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Dynamic Output Feedback Control of the Liouville
Equation for Discrete-Time SISO Linear Systems

Efstathios Bakolas

Abstract—In this work, we address the so-called Liouville
control problem for SISO discrete-time linear systems in the class
of Gaussian distributions. In particular, we propose a systematic
procedure for the characterization of a dynamic output feedback
policy that will transfer the output of the system, which is a
known Gaussian random variable, to a goal Gaussian distribution
after a finite number of stages. In the proposed approach, the
Liouville control problem is reduced to two decoupled (finite-
dimensional) quadratic programs, one of which is subject to a
single affine constraint, which is a convex program, whereas the
other one is subject to a single quadratic equality constraint.
Despite the fact that the second optimization problem is not
convex, one can characterize its exact solution via a systematic
procedure without resorting to convex relaxation techniques,
which may yield suboptimal or even infeasible solutions to the
original (non-convex) optimization problem. Finally, we present
numerical simulations that illustrate the key ideas of this work.

I. INTRODUCTION

We consider the problem of characterizing a dynamic output

feedback control policy that will steer the uncertain output

variable of a SISO discrete-time linear system to a goal

Gaussian distribution. This problem, which we refer to as

the Liouville control problem, can be put under the umbrella

of the so-called Liouville transport problems restricted to the

space of Gaussian distributions and subject to linear dynamic

constraints. The motivation for the Liouville control problem

comes from a variety of real-world applications related to,

for instance, quality control and industrial / manufacturing

processes, in which the design specifications of the product

(output of the process) are described in probabilistic ways [1].

Characteristic examples include industrial processes for thick-

ness control of paper sheets and plastic films [2], [3]. Another

envisioned application is the steering control of a multi-agent

system whose macroscopic state as a whole can be described in

terms of a probability distribution in lieu of a vector formed by

concatenating the states of its constituent agents. In this work,

we show that the Liouville control problem can be reduced

to two decoupled optimization problems. The first problem

is a standard convex quadratic program, whereas the second

one is a tractable (deterministic) non-convex optimization

problem with a convex quadratic performance index but a non-

convex quadratic equality constraint. We subsequently utilize

a systematic procedure that furnishes the exact solutions to the

two optimization problems, which in turn induce the optimal

control policy that solves the Liouville control problem.

Literature Review: The Liouville control problem in the

continuous-time framework with perfect state information was
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first proposed by Brockett [4]. In particular, [4] considers

the problem of steering the state of a continuous-time linear

system, which is initially drawn from a known (multi-variate)

Gaussian distribution, to a goal (multi-variate) Gaussian distri-

bution in a given (finite) terminal time and provides conditions

for the solvability of this steering problem. It is not surprising

that the solution to the latter problem can be expressed as

the combination of a feed-forward signal and a time-varying

state feedback policy. The results presented in [4] have been

extended to the case of static output feedback and the case

of parallel interconnections of linear systems in [5]. All the

previous problems can be put under the umbrella of the so-

called ensemble control [6], [7], or control of families of

systems, according to [8]. A similar class of problems deal

with the steering of the (uncertain) state of a stochastic linear

system, which is subject to white Gaussian noise, to a goal

Gaussian distribution in either continuous time [1], [9] or

discrete time [10]–[14].

Main contributions: The focus of [4], which is the main

inspiration of this work, is mainly on the investigation of

the question of controllability / reachability under full state

feedback without, however, touching upon the practical prob-

lem of control design. In particular, [4] does not present a

systematic procedure for the characterization of a control law

that will realize the required transfer of the state’s distribution

to the goal Gaussian distribution. In this work, we address

the finite-horizon Liouville control problem in the class of

Gaussian distributions for discrete-time SISO (deterministic)

linear systems. In our approach, we consider control policies

that are sequences of control laws which can be expressed

as affine functions of any realization of the history of (past

and present) output measurements similarly with the so-

called affine disturbance feedback parametrization, which is

used in control design problems for discrete-time stochastic

linear systems [15]. We show that with this particular control

policy parametrization, the Liouville control problem consid-

ered herein can be reduced to a system of two decoupled

optimization problems.

In particular, the first optimization problem corresponds to

a convex quadratic program (QP) subject to affine constraints,

whose solution will yield the feed-forward input sequence that

will steer the mean of the output’s distribution to the prescribed

goal quantity. On the other hand, the second problem is a

quadratic program subject to an equality quadratic constraint,

which is a non-convex program, whose solution will yield

the gains of a dynamic output feedback control policy that is

intended to realize the transfer of the variance of the system’s

output to the prescribed goal value. While the first problem

admits a closed form solution, the second problem poses some

significant challenges due to the presence of the quadratic
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equality constraint (terminal variance constraint), which is, in

general, non-convex (in the sense that the feasible set it induces

is non-convex). We will henceforth refer to the latter quadratic

program with the non-convex quadratic (equality) constraint as

the GQCQP (Generalized Quadratically Constrained Quadratic

Program). It should be mentioned here that problems similar

to the GQCQP have received some attention in the literature

of optimization and applied statistics due to their relevance to

many applications [16]–[20]. It turns out that the exact solution

to the GQCQP, and thus the Liouville control problem, can be

characterized by means of a systematic procedure which com-

bines analytical and computational techniques. An alternative

approach to address our problem would be to employ convex

relaxation techniques [21]–[23]. Such techniques are intended

to reduce a given non-convex optimization problem to a cor-

responding “relaxed” convex program, under the assumption

that the solution to the latter will be a good approximation of

the solution to the original problem. It is very likely, however,

that the solution to the relaxed problem may be suboptimal or

even fail to satisfy the constraints of the original non-convex

program.

Structure of the paper: The rest of the paper is organized

as follows. In Section II, we formulate the Liouville control

problem, which we subsequently reduce to a finite-dimensional

optimization problem in Section III. A systematic approach

for the solution of the latter problem, which is equivalent to a

decoupled system of two tractable optimization problems, is

presented in Section IV. Numerical simulations are presented

in Section V and finally, Section VI concludes the paper with

a summary of remarks.

