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ABSTRACT

In Bitcoin’s incentive system that supports open mining pools, block
withholding attacks incur huge security threats. In this paper, we
investigate the mutual attacks among pools as this determines the
macroscopic utility of the whole distributed system. Existing stud-
ies on pools’ interactive attacks usually employ the conventional
game theory, where the strategies of the players are considered
pure and equal, neglecting the existence of powerful strategies and
the corresponding favorable game results. In this study, we take ad-
vantage of the Zero-Determinant (ZD) strategy to analyze the block
withholding attack between any two pools, where the ZD adopter
has the unilateral control on the expected payoffs of its opponent
and itself. In this case, we are faced with the following questions:
who can adopt the ZD strategy? individually or simultaneously? what
can the ZD player achieve? In order to answer these questions, we
derive the conditions under which two pools can individually or
simultaneously employ the ZD strategy and demonstrate the effec-
tiveness. To the best of our knowledge, we are the first to use the
ZD strategy to analyze the block withholding attack among pools.
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1 INTRODUCTION

As the most prevailing and typical cryptocurrency, Bitcoin [1] owns
a market capitalization of 186 billion US dollars in current time,
occupying an increasingly high market share of 56% in the whole
cryptocurrency market!. The success of Bitcoin is based on its ro-
bust incentive mechanism where the miners are rewarded with
valuable bitcoins for their submitted proofs of work (PoWs) through
solving cryptographic puzzles. As the global ledger of a distributed
system, Blockchain records all the historical transactions in a serial-
ization form, with each block being generated by a full PoW costing
a larger amount of computational power of the miners, so as to
guarantee the inalterability and integrity of the transactions, and
further maintain the stability and scalability of the whole system.

Being aware of the difficulty of mining blocks individually to
acquire revenues, miners are inclined to form mining pools so as
to obtain stable incomes, where all participants in a pool mine
blocks cooperatively and share the benefit once a valid block is
generated. In order to conduct fair distribution of the reward among
all participating miners in a pool, the pool manager evaluates their
efforts according to the submitted partial PoWs from the miners. In
this case, a malicious miner can launch a block withholding attack to
an open pool by submitting only partial PoWs to unfairly share the
achievements of other honest miners, which yields huge security
threats to the distributed system as only a full PoW can produce a
valid block representing an effective contribution. This attack was
carried out in practice at 2014, resulting in a loss of about 300 BTC
at the victim pool?.

On account of the tremendous threats of block withholding
attacks, numerous studies have been conducted, which can be clas-
sified into individual attacker based [2-5] and competitive pool
based [6, 7]. Analysis from the perspective of an individual attacker
is committed to working out an optimal attacking strategy for the
rogue miner to acquire filthy lucre as much as possible, such as
how to wisely split the computational power for attacking and hon-
estly mining; while research on block withholding attack among
pools concentrates on the impact of attacking each other on the
short-term utilities of the pools and long-term status of the system.
In this paper, we are also engaged in the pools’ mutual attack as it
depicts the attacking behavior on a macroscopic level, boosting our
further understanding about the dynamics of the block withholding
attack and its impact on the whole system.

Uhttps://www.newsbtc.com/2018/09/11/cryptocurrency-market-update-bitcoin-
dominance-reaches-new-2018-high/
Zhttps://bitcointalk.org/?topic=441465.msg7282674
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Existing studies on block withholding attacks among pools al-
ways make use of game theory to model the mutual attacks as it
can well describe the competitive relationship among pools and
capture their antagonistic interactions of the attacking behaviors
[6, 7]. However, the pools’ strategies of attacking or not are consid-
ered pure and equally important in the above conventional game
theory based studies, which prevents the discovery of interesting
and advantageous results.

In this paper, we conduct an analysis on the block withholding
attack among two pools from a new game theoretic perspective
where the strategy of one player can unilaterally and significantly
affect the game result. This unique property stems from the power
of the Zero-Determinant (ZD) strategy [8], which thoroughly re-
freshes our understanding of the two-player game. Particularly, by
utilizing ZD, one game player can unilaterally control the weighted
sum of the two players’ expected payoffs, as well as the specific
payoff of the opponent or itself, regardless of the strategy of the
opponent. With such a powerful strategy, we are faced with the fol-
lowing questions in our pool game: who can adopt the ZD strategy?
individually or simultaneously? what can the ZD player achieve?

In order to answer the above questions, we model the block
withholding attack among any two pools in the Bitcoin system?® as
a two-player simultaneous game, based on which we conduct a ZD
strategy oriented analysis. More specifically, we first investigate
the condition under which any pool can employ the ZD strategy
individually; besides, we examine the possibility of both pools em-
ploying ZD concurrently and demonstrate the effectiveness of the
ZD strategy as well. To the best of our knowledge, we are the first
to utilize ZD for analyzing the block withholding attack among
mining pools. Our conclusions can be summarized as follows:

e Each pool can individually utilize ZD to set the expected
payoff of itself or that of the opponent.

e Both pools can simultaneously employ ZD to set the expected
payoffs of each other under certain condition, but they are
not eligible to set their own expected payoffs concurrently.

e When two pools can simultaneously use ZD, the game be-
comes a Prisoner’s Dilemma where the Nash equilibrium
leads to the lowest social welfare. In this case, even though
ZD is not constantly dominant to the classical strategies,
it provides a relatively good result. More importantly, the
ZD strategy enables the ZD player to solely enforce a fixed
social welfare which is larger than that in the equilibrium
state, no matter what strategy the opponent employs.

o In the case where only one pool is capable of using ZD, when
the ZD player sets the highest expected payoff for itself, the
non-ZD player suffers a lower payoff, and its best response
action is to not attack.

The rest of the paper is organized as follows. We investigate
the most related work in Section 2 and formulate the problem in
Section 3. In Section 4, we analyze the pool strategies and study
the case of using the ZD strategy individually. Then we explore
the possibility of simultaneously employing ZD for two pools in
Section 5, which is further evaluated in Section 6. We conclude the
paper in Section 7.

