Dynamic Output Feedback Control of the Liouville
Equation for Discrete-Time SISO Linear Systems

Efstathios Bakolas

Abstract—In this work, we address the so-called Liouville
control problem for SISO discrete-time linear systems in the class
of Gaussian distributions. In particular, we propose a systematic
procedure for the characterization of a dynamic output feedback
policy that will transfer the output of the system, which is a
known Gaussian random variable, to a goal Gaussian distribution
after a finite number of stages. In the proposed approach, the
Liouville control problem is reduced to two decoupled (finite-
dimensional) quadratic programs, one of which is subject to a
single affine constraint, which is a convex program, whereas the
other one is subject to a single quadratic equality constraint.
Despite the fact that the second optimization problem is not
convex, one can characterize its exact solution via a systematic
procedure without resorting to convex relaxation techniques,
which may yield suboptimal or even infeasible solutions to the
original (non-convex) optimization problem. Finally, we present
numerical simulations that illustrate the key ideas of this work.

I. INTRODUCTION

We consider the problem of characterizing a dynamic output
feedback control policy that will steer the uncertain output
variable of a SISO discrete-time linear system to a goal
Gaussian distribution. This problem, which we refer to as
the Liouville control problem, can be put under the umbrella
of the so-called Liouville transport problems restricted to the
space of Gaussian distributions and subject to linear dynamic
constraints. The motivation for the Liouville control problem
comes from a variety of real-world applications related to,
for instance, quality control and industrial / manufacturing
processes, in which the design specifications of the product
(output of the process) are described in probabilistic ways [1].
Characteristic examples include industrial processes for thick-
ness control of paper sheets and plastic films [2], [3]. Another
envisioned application is the steering control of a multi-agent
system whose macroscopic state as a whole can be described in
terms of a probability distribution in lieu of a vector formed by
concatenating the states of its constituent agents. In this work,
we show that the Liouville control problem can be reduced
to two decoupled optimization problems. The first problem
is a standard convex quadratic program, whereas the second
one is a tractable (deterministic) non-convex optimization
problem with a convex quadratic performance index but a non-
convex quadratic equality constraint. We subsequently utilize
a systematic procedure that furnishes the exact solutions to the
two optimization problems, which in turn induce the optimal
control policy that solves the Liouville control problem.

Literature Review: The Liouville control problem in the
continuous-time framework with perfect state information was
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first proposed by Brockett [4]. In particular, [4] considers
the problem of steering the state of a continuous-time linear
system, which is initially drawn from a known (multi-variate)
Gaussian distribution, to a goal (multi-variate) Gaussian distri-
bution in a given (finite) terminal time and provides conditions
for the solvability of this steering problem. It is not surprising
that the solution to the latter problem can be expressed as
the combination of a feed-forward signal and a time-varying
state feedback policy. The results presented in [4] have been
extended to the case of static output feedback and the case
of parallel interconnections of linear systems in [5]. All the
previous problems can be put under the umbrella of the so-
called ensemble control [6], [7], or control of families of
systems, according to [8]. A similar class of problems deal
with the steering of the (uncertain) state of a stochastic linear
system, which is subject to white Gaussian noise, to a goal
Gaussian distribution in either continuous time [1], [9] or
discrete time [10]-[14].

Main contributions: The focus of [4], which is the main
inspiration of this work, is mainly on the investigation of
the question of controllability / reachability under full state
feedback without, however, touching upon the practical prob-
lem of control design. In particular, [4] does not present a
systematic procedure for the characterization of a control law
that will realize the required transfer of the state’s distribution
to the goal Gaussian distribution. In this work, we address
the finite-horizon Liouville control problem in the class of
Gaussian distributions for discrete-time SISO (deterministic)
linear systems. In our approach, we consider control policies
that are sequences of control laws which can be expressed
as affine functions of any realization of the history of (past
and present) output measurements similarly with the so-
called affine disturbance feedback parametrization, which is
used in control design problems for discrete-time stochastic
linear systems [15]. We show that with this particular control
policy parametrization, the Liouville control problem consid-
ered herein can be reduced to a system of two decoupled
optimization problems.

In particular, the first optimization problem corresponds to
a convex quadratic program (QP) subject to affine constraints,
whose solution will yield the feed-forward input sequence that
will steer the mean of the output’s distribution to the prescribed
goal quantity. On the other hand, the second problem is a
quadratic program subject to an equality quadratic constraint,
which is a non-convex program, whose solution will yield
the gains of a dynamic output feedback control policy that is
intended to realize the transfer of the variance of the system’s
output to the prescribed goal value. While the first problem
admits a closed form solution, the second problem poses some
significant challenges due to the presence of the quadratic



equality constraint (terminal variance constraint), which is, in
general, non-convex (in the sense that the feasible set it induces
is non-convex). We will henceforth refer to the latter quadratic
program with the non-convex quadratic (equality) constraint as
the GQCQP (Generalized Quadratically Constrained Quadratic
Program). It should be mentioned here that problems similar
to the GQCQP have received some attention in the literature
of optimization and applied statistics due to their relevance to
many applications [16]-[20]. It turns out that the exact solution
to the GQCQP, and thus the Liouville control problem, can be
characterized by means of a systematic procedure which com-
bines analytical and computational techniques. An alternative
approach to address our problem would be to employ convex
relaxation techniques [21]-[23]. Such techniques are intended
to reduce a given non-convex optimization problem to a cor-
responding “relaxed” convex program, under the assumption
that the solution to the latter will be a good approximation of
the solution to the original problem. It is very likely, however,
that the solution to the relaxed problem may be suboptimal or
even fail to satisfy the constraints of the original non-convex
program.

