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A Novel Secure and Efficient Data
Aggregation Scheme for IoT

Ruinian Li

Abstract—We  define the following problem termed
n x l-out-of-n oblivious transfer (n x 1-out-of-n OT): in
a system with one server and n clients, how to securely and
efficiently assign n secrets to n clients by the server, with each
client getting a unique secret from the server, and the server
and clients remain unknown of how the secrets are distributed?
This is a novel problem that is fundamentally different than
1-out-of-n OT repeated n times, and is different than k-out-of-n
OT as well. Nevertheless, the proposed OT has many practical
applications such as privacy-preserving data aggregation in
smart grids. It can also be employed to design crypto protocols
for anonymous communications and group signatures. In
this paper, we propose the first algorithm to efficiently and
effectively implement the n x 1-out-of-n OT. We construct
hidden permutation circuits to obliviously assign n secrets to n
clients by the server within O(Ig(n)) time. A rigorous theoretical
analysis is also carried out to investigate the security strength
and performance of the protocol.

Index Terms—Internet of Things (IoT), oblivious transfer,
privacy preservation, privacy-preserving data aggregation.

I. INTRODUCTION

N THIS paper, we define a novel problem termed n x 1-out-

of-n oblivious transfer (n x 1-out-of-n OT) for a system with
one server and n clients: how to securely and efficiently assign
n secrets to n clients by the server, with each client getting
a unique secret from the server, and the server and clients
remain unknown of how the secrets are distributed? n x 1-out-
of-n OT is different from the k-out-of-n OT problem because
in the latter one client requests k secrets to be obliviously
transferred from the server while in the former (our problem)
each of the n clients gets one unique secret from the server, not
multiple secrets. It is neither the 1-out-of-n problem repeated
n times as we require that each client gets a unique secret from
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Fig. 1. Smart meter data aggregation.

the server without duplication, while repeating n times of the
1-out-of-n obviously may render two or more clients receive
the same secret. To our best knowledge, n x 1-out-of-n OT
has never been investigated; nevertheless, it is a fundamental
problem with many applications in practice, as outlined in
sequel.

Our n x l-out-of-n OT problem definition is motivated by
the study of privacy-preserving data aggregation in smart grids.
Smart grids is an Internet of Things [1]-[3] application that
delivers electricity from the power plant to your home or
business. As shown in Fig. 1, each smart meter reports its
fine-grained utility data to the server; and the server needs to
compute the aggregation of the data while the privacy of the
data must be protected. Many methods have been proposed but
they are mainly based on modern cryptographic advances such
as differential privacy, homomorphic encryption, and secret
sharing [4]-[10]. Unfortunately, the computation overhead at
the smart meter side is prohibitively high rendering them inap-
plicable for data aggregation in smart grids. Using masking
values to obscure the true data is the most efficient method
as it has simple encryption operations at smart meter side
(just one modular addition operation) [S]-[7] but the exist-
ing mechanisms for constructing a secret masking value for
each smart meter that can cancel out at the server when
added together involves high communication and computa-
tion overheads. Motivated by this observation, we propose the
nx 1-out-of-n OT problem to help carry out privacy-preserving
data aggregation in smart grids as follows: each smart meter
receives one secret obliviously from the server based on the
n x l-out-of-n OT protocol while the sum of the n secrets is
known only to the server, such that the secrets can be used
as masking values by the smart meters to hide their true data
via a simple addition operation and the server can retrieve the
aggregated result easily by subtracting the sum of the secrets.
An additional salient feature brought by our data aggregation
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approach based on n x 1-out-of-n OT is that the secret at each
smart meter is reusable via a simple one-way hash algorithm,
which could be public, to guarantee that the masking values at
each round are different to avoid side-channel attacks that can
be easily launched as the smart meter readings are correlated
in time domain. The masking values generated by crypto meth-
ods in [5]-[7] cannot be easily changed from round to round,
as the sum must remain unchanged, and regenerating a new set
of masking values at each round implies that the corresponding
data aggregation protocol involves extremely high communi-
cation and computational overheads, making them inapplicable
in smart grids.

One may argue that we can let each client generate an
independent secret, and send the secret to the server through
anonymous communications. However, current anonymous
communication protocols such as Crowds, mix nets, onion
routing, etc., have their limitations [11]-[15]. Crowds [15] and
onion routing [13], [14] are vulnerable to a global attacker who
is able to watch the traffic; mix net [11], [12] is resistant to
global attackers while it needs many trusted relays and traffic
in presence to help obscure the traffic for secret delivery.

We propose to utilize hidden permutations that can obscure
the communications among all the clients. By this way the
secret sent from the server to a client does not necessarily
be the one that is intended for this client; this secret, in an
encrypted form, can be forwarded through the hidden per-
mutation to the intended client, which is the only client able
to decrypt it. The proposed hidden permutation can also be
used for designing anonymous communication protocols, as it
allows the clients to send secrets to the server anonymously.
Our main contributions are briefly summarized as follows.

1) We propose and formalize a novel problem termed n x

1-out-of-n OT.

2) We develop a practical protocol to solve this problem
efficiently, which novelly combines modern cryptogra-
phy and permutation circuits.

3) Our proposed hidden permutation can be used to imple-
ment an anonymous communication system, and our full
protocol can be applied to achieve privacy-preserving
data aggregation for many applications such as smart
grids, wireless sensor networks, and mobile health.

4) We theoretically prove that our proposed protocol is
secure and can counter various attacks.

5) We evaluate the performance of our proposed proto-
col in terms of both computational complexity and
communication cost.

