law depends only

on a truncated version of the history of output estimation

errors can be done in a similar (and obvious) way after the

necessary modifications have been carried out.

In order to find the closed-loop dynamics of the discrete-

time linear system given in (1a)-(1b), we will have to set

u(t) = µ(Ψ0:t; t), where µ(Ψ0:t; t) is defined in (20). Then,

u := ū+Kψ, (22)

where ū := vec(Ū0:N−1) and K ∈ R
Nm×Np is an N ×N

block lower triangular matrix with blocks Ki,j ∈ R
m×p. In

particular, Ki,j := F(i− 1, j − 1), if i ≥ j, and Ki,j := 0,

if i < j. In view of (16b), equation (22) gives

u = ū+U0(K)e0 +Uw(K)w +Uv(K)v, (23)

with U0(K) := KΨ0, Uw(K) := KΨw, and Uv(K) :=
KΨv . Equation (23) induces an one-to-one mapping that

associates a control policy π ∈ P̂ with the decision variables

(ū,K). In particular, given (ū,K), the corresponding control

policy π = {µ(Et+1ψ; t) : t ∈ [0, N − 1]d}, with

µ(Et+1ψ; t) := Et+1(ū+U0(K)e0+Uw(K)w+Uv(K)v),

where Et+1 ∈ R
1×Nm, for t ∈ [0, N − 1]d, is a block row

vector with N blocks (Et+1)1,i ∈ R
m, for i ∈ [1, N ]d. In

particular, (Et+1)1,i = I, for i = t + 1, and (Et+1)1,i = 0,

otherwise. We denote the latter mapping as ̟ and we write

π = ̟(ū,K). The inverse mapping, ̟−1, can be defined

similarly; we write (ū,K) = ̟−1(π).

B. Closed-loop dynamics

In view of (5a) and (23), the closed loop dynamics of the

control system can be written compactly as follows:

x = X0x0 +Xu(U0(K)e0 +Uw(K)w +Uv(K)v)

+Xuū+Xww, (24)



or equivalently,

x = Gx0
x0 + Gūū+ Ge0(K)e0

+ Gw(K)w + Gv(K)v, (25)

where Gx0
:= X0, Gū := Xu, Ge0(K) := XuKΨ0,

Gw(K) := Xw +XuKΨw, and Gv(K) := XuKΨv .

C. Expressions of the cost and constraint functions in terms

of the decision variables ū and K

The cost function can be written as follows:

J(π) = E
[
xTQx

]
= E

[
trace(xxTQ)

]
, (26)

where Q := bdiag(Q(0), . . . ,Q(N − 1),0) ∈ S
+
(N+1)n. In

view of (25), Eq. (26) can be written as follows:

J(π) = E
[
trace

(
(Gx0

x0 + Gūū

+ Ge0(K)e0 + Gw(K)w + Gv(K)v)

× (Gx0
x0 + Gūū

+ Ge0(K)e0 + Gw(K)w + Gv(K)v)TQ
)]

=: J (K). (27)

In view of (2a)– (4b) and (15), Eq. (27) implies that

J (K) = trace
(
(Gx0

(Σ0 + µ0µ
T
0)G

T
x0

+ 2Gx0
µ0ū

TG
T
ū + Gūūū

TG
T
ū

+ 2Gx0
Σ̃0Ge0(K)T

+ Ge0(K)Σ̃0Ge0(K)T + Gw(K)WGw(K)T

+ Gv(K)VGv(K)T)Q
)
, (28)

where W = bdiag(W, . . . ,W) and V = bdiag(V, . . . ,V).
In the previous derivation, we have used the fact that, in the

light of (15), we have that

E
[
x0e

T
0

]
= E

[
(x̂0 + e0)e

T
0

]
= Σ̃0. (29)

The input constraint function C(π) can be written com-

pactly as follows:

C(π) = E
[
uTRu

]
− ℓ = E

[
trace(uuTR)

]
− ℓ, (30)

where R := bdiag(R(0), . . . ,R(N − 1)) ∈ S
+
Nm. In view

of (23), Eq. (30) can be written as follows:

C(π) = E
[
trace

(
(ū+U0(K)e0 +Uw(K)w +Uv(K)v)

× (ū+U0(K)e0 +Uw(K)w +Uv(K)v)TR
)]

− ℓ

=: C(F). (31)

In light of (2a)–(4b) and (15), Eq. (31) implies that

C(K) = trace
(
ūūT +U0(K)Σ̃0U0(K)T

+Uw(K)WUw(K)T

+Uv(K)VUv(K)T)R
)
− ℓ. (32)

Next, we express the terminal constraint h(x(N)) = 0

in terms of the decision variables (ū,K). To this aim, we

observe that in view of (25), equation (19a) becomes

h(x(N)) = E
[
EN+1

(
Gx0

x0 + Gūū+ Ge0(K)e0

+ Gw(K)w + Gv(K)v
)]

=: h̃(ū), (33)

where EN+1 := [0, 0, . . . ,0, I]. In view of (2a)–(2b) and

the fact that E[x0] = µ0 and E[e0] = 0, it follows that

h̃(ū) = EN+1(Gx0
µ0 + Gūū). (34)

From (6) and (34), it follows that the terminal constraint

h̃(ū) = 0 can be written equivalently as follows:
[
AN−1B . . . B

]
ū = χ, χ := −EN+1Gx0

µ0. (35)

Proposition 1: Suppose that N ≥ n. If Assumption 1

holds true, then the linear constraint h̃(ū) = 0, where h̃(ū)
is defined in (34), will always be feasible.