Structure of the paper: The rest of the paper is organized
as follows. In Section II, we formulate the Liouville control
problem, which we subsequently reduce to a finite-dimensional
optimization problem in Section III. A systematic approach
for the solution of the latter problem, which is equivalent to a
decoupled system of two tractable optimization problems, is
presented in Section IV. Numerical simulations are presented
in Section V and finally, Section VI concludes the paper with
a summary of remarks.

II. PROBLEM FORMULATION
A. Notation and Some Key Background Results and Properties

We denote by R™ and R™*" the set of n-dimensional real
vectors and m X n real matrices, respectively. We write || to
denote the 2-norm of a vector & € R™. We denote by int(S)
the interior of a set S C R"™. We write Z(J{ and Z7T to denote
the set of non-negative integers and strictly positive integers,
respectively. Given M, N € Zar with M < N, we denote
by ZY, the discrete set {M,...,N} = [M,N]NZI. E[]
denotes the expectation operator. We write 0, %, (or simply,
0) and I,, (or simply, I) to denote the m X p zero matrix
and the m x m identity matrix, respectively. We denote by
R(A) and N(A) the range space and the null space of the
matrix A € R™*™ respectively. We denote the i-th row and
the j-th column of a matrix A € R™*" by row;(A) € R™ and
col;(A) € R™, respectively. We also denote by A the Moore-
Penrose (pseudo-) inverse of A; it holds that AATA = A
and ATAAT = AT, The space of n x n symmetric (real)
matrices is denoted by S,,. Finally, we will denote the convex
cone of n X n symmetric positive definite and positive semi-
definite matrices by S;'* and S;!, respectively. Given a square
matrix A, we denote its trace by trace(A). Given A € R™*"
and B € R"™ ™, we have that trace(AB) = trace(BA)
(cyclic property). By ® we denote the Kronecker product
operator. Furthermore, we denote by vec(-) the vectorization
(linear) operator that maps a matrix A = [a;;] € R™*"
to a mn-dimensional column vector denoted by vec(A),
where vec(A) := [col;(A)T,... col,(A)T]T. Given three

real matrices A, B, and C of compatible dimensions, it
holds that vec(ABC) = (CT ® A)vec(B). In addition,
trace(ATB) = vec(A)Tvec(B). The set of N x N lower tri-
angular matrices will be denoted by £T(RV*V), that is, B =
[bi;] € LT(RV*N) if and only if b;; = 0 for all j > i. The
half-vectorization (linear) operator vech(-) maps a matrix B =
[bi;] € LZ(RN*N) to an v-dimensional column vector, with
v := N(N+1)/2, which is denoted by vech(B) and is defined
as follows: vech(B) := [colhy (B)T,. .., colhn(B)T]T, where
colh;(B) := [bjj,...,bn;]T € RV+17J Note that there exists
a full-column rank matrix @ € RY"*¥, that is, rank(£2) = v
(note that N2 > v for all N € Z7T), whose columns form a
set of v orthonormal vectors (that is, 2T = I,)) such that
vec(B) = Qvech(B) and vech(B) = QTvec(B). Finally, we
will denote by vec™!(-) and vech™'(:) the inverse (linear)
operators of vec(-) and vech(-), respectively. Finally, given a
function f : D C R™ — R", we denote by Jm(f|D) the
image of D under f, that is, Jm(f|D) = {y e R* : y =
f(z), z € D}.

B. Formulation of the Liouville Control Problem for SISO
Discrete-Time Linear Systems

For a given N € Z*, let {A(t) € RV : t € ZY '},
{b(t) e R . ¢t € Z) '} and {c(t) € R™': t €z}
denote known sequences of matrices and column vectors,
respectively. Let us also consider the following discrete-time
linear system:

z(t+1) = A)z(t) + b(t)u(t), (1a)

y(t) = c(t) = (t), (1b)

for t € Zév ~1, where 2(0) = x¢ is a random vector drawn

from the Gaussian distribution N (mg, X¢) with my € R™ and

3, € St be given. In addition, X} := {z(t) : t € ZI'},

Uévv_ll = {u(t) : t € ZV '}, and YV = {y(t) : t €

Zy ~ "} denote, respectively, the state, the control input, and
the output random (finite-length) sequences’.

Our objective is to find a control policy that will steer the
last element of YON *1, which is a normal random variable, to
a goal Gaussian distribution while minimizing the expected
value of a finite sum of cost-per-stage functions, which are
convex quadratic functions of the output y(¢) and the input
u(t) of the linear system (la)-(1b) as t runs through Zévfl.
It is assumed that the set of admissible control policies
consists of all control policies m which can be expressed
as sequences of control laws r(-;t) that are causal (non-
anticipative), measurable functions of the o-field generated
by Y¢ = {y(r) : 7 € ZL}. In other words, u(t) can
be computed as a (measurable) function of the realization
of the t-truncated (random) output sequence Y. We will
henceforth restrict our attention to admissible control policies
7= {k(:;t): t € ZY ™'} for which the feedback control law
k(-;t) at stage ¢ can be expressed as an affine combination of
the elements of the realization of Yot , that is,

t
k(Yy;t) = v(t) + Z ky(t,T)y(r), forall te Z,
7=0

! Although (1a)-(1b) describe a deterministic system, the fact that the initial
state is a random vector renders the previous sequences random.



where k,(t,7) € R is the gain that determines the effect of
the output measurement y(7) on the control input u(t), for all
(t,7) € ZY ' x Z)'~ with t > 7. We will denote the set
comprised of these control policies by II. Next, we give the
precise formulation of the Liouville control problem for the
system (la)—(1b).