Section II summarizes the most related work. Section III
presents our problem formulation, system model, and security
model. In Section IV, we outline a generic solution and present
a protocol for our nx 1-out-of-n OT problem. Section V details
how the data is transmitted through a hidden permutation, and
Section VI introduces an efficient permutation circuit. Protocol
analysis is provided in Section VII and we conclude this paper
with a future research discussion in Section VIIL.

II. RELATED WORK

Oblivious transfer is a type of protocol in which a client gets
secret values from a server while the server remains unknown
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of which secret each client gets. Our problem belongs to the
family of oblivious transfer as we require the server and clients
remain unknown of how the secrets are distributed, i.e., each
client knows only its own secret obtained from the server
while the server does not know the secret received by any
client. The first oblivious transfer protocol was proposed by
Rabin [16]. In Rabin’s [16] method, a sender sends a mes-
sage to a receiver with a probability of 1/2, without knowing
whether the receiver can receive the message. Lots of work
have been done to extend Rabin’s work [17]-[26]. Oblivious
transfer can be divided into two categories of 1-out-of-n OT
and k-out-of-n OT. In l-out-of-n OT [18]-[20], [23], [24],
a client is able to get one secret from the server, and the
server does not know what secret the client gets. In k-out-of-n
OT [21], [22], [25], [26], a client can get k secrets from the
server, while the server does not know what secrets the client
gets. Our problem is different from these two cases. On one
hand, we require each client to get only one secret from the
server, which is different from k-out-of-n OT; on the other
hand, our problem is not simply a 1-out-of-n OT repeated n
times, which cannot guarantee that each client gets a unique
secret.

The n x 1-out-of-n problem is motivated by our investi-
gation on privacy-preserving data aggregation in smart grids.
We notice that utilizing masking values for privacy-preserving
data aggregation has a few attractive features making it appli-
cable in resource-constrained environments: such an approach
does not rely on a trusted third party and the involved
encryption and decryption operations are extremely simple.
Nevertheless, constructing the masking values at the client
side that can sum to a value known to the server is nontriv-
ial. Kursawe et al. [5] proposed four approaches to generate
the masking values based on secret sharing, Diffie-Hellman,
and bilinear mapping. In [6], Paillier homomorphic encryp-
tion was applied to produce the masking values and in [7],
a distributed Laplacian perturbation algorithm was presented
in which the clients jointly create a Laplacian noise. These
approaches allow the masking values to be generated by the
clients, which involves high communication and computa-
tional overheads. Nevertheless, the masking values should be
updated frequently, preferably a unique mask value is used
by each data item of a client for countering the side-channel
attacks. Our protocol for the novel n x 1-out-of-n problem pro-
posed in this paper intends to tackle the challenges mentioned
above.

Random permutation is an important primitive for cryp-
tosystems that aims at randomly ordering a set of
objects [27]-[31]. Rackoff and Simon [31] demonstrated that
almost every switching network of polylogarithmic depth
almost randomly shuffles any sequence of n/2 “0”s and n/2
“1”s. Following Rackoff and Simon [31] and Czumaj [29]
proposed a novel construction that shuffles an arbitrary
number of Os and 1s. In this paper, we take advantage
of random permutations to shuffle n clients. Each client
chooses to swap or not to swap a message with another
client to construct a hidden permutation, which hides the
communications among the clients. We give a construc-
tion P, and prove that it can be used to implement any
permutation.
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Fig. 2. Communication architecture.

III. PROBLEM FORMULATION AND MODELS
A. Problem Definition

A server S would like to share a set X of n secrets to n
clients, where X = {xo, x1,...,x,—1}. The clients are num-
bered as {0, 1, ...,n— 1}. The secret assignment must satisfy
the following two requirements.

1) The assignment of secrets to the clients remains entirely

unknown to the server.

2) Each client’s knowledge is confined to the value of its

own secret.

B. System Model

As shown in Fig. 2, our system model consists of two major
entities: 1) server and 2) clients. Let p; be the public key of
client i and pg be the public key of the server. The corre-
sponding private keys are denoted by s; and sg, respectively.
We denote the encryption to ciphertext ¢ of data d with public
key p by ¢ = E,(d), and decryption of ciphertext ¢ with pri-
vate key s by d = D;(c). For secure symmetric encryption and
decryption with the key k, the encryption and decryption pro-
cesses are denoted analogously by ¢ = Ex(d) and d = Dy(c),
respectively. We also denote the signing and signature veri-
fying of a message m as Signg(m) and Ver,(m), respectively.
The server is responsible for generating the set of n secrets X
to be obliviously transferred to the n clients.

C. Security Model

We adopt a semihonest mode, where the participants follow
the protocols honestly, but they attempt to learn more infor-
mation of other entities. We do not assume a secure channel
in our model, and we further insist that an adversary can be a
global attacker, which implies that all traffic can be seen by the
adversary. We also assume that the server is able to observe
all the messages transferred among the clients. Therefore we
require that all communications are confidential (protected by
encryption) to protect against such attacks.

IV. PROTOCOL OUTLOOK
A. Overview of the Protocol

To obliviously distribute n secrets to n clients, there must
exist some ways to obscure the communications between the
clients and the server. Our idea is to let the clients coopera-
tively work to communicate with the server, so that the client
who directly talks with the server is not the final receiver of
a secret x;, but a relay who helps to deliver the secret to the
receiver. A random permutation can be utilized to hide the
relationship of the clients such that when the server sends a
secret x; to a client, it has no knowledge of where the secret is
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forwarded. In the meantime, the relay who passes the secret to
the final receiver should not be able to obtain the true value of
the secret, which implies the adoption of some cryptographic
mechanisms.