30ur results are applicable to all similar cryptocurrency systems.
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2 RELATED WORK

Typically, there exist two types of threats in Bitcoin by means of
withholding blocks, i.e., block withholding delay and block withhold-
ing attack, which differ in that whether the withheld blocks are
finally published or not.

Block withholding delay refers to the temporary and intentional
delay of publishing a mined valid block, so as to increase the revenue
of the attackers. In this case, two specific attacks can be achieved, i.e.,
selfish mining and double spending. A selfish-mining attacker utilizes
the withheld block to prevent the successful block publication of
the other pools, which can help increase its own relative revenue
in the whole mining system [9-11]. While double spending can
be realized through withholding one block containing a specific
transaction but publishing another conflicting transaction, and then
posting the former one to invalidate the published one that has been
admitted by the recipient, so as to improve the absolute revenue of
the attacker [12].

In the block withholding attack, the withheld blocks will never
be published; instead, they are discarded at once, degrading the
mining utility of the victim pool, as well as undermining the overall
performance of the whole Bitcoin network. According to [2], Rosen-
feld was the first to put forward this attack. After that, Courtois
et al. [3] refined the concrete concept of block withholding attack
and presented the detailed implementation steps for rogue miners
to get maximized benefit in the long term. While in [4], Bag et al.
proposed a variant block withholding attack where the attacker
was sponsored by one pool to attack another pool and derived the
optimal strategy for the attacker to split its mining power wisely
so as to obtain the highest revenue. To suppress such a malicious
attack, countermeasures [13, 14] were designed to eliminate the
behavior of withholding valid blocks by providing extra incentives
of submitting blocks to attackers.

Beyond these conventional studies on block withholding at-
tacks, many researchers turn to employ game models to investigate
the problem as game theory can capture complicated interactions
among competitive parties. In [5], a computational power splitting
game was formulated to analyze the block withholding attack in
Bitcoin, which demonstrates the long-run incentive of the attackers.
Note that the mutual attack of the competitive pools was not consid-
ered in [5]. Eyal [6] modeled the block withholding attack among
identical mining pools as a pool game, drawing the conclusion that
no attack was not the Nash equilibrium and a dilemma was thus
formed. Kwon et al. [7] proposed an upgraded version of the block
withholding attack named Fork After Withholding Attack, which
could benefit the attacker 56% more than the traditional one, and
conducted a game theoretic analysis on two pools’ mutual attack.
The study in [7] also reported that under certain specific conditions,
the miner’s dilemma mentioned above disappears. Note that the
pool strategies in the above two studies were considered pure and
identical, missing other promising and favorable game results.

It is obvious that most existing game theory based studies on
block withholding attacks either involve no interactive behaviors
among pools or analyze the strategies of pools in an equivalent
manner. In contrast, our work consider the mutual attack of pools
with mixed game strategies to explore the unexpected existing of
unilateral control in the game.
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3 PROBLEM FORMULATION

In most of the contemporary digital currency systems, e.g., Bitcoin,
miners often form mining pools to get stable incomes. As mentioned
in [6], a pool may use a certain amount of infiltrating mining power
to perform block withholding attacks to sabotage another pool
for more interest. In this paper, we consider a scenario with two
mining pools in a distributed system, where both pools can perform
block withholding attacks to against each other during the mining
process of an effective block. Once a legitimate block is generated
by a miner in a pool, the pool manager would publish it and get
the corresponding revenue. In order to fairly distribute the revenue
to all participating miners, the pool manager collects partial PoWs
to evaluate the miners’ respective efforts in mining the block. As
the infiltrating mining power also contributes to partial PoWs, the
victim pool is hard to detect the attacking behavior in a timely
manner while it may figure out the malicious attack in a long run
as its real income would be less than that brought by the estimated
mining power from partial PoWs. Thus, the victim pool may fight
back in the subsequent mining process. This sort of interactions
between two mining pools can exactly be considered as a two-player
simultaneous game. In the case of repeated interactions between
them, the game turns to be iterated.

Generally speaking, the action of a pool mining without attack-
ing another pool is defined as cooperation (c), and mining with
attacking is denoted as defection (d). For differentiation, we name
the two pools as pool 1 and pool 2, and their actions are denoted as
a; and ay, respectively. Thus we have four possible game results
ayay = (cc,cd, dc, dd).

Denote by m; and my the registered mining power of pool 1
and pool 2, respectively. As the probability of finding a new block
by a pool equals the ratio of the pool’s effective mining power to
the total mining power in the whole system, which is assumed
to be m, the revenue of each pool is proportional to the share
of its mining power, i.e., % for pool 1 and % for pool 2. For
simplicity, we regard this mining power share as the payoff in the
game. Thus, the above values are the payoffs of the two pools when
both cooperate. When pool 2 sabotages pool 1 with an amount of
x2 malicious mining power but pool 1 remains cooperative, the
victim’s effective mining power becomes m; — x2. Because the
malicious attacking mining power is only used to solve partial
PoWs rather than any full PoW, the total mining power of the
system is also reduced by x3. Thus, pool 1’s payoff decreases to
%, but pool 2 obtains a higher payoff as m’fi(z . Similarly, when
pool 1 chooses defection by attacking pool 2 through infiltrating x;
amount of mining power to carry out the block withholding attack
but pool 2 behaves cooperatively, the effective mining power of
pool 2 for mining a full block decreases to my — x1 and its share of
mining power in the whole system becomes ':‘nz:; L while that of the
m’f;l . If both pools are defective,
i.e., attacking each other, their payoffs turn to be

mo—X1
m-—x;—x

payoffs of the two pools in Table 1 and denote the payoff vectors

attacker, i.e., pool 1, increases to
mi—X

m—x;—x;

. We summarize the above four situations with different

and
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of pool 1 and pool 2 respectively as,

S1 = (81,852,838t
_ (ﬂ mi; — X3 mq

m’  m—x3 m—-x; m—xi—x3

mp — X2

_ ol o2 o3 o4
Sz = (S ,52,52752)
(M2 _m

m’ m—x3 m-—x1 m-—x1—x3

ma — X1 my — X1

following the order of the game results ajay = (cc, cd, dc, dd).