Problem 1: Assume that E[zo] = mo = 0 and E[zoz{] =
3o, where o € ST, and let also ys € R, o5 > 0 and N €
Z* be given. In addition, let Q) ~' := {q(t) : t € ZY™"}
and R)'™' := {r(t) : t € Z) '} be known (finite-length)
sequences of non-negative and positive numbers, rejspectively.
Then, find a control policy 7 := {s(:;t) : t € ZY '} €Tl
that minimizes the performance index:

N-1
J(m) =B Y ay®)?® + r(u®?], )
t=0
subject to the equality constraints induced by (1a)-(1b), and the
following boundary conditions: y(0) ~ N (0,00) and y(N —
1) ~ N (s, o), or equivalently,

E [y(0)] =0, E[y(0)’] =05, Ga)

Ely(N—-D)=p,  E[y(N—1)-pm)’] =of, (b)
where 032 := cTZge.

Remark 1 The assumption that E[z(0)] = 0, and thus

E[y(0)] = 0, is made to simplify the subsequent analysis and
streamline the presentation. A similar assumption is typically
made in the standard formulation of the basic reachability
or controllability problem in the literature of deterministic
linear systems [24], according to which the initial or terminal
(deterministic) state, respectively, is taken to be the origin.
The case when E[z(0)] # 0 can be treated similarly, after the
necessary modifications have been carried out.

III. CONVERSION OF THE STOCHASTIC OPTIMAL
CONTROL PROBLEM INTO AN OPTIMIZATION PROBLEM

A. Preliminary Analysis

In this section, we will show how to convert Problem 1
to an equivalent optimization problem that is computationally
tractable. To this aim, we will first express the solution to the
recursion equation (la) and the output equation (1b) in the
following compact form:

x = Bu + 'z, y = Cx, (€]

where £ € RVHTD7 4 ¢ RY and Yy € RN correspond,
respectively, to the concatenations of the elements of X}V,
UN! and Y71 In particular, = [2(0)T,...,z(N)"]T,
u = [u(0),...,u(N — 1], and y := [y(0),...,y(N — 1)]T.
In addition, the matrix B € RIV+D7xN ¢ defined as follows:
B:=[Onx1, BY]' with

b(0) 0 .0
5, | PO Wy 0
B(N,1)b(0) ®(N,2)b(1) BN — 1)
where
®(t,7):=At—-1)...A(r), ®(r,7)=1,

for (t,7) € Z¥ x ZY with t > 7 (note that ®(¢,7) =
A(t — 1) = A(r), when t = 7 4 1). Furthermore, we
consider the matrices C = [Cl, ONXn] e RN*x(N+1)n apd
r e RW +hnxn \which are defined, respectively, as follows:

(0T O1xp O1xn I
.- O1xn C(%)T O1xn ra.— <I>(1',0)
O1xn  O1xn c(N'— Tt ‘I’(N, 0)
Under the assumption that 7 = {x(-;t) : ¢t € Z)' ™'} €I,

we can express the control input u(t) as follows:
¢
u(t) = m(Yg;t) = v(t) +Y_ky(tTy(r), )
=0

for all t € Zév ~1. The previous equation can be written in
compact form as follows:

u=v+IKyy, (6)
where v = [1(0),...,»(N — 1)]T € RY and K, €
LI(RN*N), ICy = [K7)] (gain matrix) with

o S s
;Cglw) — {ky(l Lj—1), if ¢ > j, 7

0, otherwise.

In view of (4) and Eq. (6), we have
x = Br + BIK,Cx + Tz, (8)
which implies that

z =X, (Ky)v+ Xo(ICy)o, (9a)
Xo(KK,) = (1-BK,C)™'T
=T +BK,(I-CBK,) 'CT, (9b)
X,(Ky):=1-BK,C)'B
=B+ BK,(I-CBK,) 'CB. (%)

Then, in view of (4) and (92)—(9c) and the push-through
identity, y can be written compactly as follows:

Yy = yu(K:y)V + yO(K:y)mm (108.)
Yo(ICy) := (I CBK,) 'CT, (10b)
V.(IK,) = (I-CBK,) 'CB. (10c)

Finally, in view of (6) and (10a)-(10c), we can express u as

u =U,(Ky)v +Uo(KKy)x0, (11a)
Uo(Ky) = Ky (I - CBIC,) 'CT, (11b)
U, (IC,) =1+ K,(I-CBK,) 'CB. (11c)

Note that (I — CBIC,)~! is always well defined given that
(I-CBIK,) € LZ(RY*N) and the diagonal elements of the
latter are equal to L. In addition, (I-CBI,) "1 € LT(RV*V),

B. Introduction of the New Decision Variables

In this section, we will introduce two new decision vari-
ables, which we denote by ¥ and v, that will allow us to
reduce Problem 1 to a tractable optimization problem.