To build such a protocol, there are many problems to solve.
For example, how to securely achieve a permutation of the
clients so that they can cooperatively work together? How to
hide the permutation from an outsider attacker, or even a par-
ticipant in the protocol? How to protect the confidentiality of
the secrets so that only the final receiver is able to obtain
the true value of the secrets? To answer these questions, we
illustrate how a generic solution protocol is developed in detail.

B. Development of Generic Solution Protocol

It is clear that after the protocol has executed, S should
be able to infer that any secret x; could have arrived at any
client j while remaining entirely ignorant of the actual per-
mutation o mapping secrets to clients. If the server initially
sends x; to client i for each i in parallel for efficiency, then
presumably the clients must send data back and forth among
themselves, while S is not aware of how the secrets are per-
muted among the clients. During this process the permutation
o is implemented so that x; arrives at client j = o (i). We
call this kind of obfuscated distributed implementation of a
permutation scrambling.

To ensure that only the ultimate destination of x; namely
client j = o(i) is privy to the value x;, we must ensure
that x; is encrypted by S so that the only client in posses-
sion of the correct key to reveal it is client j. To make this
paper, S must possess n keys and yet not know which one
corresponds to which client. This superficially appears to be
exactly the problem we are trying to solve! However, there is
an important difference: each key may be randomly created
in the corresponding client, whereas we impose no constraints
on the values of the secrets and insist they are produced by
the server.

Proceeding in this fashion, let k; be the key for the
agreed symmetric cryptosystem randomly generated by client
J. Provided there is a way to get k; to S without revealing its
value to any other client, and without revealing which client
it comes from, then the necessary encryption of the secrets
described above can be performed. So scrambling is needed
for this stage of the protocol too.

To ensure that only S and client j know k;, the first thing
client j does is to encrypt k; with the server’s public key
producing k; = E,(k;), and it is the value «; that will be
scrambled among the clients via S and then for efficiency
passed in parallel, one per client to S and thereupon decrypted
by S using k; = Dyg(k;). Suppose for each j that «; is sent to
S from client i defining a hidden permutation j = o (i). If §
uses the key obtained from client i to encrypt secret x; and
sends it to client i for each i in parallel for efficiency as dis-
cussed above, then the value sent to client i is Ey; (x;) where
Jj = o(i). The only client able to decrypt this is client j = o (7).
So our protocol must move Ey (x;) to client o (i) for each i
using scrambling to guarantee that the server does not know
anything of o.

In summary, each client j produces its own random sym-
metric key k; and encrypts it to x; = E,g(k;). Scrambling
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implements the permutation o~! which maps j = o (i) to i
placing k; at client i. Then in parallel each client i sends «;
to S which decrypts each one using its private key, effectively
obtaining k; = D, (k;) from client i for each i. We may imag-
ine that S has an array K for storing these values as they arrive,
so K[i] = k; where j = o (i) but S does not know the value of j.
Now in parallel S encrypts each secret with the corresponding
key and sends it back to client i. Scrambling now implements
the permutation ¢ so that the message from the server arrives
at client j = o (i). Since the message is encrypted by client j’s
public key, only client j is able to decrypt it.

The generic protocol specified above arranges that client j =
o (i) has secret x; in accordance with the hidden permutation
o. This is tantamount to a reduction of the main problem
to the implementation of scrambling as informally described
above, i.e., to the problem of randomly obtaining and securely
implementing a hidden permutation of data ¢ and its inverse
o~! among the clients. We defer effective implementation of
scrambling until later.

One possible problem here is that by colluding with some
compromised client, the server is able to able to decrypt some
secrets in the transmission. To prevent the server from such
a traffic analysis, we add another layer of encryption. If «; is
first encrypted with client i’s public key, then S can no longer
recover k; transferred between the clients. When the encrypted
message from client j arrives at client i, it is decrypted using
client i’s private key to recover «;. In order for the client j to
perform the encryption, it needs to get the authenticated public
key p;. Using scrambling to move the value i to client j is not
adequate as it leaves a trail in any client indicating where it
starts from, which is an information leak about the hidden
permutation o. Since p; uniquely identifies i to S, moving p;
is just as bad as moving i.

It is convenient to regard this problem as an instance of a
general one, that ideally scrambling to implement the hidden
permutation o should have end-to-end encryption, i.e., when
a value at client i is scrambled to client j = o (i), it should
first be encrypted with the public key of the destination p;
so that it is meaningless en route inside clients other than i
and j, and a similar condition should hold when implementing
o~! with scrambling. In this way scrambling is relieved of
the responsibility of moving meaningful data without giving
away information about the permutation implemented.

To achieve this objective, for all pairs of clients (i, j) where
i = o (j), we need to solve the following problems. How could
client i and j verifiably and secretly obtain each other’s iden-
tity? A solution is for each client i to create a new random
public and private key pair (p;,s;) and send p; via scram-
bling to client j = o (i). Then each client j computes a signed
message containing a random salt and its index j using its
authenticated private key sign; = Dy (salt,j) and using Di
encrypts it to esign; = Ep,(j, sign;), which is scrambled to
client i where it is decrypted using 5; to produce j and sign;.

Now client i can use j to obtain the authenticated p; and
can confirm the value of j by using p; to decrypt sign;, which
will produce j if it is genuine. At this point client i has a
validated j = o (i) and the validated public key p; belonging
to client j. A reciprocal communication with client j of the
same form encrypted this time with p; can put client j in the

IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

same situation in regard to client i. Note that unlike p;, p; is
not made public, such that no one is able to match p; to its
owner i.

C. Proposed Protocol

Putting all the above discussions together, we present our
protocol with three phases: 1) initialization; 2) clients to
server; and 3) server to clients.

