
Edge Computing Security:
State of the Art and
Challenges
This article reviews the most influential and basic attacks as well as the corresponding
defense mechanisms that can be practically applied in edge computing systems.

By YINHAO XIAO , YIZHEN JIA, CHUNCHI LIU , XIUZHEN CHENG , Fellow IEEE,

JIGUO YU , Senior Member IEEE, AND WEIFENG LV

ABSTRACT | The rapid developments of the Internet of Things

(IoT) and smart mobile devices in recent years have been dra-

matically incentivizing the advancement of edge computing.

On the one hand, edge computing has provided a great assis-

tance for lightweight devices to accomplish complicated tasks

in an efficient way; on the other hand, its hasty development

leads to the neglection of security threats to a large extent

in edge computing platforms and their enabled applications.

In this paper, we provide a comprehensive survey on the

most influential and basic attacks as well as the correspond-

ing defense mechanisms that have edge computing specific

characteristics and can be practically applied to real-world

edge computing systems. More specifically, we focus on the

Manuscript received February 13, 2019; revised April 18, 2019; accepted
May 13, 2019. Date of publication June 19, 2019; date of current version
August 5, 2019. This work was supported in part by the National Natural Science
Foundation of China under Grants U1811463, 61832012, 61771289, 61672321,
and 61373027; and in part by the U.S. National Science Foundation under
Grants CNS-1704397 and IIS-1741279. (Corresponding author: Jiguo Yu.)

Y. Xiao is with the School of Computer Science and Technology, Shandong
University, Qingdao 266237, China, with the Department of Computer Science,
The George Washington University, Washington, DC 20052 USA, and also with
the School of Information Science, Guangdong University of Finance and
Economics, Guangzhou 510320, China (e-mail: xyh3984@gwu.edu).

Y. Jia, C. Liu, and X. Cheng are with the School of Computer Science and
Technology, Shandong University, Qingdao 266237, China, and also with the
Department of Computer Science, The George Washington University,
Washington, DC 20052 USA (e-mail: chen2015@gwu.edu; liuchunchi@gwu.edu;
cheng@gwu.edu).

J. Yu is with the School of Computer Science and Technology, Qilu University of
Technology (Shandong Academy of Sciences), Jinan 250353, China, with the
Shandong Computer Science Center (National Supercomputer Center in Jinan),
Jinan 250014, China, and also with the School of Information Science and
Engineering, Qufu Normal University, Rizhao 276826, China (e-mail:
jiguoyu@sina.com).

W. Lv is with the State Key Laboratory of Software Development Environment,
Beihang University, Beijing 100191, China, and also with the Beijing Advanced
Innovation Center for Big Data and Brain Computing, Beihang University, Beijing
100191, China (e-mail: lwf@nlsde.buaa.edu.cn).

Digital Object Identifier 10.1109/JPROC.2019.2918437

following four types of attacks that account for 82% of the edge

computing attacks recently reported by Statista: distributed

denial of service attacks, side-channel attacks, malware injec-

tion attacks, and authentication and authorization attacks. We

also analyze the root causes of these attacks, present the

status quo and grand challenges in edge computing security,

and propose future research directions.

KEYWORDS | Data security; edge computing; Internet of

Things; network security.

I. I N T R O D U C T I O N

Because of the smart city boom in recent years, the num-
ber of deployed mobile and Internet of Things (IoT)
devices has been growing drastically. These devices are
adopted as the basic components in smart city infrastruc-
tures to undertake the most fundamental but indispensable
tasks such as sensing, actuating, and controlling. However,
relying only on the devices alone is insufficient to fully
accomplish sophisticated tasks such as smart transporta-
tion arrangements and smart medical treatments. In this
case, a high-performance computing platform is needed
for these IoT/mobile devices to offload their computation
tasks and assist them in making decisions. The most well-
known of such technology is cloud computing. Yet, tradi-
tional cloud computing, which is used to support general
computing systems, can hardly satisfy the needs of IoT and
mobile services due to reasons such as location unaware-
ness, bandwidth shortage, operation cost imposition, lack
of real-time services, and lack of data privacy guarantee.