To this end, following [25], we first introduce the new
decision variable ¥ € £T(RV*N) where

U =f(ICy,), f(ICy) :=ICy,(I—-CBIK,) L. (12)



In addition, f(’C,) will belong to LT(RV*N) as the product
of two matrices in £T(RY*N). Furthermore,
Ky=9(¥), g(¥):=>1+%CB)'¥. (13

Again, the expression of g(¥) given in (13) is well defined
for all ¥ € £T(RY*N). We can then express x in terms of
W as follows:

r =X, (¥)v+ Xo(¥)zg, (14a)
Xo(¥) := Xo(g(¥)) = (I+BEC)T, (14b)
X, (¥):=X,(g(¥)) = B(I+ ¥CB). (14c)

The second decision variable, v € R, is defined as follows:
v:=(I+PCB)v. (15)

In view of (14c) and (15), we have that X, (¥)v = Bu,
and thus, we can express « in terms of ¥ and v, in view of
(14a)-(14c), as follows:

= X,v+ Xo(P)zo, (16)

where X, := B (note that X, is independent of the new
decision variables). Similarly, we can first express y in terms
of ¥ and v, in view of (4) and (16), as follows:

y = Y,v + Yo(P)x, (17a)
Yo(P) :=CXo(P)=C(I+BIC)T, (17b)
Y, =CX, =CB. (17¢)

Finally, in view of (11a)-(11c), we have
u =U,(P)v + Uy (¥)xo, (18a)
Uo (W) = Uo(s(¥)) = WCT, (18b)
U,(P):=U,(g(P)) =1+ PCB. (18¢)

In view of (15) and (18c), we have that U, (¥)v = v, and
thus the expression of u in terms of ¥ and v is given by

UZU+U0(‘I’)I0. (19)

Remark 2 It should be highlighted that the expressions of x,
y and u given in (16), (17a) and (19), respectively, correspond
to linear or affine functions of the new decision variables ¥
and v.

C. Decomposition of the Performance Index

Next, we will determine the expression of the performance
index, J(m), which is defined in (2) for 7 € II, in terms
of the new decision variables ¥ and v. We will denote this
expression as J (v, ¥), where, in view of (17a) and (19),

J(v,¥) = E[trace (nyQ + uuT’Rﬂ
— E[trace((Yov + Yo(®)a0) (Yov + Yo(¥)zo)' Q
+ (v + Up(®)ao) (v + U (®)ao) "R)], (20)
where Q := diag(q(0),...,q(N — 1)) and R := diag(r(0),
..,7(N —1)). By using the fact that E[zg] = mo = 0 and
E[zoz{] = o, it follows readily that
J (v, ®) = trace((Y,vv'Y, + Yo(¥)EYo(¥)")Q
+ (vv" + Up(¥)ZoUp(¥)")R). (21)
An interesting observation here is that 7 (v, ¥) can be written
as the sum of two terms as follows:

J(v,¥) = TJi(v) + J(¥), (22a)

J1(v) == trace(Y,vv'Y, Q + vv'R)

=v" (Y, QY, + R)v, (22b)
Jo () := trace(Yo(¥)Yo(¥)'Q
+ Uo(¥)ZoUp(¥)"R). (22¢)

Proposition 1: The function (v, ¥) — J(v,¥), where
J (v, ®) is defined in (21), is jointly convex in v and W.

Proof: In the light of (22a) and (22b)-(22c), it suffices
to show that the functions v — J;(v) and ¥ — J5(®) are
convex (in v and W, respectively). First, we observe that J; (v)
is a quadratic form in v whose Hessian V2 7;(v), which is
equal to 2(Y, QY] +R), belongs to S}, 7. We conclude that
Ji(+) is (strictly) convex in v. In addition, J2(®¥) can be
expressed as the sum of two composite functions, namely
the composition of Z — fi(Z) := trace(ZZ'Q) with the
function ¥ — ¢ (P) := Yo(\Il)Xl(l)/2 and the composition
of Z — f2(Z) := trace(ZZ™R) with the function ¥
g2(P) = UO(\II)Eéﬂ. Note that fi(-) and f5(-) are both
convex (in Z) whereas g1 (-) and go(-) are, respectively, affine
and linear functions of W in view of (17b) and (18b). We
conclude that both ¥ — f1(g1(P)) and ¥ — f3(g2(P)) are
convex functions (in W) as the compositions of convex func-
tions with, respectively, an affine and a linear function [26].
Consequently, J>(-), which is equal to the sum of the functions
fi1(g1(+)) and f2(g2(-)) that are both convex in ¥, will also
be a convex function (in ¥). We conclude that J (v, ¥) is
jointly convex in v and W and the proof is now complete. B

D. Terminal Constraints

In view of (17a), we have that Ely] = Y,v and E[y(N —
1)] = eLE[y], where ey is a unit vector in RY, whose
elements are equal to zero except from the N-th element
which is equal to one. Therefore, the terminal condition
Ely(N — 1)] = p can be written as

h(v) =0, h(v):=Cyv — . (23)
where €y = YvTe N, or equivalently, in view of (17c¢),
Cy = [e(N —1)T®(N —1,1)b(0),...,
(N —1)"o(N —2), 0] . (24)

Note that the constraint function A(-) is affine in v.

Proposition 2: Equation (23) admits a solution for any u¢ €
R, if and only if €y # 0, where €y is defined in (24). In
addition, if €y = 0, then (23) admits a solution if and only
if me = 0.

Proof: Because h(-) is an affine function (in v), we have
that Jm(h|RY) = R, or equivalently, the equation h(v) = 0
admits a solution for all us € R, if and only if €5 # 0.
Finally, if €y = 0, then h(v) = —puf and consequently, the
constraint equation h(v) = 0 admits a solution if and only if
wf = 0. This completes the proof. |

Remark 3 Note that € satisfies the following equation:
ey =c(N-1)T[Cy_y, 0], (25)
where Cny_1 = [®(N — 1,1)b(0),...,b(N — 2)]. Therefore,
if the matrix Cpn_ is full row rank (provided N —1 > n) and
the vector ¢(N — 1) # 0, then €5 # 0 and thus, in view of



Proposition 2, (23) always admits a solution. It is interesting
to note that if N — 1 > n, then the assumption that Cy_1
is full row rank is essentially a controllability assumption for
the time-varying system (la)-(1b).