II. PROBLEM FORMULATION

A. Notation and Some Key Background Results and Properties

We denote by R
n and R

m×n the set of n-dimensional real

vectors and m×n real matrices, respectively. We write |α| to

denote the 2-norm of a vector α ∈ R
n. We denote by int(S)

the interior of a set S ⊆ R
n. We write Z

+
0 and Z

+ to denote

the set of non-negative integers and strictly positive integers,

respectively. Given M,N ∈ Z
+
0 with M ≤ N , we denote

by Z
N
M the discrete set {M, . . . , N} = [M,N ] ∩ Z

+
0 . E [·]

denotes the expectation operator. We write 0m×p (or simply,

0) and Im (or simply, I) to denote the m × p zero matrix

and the m × m identity matrix, respectively. We denote by

R(A) and N (A) the range space and the null space of the

matrix A ∈ R
m×n, respectively. We denote the i-th row and

the j-th column of a matrix A ∈ R
m×n by rowi(A) ∈ R

n and

colj(A) ∈ R
m, respectively. We also denote by A

† the Moore-

Penrose (pseudo-) inverse of A; it holds that AA
†
A = A

and A
†
AA

† = A
†. The space of n × n symmetric (real)

matrices is denoted by Sn. Finally, we will denote the convex

cone of n× n symmetric positive definite and positive semi-

definite matrices by S
++
n and S

+
n , respectively. Given a square

matrix A, we denote its trace by trace(A). Given A ∈ R
m×n

and B ∈ R
n×m, we have that trace(AB) = trace(BA)

(cyclic property). By ⊗ we denote the Kronecker product

operator. Furthermore, we denote by vec(·) the vectorization

(linear) operator that maps a matrix A = [aij ] ∈ R
m×n

to a mn-dimensional column vector denoted by vec(A),
where vec(A) := [col1(A)T, . . . , coln(A)T]T. Given three

real matrices A, B, and C of compatible dimensions, it

holds that vec(ABC) = (CT ⊗ A)vec(B). In addition,

trace(AT
B) = vec(A)Tvec(B). The set of N ×N lower tri-

angular matrices will be denoted by LT(RN×N ), that is, B =
[bij ] ∈ LT(RN×N ) if and only if bij = 0 for all j > i. The

half-vectorization (linear) operator vech(·) maps a matrix B =
[bij ] ∈ LT(RN×N ) to an υ-dimensional column vector, with

υ := N(N+1)/2, which is denoted by vech(B) and is defined

as follows: vech(B) := [colh1(B)T, . . . , colhN (B)T]T, where

colhj(B) := [bjj , . . . , bNj ]
T ∈ R

N+1−j . Note that there exists

a full-column rank matrix Ω ∈ R
N2×υ , that is, rank(Ω) = υ

(note that N2 ≥ υ for all N ∈ Z
+), whose columns form a

set of υ orthonormal vectors (that is, ΩT
Ω = Iυ) such that

vec(B) = Ωvech(B) and vech(B) = Ω
Tvec(B). Finally, we

will denote by vec−1(·) and vech−1(·) the inverse (linear)

operators of vec(·) and vech(·), respectively. Finally, given a

function f : D ⊆ R
m → R

n, we denote by Im(f |D) the

image of D under f , that is, Im(f |D) = {y ∈ R
n : y =

f(x), x ∈ D}.

B. Formulation of the Liouville Control Problem for SISO

Discrete-Time Linear Systems

For a given N ∈ Z
+, let {A(t) ∈ R

n×n : t ∈ Z
N−1
0 },

{b(t) ∈ R
n×1 : t ∈ Z

N−1
0 } and {c(t) ∈ R

n×1 : t ∈ Z
N−1
0 }

denote known sequences of matrices and column vectors,

respectively. Let us also consider the following discrete-time

linear system:

x(t+ 1) = A(t)x(t) + b(t)u(t), (1a)

y(t) = c(t)Tx(t), (1b)

for t ∈ Z
N−1
0 , where x(0) = x0 is a random vector drawn

from the Gaussian distribution N (m0,Σ0) with m0 ∈ R
n and

Σ0 ∈ S
++
n be given. In addition, XN

0 := {x(t) : t ∈ Z
N
0 },

UN−1
0 := {u(t) : t ∈ Z

N−1
0 }, and Y N−1

0 := {y(t) : t ∈
Z
N−1
0 } denote, respectively, the state, the control input, and

the output random (finite-length) sequences1.

Our objective is to find a control policy that will steer the

last element of Y N−1
0 , which is a normal random variable, to

a goal Gaussian distribution while minimizing the expected

value of a finite sum of cost-per-stage functions, which are

convex quadratic functions of the output y(t) and the input

u(t) of the linear system (1a)-(1b) as t runs through Z
N−1
0 .

It is assumed that the set of admissible control policies

consists of all control policies π which can be expressed

as sequences of control laws κ(·; t) that are causal (non-

anticipative), measurable functions of the σ-field generated

by Y t
0 := {y(τ) : τ ∈ Z

t
0}. In other words, u(t) can

be computed as a (measurable) function of the realization

of the t-truncated (random) output sequence Y t
0 . We will

henceforth restrict our attention to admissible control policies

π = {κ(·; t) : t ∈ Z
N−1
0 } for which the feedback control law

κ(·; t) at stage t can be expressed as an affine combination of

the elements of the realization of Y t
0 , that is,

κ(Y t
0 ; t) := ν(t) +

t
∑

τ=0

ky(t, τ)y(τ), for all t ∈ Z
N−1
0 ,

1Although (1a)-(1b) describe a deterministic system, the fact that the initial
state is a random vector renders the previous sequences random.
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where ky(t, τ) ∈ R is the gain that determines the effect of

the output measurement y(τ) on the control input u(t), for all

(t, τ) ∈ Z
N−1
0 × Z

N−1
0 with t ≥ τ . We will denote the set

comprised of these control policies by Π. Next, we give the

precise formulation of the Liouville control problem for the

system (1a)–(1b).

Problem 1: Assume that E[x0] = m0 = 0 and E[x0x
T
0] =

Σ0, where Σ0 ∈ S
++
n , and let also µf ∈ R, σf > 0 and N ∈

Z
+ be given. In addition, let QN−1

0 := {q(t) : t ∈ Z
N−1
0 }

and RN−1
0 := {r(t) : t ∈ Z

N−1
0 } be known (finite-length)

sequences of non-negative and positive numbers, respectively.

Then, find a control policy π := {κ(·; t) : t ∈ Z
N−1
0 } ∈ Π

that minimizes the performance index:

J(π) := E

[

N−1
∑

t=0

q(t)y(t)2 + r(t)u(t)2
]

, (2)

subject to the equality constraints induced by (1a)-(1b), and the

following boundary conditions: y(0) ∼ N (0, σ0) and y(N −
1) ∼ N (µf , σf), or equivalently,

E [y(0)] = 0, E
[

y(0)2
]

= σ2
0 , (3a)

E [y(N − 1)] = µf , E
[

(y(N − 1)− µf)
2
]

= σ2
f , (3b)

where σ2
0 := cTΣ0c.