Table 1: Payoff Matrix.

Pool 2 . .
Pool 1 Cooperation Defection
i my np m—Xxp _m
Cooperation gl T, * T2
: L5 My—X1 i —X2 Ty — X1
Defectlon m-—x;’> m—x m—x1—X3’ m—x;—Xz

Note that the infiltrating mining power from the attacker should
be less than that of the victim pool; thus we have constraints 0 <
x1 < mg and 0 < x < my. On the other hand, according to the
stability requirement of the cryptocurrency system, we assume
that no pool can control the majority of the mining power, i.e.,
mi,my < %

Given the above two-player simultaneous game, it is clear that
the payoff of each side is jointly determined by the actions of both
players. And when the game is repeated round-by-round, a player’s
individual choice of action is also affected by that of its opponent.
However, the ZD strategy proposed in [8] provides us new inspira-
tions to study the interactions between two players, where one can
dominantly formulate a linear relationship between the expected
payoffs of both sides, and further unilaterally set the expected pay-
off of itself or its opponent, no matter what action of the opponent
is. Such nice features of ZD motivate us to design ZD-based strate-
gies to drive both players cooperate. To proceed, we need to answer
the following questions: who can adopt the ZD strategy? individ-
ually or simultaneously? what can the ZD player achieve? In the
following we study the ZD strategy under the block withholding
attack scenario in Blockchain and analyze the attacking results
between two mining pools.

4 INDIVIDUAL ZD STRATEGY ANALYSIS

In this section, we investigate the problem of identifying which
player in the above pool game can individually adopt the ZD strat-
egy. As mentioned before, the game result in the previous round can
influence the actions of both sides. Thus we define the strategies of
the two pools as the conditional probabilities of cooperation under
different outcomes of the last round.

Definition 4.1. The strategy of pool 1is p = (p1, p2, p3, pa), where
each element is the probability of pool 1 choosing cooperation when
the game result of the previous round is ajaz = (cc, cd, dc, dd).

Definition 4.2. The strategy of pool 2 is q = (q1, 92, 3, q4), where
each element is the probability of pool 2 choosing cooperation when
the game result of the previous round is aza; = (cc, cd, dc, dd).



IWQoS ’19, June 24-25, 2019, Phoenix, AZ, USA

The probabilities of the two pools being defective under different
previous game results are 1 — p; and 1 — q;,i € {1, 2, 3, 4}, respec-
tively. In light of this, one can derive the Markov state transition
matrix of the game as follows:

g p1l—q1) (A-p)gr (1-p)1-q1)
Mz (P23 P2(1=g3) (1-p2)gs (1-p2)(1-g3)

r3q2 p3(1—q2) (1-p3)gz (1-p3)(1-q2)|’

paqs pa(1—qs) (1-pa)gs (1-pa)(1—qa)

where each element M;j, i, j € {1, 2,3, 4}, denotes the probability of
the game outcome in the current round being ajay € {cc, cd, dc,dd}
given the previous outcome of a;aé € {cc, cd,dc,dd}. For example,
Mji2 = p1(1 — q1) is the probability of the game state in the current
round ajaz = cd when that in the last round is aja;, = cc.

Suppose that the stable vector of the above Markov matrix is v;
then one can calculate the expected payoffs of the two pools as:

\' S] CEy = A\ Sz (1)
v-1
where 1 is the vector with four elements of 1.

At the stable state, there exists vIM = vT. Denote by M’ =
M — I; then we have vIM’ = 0.0On the other hand, by applying
Cramer’s rule on M’ we get Adj(M")M’ = det(M)I = 0. According
to the above two equations, we can conclude that each row of
Adj(M) is proportional to the stable vector v. Thus, for any vector
y = (Y1, Y2, Y3, Ya), its dot product with v can be written into the
following equation after the elementary column transformation
on matrix M’ by adding the first column to the second and third
columns,

E =

v-1’

pigi—1 p1—-1 qi—-1 y1
p2q3  p2-—1 q3 Y2

voy=de 392 p3 @2-1 y @
Paq4 P4 q4 Ya

It is worthy of noting that the second column of the above matrix
is only dependent on the strategy of pool 1, which is denoted as
p = (p1—1,p2—1,p3, ps)7; similarly, the third column is only related
to the strategy of pool 2, denoted as § = (q1 — 1,43,g2 — 1,q4)".

Thus, given constant parameters «, 5, and y, according to (1),
one can calculate a linear combination of the expected payoffs of
the two pools as

v - (aS1 + fS2 +y1)
v-1 ’

0(E1+ﬂE2+y=

As indicated by (2), we can find that when p or q is proportional to
the last column, i.e., #S1 + Sz + y1, the above equation turns to
be zero as the determinant in the numerator is vanished. In other
words, when the strategy of pool 1 p satisfies p = y(aS; + Sz +
y1), (x # 0), or that of pool 2 q complies with q = y(aS; + Sz +
v1), (x # 0), we have

aEy + BE; +y = 0. 3)

Then the corresponding strategy is therefore named zero-determinant
(ZD) strategy. Particularly, the ZD player (the ZD-strategy adopter),
either pool 1 or pool 2, can specifically set « = 0 or § = 0 to enforce
Ey = —% or Ey = —%, as long as their strategies are meaningful,
ie., pi,qi €[0,1], i € {1,2,3,4}. In other words, each player may
be able to unilaterally set the expected payoff of its opponent or
itself with the help of the powerful ZD strategy.
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In the following, we inspect the possibility of any pool being a
ZD player individually and reveal the corresponding conditions.

4.1 Pool 1 Using the ZD Strategy

We first examine the potential of pool 1 adopting the ZD strategy
to set the expected payoff of the opponent and its own.