In addition, we can write E[y — E[y]] = Yo(®)z, from
which it follows that

E[(y — E[y])(y — Ely])'] = E[Yo(¥)zoz(Yo(¥)"]

= Yo(¥)%,Yo(®)".  (26)

Next, we observe that

E[(y(N-1)-Ey(N-1)])*] = enE[(y—Ely])(y—E[y])"|en-

Consequently, the terminal constraint E [(y(N —1) —E[y(N —
1)])?] = o7 can be written as follows:

2N (0) 2y (B) =02, 2y () = )2V (®) en. (27)

Note that zn (W) is, in view of Eq. (17b), an affine function
of W.

IV. REDUCTION OF THE LIOUVILLE CONTROL PROBLEM
TO A DECOUPLED SYSTEM OF TWO TRACTABLE
OPTIMIZATION PROBLEMS

We are now in position to formulate an optimization prob-
lem in terms of the pair of decision variables (v, ¥) that is
equivalent to Problem 1 in the sense that the solution (v*, ¥*)
to the former problem (provided that it admits a solution) will
uniquely determine a solution 7* to Problem 1, and vice versa.

Problem 2: Given us € R and of > 0, find an optimal pair
(v*, ¥*) € RN x £Z(RV*N) that minimizes the performance
index J (v, ¥), which is defined in (21), subject to the equality
constraints given in (23) and (27).

It is important to note that, in the light of (22a)-(22c),
J (v, ¥) can be written as the sum of two cost terms, namely
Ji(v) and Jo(W). In addition, the constraint given in (23)
involves only the decision variable v whereas the constraint
in (27) involves only W. Thus, Problem 2 can be decomposed
into two decoupled subproblems, one in v and another in .

Problem 3: Find v* € RY that minimizes the performance
index J;(v), which is given in (22b), subject to the equality
constraint (23) (Subproblem 3.1). In addition, find ¥* €
LT(RN*N) that minimizes the performance index J2(¥),
which is given in (22c), subject to the equality constraint given
in (27) (Subproblem 3.2).

Subproblem 3.1 corresponds to a standard controllability
/ minimum energy linear control problem, which turns out
to be a (strictly) convex quadratic program subject to an
affine equality constraint Next, we provide the solution to
Subproblem 3.1 for completeness of our exposition.

Proposition 3: Suppose that the vector €y, which is de-
fined in (24), is non-zero, that is, € # 0 for a given N € Z™T.
Then, for any pf € R, Subproblem 3.1 admits a unique
solution v*, which is given by

v = (Mf/@%RQ:N)RQN,
where R := (YT QY, +R) .

Proof: By hypothesis and in view of Proposition 2, the
affine constraint given in (23) is feasible for all v € RY. With

(28)

the change of variable ® = R~/2v, Subproblem 3.1 reduces

to the problem of minimizing |&|? subject to €% RY2% = .
The solution to the latter problem corresponds to the minimum
norm solution of the (single) linear equation €L RY/2% = pg,
whose solution is given by o* = (u¢ /€5 REN)RY/2€y, from
which we obtain the expression of v* given in Eq. (28), where
v* = RY/29*, [ |

Proposition 4: Subproblem 3.2 is equivalent to the follow-
ing generalized quadratically constrained quadratic problem
(GQCQP):

m]iRn xTHox + ¢l x, subject to f.(x) =0,
x€eRY

(292)

fe(x) = xTH.x + CCTX +d., (29b)
where x := vech(¥) = QTvec(¥) and Hy € S}, ¢g € RY,
with v := N(N +1)/2, Hy := M{ M, + NINj and ¢ :=
2M{ oy, where

M, = (Z)?© @Y%) ((cn)T @ (CB))Q,  (30a)
No = (22 @ RY?)((eD)" @ 1)Q, (30b)
oo = (2° © @Y?)vec(CT), (30¢c)

and H, € S}, c. € RV and d. € R, with H. := MM,

v

c. :=2M"a,. and d. = |a.|? — 02, where
M. = (£’ @ e}) (€)™ @ (CB))Q, (31a)
a. = (3% @ e ) vec(CT). (31b)

In addition, Problem 1 admits a solution in the class of
admissible control policies II, if and only if the GQCQP is
feasible.

Proof: We can write (27) as follows:
0 = trace(ey Yo(¥)ZoYo(¥) en) — of
= trace(Eé/QYO(\P)TeNe},Yg(\II)E(l)/Q) —of
= trace(Z" Z) — of = vec(Z)"vec(Z) — of,
where Z := e},YO(\II)E(lJ/z. It follows that vec(Z) = (2(1)/2®
ey )vec(Yo(®)), where in view of (17b) we have that
vec(Yo(®)) = vec(CT) + vec((CB)¥(CT))
= vec(CT) + ((€T)" ® (CB))Qvech (),
where © € RV’ %V is defined as in Section II-A. Now, let
x := vech(¥). Then, (27) can be written as f.(x) = 0 with
fe(x) = x"H.x + clx + d., where H. := MIM,, c. :=
2Ml ., and d. = |a.|* — o7, where M. and a. are given

in (31a)-(31b). Thus, we have shown that the constraint given
in (27) is equivalent to the equality constraint f.(x) = 0.