1) Initialization: To start the protocol, each client generates
two pairs of public/private keys: 1) (p;,, s;;) and 2) (pi,, 5;,)-
The server also generates two pairs of public/private keys,
(ps,» ss,) and (ps,, ss,). The first pair is used for encryption,
while the second pair is used for signing. As mentioned before,
we assume that given any client or the server, an entity can
obtain the public key p; of client i or the public key pg of the
server.

In this phase, the clients establish their connections with
each other, resulting in n/2 pairs of clients. We call i as j’s
matching client if i and j are in a pair. i and j knows each other
and their communication is built through the help of the other
users. It is noted that the initialization phase is used to build
connections among the clients, and it is no longer needed after
the clients are matched with each other. The detailed steps are
listed as follows.

1) Scrambling sets up a random hidden permutation o

among the clients.

2) For 0 < i < n in parallel client i generates a new pair
of public/private key pair (p;,’s;).

3) For 0 < i < n scrambling is used to move p; to client
Jj = o (i), which checks that a single value is received.

4) For 0 < j < n in parallel client j computes sign; =
Sigsj (salt, j) with a random salt.!

5) For 0 < j < n in parallel client j computes esign; =
E5,(j. sign)).

6) For 0 < j < n scrambling is used to move esign; to
client i = o~1(j), which checks that a single value is
received.

7) For 0 < i < n in parallel client i computes (j, sign;) =
D;l.(esignj).

8) For 0 < i < n in parallel client i uses j to get the
authenticated public key p;.

9) For 0 < i < n in parallel client i computes Very, (sign)).
If the signature verification succeeds, move to the next
step; otherwise the message will be discarded.

The above steps successfully build the scrambling, and n/2

pair of matching clients are created.

2) Clients to Server: After the initialization, each client j
needs to send a secret key k; to the server through the help of
other users. Here k; is encrypted using both server’s and j’s
matching client’s public key for confidentiality. Upon receiving
k;j, the server uses it to encrypt the secret x; and sends the secret
to the corresponding client. The detailed steps are listed as
follows.

1) For 0 < j < n in parallel client j randomly creates k;

and computes «; = Ps, (k).

TEach salt used in this protocol is generated separately to guarantee the
messages look random and different.
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2) For 0 <j < n in parallel client j signs «; by computing
signKj = Sigsz (salt, «;).

3) For 0 < j < n in parallel client j encrypts signkj by
computing esignkj = Ep, (kj, sign,(j).

4) For 0 < j < n scrambling is used to move esignKj to
client i = o~ 1(}).

5) For 0 <i < n in parallel client i computes (k;, signKj) =
Dy, (esignKj).

6) For 0 <i < nin parallel client i computes Ver,, (signxj).
If the signature verification succeeds, move to the next
step; otherwise the message is discarded.

7) For 0 <i < n in parallel client i signs «; by computing
sign,’(j = Sigsl.2 (salt, kj), and sends it to the server.

The above steps illustrate how a client’s key k; is secretly deliv-
ered to the server. This key is used for the server to encrypt
the final secret that client j is about to receive.

3) Server to Clients: In this phase, the server obtains the
secret keys k; in parallel from the clients, uses them to encrypt
each secret in {xg, x1, ..., X,—1}, then sends them back to each
client correspondingly.

1) For 0 < i < n in parallel S computes Very,, (sign,’(j).
If the signature verification succeeds, move to the next
step; otherwise the message is discarded.

2) For 0 <i < n in parallel S computes k; = DSS1 (), and
place k; in K[i].

3) For 0 <i < nin parallel S signs the secret by computing
Ai= Sigss2 (salt, x;).

4) For 0 <i < n in parallel S computes x; = Egyij(xi, Ai),
and sends it to client i.

5) Scrambling is used to move x; to client j = o (7).

6) For 0 < j < n in parallel client j computes (x;, A;) =
Dk_,‘ (Xl)

7) For 0 <j < n in parallel client j computes Verps2 (A).
The successful signature verification means the client i
finally gets the secret x; from the server.

The above steps illustrate how the server deliver secrets to
the each client. During this process, only the final receiver is
able to decrypt his message from the server and obtain the
final secret, because the message is encrypted with a secret
key that only the final receiver is aware of.

V. IMPLEMENTATION OF SCRAMBLING
A. Basic Scrambling

An actual solution protocol may be obtained from our
generic solution protocol by providing an implementation of
scrambling. We introduce a basic scheme for scrambling in
this section. In the next section, we show that it can be made
secure. Later, we provide an efficient concrete construction
that implements this scheme. For security, our implementa-
tion relies upon information about which permutation o has
been randomly generated. In fact, it requires [Ign!] ~ nlg(n)
bits of information to single out one permutation from all n! of
them. In our construction each of the n clients has only a loga-
rithmic number of bits of information about which permutation
has been generated.

It is well known and obvious that any permutation may
be generated from a series of transpositions. In our con-
text a transposition consists of two clients communicating
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Fig. 3. Simple sorting network.

and swapping the single data item they currently hold. Our
scrambling scheme can implement any permutation o of data
among the clients using such transpositions. Of course differ-
ent permutations can be made from different compositions of
transpositions; so naively a traffic analysis by S may reveal
something of which permutation is actually being imple-
mented. To escape this, we need the implementation of any
permutation as a composition of transpositions to involve iden-
tical traffic between clients no matter which permutation has
been realized.