4.1.1  Pool 1 Sets Pool 2’s Expected Payoff.

THEOREM 4.3. When the infiltrating mining powers of the two

pools satisfy % > m’ffnz , pool 1 can utilize the ZD strategy to inde-
_ (1=p1)Sy+psS)

pendently set the expected payoff of pool 2 as Ey = Tprip:

Proor. When pool 1 uses the ZD strategy to control pool 2’s
expected payoff as Ey = —% with a = 0, the specific ZD strategy of

pool 1, ie., p, should satisfy p = y(fS2 + y1), (x # 0). Specifically,
p1=1= x(S; +y),
p2—1= y(BS; +y),
3 = x(BS; +v),
s = x(BS3 +y)-
Using p; and p4 to express f and y, we have

p1—ps—1
P=——a
52 _Sz
_ (1=p))S; +paS,
- 1 4 .
Sz _Sz

Furthermore, we can solve pz and ps,

» P1(85 = 83) = (1 +pa)(S; - S3)
2 = ,

1 4

5575,
_(1=p1)(Sy = 53) +pa(S) = 53)
" -1 |

By examining all the payoff-related components in the above equa-
tions, we find those components in the numerators satisfy

2 _g4_ (m —mg — x2)x1 >0
2 (m-xp)m-x1—x2)
maXxo
§2_gl— == 0,
2072 m(m - xp)
(ma — x1)x2
sh_s3= >0,
227 (m—x1)(m—x1 — x2)
sosi= momn
2 2 m(m — x1) ’

since x; € (0,my),x2 € (0,my) and m; + my < m. While the
denominators of pp and p3, i.e.,

gl _ gt (m—ma)x1 — myxp
27 mim—x1 - x2)
has no certain sign relationship.

Considering the constraint p; € [0,1], i € {1, 2, 3,4}, we know
that only when S; - Sg > 0 can py and p3 have feasible solutions;
otherwise, we have ps > 1 and p3 < 0, which renders the strategy
of pool 1 to have only one fixed solution p = (1, 1,0,0), i.e., always
cooperating or defecting. This strategy is obviously impractical to
control the expected payoff of pool 2.
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(m=my)x,—myx,
m(m—2x;—xz)
_ v _ (-p)S;+pS)
On the other hand, E; = B~  Tpim

4 ¢l
[52752} ]

my
m—-my°

Thus, we have > 0, which leads to % >

, which has a range of

4.1.2  Pool 1 Sets Its Own Expected Payoff.

THEOREM 4.4. When the infiltrating mining powers of the two
pools satisfy % > m;l'lnl , pool 1 can unilaterally set its own expected

_ (1=p1)S}+psS]
payff as By = 1=p1+ps

PRrROOF. As mentioned before, pool 1 can set E1 = —% regardless
of the strategy of pool 2 through executing the ZD strategy with
B = 0, and its ZD strategy p needs to meet p = y(aS1+y1), (x # 0),
ie.,

p1—1= y(as; +y),
p2— 1= x(aSi+y),
p3 = x(@s] +y),
pa = x(aSi +y).
We can solve it for p, and p3 as

(14 pa)(S) - S%) - p1(S} - $)

p2

1 4 ’
51 - 51
=1 =p1)(S] =S} — pa(S] - S))
" ST |

As x1 € (0,m2),x2 € (0,mq) and mq + mg < m, the components
related to pool 1’s payoff vector in the above expressions satisfy

slogp=momn
T mim—xp)
4 _ g2 _ (m1 — x2)x1
Db m—x)m—x1—x2)
3 _g— (m—my — x1)x2 >0
L m—x)(m—x1—x2) ~
miXxi
§3ost= I
1 L™ m(m = x1)

but the denominator S% - S‘l1 needs further discussion.

When S} - Sf > 0, it is easy to figure out that pp > 1,p3 < 0,
leading to the single feasible point of pool 1’s ZD strategy, which is
obviously meaningless for our scenario. While S% - S‘l1 < 0 results
in pa < 1,p3 > 0, and thus p has more solutions so as to control its
own expected payoff in a range.

In other words, the condition for pool 1 being the ZD player to set

. . (m—mp)x;—myx; . X1 m—my
its own expected payoff 1S m <0, 1ie., X5 > -
. _y _ (-p)St+paS]
And its expected payoff becomes E; = - = T
1 ¢4
[S;, 571 O

4.2 Pool 2 Using the ZD Strategy

We adopt a similar analysis for pool 2 to derive the conditions on
which it can employ the ZD strategy to set the expected payoff of
its opponent (i.e., pool 1) and that of itself.
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4.2.1 Pool 2 Sets Pool 1’s Expected Payoff.

my
m-m

THEOREM 4.5. When i—f > -, pool 2 can use the ZD strategy to
(1-q1)S}+gs5]

unilaterally set the expected payoff of pool 1to be E; = T=q17qs

Proor. By setting f = 0, pool 2 can enforce the expected payoff
of pool1as E1 = —g when it sets the ZD strategy q as q = y(aS1 +
y1). We can derive g2 and g3 in terms of ¢ and qu,

(14 qa)(S} =S+ q1(5] - SP)

q2

1 4
51_51

. qa(S} = S%) + (1 - q1)(S] - 5)

3= 1_ca :
51_51

As analyzed in Section 4.1.2, all the payoff-related components in
the numerators of g2 and g3 , i.e., (Sf - S%), (Sf - 5‘11), (511 - Sf), and
(Sf - Sf), are positive, but the sign of the denominator , i.e., S% - S?,
is not determinate. With a similar discussion, we can conclude that

(m=—my)x—mix;

1 4 _
only when S} — S} = P

> 0, which is equivalent to

X2 mp . .