Using similar arguments as before, one can show that the
performance index J5(%) can be written as follows:

T2 (®) = vec(Y) Tvec(Y) 4 vec(U) Tvec(U),
with vec(Y) := (Eé/2 ® Q1/2)Vec(Y0(\IJ)) and vec(U) :=
(242 @ RY?)vec(Up (W), where in view of (18b)
vec(Up(¥)) = vec(I¥(CT)) = ((CT)" & I)Qvech(P).
Thus, Jo(¥) is equal to the quadratic function x"Hox + ¢{x
(modulo a constant term) with x := vech(¥), Hy :=
MgMo + NOTNO and ¢y := QMOTao, where Mg, Ny and

oy are given in (30a)—(30c), respectively. This completes the
proof. |



Next, we study the feasibility of the GQCQP (and thus, the
feasibility of Subproblem 3.2 as well).

Proposition 5: Suppose that H. € S}\{0}. Then, we
consider the following two (exhaustive and mutually exclusive)
cases: (i) H, € S}, that is, rank(H,) = v, in which case
GQCAQP is feasible, if and only if

d. < (1/4)ciH  c,. (32)

(i) H, € SH\({0} U S{t), that is, rank(H.) € ZY™?, in
which case, we consider the following two sub-cases: (ii.a)
c. € R+*(H,) = N(H,), in which case GQCQP has a non-
trivial feasible set; and (ii.b) ¢, € R(H,), in which case
GQCAQP is feasible, if and only if

d. < (1/4)c;Hc.. (33)

Proof: The GQCQP problem is feasible, if and only if
0 € Jm(f.|R?). Because the function x — f.(x), where f.(x)
is defined in (29b), is a convex quadratic (and thus continuous)
function, Jm(f.|R") will be an interval in R that will always
contain positive numbers. Thus, in order to show that 0 &€
Jm(f.|RY), it suffices to show that either Jm(f.|RV) is not
bounded from below or it is bounded from below and also
min(Jm(f.|RV)) = inf(Im(f.|RV)) < 0. To this aim, we
will consider the problem of minimizing f.(-), which is an
unconstrained convex QP.

In case (i), f.(-) admits a unique global minimizer, x* =
—(1/2)H_'c,, with corresponding minimum value f¥ :=
Minyegre fo(X) = fo(x*) = d. — (1/4)cTH_ 'c.. Therefore,
0 € Jm(f.|RV), if and only if f¥ < 0, which yields (32).
In case (ii), f.(-) admits a global minimizer, if and only if
the equation 0 = o~ fe(x) = 2H_ x + c. admits a solution,

which is in turn equivalent to ¢, € R(H.) = Nt (H,). If
c. € RY(H,) = N(H,) (subcase (ii.a)), then the function
x > feo(x) is not lower bounded (note that f.(-) is lower
bounded if and only if cIx = 0, for all x € N(H,.), or
equivalently, c. € N'*(H.)), which implies that GQCQP has
a non-trivial feasible set. On the other hand, if ¢, € R(H,) =
N+ (H,) (subcase (ii.b)), then the set of minimizers of f.(-)
corresponds to the affine subspace S that consists of all the so-
lutions to the equation H.x = —(1/2)c,, which is defined as
S:={xcR": x=—(1/2)Hlc.+UT[0, 2z"|T, z € RV},
where H. = UIX U, corresponds to a spectral decomposition
of H. (the diagonal elements of 3 are the eigenvalues of
H. in decreasing order and U, is an orthogonal matrix). In
addition, f* := minyege fo(x) = d. — (1/4)clHlc.. Again,
0 € Jm(f.|R?) if and only if f¥ < 0, which yields (33). ®

A. Computation of the Solution to the GQCQP

In order to address the GQCQP, which is a non-convex prob-
lem, one can employ convex relaxation techniques [22], [23],
which aim at associating the original (non-convex) problem
with a convex, but not necessarily equivalent, program. In this
work, we will employ instead a direct solution approach to the
GQCQP which will allow us to characterize an optimal control
policy that will steer the system’s output to the goal Gaussian
distribution exactly. The proposed approach leverages some
key results from the solution of optimization problems with
quadratic but not necessarily convex performance indices

subject to a single quadratic equality constraint, which is
a non-convex constraint, in the sense that the feasible set
it induces is not convex, after tailoring the latter results to
the specific structure of the GQCQP. (For more details on
generalized quadratic programs subject to a single quadratic
equality constraint, in which neither the performance index
nor the constraint function are necessarily convex quadratic
functions, one may refer to [16]-[18], [20].) To this aim, we
will simultaneously diagonalize the matrices Hy € ST and
H,. € S;. In particular, Hy = UD,U" and H. = UD_.U",
where U is an v X v invertible matrix and Dy, D, are
diagonal matrices in S} and S, respectively. Now, let
S = Dal/ZU_l. Then, we have that SHyST = I and
SH.ST = D, where D := D, /’D.D;'/%. Note that D
is a diagonal matrix in S;. By using the transformation
z = (ST)"'x + (1/2)Sco, the GQCQP can be formulated
equivalently (modulo a constant term in the performance
index) as follows:

min z'z, subject to p(z) = 0, (34)

zcRY
where ¢(z) := z'Dz + o'z + ¥, 0 := Sc. — DScq and
¥ = (1/4)cfS™DScy — (1/2)cISTScqy + d.. Note that the
problem given in (34) corresponds to the geometric optimiza-
tion problem of determining the closest point of the conic
characterized by the quadratic equation ¢(z) = 0 from the
origin z = 0.

Now, let r := rank(D), with » € Z}. Then, without loss of

generality, we can assume that
va'r,vfr var,r
D = A 9 9 67‘)7

where 0; > - -+ > J,. are the non-zero eigenvalues of D. The
vector o can be decomposed as follows: o = or + on,
where o = [0, 26T|T € R(D) with § € R” and oy =
[vT, 0T]T € N(D) with v € RV"". Now, let p := [¢T, ¢T]T
=z+ [0, (A716)T]T with & € RV"" and ¢ € R". Then,
instead of addressing the constrained minimization problem

given in (34), we can equivalently search for the minimizer
p* = [(€9)T, (¢*)T]T of the following problem:

min €[ + ¢ — AT'[%, subject to ¢(£,¢) =0, (35)
nin

A = diag(dy, ...