Remark 1 The assumption that E[x(0)] = 0, and thus

E[y(0)] = 0, is made to simplify the subsequent analysis and

streamline the presentation. A similar assumption is typically

made in the standard formulation of the basic reachability

or controllability problem in the literature of deterministic

linear systems [24], according to which the initial or terminal

(deterministic) state, respectively, is taken to be the origin.

The case when E[x(0)] 6= 0 can be treated similarly, after the

necessary modifications have been carried out.

III. CONVERSION OF THE STOCHASTIC OPTIMAL

CONTROL PROBLEM INTO AN OPTIMIZATION PROBLEM

A. Preliminary Analysis

In this section, we will show how to convert Problem 1

to an equivalent optimization problem that is computationally

tractable. To this aim, we will first express the solution to the

recursion equation (1a) and the output equation (1b) in the

following compact form:

x = Bu+ Γx0, y = Cx, (4)

where x ∈ R
(N+1)n, u ∈ R

N and y ∈ R
N correspond,

respectively, to the concatenations of the elements of XN
0 ,

UN−1
0 and Y N−1

0 . In particular, x := [x(0)T, . . . , x(N)T]T,

u := [u(0), . . . , u(N − 1)]T, and y := [y(0), . . . , y(N − 1)]T.

In addition, the matrix B ∈ R
(N+1)n×N is defined as follows:

B :=
[

0N×1, B
T
2

]T
with

B2 :=

























b(0) 0 . . . 0
Φ(2, 1)b(0) b(1) . . . 0

...
...

. . .
...

Φ(N, 1)b(0) Φ(N, 2)b(1) . . . b(N − 1)

























,

where

Φ(t, τ) := A(t− 1) . . .A(τ), Φ(τ, τ) = I,

for (t, τ) ∈ Z
N
1 × Z

N
0 with t ≥ τ (note that Φ(t, τ) =

A(t − 1) = A(τ), when t = τ + 1). Furthermore, we

consider the matrices C =
[

C1, 0N×n

]

∈ R
N×(N+1)n and

Γ ∈ R
(N+1)n×n, which are defined, respectively, as follows:

C1 :=



























c(0)T
01×n . . . 01×n

01×n c(1)T . . . 01×n

...
...

. . .
...

01×n 01×n . . . c(N − 1)T



























, Γ :=









I

Φ(1, 0)
...

Φ(N, 0)









.

Under the assumption that π = {κ(·; t) : t ∈ Z
N−1
0 } ∈ Π,

we can express the control input u(t) as follows:

u(t) = κ(Y t
0 ; t) = ν(t) +

t
∑

τ=0

ky(t, τ)y(τ), (5)

for all t ∈ Z
N−1
0 . The previous equation can be written in

compact form as follows:

u = ν +Kyy, (6)

where ν := [ν(0), . . . , ν(N − 1)]T ∈ R
N and Ky ∈

LT(RN×N ), Ky = [K(i,j)
y ] (gain matrix) with

K
(i,j)
y :=

{

ky(i− 1, j − 1), if i ≥ j,

0, otherwise.
(7)

In view of (4) and Eq. (6), we have

x = Bν +BKyCx+ Γx0, (8)

which implies that

x = X ν(Ky)ν +X 0(Ky)x0, (9a)

X 0(Ky) := (I−BKyC)
−1

Γ

= Γ+BKy(I− CBKy)
−1CΓ, (9b)

X ν(Ky) := (I−BKyC)
−1B

= B +BKy(I− CBKy)
−1CB. (9c)

Then, in view of (4) and (9a)–(9c) and the push-through

identity, y can be written compactly as follows:

y = Yν(Ky)ν +Y0(Ky)x0, (10a)

Y0(Ky) := (I− CBKy)
−1CΓ, (10b)

Yν(Ky) := (I− CBKy)
−1CB. (10c)

Finally, in view of (6) and (10a)-(10c), we can express u as

u = Uν(Ky)ν + U0(Ky)x0, (11a)

U0(Ky) := Ky(I− CBKy)
−1CΓ, (11b)

Uν(Ky) := I+Ky(I− CBKy)
−1CB. (11c)

Note that (I − CBKy)
−1 is always well defined given that

(I− CBKy) ∈ LT(RN×N ) and the diagonal elements of the

latter are equal to I. In addition, (I−CBKy)
−1 ∈ LT(RN×N ).

B. Introduction of the New Decision Variables

In this section, we will introduce two new decision vari-

ables, which we denote by Ψ and v, that will allow us to

reduce Problem 1 to a tractable optimization problem.

To this end, following [25], we first introduce the new

decision variable Ψ ∈ LT(RN×N ), where

Ψ := f(Ky), f(Ky) := Ky(I− CBKy)
−1. (12)
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In addition, f(Ky) will belong to LT(RN×N ) as the product

of two matrices in LT(RN×N ). Furthermore,

Ky = g(Ψ), g(Ψ) := (I+ΨCB)−1
Ψ. (13)

Again, the expression of g(Ψ) given in (13) is well defined

for all Ψ ∈ LT(RN×N ). We can then express x in terms of

Ψ as follows:

x = Xν(Ψ)ν +X0(Ψ)x0, (14a)

X0(Ψ) := X 0(g(Ψ)) = (I+BΨC)Γ, (14b)

Xν(Ψ) := X ν(g(Ψ)) = B(I+ΨCB). (14c)

The second decision variable, v ∈ R
N , is defined as follows:

v := (I+ΨCB)ν. (15)

In view of (14c) and (15), we have that Xν(Ψ)ν = Bv,

and thus, we can express x in terms of Ψ and v, in view of

(14a)-(14c), as follows:

x = Xvv +X0(Ψ)x0, (16)

where Xv := B (note that Xv is independent of the new

decision variables). Similarly, we can first express y in terms

of Ψ and v, in view of (4) and (16), as follows:

y = Yvv + Y0(Ψ)x0, (17a)

Y0(Ψ) := CX0(Ψ) = C(I+BΨC)Γ, (17b)

Yv := CXv = CB. (17c)

Finally, in view of (11a)-(11c), we have

u = Uν(Ψ)ν +U0(Ψ)x0, (18a)

U0(Ψ) := U0(g(Ψ)) = ΨCΓ, (18b)

Uν(Ψ) := Uν(g(Ψ)) = I+ΨCB. (18c)

In view of (15) and (18c), we have that Uν(Ψ)ν = v, and

thus the expression of u in terms of Ψ and v is given by

u = v +U0(Ψ)x0. (19)

Remark 2 It should be highlighted that the expressions of x,

y and u given in (16), (17a) and (19), respectively, correspond

to linear or affine functions of the new decision variables Ψ

and v.