% > ta—m;» can g2 and g3 have feasible solutions. Thus we have
_ (-9)8/+q:S; L red ol

Ey = ~—i=qi¥q, > anging in [$7. 511 O

4.2.2 Pool 2 Sets Its Own Expected Payoff.

THEOREM 4.6. When % > m;l—;"z, pool 2 can take advantage of
the ZD strategy to unilaterally set its own expected payoff as Ey =
(1-1)S;+q45,

l—ql +q4

Proor. When pool 2 wants to set its own expected payoff E; =
—¥ with a = 0, the corresponding ZD strategy should be calculated

by q = x(BS2 + y1). Thus, we have

_ (1+q4)(S} = 53) — qu(S; — S3)

q2

1 4 >
52 - Sz
_=(1-q1)(S3 - S3) - qa(S2 - S})
q3 = S; ~ Sg .

Since the payoff-based components are proved to be positive in
Section 4.1.1, here we omit it for brevity. And it is easy to prove that
ifsl_g4 = (moma)xi—mxy
lsz _Sz T m(m-x1—x3)

above equations. That is, when the infiltrating mining powers of the
two pools x1 and x; satisfy ;—f > m;l_rznz’ pool 2 can take advantage
of the ZD strategy to unilaterally adjust its own expected payoft as
E, = (1_‘11)53"“]4521 c [51 54] O

2= 1-q1+q4 2°24

< 0, there exist feasible solutions for the

In conclusion, one can see that both players are capable of indi-
vidually conducting the ZD strategy to unilaterally set the expected
payoff of its opponent or itself, with each corresponding to a unique
condition of the relationship between the attacking mining powers
of two pools.

Note that since both pools can individually utilize the ZD strat-
egy under specific circumstances, we are faced with the following
new problem: whether it is possible for both pools taking the ZD
strategies concurrently to set the expected payoff of each other or
those of themselves. This will be studied in the next section.
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5 SIMULTANEOUS ZD STRATEGY ANALYSIS

In this section, we analyze the potential for the two players in the
pool game to simultaneously employ the ZD strategies with the
objective of independently controlling the expected payofs of their
opponents or themselves.

5.1 Setting the Expected Payoffs of the
Opponent

We first study the situation where both pools utilize the ZD strate-
gies to set the expected payoff of each other, which can be settled
by the following theorem.

THEOREM 5.1. When the infiltrating mining powers set by pool 1
and pool 2 for the block withholding attack satisfy

my X1 m-—-m
< —

s

m-my  x2 my
the two pools can achieve the goal of using ZD strategies to set the
expected payoff of the opponent at the same time.

PROOF. As analyzed in Section 4.1.1, the necessary condition for
pool 1 using the ZD strategy to set the expected payoff of pool 2 is
X m: . . . . . .

x—; P fnz ; and as indicated in Section 4.2.1, the corresponding
condition for pool 2 to set the expected payoff of pool 1 is ;—f >

m_’lnl . Combining the above two conditions, we have

mso X1 m-—m
< — .

m-my X mi
In order to guarantee the rationality of the above constraint, we
have to ensure that the relationship between the upper bound and

the lower bound satisfies mr_"fnz < =M which is equivalent to
mimy < (m—my)(m — my). This relationship obviously holds since
m > 0and m > my + my. m}

As the above parameter relationships are originated from the
relationships between the payoffs of the game results ajaz = cc
and dd, i.e., S% > S‘l1 and S; > Sg, we have the following theorem.

THEOREM 5.2. In case of both pools simultaneously adopting ZD
strategies, i.e., m'ffnz < ’;—; < m;l:nl, the game between the two pools
becomes a Prisoner’s Dilemma (PD).

Proor. In order to prove that the pool game is a PD, we need to
illustrate that the game satisfies the following two requirements: i)
mutual defection (ajaz = dd) is the Nash equilibrium of the game;
and ii) mutual cooperation (ajaz = cc) is the state with maximum
social welfare.

The first condition implies that no matter what the opponent’s
action is, defection is the dominant action for both players as it
brings a higher payoff than cooperation. For pool 1, this means
that its payoff in state ajap = dc is larger than that in ajaz = cc,
which is larger than that in ajaz = dd, and greater than that in
aias = cd. As clarified in Section 4.1.2, we know that S% - S% >0
and S‘l1 - Sf > 0. Combining with the relationship 511 > Sf implied
by the parameter constraint, we have

S} >8>S >Sh

Similarly, for pool 2, it gets a higher payoff in state ajaz = cd than
that in ajay = cc which is larger than that in ajaz = dd and then
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its payoff comes to the smallest in ajaz = dc. As demonstrated in
Section 4.1.1, we have Sg - S; > 0 and Sg - Sg > 0. In addition, the

parameter relationship is resulted from S; > Sg; thus there exist
20 qly oty o3
S5 >8,>85,>85,.

The second requirement indicates that the total payoff of the
two pools in state ajaz = cc is the largest compared to the other
three states,

1, ¢l g q2, q2
S;+S8; >8] +S5,
1,¢ly ¢33
S +8; >8] +85;,
1, ol ¢4, ot
S;+8;> 8 +85,.
Referring to Table 1, one can see clearly that the above relationships

hold as

mi + mgy S mi +my —x2

)

m m—xy

my + my my +my — X1
>

m m-— x1
mi + my mip+my —Xx1— X2
>

5

m m-—XxX1 — X2
given x1 € (0, mz), x2 € (0,my), and m > my + my. O

In this case, during the iterated game process, both pools witness
that the Nash equilibrium of the game consists of their dominant
actions, i.e., ajaz = dd, which is unfavorable when compared to
the mutual cooperation aja; = cc, from either the perspective
of individual interest as Si > S‘I*, S% > Sg, or that of the group
revenue because of S% + S; > 5‘11 + Sg. Therefore, both players have
the incentive to let the game result be close to mutual cooperation
as much as possible for the optimum social welfare. However, as
the players choose the actions at the same time at each round with
no accurate information of the opponent’s intention, it is risky for
any player to rashly select cooperation because it may suffer from
the lowest payoff once its opponent performs defection.