Or,u—r

where ¢(&,¢) := CTAC +~T¢ +0 and 0 := 9 — 6TALS.

Next we characterize the minimizer p* or, more generally,
the set of minimizers, P*, of the problem given in (35). To
this aim, we consider the following three mutually exclusive
and exhaustive cases [17], [18].

Case 1: This is a degenerate case that occurs when v = 0
and 0 = 0. In this case, ¢(&,¢) = ¢TA(, and thus ¢ = 0
is the only feasible point of the problem given in (35). Thus,
P ={peR’: p=[¢, 0']], §cR""}.

Case 2: This case occurs when 6§ # 0, § = 0, and v = 0. In
this case, ¢(&,¢) = (TAC + 6. We conclude that the problem
is feasible only if # < 0. In addition, ¢(-) is independent of
& (there are no constraints on &), which in turn implies that
€ = 0. By using the transformation 1 := (1/,/]0])A'/2¢

for § < 0, the problem given in (35) reduces to
min " (|9|A"1)n, subject to |n| = 1. (36)
neRrr

It follows from the min-max theorem for the Rayleigh quotient



that the minimum value of the problem given in (36) is equal
0 Amin(|0]A™Y) = 0]/ Amax(A) = |0]/61, where §; is the
largest eigenvalue of A. The minimum value is attained at
n* = [(n7)", 0", where 1} is an v;-dimensional (real) unit
vector and 1, denotes the algebraic multiplicity of §; (as an
eigenvalue of A). Thus, ¢* = /|f]A~/2n*, from which it
follows that ¢* = [(¢})T, 0OT]T with ¢} € R*. In addition,
because |n;| = 1, we have |¢}|? = |#|/d1, which implies that
¢t = +4/|0]/61 when vy =1, or ¢ belongs to the (11 — 1)-
dimensional sphere S"171 := {p € R" : |g| = +/|0]/d1},
when v1 > 1; for both cases, we write ¢} € Z7 C R”*. Thus,
Pri={peR": p=[0", (], O']", & € 27}

Case 3: The remaining case, which is the most general one,
determines the normal form [17] of the problem given in (35).
Before we proceed, we define the Lagrangian £ : RV™" xR" x
R, with £(£,¢,A) = [€]2+|¢— A2 = MCT AL+ TE+
6). We observe that £L(€,¢,\) = L1(&,A) + L2(¢, ), where

L1(&,0) :=E€T6 - A€ +0),
Lo(EA) = ¢TI - AAY —26TA ¢+ 6TA%.

Based on Lagrangian duality theory [21], the maximum of the
dual function g(-) : R — R U {#o00} with

g(>‘) = gelﬂl{l'f*r £1(£7 >‘) + Clél]lgf EZ (C? )‘)a

which is associated to the primal optimization problem formu-
lated in (35), furnishes a lower bound on the optimal value of
the latter problem. We observe that g(-) attains finite values
for these A € R for which the functions & — L£1(&, )
and ¢ — L2(¢, A) are lower bounded. The function £y (-, A),
which is quadratic (in &) for any given A € R, will be lower
bounded, if and only if the equation 0 = V¢Li(§,)) =
2€ — Ay admits a solution &, () € RY™" and in addition, its
Hessian matrix VZ£1 (€, \) = 2T belongs to S{_,, which are
both trivially satisfied for all A € R. Similarly, the function
Lo(-, A), which is quadratic (in ¢) for any given A € R, is
lower bounded, if and only if the equation 0 = V¢ £L5(¢, \) =
2(I — AA)¢ — 2A715 admits a solution ¢, (\) € R" and
its Hessian VEEQ(C,)\) = 2(I — AA) belongs to S;. Thus,
Ls(+,\) is lower bounded for all A € A := (—o0,1/6;] for
which A='§ € R(I — AA). Therefore, when both £1 (€, \)
and L2(¢, \) are lower bounded, in which case L(£, ¢) is also
lower bounded, we have that

&N =(1/2)0y, I-2A)G\)=AT18  (38)

From the strong duality of the GQCQP, which can be proven
using similar arguments with those used in the approach
presented in, for instance, [21, pp. 653-658], we conclude that
for the characterization of p* := [(¢*)T, (¢*)T]T, it suffices
to find a \* € A such that & (\*) and (,(\*) satisfy the
constraint equation ¢(&,(A*), («(A*)) = 0 (alternatively, one
can find the global minimizer A* of —g(\)). After finding such
A* € A, we can simply set £€* := &,(\*) and ¢* := (. (A*).
To proceed with the characterization of the solution to the
problem in (35) in normal form, we will consider the following
two subcases:

Case 3.1: \* € int(A) = (—o0,1/81), which implies that
(I— A\*A) € S;Ft. Consequently, Eq. (38) becomes

& =(1/2\y, ¢=I-XAa)'ATs (39

Next, we plug the expressions of &* and ¢* in terms of

(37

A*, which are given in (39), into the constraint equation
P(€*,¢*) = 0, where ¢(€*,¢*) = (C*)TAC* + 7€ + 0,
to obtain the following equation: ¥(A\*) = 0, where X(-) :
int(A) — R with

S(A) = 6TATYZHI-AA) A28+ (|]2/2)A+6. (40)