An interesting property of a transposition is that a traffic
analysis does not reveal whether or not it has actually been
implemented when it appears that it has, because each of
the two clients may ignore the data sent to it by the other
and simply keep its own data item, instead of replacing each
with the ones communicated. We call a possible transposi-
tion an exchange. In an exchange two clients send each other
their respective data items, and depending upon a shared bit
of information, they either transpose or do nothing, by each,
respectively, deleting their own data item or deleting the one
sent by the other client. An exchange keeps a permutation
between n clients concealed when n = 2.

By making a fixed organized composition of exchanges for
a given n, we show how any permutation may be realized
just by changing the shared bits associated with each of the
exchanges. The permutation implemented is effectively rep-
resented by those hidden and distributed bits. Then a traffic
analysis by S can reveal exactly the same pattern of com-
munications no matter which hidden permutation is actually
implemented.

Such an organized composition of exchanges is in effect a
circuit with pairs of clients engaged in exchanges that either
swap their data values or not according to a hidden binary
switch. Such a permutation circuit may be illustrated in the
same fashion as a sorting network as shown in Fig. 3,2 bearing
in mind our distributed interpretation of the computation.

Here each horizontal line means a client with parallel time
increasing from left to right. A vertical line is an exchange
with its secret bit shared between the proximate pair of clients.
In this case, exchanges between clients 0 and 2 and between
clients 1 and 3 may occur in parallel, followed by exchanges
between clients 0 and 1 and between clients 2 and 3 in parallel,
followed by an exchange between clients 1 and 2. Depending
upon whether an exchange is a swap or does nothing many

2[Online]. Available: https://en.wikipedia.org/wiki/Sorting_network
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different permutations may be implemented with exactly the
same communication traffic.

The depth of such a circuit, 3 in this case, is a measure
of the communication traffic that we insist to be O(lg(n)).
Such a permutation circuit may be represented in client i as
an exchange sequence t;. For example client 2 has exchanges
with clients (0, 3, 1) in that order in the above circuit, and that
is therefore 1. In a logarithmic depth permutation circuit an
exchange sequence has at most logarithmic length as needed
to meet our efficiency bounds.

We exhibit later a permutation circuit of depth about 2 1g(n)
capable of implementing any permutation, as well as having a
very fast algorithm to compute the exchange sequence for any
client. Henceforth the term permutation circuit can imply that
any permutation can be implemented. A random permutation
may then be obtained by each pair of clients involved in an
exchange by jointly and randomly choosing a single bit. In
this way only two clients know whether a given exchange is
a swap or not, and information about the overall permutation
is distributed sparingly.?

B. Secure Scrambling

To ensure that a permutation network be useful when
employed to implement scrambling in the generic solution pro-
tocol, exchanges must be encrypted against S because S might
eavesdrop on the traffic. All communicated data must appear
random to S which must not see the same data twice and thus
infer the movement of the same data item. A client also needs
to be able to check upon receipt that the data does come from
the expected client.

To this end, when a data item ¢ is sent from client i to client
J, it is encrypted using client j’s public key as follows. First
a random salt is generated and the sequence number snumy;[;]
for client i’s communications with client j is incremented, and
then the following is computed:

8§ =Ey (salt, ¢, snum;[}], i, j).

Then the value (8, j) is sent to S which forwards § to client j;
client j decrypts it with its private key, giving

(salt, g, snum;[j]. i, j) = Dy, ()

which it can then use to filter communications into separate
queues, one for each client of origin i, maintained in order
of sequence number for client i, while checking that all com-
munications are intended for itself, client j. The parts of the
protocol that wait to receive data from a client can then block
until the communication from the appropriate client with the
next sequence number is available. This mechanism is assumed
in what follows.

1) Choosing Random Permutation: To set up a permutation
circuit ready to implement a random permutation, each client
first computes its exchange sequence. Then it iterates through
that sequence sending a random bit to each client in it, as well
as collecting the random bits sent to it from each such client.

3A random permutation may also be obtained by using a sorting network
to sort random values, one per client, which elegantly gives exactly an equal
probability to each possible permutation. However, this is too inefficient in
practice to meet our parallel communication and time constraints.
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By ex-oring the bit sent to a client with its own random bit, a
random bit is jointly agreed with the client on the other end
of an exchange, and this is stored in a sequence parallel to
the exchange sequence, the decision sequence d;. Here is the
distributed algorithm to choose one such bit for each exchange.
1) For 0 <i < n in parallel, client i does the following.
a) Compute the exchange sequence t; from (i, n) for
the permutation circuit being used.
b) Set up a dictionary snum; with snum;[i'] = 0 for
each client i/ in T;.
¢) For each 0 < k < |t;| do:
i) get the authenticated public key py of client
i = nlkl;
ii) increment snum;[i'] where i’ = 7;[k];
iii) generate a random bit by and a random salt,
and encrypt the message

Bk = Ep, (salt, by, snum;[i'], i, ')

and send By to client i’ = 7;[k];

iv) block until the next communication from client
i" = k] is received and decrypted with
D(s;, -). Before decryption the message should

be
B, = Ep, (salt, b, snumj[i], i, i) (1)

and so client "’s random bit b, is obtained;
v) assign d;[k] the value by @ b;.
In summary, after a random permutation has been set up,
client i has an exchange sequence t; and a decision sequence d;
both consistent with a permutation circuit, defined as follows:

t;[k] = the kth client for client i
to execute an exchange with
dilk] = whether that exchange with ;[k]

is a swap or not.

The exchange sequences of all the clients define the permuta-
tion circuit being used, and the decision sequences of all the
clients define the random permutation o that circuit imple-
ments, by defining which exchanges are real transpositions
and which do nothing.