On the other hand, as we summarized in Theorem 5.1, both pool 1
and pool 2 are capable of employing the powerful ZD strategy under
the parameter conditions mentioned above to achieve the effective
control of the opponent’s expected payoff, no matter what action
of the opponent is. Thus, it inspires us to think about whether it is
possible for any player using the ZD strategy to control the game
result as a whole and elicit the best result where the social welfare
is maximized, without worrying about any trick from the opponent.
In the following, we take pool 1 as an example to illustrate how to
solve this problem.

As mentioned in Section 4, when pool 1 sets its strategy p satisfy-
ing p = y(aS1+ fS2 +y1), (x # 0), there exists aE1 + fE2 +y = 0.
In light of this, pool 1 can set @ = f# = 1 to get the social welfare as

Eqii =E1+Ex=-y. (4)
In order to maximize the social welfare leveraging only its own
power, pool 1 can make use of the ZD strategy, which can be for-
mulated as
max Eqyp = Ei(p, @) + E2(p, ), Vg,

0<p<1,
.t.
s {E1+E2+y=0.
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As shown in (4), the above optimization problem is equivalent to

min y,
0<p=<1i,

s.t. 4P = x(S1 +S2+y1),
x #0.

Because the sign of y affects the calculation process, we consider
the following two cases.

Case 1: y > 0. On one hand, as p > 0, we can infer the lower
bound of y as

Ymin = max(R;), i € {1,2,3,4},

where R; is
1
-si-sj- 2,
R; = X
=S51-5,
On the other hand, it is necessary to guarantee that p < 1, which
leads to the upper bound of y,
Ymax = min(Rj), JE {5, 6,7, 8}-
And R;j is calculated by
-5 -5, i=1,2,
Rj =Rjz4 = |
T Csi sy =, =34
X

As only when ymin < Ymax can y have a feasible solution,
we need to ensure that max(R;) < min(R;), i € {1,2,3,4}, j €
{5,6,7,8}, holds. Thus, once there exists any y* > 0 that can meet
this requirement, we can get the minimum value of y as

1 1
Ymin = max{-S] —S) — —, 8% - S5 — — -8} - 53, -S} - S;}.
X X
Case 2: y < 0. Similarly, we first consider the constraint p > 0;
then the upper bound of y can be derived as
Ymax = min(R;), i € {1,2,3,4}.
While in light of p < 1, we have
Ymin = maX(Rj), j€1{5,6,7,8}.

And it is also true that only ymin < Ymax can bring feasible
solutions to y, which is equivalent to max(R;) < min(R;), i €
{1,2,3,4}, j € {5,6,7,8}. Again, if there exists a specific y* < 0
satisfying this condition, the minimum y is given by

1 1
Ymin = max{-S] — S}, ~S% - S5, -8 - S3 + e -S{ =S5+ F}.

No matter which case is met, as long as the minimum value of y
is derived as ymin with a certain y*, the ZD strategy of pool 1 is

X*(Si +Sé +¥Ymin)+1, i=12,
X*(S{ + Sé + Ymin)s i=34.

pi =

Thus, the solution of pool 1 using the ZD strategy to maximize
the social welfare exists, which can never be influenced by the
action and strategy of its opponent in the pool game.

It is worth noting that as pool 2 is also able to utilize the ZD
strategy under the same condition of -™2- < 3% m;:“
can use the same calculation method presented above to deduce the

, one
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maximum social welfare as well as the corresponding ZD strategy.
Thus we omit it here for brevity.

In summary, it is practical for both pools simultaneously using
the ZD strategies to unilaterally set the expected payoff of each
other under certain circumstance, where a PD game is formulated
and each side is capable of taking advantage of the ZD strategy to
enforce the best game result for both sides with no need to consider
the strategy of the other side.

5.2 Setting the Expected Payoffs of Themselves

Now we turn to investigate the case of two pools relying on the
ZD strategies to control their own expected payoffs concurrently.

THEOREM 5.3. It is impossible for two pools simultaneously using
the ZD strategies to adjust their own expected payoffs.

PrRoOF. As shown in Section 4.1.2, if pool 1 aims to set its own
expected payoff with the help of the ZD strategy, it is required that
its attacking mining power must be higher than that of pool 2, i.e.,
;—; > m;l:nl . On the other hand, as elaborated in Section 4.2.2, the
condition for pool 2 utilizing the ZD strategy to control its own
expected payoff is ;% > m;l;nz . Therefore, if both pools implement
the ZD strategies so as to determine their own expected payoffs at
the same time, their infiltrating mining powers should satisfy the

following constraint,

m—mq X1 my
< —<
mi X2

m—my

However, when we scrutinize the relationship of the upper and
lower bounds in the above formula, we find that m;l_rlm < mrf—fnz
can never be met as m(m — m; — my) < 0 never holds with m > 0
and m > mq + mo. That is, le has no feasible solution under the
above constraint. Thus, one can conclude that the two pools cannot
simultaneously employ the ZD strategies to determine the expected

payoffs for themselves in the game. O

According the theorem presented above, we know that if any
pool i, i € {1,2} in the game tries to utilize the ZD strategy to
set its own expected payoff, its attacking power x; should be large
enough to meet x; > mr;:n’ x—i, where x_; denotes the attacking
power of its opponent. And in this case, the opponent is absolutely
not qualified to use the ZD strategy to control the expected payoff
of either the ZD player or itself.

In light of this, it is evident that the ZD player can dominate the
pool game over its opponent. Then one may concern about how bad
the situation of the weak side (i.e., the non-ZD player) can be when
it does not have the ability to execute the ZD strategy. Without loss
of generality, we assume that it is pool 1 who can adopt the ZD
strategy to set its own expected payoff.

As mentioned above, when the infiltrating mining power from
pool 1 to attack pool 2 is larger than that in the opposite direction,

ie, x; > mm:nl X7, the expected payoff of pool 1 can be set to
1— 4 1
Ei = %, which is clearly a weighted sum of S% and Sf.