The equation ¥(A) = 0 admits a unique solution in the interior
of A, if and only if 0 € Jm(X|int(A)) (for more details on the
solution of this scalar equation, the reader may refer to [18]).
By continuity of X(-), it suffices to show, in view of the
intermediate zero theorem from real analysis, that there are
(finite) A, A2 € int(A) such that £(A;) < 0and X(Az) > 0.1t
is easy to show that liminf_, ., X(\) = —oco, which implies
the existence of a (finite) A; such that (A1) < 0. Now, let
¥ :=sup{Z(A\) : A € int(A)} where & € RU{+oc} with the
convention that ¥ = +oo when the set {£(\) : A € int(A)} is
not upper bounded, and let us also simultaneously decompose
A €S/T and § € R" as follows:

A= bdiag((sllma A): 6= [6I7 ST]Ta
where A := diag(d,,41,...,0,) € Si+,.. 61 € R” and ¢

R"~¥1. On the one hand, when §; # 0, then ¥ = oo, which
implies the existence of a (finite) Ao such that X(\y) > 0.
Thus, in this case, 0 € Jm(X|int(A)) and we conclude that
the equation () = 0, where 3(\) is given in (40), admits a
solution in the interior of A. On the other hand, when §; = O,
then ¥ = limsup, /5, £(A) and in particular

T = |(I—(1/6)A) TATY2412 + 4|2 /(20,) + 6.

If 0 < ¥ < +oo0, then £()\) admits a unique solution in the
interior of A. If, however, ¥ < 0, then X(\) < 0 for all X in
the interior of A (even in the special subcase in which ¥ =
limsupy_,q/5, 2(A) = 0, we have that 0 ¢ Jm(X[int(A)))
and thus the GQCQP is not feasible.

Case 3.2: \* = 1/4; (note that 1/4; belongs to the boundary
of A). Then, A=1§ € R(I — (1/61)A) only if §; = 0. It
follows that £* = (1/(261))~ and ¢* € Z*, where
Z={¢], ¢""eR": (=T~ (1/6)A) A4,
G117 = —(1/61)(CTAL + |[v[*/(261) + )},
in view of (39) and ¢(&¢*,¢*) = 0. Thus, P* = {p €
RY: p=[(1/(201))7", "', ¢ € 2"}

B. The Proposed Algorithm for the Liouville Control Problem

Next, we present the main steps of the proposed algorithm
for the characterization of the solution to the Liouville control
problem (Problem 1).

Step 1: If pue # 0, find the solution, v*, to Subproblem 3.1
by making use of Eq. (28), provided that the latter problem
admits a solution. If no solution exists, return failure and stop.
If ¢ =0, set v* = 0 and go to Step 2.

Step 2: Find a solution p* := [(¢*)T, (¢*)T]T to the problem
given in (35), if the latter admits a solution, and then compute
the corresponding solution, x*, to GQCQP by using the
equations: x* = STz* — (1/2)STScy and z* = [(¢*)T, (¢* —
A~18)T|T. Otherwise, return failure and stop.

Step 3: Compute the corresponding optimal gain matrix ¥* €
LT(RN*N) from the equation: ¥* = vech™ ! (x*).

Step 4: Proceed to the computation of the corresponding
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Fig. 1. Evoluti.oq of the density function, gy(t)(y), the mean, pu(t), and
the standard deviation, o (t), of the output variable y(¢) when the system is
driven by the output feedback control policy 7* versus the number of stages
t.

optimal gain matrix /C; € £T(RN*N), where IC; := g(¥*).
Step 5: Finally, characterize the optimal policy 7* & II that
solves Problem 1 by extracting (i) the feed-forward inputs
v*(t) from the vector v*, which was computed in Step 1, and
(ii) the optimal control gains k; (¢, 7) from the corresponding
entries of the optimal gain matrix /C; € £T(RY*N), which
was computed in Step 4.

V. NUMERICAL SIMULATIONS

To illustrate the main ideas of the proposed solution ap-
proach for the Liouville control problem, we present numerical
simulations for a damped linear oscillator described by the
following equation: &(7) = Acx(7) + beu(r), with output
y(r) = cla(r) with Ac = [ 02 ol |, b = [0, 1] and
cc = [0, 1]T, where ¢ = 0.15 and w,, = 1. A corresponding
discrete-time model with sampling period A7 > 0 is given by
x(t +1) = Ax(t) + bu(t) and y(t) = c'x(t), where A =
exp(ATAL), b= (fOAT exp(sAc)ds)be, ¢ = cc. For the simu-
lations, we have used the following data: N = 10, AT = 0.2,
q(t) =1, r(t) =1, By = 0.5I (and thus, 0f = 0.5), uf = 1
and U? = 0.01 (or of = 0.1). The evolution of the Gaus-
sian density function, p,(y) = (1/v27ma(t))exp(—(y —
u(t))?/(20(t)?)), the mean, (t) := E[y(t)], and the standard

deviation, o (t) := \/E[(y(t) — u(t))?], of the output variable

y(t) versus the number of stages, ¢, when the system is driven
by the optimal policy 7*, are illustrated in Fig. 1.

VI. CONCLUSION

We have proposed a systematic approach for the com-
putation of a dynamic output feedback control policy that
solves the Liouville control problem for the class of Gaussian
distributions for discrete-time SISO systems with incomplete
state information. In the proposed approach, the control prob-
lem is reduced into a system of two decoupled optimization
problems, namely a convex quadratic program subject to an
affine constraint and a non-convex but tractable (generalized)
quadratic program subject to a (non-convex) quadratic equality
constraint. In our future work, we plan to address similar
problems using control policies that depend on state estimates
constructed by the available output measurements (separation-
based control policies).
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