C. Decomposition of the Performance Index

Next, we will determine the expression of the performance

index, J(π), which is defined in (2) for π ∈ Π, in terms

of the new decision variables Ψ and v. We will denote this

expression as J (v,Ψ), where, in view of (17a) and (19),

J (v,Ψ) := E
[

trace
(

yyTQ+ uuTR
)]

= E
[

trace
((

Yvv + Y0(Ψ)x0

)(

Yvv + Y0(Ψ)x0

)T
Q

+
(

v +U0(Ψ)x0

)(

v +U0(Ψ)x0

)T
R
)]

, (20)

where Q := diag(q(0), . . . , q(N − 1)) and R := diag(r(0),
. . . , r(N − 1)). By using the fact that E[x0] = m0 = 0 and

E[x0x
T
0] = Σ0, it follows readily that

J (v,Ψ) = trace
((

Yvvv
TY T

v + Y0(Ψ)Σ0Y0(Ψ)T
)

Q

+
(

vvT +U0(Ψ)Σ0U0(Ψ)T
)

R
)

. (21)

An interesting observation here is that J (v,Ψ) can be written

as the sum of two terms as follows:

J (v,Ψ) = J1(v) + J2(Ψ), (22a)

J1(v) := trace
(

Yvvv
TY T

v Q+ vvTR
)

= vT
(

Y T
v QYv +R

)

v, (22b)

J2(Ψ) := trace
(

Y0(Ψ)Σ0Y0(Ψ)TQ

+U0(Ψ)Σ0U0(Ψ)TR
)

. (22c)

Proposition 1: The function (v,Ψ) 7→ J (v,Ψ), where

J (v,Ψ) is defined in (21), is jointly convex in v and Ψ.

Proof: In the light of (22a) and (22b)-(22c), it suffices

to show that the functions v 7→ J1(v) and Ψ 7→ J2(Ψ) are

convex (in v and Ψ, respectively). First, we observe that J1(v)
is a quadratic form in v whose Hessian ∇2

vJ1(v), which is

equal to 2(YvQY T
v +R), belongs to S

++
N . We conclude that

J1(·) is (strictly) convex in v. In addition, J2(Ψ) can be

expressed as the sum of two composite functions, namely

the composition of Z 7→ f1(Z) := trace(ZZTQ) with the

function Ψ 7→ g1(Ψ) := Y0(Ψ)Σ
1/2
0 and the composition

of Z 7→ f2(Z) := trace(ZZTR) with the function Ψ 7→
g2(Ψ) := U0(Ψ)Σ

1/2
0 . Note that f1(·) and f2(·) are both

convex (in Z) whereas g1(·) and g2(·) are, respectively, affine

and linear functions of Ψ in view of (17b) and (18b). We

conclude that both Ψ 7→ f1(g1(Ψ)) and Ψ 7→ f2(g2(Ψ)) are

convex functions (in Ψ) as the compositions of convex func-

tions with, respectively, an affine and a linear function [26].

Consequently, J2(·), which is equal to the sum of the functions

f1(g1(·)) and f2(g2(·)) that are both convex in Ψ, will also

be a convex function (in Ψ). We conclude that J (v,Ψ) is

jointly convex in v and Ψ and the proof is now complete.

D. Terminal Constraints

In view of (17a), we have that E[y] = Yvv and E[y(N −
1)] = eT

NE[y], where eN is a unit vector in R
N , whose

elements are equal to zero except from the N -th element

which is equal to one. Therefore, the terminal condition

E[y(N − 1)] = µf can be written as

h(v) = 0, h(v) := CT
Nv − µf . (23)

where CN := Y T
v eN , or equivalently, in view of (17c),

CN := [c(N − 1)TΦ(N − 1, 1)b(0), . . . ,

c(N − 1)Tb(N − 2), 0]T. (24)

Note that the constraint function h(·) is affine in v.

Proposition 2: Equation (23) admits a solution for any µf ∈
R, if and only if CN 6= 0, where CN is defined in (24). In

addition, if CN = 0, then (23) admits a solution if and only

if µf = 0.

Proof: Because h(·) is an affine function (in v), we have

that Im(h|RN ) = R, or equivalently, the equation h(v) = 0
admits a solution for all µf ∈ R, if and only if CN 6= 0.

Finally, if CN = 0, then h(v) ≡ −µf and consequently, the

constraint equation h(v) = 0 admits a solution if and only if

µf = 0. This completes the proof.

Remark 3 Note that CN satisfies the following equation:

CT
N = c(N − 1)T[CN−1, 0], (25)

where CN−1 = [Φ(N − 1, 1)b(0), . . . , b(N − 2)]. Therefore,

if the matrix CN−1 is full row rank (provided N−1 ≥ n) and

the vector c(N − 1) 6= 0, then CN 6= 0 and thus, in view of
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Proposition 2, (23) always admits a solution. It is interesting

to note that if N − 1 ≥ n, then the assumption that CN−1

is full row rank is essentially a controllability assumption for

the time-varying system (1a)-(1b).

In addition, we can write E
[

y − E[y]
]

= Y0(Ψ)x0, from

which it follows that

E
[

(y − E[y])(y − E[y])T
]

= E
[

Y0(Ψ)x0x
T
0Y0(Ψ)T

]

= Y0(Ψ)Σ0Y0(Ψ)T. (26)

Next, we observe that

E
[

(y(N−1)−E[y(N−1)])2
]

= eT
NE

[

(y−E[y])(y−E[y])T
]

eN .

Consequently, the terminal constraint E
[

(y(N−1)−E[y(N−
1)])2

]

= σ2
f

can be written as follows:

zN (Ψ)TzN (Ψ) = σ2
f , zN (Ψ) := Σ

1/2
0 Y0(Ψ)TeN . (27)

Note that zN (Ψ) is, in view of Eq. (17b), an affine function

of Ψ.

IV. REDUCTION OF THE LIOUVILLE CONTROL PROBLEM

TO A DECOUPLED SYSTEM OF TWO TRACTABLE

OPTIMIZATION PROBLEMS

We are now in position to formulate an optimization prob-

lem in terms of the pair of decision variables (v,Ψ) that is

equivalent to Problem 1 in the sense that the solution (v⋆,Ψ⋆)
to the former problem (provided that it admits a solution) will

uniquely determine a solution π⋆ to Problem 1, and vice versa.