As an intelligent and profit-driven player, pool 1 with the powerful
ZD strategy inclines to set the highest expected payoff for itself,
ie,E1 = Sf, which can be achieved with the strategy p; # 1 and
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p4 = 0. On the other hand, as shown in Section 4.1.2, we have

_ (1+pa)(S} = 5%) - p1(S] - $2)

P2 1_ 4 ’
51 _51

) —(1=p1)(S; = S7) — pa(S3 - SD)

3= 1_ o4 .
51 _51

Obviously, p2 and p3 have feasible solutions only when p; — 1
and ps — 0 and the corresponding values are py — 1 and p3 — 0.
. (S1=5)-p1(S{-S})

Thus given p; # 1and py = 0, we have py = —=———"—.p3 =

1 1
~(1-p1)(S}-S))
sI-st
ering constraint p; # 1, one can derive the range of p; to be

sl_g2 S4— g2
max(séll_sé’l_sé_si
1 1 1 1

. In order to make py, p3 € [0, 1], and further consid-

)Sp1<1.

Thus, for any p7 satisfying the above constraint, the ZD strategy for

51_52 _pF 54_52 —(1-p* 53_54
;r’ (5 1;115;(? 1 1)’ ( Zil)_(sf* 1)’0). In
this case, pool 2’s expected payoff E3 is only dependent on its own
strategy q. For any rational player under this circumstance, the best
response strategy is to maximize its own expected payoff to fight
against the dominant ZD player. Thus, pool 2 can take advantage
of any existing algorithm for multivariable function optimization
(e.g., genetic algorithm), so as to derive its best strategy q* and the
corresponding maximum expected payoff E.

To explicitly study the outcomes of pool 2, we assume that the
total mining power in the distributed network is m = 1, and the min-
ing powers of the two pools are m; = 0.1 and my = 0.2. Note that
other values of m; and my are also studied, which result in the same
conclusions. Then the payoff vectors of the two players are S =
(0.1, 552, 1 22 and S = (0.2, 125 50 220,
As the attacking mining power from pool 1 should be large enough
to meet the condition x1 > 9x3, we assume that x; = 0.19, which
is close to its upper bound my = 0.2. Then the range of x; is
0 < xz < 0.0211. Besides, according to the above analysis, p;
should be in an appropriate range so that py, p3 € [0, 1]. In this case,
it turns out to be

pool 1 is fixed as p* =

max(0(xz2), 6(x2)) < p1 < 1,
where 0(x3) = % and §(x2) = %@;539 are the lim-
itations corresponding to py,p3 € [0,1]. As shown in Fig. 1, the
lower bound of p; increases with x2 € (0,0.0211); thus we can set
p1 = max(6(0.0211),5(0.0211)) = 0.9995. Then py and p3 can be
calculated accordingly, which turn out to be functions of x;.

Ej can be calculated as a function of q and x2. Here we omit
the detailed expression as it is over-lengthy. By solving %—Iflz =0,
we get the stationary point q* = (¢}, 0, 1,0), where gj relies on
x and its trend with x € (0,0.0211) is demonstrated in Fig. 2.
It is obvious that the value of ¢ is always larger than 1 in the
domain of x3, which is out of the range of a meaningful q. Thus,
we can infer that the maximum value of E; can only be obtained

in the 16 endpoints, which turns out that both q = (1, 1,0, 1) and
700x5+1

~ 100x,—-81"

this, one can conclude that under the dominance of the ZD player

setting the highest expected payoff for itself, the best response

q = (1,1,1,1) can achieve the optimum E; = Based on

Hu et al.

maz(8(x2), 8(z))

0
0 0.005 001 0015 002 0025 0 0.005 001 0015 002 0025
23 23

Figure 1: p;’s lower bound. Figure 2: q].

strategy for the weak side is to cooperate as much as possible.
Further, it is easy to observe that E increases with xz € (0,0.0211)
and always less than 0.2, which brings us another conclusion that
even if the non-ZD player exerts all its infiltrating mining power
to attack against the ZD player, it still suffers from a lower revenue
than that in aja; = cc.

6 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the proposed social
welfare maximization mechanism when both players are simulta-
neously available to adopt the ZD strategies for payoff control of
each other as well as the performance of the non-ZD player in the
situation where only one player can use the ZD strategy to set its
own expected payoft.

We first verify the effectiveness of the ZD based social welfare
maximization scheme proposed in Section 5.1 with the parameter
settings of m = 1, m; = 0.1, and mp = 0.2. As implied in Theorem
5.1, the values of x; and x in this case must satisfy % < % <9
thus we fix x; = 0.1 and x3 = 0.05. Note that we also conduct
experiments with other parameter settings and obtain similar re-
sults, which are omitted for brevity. Note that we simulate the game
between the two pools for 100 rounds to reach the stable state.

Specifically, we compare the social welfare of the game when
pool 1 adopts the ZD strategy as well as five other classical strate-
gies: all-cooperation (ALLC, p = (1,1, 1, 1)), all-defection (ALLD,
p = (0,0,0,0)), tit-for-tat (TFT, p = (1, 0, 1, 0)), win-stay-lose-shift
(WSLS, p = (1,0,0, 1)), and random (RDM, p = (0.5,0.5,0.5,0.5)).
Pool 2 also adopts these six strategies; thus we have 36 strategy
combinations. For each combination, we report the evolution of the
social welfare as the game proceeds and the relative payoffs of the
two pools in the corresponding stable state. The results are illus-
trated in Figs. 3 to 8, with each showing a case when the strategy
of pool 2 is fixed while that of pool 1 varies, so as to demonstrate
whether the proposed ZD strategy is the best decision for pool 1.