Scrambling implements both hidden permutation ¢ and its
inverse o ~!. The latter is implemented by running the hidden
permutation circuit from right to left, undoing each transposi-
tion that left to right evaluation would have performed in the
reverse order, corresponding to using the exchange and deci-
sion sequences in reverse. Distributed algorithms to perform
o and o ~! may therefore be the same apart from this reversal.

2) Implementing the Hidden Permutation: The generic pro-
tocol uses scrambling to move data ¢g; at client i to client j =
o (i). The following distributed algorithm uses the exchange
and decision sequences defining o to effect this, assuming that
the algorithm to set up o at random has been executed, and
the public keys and dictionaries of sequence numbers found
and used there have been retained.

1) For 0 <i < n in parallel client i does the following.

a) Assign the data item to be scrambled to client
j = o (i) encrypted with a random salt using the
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Fig. 4. Permutation circuit when 7 is an even number.

destination’s public key
0; = Epj(salt, qi).

b) For each 0 < k < |t;] do:
i) increment snum;[i’], where i = 7;[k];
ii) encrypt Q; and a random salt

8k = Ep, (salt, Q;, snumy[i'], i, /')

and send §; to client i’ = t;[k];
iii) block until the next communication from client
i’ = t[k] is received and decrypted with

D(s;, -). Before decryption that should be
8, = Ep, (salt, Qy, snumy[i], 7, i)

so on decryption Qy is obtained;
iv) if d; = 1 then assign Q; := Qy, i.e., perform
the swap.
2) For 0 <j < n in parallel client j does the following.
a) Compute DSI.(Q]-) which contains ¢;, where
j=0().
b) Assign g; == g;.
The algorithm to implement o ~! is identical, apart from
using the reverse of 7; and d; so as to evaluate the permutation
circuit from right to left instead of left to right.

VI. EFFICIENT PERMUTATION CIRCUIT
A. Construction of the Circuit

We give a recursive construction of a permutation circuit
satisfying all aforementioned requirements. Then we give an
efficient algorithm for each client to compute its exchange
sequence, and a proof that it does indeed implement all per-
mutations of n, and finally we give a proof that the probability
distribution of permutations generated randomly from our
circuit is approximately uniform.

The base of the construction consists of trivial permutation
circuits for n = 1 and n = 2. The first has no exchanges and
the second consists of a single exchange. The recursive part of
the construction has two cases, even n and odd n. Fig. 4 illus-
trates the case for even n = 2m, which consists of m exchanges
in parallel followed by two recursive permutation circuits, each
of m elements, followed by the same m exchanges in parallel
as before the recursion.
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Fig. 5. Permutation circuit when »n is an odd number.

Fig. 5 illustrates the case for odd n = 2m + 1, which con-
sists of m exchanges in parallel followed by two recursive
permutation circuits, one of m = |[n/2| elements and one of
m+ 1 = [n/2] elements, followed by the same m exchanges
in parallel as before the recursion. Note that client m has no
exchanges outside of the recursion.

The depth of this permutation circuit is given by D(n) =
D([n/2]) + 2 where D(1) = 0 and D(2) = 1, which has
solution D(n) = 2[lg(n)] — 1 < 2lg(n) + 1, so that its
use for scrambling involves at most about 21g(n) parallel
communication steps as promised.

B. Generating Client’s Exchange Sequence

In both diagrams m = |n/2], if i < |n/2] then client i is
routed through the upper part of the recursion. In the even
diagram [n/2] = m and such a client i has an exchange with
client i +m = i 4 [n/2] before and after the recursion. In
the odd diagram [n/2] = m + 1 and such a client i has an
exchange with client i +m + 1 =i+ [n/2]. So in both cases
if i < [n/2] then i has an exchange with i 4 [r/2] followed
by recursion into the top circuit of |n/2] inputs followed by
an exchange with i + [n/2].

In the even network if i > m then i has reciprocal exchanges
to the ones mentioned above, therefore with i — [1/2]. In the
odd network if i > m + 1 then i has a similar exchange with
i—[n/2]. So in both cases if i > [n/2] then i has an exchange
with i — [n/2] followed by recursion into the bottom circuit
of [n/2] inputs followed by an exchange with i — [n/2]. If
we number the inputs to the recursive circuit from zero then i
enters that recursive circuit at position i — |n/2], subtracting
off the number of elements in the upper recursion.

Finally if neither i < |n/2] is nor i > [n/2] then we are in
the odd diagram with i = [n/2] = m, and there is just recur-
sion into the bottom circuit of [n/2] inputs at local position
i—|n/2] =0.

These observations enable the exchange sequence t; of
client i in a permutation circuit of n inputs up to just before the
point where recursion stops to be computed by the following
simple loop:

Jj =1 //index of client i inside current recursive circuit
while n>2 do
if j< |n/2] then
print i+ [n/2]
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n = |n/2] //size of the recursive circuit
else if j> [n/2] then

print i— [n/2]

j=j— n/2] /finput position in the recursive

circuit

n = [n/2]
else //mis odd and j = |n/2]

j=0

n = [n/2].

After the loop terminates, if n = 2 it is clear that there is a
single exchange in the middle of the sequence with client i+ 1
when j = 0 and client i — 1 when j = 1 (otherwise n = 1 at
this point, and there is no exchange at the mid point). This is
then followed by the reverse of the sequence produced above
by the mirror symmetry of the construction. Thus we have a
O(lg(n)) algorithm to produce the exchange sequence of client
i in a permutation circuit of n clients as promised.

C. Implementing Any Permutation With P,

We prove by induction on n that any permutation may be
implemented by P,. The base cases are trivial: when n =1
no exchange is needed to implement the single possible per-
mutation; and when n = 2 a single exchange can implement
both possible permutations.