Problem 2: Given µf ∈ R and σf > 0, find an optimal pair

(v⋆,Ψ⋆) ∈ R
N×LT(RN×N ) that minimizes the performance

index J (v,Ψ), which is defined in (21), subject to the equality

constraints given in (23) and (27).

It is important to note that, in the light of (22a)–(22c),

J (v,Ψ) can be written as the sum of two cost terms, namely

J1(v) and J2(Ψ). In addition, the constraint given in (23)

involves only the decision variable v whereas the constraint

in (27) involves only Ψ. Thus, Problem 2 can be decomposed

into two decoupled subproblems, one in v and another in Ψ.

Problem 3: Find v⋆ ∈ R
N that minimizes the performance

index J1(v), which is given in (22b), subject to the equality

constraint (23) (Subproblem 3.1). In addition, find Ψ
⋆ ∈

LT(RN×N ) that minimizes the performance index J2(Ψ),
which is given in (22c), subject to the equality constraint given

in (27) (Subproblem 3.2).

Subproblem 3.1 corresponds to a standard controllability

/ minimum energy linear control problem, which turns out

to be a (strictly) convex quadratic program subject to an

affine equality constraint Next, we provide the solution to

Subproblem 3.1 for completeness of our exposition.

Proposition 3: Suppose that the vector CN , which is de-

fined in (24), is non-zero, that is, CN 6= 0 for a given N ∈ Z
+.

Then, for any µf ∈ R, Subproblem 3.1 admits a unique

solution v⋆, which is given by

v⋆ = (µf/C
T
NRCN )RCN , (28)

where R :=
(

Y T
v QYv +R

)−1
.

Proof: By hypothesis and in view of Proposition 2, the

affine constraint given in (23) is feasible for all v ∈ R
N . With

the change of variable ṽ = R
−1/2v, Subproblem 3.1 reduces

to the problem of minimizing |ṽ|2 subject to CT
NR

1/2ṽ = µf .

The solution to the latter problem corresponds to the minimum

norm solution of the (single) linear equation CT
NR

1/2ṽ = µf ,

whose solution is given by ṽ⋆ = (µf/C
T
NRCN )R1/2CN , from

which we obtain the expression of v⋆ given in Eq. (28), where

v⋆ = R
1/2ṽ⋆.

Proposition 4: Subproblem 3.2 is equivalent to the follow-

ing generalized quadratically constrained quadratic problem

(GQCQP):

min
x∈Rυ

x
T
H0x+ c

T
0 x, subject to fc(x) = 0, (29a)

fc(x) := x
T
Hcx+ c

T
c x+ dc, (29b)

where x := vech(Ψ) = Ω
Tvec(Ψ) and H0 ∈ S

++
υ , c0 ∈ R

υ ,

with υ := N(N + 1)/2, H0 := M
T
0 M0 +N

T
0 N0 and c0 :=

2MT
0 α0, where

M0 :=
(

Σ
1/2
0 ⊗Q

1/2
)(

(CΓ)T ⊗ (CB)
)

Ω, (30a)

N0 :=
(

Σ
1/2
0 ⊗R

1/2
)

((CΓ)T ⊗ I)Ω, (30b)

α0 :=
(

Σ
1/2
0 ⊗Q

1/2
)

vec(CΓ), (30c)

and Hc ∈ S
+
υ , cc ∈ R

υ and dc ∈ R, with Hc := M
T
c Mc,

cc := 2MT
c αc and dc = |αc|2 − σ2

f
, where

Mc :=
(

Σ
1/2
0 ⊗ eTN

)(

(CΓ)T ⊗ (CB)
)

Ω, (31a)

αc :=
(

Σ
1/2
0 ⊗ eTN

)

vec(CΓ). (31b)

In addition, Problem 1 admits a solution in the class of

admissible control policies Π, if and only if the GQCQP is

feasible.

Proof: We can write (27) as follows:

0 = trace
(

eT
NY0(Ψ)Σ0Y0(Ψ)TeN

)

− σ2
f

= trace
(

Σ
1/2
0 Y0(Ψ)TeNeT

NY0(Ψ)Σ
1/2
0

)

− σ2
f

= trace
(

Z
T
Z
)

− σ2
f = vec(Z)Tvec(Z)− σ2

f ,

where Z := eT
NY0(Ψ)Σ

1/2
0 . It follows that vec(Z) =

(

Σ
1/2
0 ⊗

eTN
)

vec(Y0(Ψ)), where in view of (17b) we have that

vec(Y0(Ψ)) = vec(CΓ) + vec
(

(CB)Ψ(CΓ)
)

= vec(CΓ) +
(

(CΓ)T ⊗ (CB)
)

Ωvech(Ψ),

where Ω ∈ R
N2×υ is defined as in Section II-A. Now, let

x := vech(Ψ). Then, (27) can be written as fc(x) = 0 with

fc(x) = x
T
Hcx + c

T
cx + dc, where Hc := M

T
c Mc, cc :=

2MT
c αc, and dc = |αc|2 − σ2

f
, where Mc and αc are given

in (31a)–(31b). Thus, we have shown that the constraint given

in (27) is equivalent to the equality constraint fc(x) = 0.

Using similar arguments as before, one can show that the

performance index J2(Ψ) can be written as follows:

J2(Ψ) = vec(Y)Tvec(Y) + vec(U)Tvec(U),

with vec(Y) :=
(

Σ
1/2
0 ⊗ Q

1/2
)

vec(Y0(Ψ)) and vec(U) :=
(

Σ
1/2
0 ⊗R

1/2
)

vec(U0(Ψ)), where in view of (18b)

vec(U0(Ψ)) = vec
(

IΨ(CΓ)
)

=
(

(CΓ)T ⊗ I
)

Ωvech(Ψ).

Thus, J2(Ψ) is equal to the quadratic function x
T
H0x+ c

T
0x

(modulo a constant term) with x := vech(Ψ), H0 :=
M

T
0 M0 + N

T
0 N0 and c0 := 2MT

0 α0, where M0, N0 and

α0 are given in (30a)–(30c), respectively. This completes the

proof.
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Next, we study the feasibility of the GQCQP (and thus, the

feasibility of Subproblem 3.2 as well).