Fig. 3 reports the results when pool 2 adopts ALLC. It is obvious
that a reasonable pool 1 can employ either ALLC or TFT to provide
the highest social welfare and fairly high payoffs for both sides. This
corresponds to the case in state ajaz = cc; and ZD is only better
than ALLD. When pool 2 adopts the ALLD strategy (Fig. 4), it seems
that there exists no perfect strategy for pool 1. Reluctantly, WSLS
and RDM perform slightly better than the other four strategies
for pool 1 since ALLD and TFT result in the lowest social welfare;
and although ALLC and ZD can bring a higher social welfare, they
cause the lowest payoff for pool 1. This result is understandable as
a stubbornly defective player can never be beaten by anyone. For
a TFT pool 2 (Fig. 5), an ALLC pool 1 is the best as it can elicit ¢
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from the TFT player, and the ZD strategy performs sub-optimally.
In Fig. 6 where pool 2 adopts WSLS, one can see that WSLS is
the optimal strategy for pool 1 as the two players with WSLS can
definitely lead to mutual cooperation, and ZD is better than the
other four strategies with a relatively high social welfare and fair
payoffs. When pool 2 adopts the RDM strategy (Fig. 7), it is clear
that ZD outperforms others as it brings a relatively large social
welfare and fairly good payoffs for both sides. Finally, when pool 2
employs the ZD strategy shown in Fig. 8, ZD and TFT are equally
good from the perspectives of both social welfare and individual
payoffs. From the above observations, we can derive the following
conclusions:

(1) When pool 2 adopts two stubborn strategies, i.e., ALLC and
ALLD, the proposed ZD strategy has no advantage over the
other five classical strategies for pool 1.

(2) When pool 2 utilizes the two adaptive strategies, i.e., TFT and
WSLS, ZD is a sub-optimal choice for pool 1 as ALLC and
WSLS can evoke cooperation of pool 2 when it takes TFT and
WSLS, respectively, and finally achieve mutual cooperation.

(3) When pool 2 utilizes the RDM or ZD strategy, ZD turns out
to be attractive for pool 1 since it can bring the highest social
welfare and fair payoffs.

Social Welfare
(éi |
20,665
Relative Payoff of Pool 1
Relative Payoff of Pool 2

o 5 10 20 25 %0 ZD ALLC ALLD TFT WSLS RDM

15
Round Pool 1's Strategy

(b) Pool 1’s payoff.

ZD ALLC ALLD TFT WSLS ROM
Pool 1's Strateqy

(a) Social welfare. (c) Pool 2’s payoft.

Figure 3: Case of pool 2 adopting the ALLC strategy.
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Figure 4: Case of pool 2 adopting the ALLD strategy.
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ZD ALLC ALLD TFT WSLS ROM
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Figure 5: Case of pool 2 adopting the TFT strategy.

On the other hand, to explicitly explore the value of the ZD
strategy, we plot the time-varying social welfare in Fig. 9 when
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Figure 6: Case of pool 2 adopting the WSLS strategy.
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Figure 7: Case of pool 2 adopting the RDM strategy.
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Figure 8: Case of pool 2 adopting the ZD strategy.

pool 1 fixes its strategy while pool 2 varies by taking six different
strategies. It is easy to see that only when pool 1 uses ZD can the
social welfare of the game stay at a fixed value of 0.243 no matter
what strategy pool 2 employs, which is explicitly larger than that
in state ajaz = dd of 0.176; the other five classical strategies have
no such property, and the social welfare in these cases are jointly
determined by the strategies of the two pools.
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Figure 9: Social welfare with a certain strategy of pool 1.

Next, we examine the results of the non-ZD player when only
one player is capable of adopting the ZD strategy, so as to verify
the conclusion we present before. Basically, we use the same values
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of m, my, and my as in Section 5.2, and set the values of x1, x5 to
meet the conditions of % > 9 for pool 1 and i—f > 4 for pool 2,
such that each can adopt the ZD strategy to control its own payoff.
Specifically, as analyzed in Section 5.2, the optimum payoff of
the non-ZD player is obtained at one of the 16 end-point strategies,
which are denoted by the binary notation of 0 to 15, i.e., (0,0, 0, 0),
(0,0,0,1),(0,0,1,0), - - -, (1,1, 1, 1). And the range of the non-ZD
player’s infiltrating mining power (attacking parameter) is divided
into 10 intervals. In Fig. 10, we plot the expected payoffs of pool 2
at the 16 endpoints when the value of its own attacking parameter
x2 changes while pool 1 adopts the ZD strategy to set its own
payoff to be the highest. In the case of x; = 0.19, the range of
x2 is (0,0.0211); while when x; = 0.10, x2 € (0,0.0111). One can
easily figure out that the more cooperative pool 2 is, the higher its
expected payoff; and for a specific end-point strategy, the higher
the attacking parameter of pool 2, the higher the payoff; but the
payoff is always less than 0.2. We also study the case of pool 2
adopting the ZD strategy to set the highest payoff for itself, where
xo is fixed to 0.09 or 0.05 to meet the condition of x; < mq, and
accordingly, the respective range of x; is (0,0.0225) and (0,0.0125).
As shown in Fig. 11, the changes of the payoffs of pool 1 with x;
and x7 under different strategies demonstrate a similar conclusion.
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Figure 10: Pool 2’s payoffs at the end points change with x;
and x; when pool 1 adopts the ZD strategy.
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Figure 11: Pool 1’s payoffs at the end points change with x;
and x2 when pool 2 adopts the ZD strategy.

7 CONCLUSIONS

In this paper, we focus on the block withholding attack among
mining pools in Bitcoin. Different from the state-of-the-art research
that studies the mutual attack among pools relying on the tradi-
tional game theory, we conduct an analysis from special perspective
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with the ZD strategy by which the ZD player can achieve the uni-
lateral control of the expected payoff. Specifically, we model the
block withholding attack between any two pools as a two-player
simultaneous game. Based on this game model, we investigate the
conditions under which any pool can individually adopt the ZD
strategy and two pools can concurrently employ it. Through the-
oretical derivation and numerical analysis, we demonstrate the
effectiveness of the ZD strategy in block withholding attacks. To
the best of our knowledge, we are the first to use the ZD strategy
to analyze the block withholding attack among mining pools.
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