Proof: If (8) holds true, then the system of (algebraic)

linear equations that is given in (35) will always admit a

solution. This is because the vector χ := −EN+1Gx0
µ0 will

always belong to the range of
[
B . . . An−1B

]
given that

N ≥ n, by hypothesis.

Next, we will express the positive semi-definite constraint,

H(x(N)) � 0, in terms of the elements of the decision

variables (ū,K). To this aim, we note that in view of (2a)–

(3), (15), (29), equation (19b) gives

H(x(N)) = Σf −EN+1

(
Gx0

(Σ0 + µ0µ
T
0)G

T
x0

+ Gx0
µ0ū

TG
T
ū + Gūūµ

T
0G

T
x0

+ Gūūū
TG

T
ū

+ Ge0(K)Σ̃0G
T
x0

+ Gx0
Σ̃0Ge0(K)T

+ Ge0(K)Σ̃0Ge0(K)T + Gw(K)WGw(K)T

+ Gv(K)VGv(K)T
)
ET

N+1 =: H(ū,K). (36)

In particular,

H(ū,K) = Σ̂f −H1(ū)H1(ū)
T −H2(K)H2(K)T

−H3(K)

= Σ̂f −Λ(ū,K)Λ(ū,K)T −H3(K), (37)

where

Σ̂f := Σf −EN+1Gx0
Σ0G

T
x0
,

H1(ū) := EN+1

(
Gx0

µ0 + Gūū
)
,

H2(K) := EN+1

(
Ge0(K)Σ̃0Ge0(K)T

+ Gw(K)WGw(K)T + Gv(K)VGv(K)T
)1/2

,

H3(K) := EN+1

(
Ge0(K)Σ̃0G

T
x0

+ Gx0
Σ̃0Ge0(K)T

)
ET

N+1,

and Λ(ū,K) :=
[
H1(ū) H2(K)

]
.

An important observation at this point is that H1(ū) and

H2(K) are affine functions of ū and K, respectively, and

consequently, Λ(ū,K) is an affine (joint) function of (ū,K).

Proposition 2: Let Σ0, Σf ∈ S
++
n . The constraints

H(ū,K) � 0 and M(ū,K) � 0 are equivalent in

the sense that the set SH := {(ū,K) ∈ R
Nm ×

R
Nm×Np : H(ū,K) � 0} and the set SM := {(ū,K) ∈

R
Nm × R

Nm×Np : M(ū,K) � 0}, where

M(ū,K) :=

[
I [H1(ū) H2(K)]

[H1(ū) H2(K)]T Σ̂f −H3(K)

]

=

[
I Λ(ū,K)

Λ(ū,K)T Σ̂f −H3(K)

]
(38)



are equal. In addition, the positive semi-definite constraint

M(ū,K) � 0 can be written as an LMI (convex) constraint

in terms of the elements of (ū,K).

Proof: Because the matrix H(ū,K) is the Schur

complement of I in the matrix M(ū,K), which is defined in

(38), it follows that the constraint H(ū,K) � 0 is equivalent

to the following constraint M(ū,K) � 0. Note that the

latter positive semi-definite constraint can be expressed as

an LMI constraint in terms of the elements of (ū,K) [24].

Problem 2: Given ℓ > 0 and Σ0, Σf ∈ S
++
n , find the

matrix K⋆ ∈ R
Nm×Np that minimizes J (K) subject to

C(K) ≤ 0, h̃(ū) = 0, and H(ū,K) � 0 where J (K),
C(K), h̃(ū), and M(ū,K) are defined in (28), (32), (34)

and (38), respectively.

Proposition 3: Under the assumption that the set of con-

trol policies is restricted to the subset P̂ of P , Problem 1 and

Problem 2 are equivalent in the sense that if π◦ ∈ P̂ solves

Problem 1, then (ū◦,K◦) = ̟(π◦) solves Problem 2, and

vice versa.

Proof: The proof follows readily after noting that

J(π) = J (K), C(π) = C(K), h̃(ū) = h(x(N)), and

H(x(N)) = H(ū,K) provided that π = ̟(ū,K) together

with Proposition 2.

Remark 3 An important observation at this point is that

with the proposed reduction of the stochastic optimal control

problem (Problem 1) to a convex program (Problem 2), we

can decrease the dimension of the latter convex program by

truncating the history of output residuals that the control

laws at each stage will depend to. Note, on the other hand

that the longer the history of the output residuals, the better

performance can be achieved, especially in the presence of

stringent constraints. Therefore, one should choose the length

of this history in such a way that strikes a balance between

performance and computational tractability.

IV. CONCLUSION

In this work, we have proposed a systematic approach for

the reduction of a stochastic optimal control problem with

partial state information subject to covariance assignment

and input energy constraints into a tractable convex program.

In contrast with our previous work on similar problems, in

this work we have proposed separation-based control policies

which are sequences of feedback control laws that are affine

mappings of either the complete history of output estimation

errors, which are computed with the aid of a discrete-time

Kalman filter algorithm, or a truncation of the latter history.

In our approach, the size of the resulting convex problem

depends on the length of the truncated history of the output

estimation errors; something that allows us to design control

policies that strike a balance between good performance

and computational scalability. In our future work, we will

consider the nonlinear stochastic optimal control problem

with state covariance assignment constraints.
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