Proposition 5: Suppose that Hc ∈ S
+
υ \{0}. Then, we

consider the following two (exhaustive and mutually exclusive)

cases: (i) Hc ∈ S
++
υ , that is, rank(Hc) = υ, in which case

GQCQP is feasible, if and only if

dc ≤ (1/4)cTc H
−1
c cc. (32)

(ii) Hc ∈ S
+
υ \({0} ∪ S

++
υ ), that is, rank(Hc) ∈ Z

υ−1
1 , in

which case, we consider the following two sub-cases: (ii.a)

cc ∈ R⊥(Hc) = N (Hc), in which case GQCQP has a non-

trivial feasible set; and (ii.b) cc ∈ R(Hc), in which case

GQCQP is feasible, if and only if

dc ≤ (1/4)cT
cH

†
ccc. (33)

Proof: The GQCQP problem is feasible, if and only if

0 ∈ Im(fc|Rυ). Because the function x 7→ fc(x), where fc(x)
is defined in (29b), is a convex quadratic (and thus continuous)

function, Im(fc|Rυ) will be an interval in R that will always

contain positive numbers. Thus, in order to show that 0 ∈
Im(fc|Rυ), it suffices to show that either Im(fc|Rυ) is not

bounded from below or it is bounded from below and also

min(Im(fc|Rυ)) = inf(Im(fc|Rυ)) ≤ 0. To this aim, we

will consider the problem of minimizing fc(·), which is an

unconstrained convex QP.

In case (i), fc(·) admits a unique global minimizer, x⋆ =
−(1/2)H−1

c cc, with corresponding minimum value f⋆
c :=

minx∈Rυ fc(x) = fc(x
⋆) = dc − (1/4)cT

cH
−1
c cc. Therefore,

0 ∈ Im(fc|Rυ), if and only if f⋆
c ≤ 0, which yields (32).

In case (ii), fc(·) admits a global minimizer, if and only if

the equation 0 =
∂

∂x
fc(x) = 2Hcx + cc admits a solution,

which is in turn equivalent to cc ∈ R(Hc) = N⊥(Hc). If

cc ∈ R⊥(Hc) = N (Hc) (subcase (ii.a)), then the function

x 7→ fc(x) is not lower bounded (note that fc(·) is lower

bounded if and only if c
T
cx = 0, for all x ∈ N (Hc), or

equivalently, cc ∈ N⊥(Hc)), which implies that GQCQP has

a non-trivial feasible set. On the other hand, if cc ∈ R(Hc) =
N⊥(Hc) (subcase (ii.b)), then the set of minimizers of fc(·)
corresponds to the affine subspace S that consists of all the so-

lutions to the equation Hcx = −(1/2)cc, which is defined as

S := {x ∈ R
υ : x = −(1/2)H†

ccc+U
T
c [0, z

T]T, z ∈ R
υ−r},

where Hc = U
T
cΣUc corresponds to a spectral decomposition

of Hc (the diagonal elements of Σ are the eigenvalues of

Hc in decreasing order and Uc is an orthogonal matrix). In

addition, f⋆
c := minx∈Rυ fc(x) = dc − (1/4)cT

cH
†
ccc. Again,

0 ∈ Im(fc|Rυ) if and only if f⋆
c ≤ 0, which yields (33).

A. Computation of the Solution to the GQCQP

In order to address the GQCQP, which is a non-convex prob-

lem, one can employ convex relaxation techniques [22], [23],

which aim at associating the original (non-convex) problem

with a convex, but not necessarily equivalent, program. In this

work, we will employ instead a direct solution approach to the

GQCQP which will allow us to characterize an optimal control

policy that will steer the system’s output to the goal Gaussian

distribution exactly. The proposed approach leverages some

key results from the solution of optimization problems with

quadratic but not necessarily convex performance indices

subject to a single quadratic equality constraint, which is

a non-convex constraint, in the sense that the feasible set

it induces is not convex, after tailoring the latter results to

the specific structure of the GQCQP. (For more details on

generalized quadratic programs subject to a single quadratic

equality constraint, in which neither the performance index

nor the constraint function are necessarily convex quadratic

functions, one may refer to [16]–[18], [20].) To this aim, we

will simultaneously diagonalize the matrices H0 ∈ S
++
υ and

Hc ∈ S
+
υ . In particular, H0 = UD0U

T and Hc = UDcU
T,

where U is an υ × υ invertible matrix and D0, Dc are

diagonal matrices in S
++
υ and S

+
υ , respectively. Now, let

S = D
−1/2
0 U

−1. Then, we have that SH0S
T = I and

SHcS
T = D, where D := D

−1/2
0 DcD

−1/2
0 . Note that D

is a diagonal matrix in S
+
υ . By using the transformation

z := (ST)−1
x + (1/2)Sc0, the GQCQP can be formulated

equivalently (modulo a constant term in the performance

index) as follows:

min
z∈Rυ

z
T
z, subject to ϕ(z) = 0, (34)

where ϕ(z) := z
T
Dz + σT

z + ϑ, σ := Scc − DSc0 and

ϑ := (1/4)cT
0S

T
DSc0 − (1/2)cT

cS
T
Sc0 + dc. Note that the

problem given in (34) corresponds to the geometric optimiza-

tion problem of determining the closest point of the conic

characterized by the quadratic equation ϕ(z) = 0 from the

origin z = 0.

Now, let r := rank(D), with r ∈ Z
υ
1 . Then, without loss of

generality, we can assume that

D =

[

0υ−r,υ−r 0υ−r,r

0r,υ−r ∆

]

, ∆ := diag(δ1, . . . , δr),

where δ1 ≥ · · · ≥ δr are the non-zero eigenvalues of D. The

vector σ can be decomposed as follows: σ = σR + σN ,

where σR = [0T, 2δT]T ∈ R(D) with δ ∈ R
r and σN =

[γT, 0
T]T ∈ N (D) with γ ∈ R

υ−r. Now, let p := [ξT, ζT]T

= z + [0T, (∆−1δ)T]T with ξ ∈ R
υ−r and ζ ∈ R

r. Then,

instead of addressing the constrained minimization problem

given in (34), we can equivalently search for the minimizer

p⋆ := [(ξ⋆)T, (ζ⋆)T]T of the following problem:

min
p∈Rυ

|ξ|2 + |ζ −∆
−1δ|2, subject to φ(ξ, ζ) = 0, (35)

where φ(ξ, ζ) := ζT
∆ζ + γTξ + θ and θ := ϑ− δT

∆
−1δ.

Next we characterize the minimizer p⋆ or, more generally,

the set of minimizers, P⋆, of the problem given in (35). To

this aim, we consider the following three mutually exclusive

and exhaustive cases [17], [18].

Case 1: This is a degenerate case that occurs when γ = 0
and θ = 0. In this case, φ(ξ, ζ) = ζT

∆ζ, and thus ζ = 0

is the only feasible point of the problem given in (35). Thus,

P
⋆ := {p ∈ R

υ : p = [ξT, 0
T]T, ξ ∈ R

υ−r}.