Now let n = 2m be even for n > 2. Suppose we are given an
arbitrary permutation o : {0, ...,n—1} - {0,...,n—1}. We
now argue how to set each exchange in P, so as to implement
o using the inductive hypothesis that P,, can implement any
permutation of its inputs.

Start from an arbitrary i entering on the left-hand side of
P, and using the first exchange it encounters to map it to
either instance of P,, from which there is a unique exit point
if it is to reach its destination j = o (i) on the right. (We
assume in sequel that any such mapping through the recur-
sive instances of P,, is realizable by the inductive hypothesis.)
When i emerges from the recursive P, there is a unique set-
ting for the final exchange on the right which we choose so
that i reaches position j.

Next we find the companion j' of j in that exchange on the
right, which has now been routed going right to left into the
other recursive P,, from which there is a unique exit point if
it is to reach its source i/ = o~ !(j/) on the left. Now set the
exchange it reaches on the left so that it reaches 7/, and go to
the companion in that exchange and route it forward as before,
continuing in this manner until eventually the companion of
the initial i in its first exchange is encountered. If there are
any unrouted values on the left, start again with any one and
proceed as before. Eventually the top level exchanges will be
entirely set to swap or not, and the permutation will be imple-
mented assuming the maps discovered for the two recursive
P,,’s can be which is so by the inductive hypothesis.

Now let n = 2m+1 be odd for n > 2. Suppose we are given
an arbitrary permutation o : {0,...,n—1} — {0, ..., n— 1}.
We extend o by adding an additional element —1 with
o(—1) = —1 and we add exchanges to the recursive construc-
tion between —1 and m before and after the recursion, and
we temporarily modify the upper recursive P, into a P,,4+| to
account for the extra input in the obvious way.
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We argue as in the even case, except with an effective n
value of 2m+-2 and two recursive instances of P,,11. The same
argument shows that o may be implemented at the top level
with implied maps to be implemented by the two recursive
circuits, carefully starting the construction with i = —1 on
the left, routed into the upper instance of P,,+; so that the
two new exchanges are not used as swaps. At the end there
is an implied map for the upper instance of P, that maps
—1 to —1 and that part of the map is simply ignored when
replacing it by an instance of P, which will implement the
rest of the implied map of the upper half by the inductive
hypothesis. The —1 line now does not interact with anything
and may be removed, and this completes the proof.

VII. PROTOCOL ANALYSIS
A. Security Analysis

1) Confidentiality: In the initialization phase, scrambling is
used for all communications, which hides all the information
from the server. The only information a relay m can capture is
the temporary public key p; of client i on the path where m is
a relay. This, however, does not give any valuable information
to client m because client m is not able to match p; to its
owner 1.

After the initialization phase, a client encrypts its message
using both server’s public key ps and its matching client’s
public key p; before sending the message out using scrambling.
With scrambling, a message is encrypted once again using its
successor’s public key. Therefore, no entity is able to decrypt
the message without the knowledge of all the private keys.

Therefore, we claim that confidentiality is achieved in our
protocol.

2) Integrity: In the proposed protocol, all the messages sent
through scrambling are signed with the sender’s private keys.
The messages sent from the server to the clients are also signed
using the server’s private key. To break the integrity, an adver-
sary must be able to forge the private keys of the clients and the
server, which cannot be done with a non-negligible probability.
Furthermore, under our semihonest model, we do not consider
the existence of a malicious relay who replaces other clients’
messages to corrupt the system. Therefore, the integrity of the
messages is well protected.

3) Collusion Attack Resistance: We perform an analysis
on collusion attack, since in real world the participants can
be inclined to collude with each other to infer others’ pri-
vate information. In this protocol, the clients can collude with
each other or collude with the server in order to recover the
permutation. We list the two scenarios below.

1) Clients collude with each other. Since the message
sent out from a client is encrypted using the server’s
public key pg, no client is able to decrypt it without
the server’s help. Therefore, even all the clients col-
lude with each other, they are not able to decrypt any
message.

2) Clients collude with the server. Suppose client m is a
user who colludes with the server. Since m is on a log-
arithmic number of paths between pairs of clients (i, j),
where j = o(i), m can obtain messages from 21g(n)
clients. However, these messages are encrypted using
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TABLE I
COMPUTATIONAL COST OF n X 1-OUT-OF-n OT

Server One Client
Initialization 0 6lg(n) * R+ 4R
Clients to Server 0 21g(n) * R+ 6R
Server to Clients | 3n* R+ n*C 2lgln)* R+ R+ C
Total 3nxR+n*xC | 10lgln)* R+ 11R+C

both server’s public key ps and matching client i’s pub-
lic key p;. Therefore, without p;, the server and client
m are not able to decrypt the messages even when they
collude.

In fact, secure scrambling sets up a hidden permutation that
hides all the traffic flow from the server. Furthermore, another
layer of encryption using the public key of the sender’s match-
ing client hides the information from both server and other
relays. Therefore, collusion attack in our semihonest model is
far from practical. To make collusion attacks work, there must
exist some malicious users who refuse to follow the protocol
correctly at some point of the protocol. We give a situation
below for further discussion.

4) MITM Attack Under Malicious Model: Here we consider
a particular situation where the server and malicious users col-
lude with each other to gain benefits. Note that this situation is
under a malicious model, and we discuss this for an extension
of the semihonest model.

Suppose the server colludes with a malicious client m. Client
m is able to launch a man-in-the-middle (MITM) attack at the
beginning of the initialization phase by replacing p; with its
public key p,,, then both client i and its matching client j
will eventually think they are matched to client m after the
initialization has finished. By doing this, client m is able to
impersonate the matching client of both i and j. Therefore,
after the server distributes a secret x; to client m, m will for-
ward the secret to client 7 and tell the server the identity of i.
Therefore, the server is able to know which client the secret
is forwarded to. Fortunately the problem here is not severe,
since with a million clients, there will be only 40 pairs of (i, j)
under the MITM attack.