Case 2: This case occurs when θ 6= 0, δ = 0, and γ = 0. In

this case, φ(ξ, ζ) = ζT
∆ζ+ θ. We conclude that the problem

is feasible only if θ < 0. In addition, φ(·) is independent of

ξ (there are no constraints on ξ), which in turn implies that

ξ⋆ = 0. By using the transformation η := (1/
√

|θ|)∆1/2ζ
for θ < 0, the problem given in (35) reduces to

min
η∈Rr

ηT(|θ|∆−1)η, subject to |η| = 1. (36)

It follows from the min-max theorem for the Rayleigh quotient
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that the minimum value of the problem given in (36) is equal

to λmin(|θ|∆−1) = |θ|/λmax(∆) = |θ|/δ1, where δ1 is the

largest eigenvalue of ∆. The minimum value is attained at

η⋆ = [(η⋆
1)

T, 0
T]T, where η⋆

1 is an ν1-dimensional (real) unit

vector and ν1 denotes the algebraic multiplicity of δ1 (as an

eigenvalue of ∆). Thus, ζ⋆ =
√

|θ|∆−1/2η⋆, from which it

follows that ζ⋆ = [(ζ⋆
1 )

T, 0
T]T with ζ⋆

1 ∈ R
ν1 . In addition,

because |η⋆
1 | = 1, we have |ζ⋆

1 |2 = |θ|/δ1, which implies that

ζ⋆
1 = ±

√

|θ|/δ1 when ν1 = 1, or ζ⋆
1 belongs to the (ν1 − 1)-

dimensional sphere S
ν1−1 := {̺ ∈ R

ν1 : |̺| =
√

|θ|/δ1},

when ν1 > 1; for both cases, we write ζ⋆
1 ∈ Z

⋆
1 ⊆ R

ν1 . Thus,

P
⋆ := {p ∈ R

υ : p = [0T, ζT
1 , 0

T]T, ζ1 ∈ Z
⋆
1}.

Case 3: The remaining case, which is the most general one,

determines the normal form [17] of the problem given in (35).

Before we proceed, we define the Lagrangian L : Rυ−r×R
r×

R≥0, with L(ξ, ζ, λ) := |ξ|2+|ζ−∆
−1δ|2−λ(ζT

∆ζ+γTξ+
θ). We observe that L(ξ, ζ, λ) = L1(ξ, λ) + L2(ζ, λ), where

L1(ξ, λ) := ξTξ − λ(γTξ + θ),

L2(ζ, λ) := ζT(I− λ∆)ζ − 2δT
∆

−1ζ + δT
∆

−2δ.

Based on Lagrangian duality theory [21], the maximum of the

dual function g(·) : R → R ∪ {±∞} with

g(λ) := inf
ξ∈Rυ−r

L1(ξ, λ) + inf
ζ∈Rr

L2(ζ, λ), (37)

which is associated to the primal optimization problem formu-

lated in (35), furnishes a lower bound on the optimal value of

the latter problem. We observe that g(·) attains finite values

for these λ ∈ R for which the functions ξ 7→ L1(ξ, λ)
and ζ 7→ L2(ζ, λ) are lower bounded. The function L1(·, λ),
which is quadratic (in ξ) for any given λ ∈ R, will be lower

bounded, if and only if the equation 0 = ∇ξL1(ξ, λ) =
2ξ − λγ admits a solution ξ⋆(λ) ∈ R

υ−r and in addition, its

Hessian matrix ∇2
ξL1(ξ, λ) = 2I belongs to S

+
υ−r, which are

both trivially satisfied for all λ ∈ R. Similarly, the function

L2(·, λ), which is quadratic (in ζ) for any given λ ∈ R, is

lower bounded, if and only if the equation 0 = ∇ζL2(ζ, λ) =
2(I − λ∆)ζ − 2∆−1δ admits a solution ζ⋆(λ) ∈ R

r and

its Hessian ∇2
ζL2(ζ, λ) = 2(I − λ∆) belongs to S

+
r . Thus,

L2(·, λ) is lower bounded for all λ ∈ Λ := (−∞, 1/δ1] for

which ∆
−1δ ∈ R(I − λ∆). Therefore, when both L1(ξ, λ)

and L2(ζ, λ) are lower bounded, in which case L(ξ, ζ) is also

lower bounded, we have that

ξ⋆(λ) = (1/2)λγ, (I− λ∆)ζ⋆(λ) = ∆
−1δ. (38)

From the strong duality of the GQCQP, which can be proven

using similar arguments with those used in the approach

presented in, for instance, [21, pp. 653–658], we conclude that

for the characterization of p⋆ := [(ξ⋆)T, (ζ⋆)T]T, it suffices

to find a λ⋆ ∈ Λ such that ξ⋆(λ
⋆) and ζ⋆(λ

⋆) satisfy the

constraint equation φ(ξ⋆(λ
⋆), ζ⋆(λ

⋆)) = 0 (alternatively, one

can find the global minimizer λ⋆ of −g(λ)). After finding such

λ⋆ ∈ Λ, we can simply set ξ⋆ := ξ⋆(λ
⋆) and ζ⋆ := ζ⋆(λ

⋆).
To proceed with the characterization of the solution to the

problem in (35) in normal form, we will consider the following

two subcases:

Case 3.1: λ⋆ ∈ int(Λ) = (−∞, 1/δ1), which implies that

(I− λ⋆
∆) ∈ S

++
r . Consequently, Eq. (38) becomes

ξ⋆ = (1/2)λ⋆γ, ζ⋆ = (I− λ⋆
∆)−1

∆
−1δ. (39)

Next, we plug the expressions of ξ⋆ and ζ⋆ in terms of

λ⋆, which are given in (39), into the constraint equation

φ(ξ⋆, ζ⋆) = 0, where φ(ξ⋆, ζ⋆) := (ζ⋆)T
∆ζ⋆ + γTξ⋆ + θ,

to obtain the following equation: Σ(λ⋆) = 0, where Σ(·) :
int(Λ) → R with

Σ(λ) := δT
∆

−1/2(I−λ∆)−2
∆

−1/2δ+(|γ|2/2)λ+θ. (40)

The equation Σ(λ) = 0 admits a unique solution in the interior

of Λ, if and only if 0 ∈ Im(Σ|int(Λ)) (for more details on the

solution of this scalar equation, the reader may refer to [18]).

By continuity of Σ(·), it suffices to show, in view of the

intermediate zero theorem from real analysis, that there are

(finite) λ1, λ2 ∈ int(Λ) such that Σ(λ1) < 0 and Σ(λ2) > 0. It

is easy to show that lim infλ→−∞ Σ(λ) = −∞, which implies

the existence of a (finite) λ1 such that Σ(λ1) < 0. Now, let

Σ := sup{Σ(λ) : λ ∈ int(Λ)} where Σ ∈ R∪{+∞} with the

convention that Σ = +∞ when the set {Σ(λ) : λ ∈ int(Λ)} is

not upper bounded, and let us also simultaneously decompose

∆ ∈ S
++
r and δ ∈ R

r as follows:

∆ = bdiag(δ1Iν1
, ∆̃), δ = [δT

1 , δ̃T]T,

where ∆̃ := diag(δν1+1, . . . , δr) ∈ S
++
r−ν1

, δ1 ∈ R
ν1 and δ̃ ∈

R
r−ν1 . On the one hand, when δ1 6= 0, then Σ = ∞, which

implies the existence of a (finite) λ2 such that Σ(λ2) > 0.

Thus, in this case, 0 ∈ Im(Σ|int(Λ)) and we conclude that

the equation Σ(λ) = 0, where Σ(λ) is given in (40), admits a

solution in the interior of Λ. On the other hand, when δ1 = 0,

then Σ = lim supλ→1/δ1 Σ(λ) and in particular

Σ = |(I− (1/δ1)∆̃)−1
∆̃

−1/2δ̃|2 + |γ|2/(2δ1) + θ.

If 0 < Σ < +∞, then Σ(λ) admits a unique solution in the

interior of Λ. If, however, Σ ≤ 0, then Σ(λ) < 0 for all λ in

the interior of Λ (even in the special subcase in which Σ =
lim supλ→1/δ1 Σ(λ) = 0, we have that 0 /∈ Im(Σ|int(Λ)))
and thus the GQCQP is not feasible.

Case 3.2: λ⋆ = 1/δ1 (note that 1/δ1 belongs to the boundary

of Λ). Then, ∆
−1δ ∈ R(I − (1/δ1)∆) only if δ1 = 0. It

follows that ξ⋆ = (1/(2δ1))γ and ζ⋆ ∈ Z
∗, where

Z
⋆ := {[ζT

1 , ζ̃T]T ∈ R
r : ζ̃ = (I− (1/δ1)∆̃)−1

∆̃
−1δ̃,

|ζ1|2 = −(1/δ1)(ζ̃
T
∆̃ζ̃ + |γ|2/(2δ1) + θ)},

in view of (39) and φ(ξ⋆, ζ⋆) = 0. Thus, P
⋆ = {p ∈

R
υ : p = [(1/(2δ1))γ

T, ζT]T, ζ ∈ Z
⋆}.

B. The Proposed Algorithm for the Liouville Control Problem

Next, we present the main steps of the proposed algorithm

for the characterization of the solution to the Liouville control

problem (Problem 1).

Step 1: If µf 6= 0, find the solution, v⋆, to Subproblem 3.1

by making use of Eq. (28), provided that the latter problem

admits a solution. If no solution exists, return failure and stop.

If µf = 0, set v⋆ = 0 and go to Step 2.

Step 2: Find a solution p⋆ := [(ξ⋆)T, (ζ⋆)T]T to the problem

given in (35), if the latter admits a solution, and then compute

the corresponding solution, x
⋆, to GQCQP by using the

equations: x⋆ = S
T
z
⋆ − (1/2)ST

Sc0 and z
⋆ = [(ξ⋆)T, (ζ⋆ −

∆
−1δ)T]T. Otherwise, return failure and stop.

Step 3: Compute the corresponding optimal gain matrix Ψ
⋆ ∈

LT(RN×N ) from the equation: Ψ⋆ = vech−1(x⋆).
Step 4: Proceed to the computation of the corresponding
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Fig. 1. Evolution of the density function, ρy(t)(y), the mean, µ(t), and

the standard deviation, σ(t), of the output variable y(t) when the system is
driven by the output feedback control policy π⋆ versus the number of stages
t.

optimal gain matrix K
⋆
y ∈ LT(RN×N ), where K

⋆
y := g(Ψ⋆).

Step 5: Finally, characterize the optimal policy π⋆ ∈ Π that

solves Problem 1 by extracting (i) the feed-forward inputs

ν⋆(t) from the vector v⋆, which was computed in Step 1, and

(ii) the optimal control gains k⋆y(t, τ) from the corresponding

entries of the optimal gain matrix K
⋆
y ∈ LT(RN×N ), which

was computed in Step 4.

V. NUMERICAL SIMULATIONS

To illustrate the main ideas of the proposed solution ap-

proach for the Liouville control problem, we present numerical

simulations for a damped linear oscillator described by the

following equation: ẋ(τ) = Acx(τ) + bcu(τ), with output

y(τ) = cT
cx(τ) with Ac =

[

0 1
−ω2

n
−2ζωn

]

, bc = [0, 1]T and

cc = [0, 1]T, where ζ = 0.15 and ωn = 1. A corresponding

discrete-time model with sampling period ∆τ > 0 is given by

x(t + 1) = Ax(t) + bu(t) and y(t) = cTx(t), where A =

exp(∆τAc), b = (
∫∆τ

0
exp(sAc)ds)bc, c = cc. For the simu-

lations, we have used the following data: N = 10, ∆τ = 0.2,

q(t) ≡ 1, r(t) ≡ 1, Σ0 = 0.5I2 (and thus, σ2
0 = 0.5), µf = 1

and σ2
f
= 0.01 (or σf = 0.1). The evolution of the Gaus-

sian density function, ρy(t)(y) := (1/
√
2πσ(t)) exp(−(y −

µ(t))2/(2σ(t)2)), the mean, µ(t) := E
[

y(t)
]

, and the standard

deviation, σ(t) :=
√

E
[

(y(t)− µ(t))2
]

, of the output variable

y(t) versus the number of stages, t, when the system is driven

by the optimal policy π⋆, are illustrated in Fig. 1.

VI. CONCLUSION

We have proposed a systematic approach for the com-

putation of a dynamic output feedback control policy that

solves the Liouville control problem for the class of Gaussian

distributions for discrete-time SISO systems with incomplete

state information. In the proposed approach, the control prob-

lem is reduced into a system of two decoupled optimization

problems, namely a convex quadratic program subject to an

affine constraint and a non-convex but tractable (generalized)

quadratic program subject to a (non-convex) quadratic equality

constraint. In our future work, we plan to address similar

problems using control policies that depend on state estimates

constructed by the available output measurements (separation-

based control policies).
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