We consider pooling to be a practical way to detect such
an MITM attack. The idea is illustrated as follows. Suppose
i and j are in a pair and m is a relay on the path from
i to j. Client i hashes the identity of j and pools the result.
If all the participants are honest, then each hash value in
the pool should appear exactly once. However, if there is a
malicious user m launching an MITM attack by impersonat-
ing i and j, the hash of m will occur more than once since
both i and j will pool the hash of m. Therefore MITM is
detected, and both i and j can see that m is a malicious
user.

5) Replay Attack Resistance: Since the permutation circuit
is public and the time line is clear, it is hard for an attacker
to launch a replay attack. For any client i, a message comes
from client i/ with a sequence number snum;[/’] smaller than
the one that client i is waiting for will be automatically dis-
carded. In this way, all replayed messages can be identified
and discarded.
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B. Performance Evaluation

In this section, we evaluate the computational overhead as
well as communication overhead. We use M to denote the
message size, n to denote the number of clients, C to denote
the computational overhead for one symmetric operation, and
R to denote the computational overhead for one asymmetric
operation. For simplicity, here we treat the computational cost
of decryption and encryption the same.

1) Computational Overhead: Table 1 summaries the com-

putational cost for the proposed n x 1-out-of-n OT. We
analyze the computational cost for both server and client
in each phase of the protocol.
To start analysis, let us first compute the cost for each
client running scrambling once. When secure scram-
bling is used for data transmissions, each relay needs
to decrypt a message from its predecessor, encrypt the
message, and send the ciphertext to its successor. Since
each relay communicates with 1g(n) other clients, the
computational cost is 21g(n) * R.

a) In the initialization phase, secure scrambling is
used three times, resulting in a computational cost
of 2lg(n) * R x3 = 61g(n) x R for each client.
Meanwhile, each client j sends its identity j to its
matching client i, which involves one encryption,
one signing operation, one decryption, and one
signature verification, resulting in a computational
cost of 4R. Therefore, the total computational
cost for each client in the initialization phase is
61g(n) x R+ 4R.

b) In the clients to server phase, each client j encrypts
its message using the server’s public key pg, then
signs the message and encrypts it using its match-
ing client’s public key p; before sending it out
using scrambling, at the cost of 3R. Then scram-
bling is used once, resulting in a computational
cost of 2lg(n) % R for each client. Finally, as a
matching client of the sender, each client decrypts
the message, verifies the signature of the sender,
signs the message using its own private key, and
sends it to the server at the cost of 3R. Therefore,
the total computational cost for each client in the
clients to server phase is 21g(n) * R+ 3R+ 3R =
21g(n) * R + 6R.

c) In the server to clients phase, server verifies the
signature and decrypts the message from each
client at the cost of 2n % R, signs each secret x;
at the cost of n * R, and encrypts each message
using the symmetric key k; at the cost of n * C.
Hence, the total computational cost for the server
is 2n % R 4+ n % C. After the secrets are sent to the
clients from the server, scrambling is used once,
resulting in a computational cost of 21g(n) * R for
each client. Finally, each recipient j decrypts the
message using the symmetric key &; and verifies the
signature of the server, resulting in a computational
cost of R + C. Therefore, the total computational
cost for each client in the server to clients phase
is 2lg(n) * R+ R+ C.
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TABLE 1T
COMMUNICATION COST OF n X 1-OUT-OF-n OT

Communication Overhead
3nlg(n) « M
nlg(n)« M +nx M
nlg(n) x M +nx M
5nlg(n) « M +2n+x M

Initialization
Client to Server
Server to Client

Total

2) Communication Overhead:
Table II summaries the communication cost for the pro-
posed n x 1-out-of-n OT. We analyze the communication
overhead in each phase of the protocol.

a) In the initialization phase, secure scrambling is
used three times, resulting in a communication cost
of 3nlg(n) x M.

b) In the clients to server phase, scrambling is
used once, resulting in a communication cost of
nlg(n) « M. Also, each client needs to send the
message received from its matching client to the
server, rendering a communication cost of nxM. So
the total communication cost is nlg(n) x M +n+M.

c) In the server to clients phase, the server sends
a message to each of the clients, rendering a
communication cost of n * M. In the communica-
tion among the clients, secure scrambling is used
once, which costs nlg(n) * M. Therefore, the total
communication cost is nlg(n) * M + n x M.

Up to now, we have demonstrated the efficiency of the
proposed n x l-out-of-n OT. The computational cost
of a client is O(lg(n)), and the communication cost of
the system is O(nlg(n)). The proposed system offers a
potential way to achieve an efficient anonymous com-
munication system, where secrets can be transferred
from clients to the server anonymously. At this stage,
however, we only focus on solving the fundamental
n x l-out-of-n OT problem defined in this paper.

VIII. CONCLUSION

In this paper, we define a novel problem termed n x 1-
out-of-n OT and propose a protocol that combines modern
cryptography and hidden permutation to efficiently solve the
problem. Particularly, the computational complexity of the
permutation is O(lg(n)), and the communication overhead is
O(nlg(n)). The hidden permutation can be used to implement
an anonymous communication system.

Our future research will focus on the following two direc-
tions: developing novel mechanisms that can support different
oblivious transfer applications such as the case when clients
join the system asynchronously; and employing n x 1-out-of-n
OT to design more efficient crypto protocols such as group
signatures.
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