These limitations of cloud computing pave the way
for the advent of edge computing, a technology that is
believed to be able to cope with the demands of the

1608 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

0018-9219 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-9871-9552
https://orcid.org/0000-0003-0200-8092
https://orcid.org/0000-0001-5912-4647
https://orcid.org/0000-0001-6451-1158

Xiao et al.: Edge Computing Security: State of the Art and Challenges

ever-growing IoT and mobile devices. The basic idea of
edge computing is to employ a hierarchy of edge servers
with increasing computation capabilities to handle mobile
and heterogeneous computation tasks offloaded by the
low-end IoT and mobile devices, namely, edge devices.
Edge computing has the potential to provide location-
aware, bandwidth-sufficient, real-time, privacy-savvy, and
low-cost services to support emerging smart city applica-
tions. Such advantages over cloud computing have caused
edge computing to grow rapidly in recent years. According
to the latest report by Statista, the market size of edge
computing in the United States was projected to reach
$1031 million by 2025 from the current $84.3 million in
2018 [1]. According to another recent report, the total
number of IoT devices that were in use worldwide reached
11.2 billion in 2018 and was projected to reach 20 billion
by 2020 [2].

On the one hand, edge computing provides a more
feasible computing technology for smart city applications
and beyond; on the other hand, its emergence introduces
more security threats since it increases the real-world
attack surface from the following four angles.

1) Weak Computation Power: Compared to a cloud
server, the computation power of an edge server is
relatively weaker. Therefore, an edge server is more
vulnerable to existing attacks that may no longer be
effective against a cloud server. Similarly, compared
to general-purpose computers, edge devices have
more fragile defense systems; as a consequence,
many attacks that may be ineffective against desktop
computers can pose serious threats to edge devices.

2) Attack Unawareness: Unlike general-purpose com-
puters, majority of IoT devices do not have user
interfaces (UIs), regardless of the fact that some
may have crude light-emitting diode (LED) screens.
Therefore, a user may have limited knowledge about
the running status of a device, e.g., whether it has
been shut down or compromised. Hence, even if an
attack is taking place in an edge device, most users
may not be able to discern it.

3) OS and Protocol Heterogeneities: Unlike general-
purpose computers that tend to use standard OSes
and communication protocols such as POSIX [3],
most edge devices have different OSes and protocols
without a standardized regulation. This problem
directly leads to the difficulties of designing a unified
protective mechanism for edge computing.

4) Coarse-Grained Access Control: The access control
models designed for the general-purpose computers
and cloud computing mainly consist of four types
of permissions: No Read & Write, Read Only, Write
Only, and Read & Write [4]. Such a model would
never be satisfiable in edge computing due to the
more complicated systems and their enabled appli-
cations, which call for fine-grained access control
that should handle questions such as “who can
access which sensors by doing what at when and

how.” Unfortunately, current access control models
are mostly coarse-grained [5].

Accordingly, the attacks targeting edge computing
infrastructures have a drastic rise in recent years. One of
the most notable attacks that happened in the real world
is the Mirai virus, which managed to compromise more
than 65 000 IoT devices within the first 20 h after its
release in August 2016 by exploiting the devices’ weak
authentication vulnerabilities [6]. A few days later, these
compromised devices were turned into botnets to launch
distributed denial of service (DDoS) attacks against edge
servers, shutting down over 178 000 domains [7]. Shortly
after that, variations of Mirai, such as IoTReaper and
Hajime, were captured, and they were believed to infect
more than 378 million IoT devices in 2017 [6]. Since the
discovery of the first Mirai botnet in 2016, IoT botnet
attacks were reported to cause damages worthy of over
$100 million by September 2018 [8]. Note that these num-
bers only indicate the attacks and asset losses that were
officially identified and reported, and the total amounts of
undetected attacks/losses could be much higher.

The Mirai example described earlier demonstrates the
dire straits in edge computing security. In this paper,
we provide a comprehensive survey on practical state-of-
the-art attacks and defense solutions proposed for edge
computing systems. Major attacks that can be directly
applied to edge computing applications are classified into
six categories, namely, DDoS attacks, side-channel attacks,
malware injection attacks, authentication and authoriza-
tion attacks, man-in-the-middle attacks, and bad-data
injection attacks. The percentage of each class of attacks
happened in 2017 targeting real-world edge computing
infrastructures is shown in Fig. 1, according to the most
recent report posted by Statista [9]. Note that the total
number of IoT attacks discovered in 2017 is 159 700 [10],
with almost all falling into these six categories. Neverthe-
less, this paper covers in depth only the first four for the
following two reasons: 1) it is impossible to exhaustively
survey all possible attacks, and this paper focuses only
on the most influential and basic ones that can be prac-
tically launched in real-world edge computing systems;
and 2) the man-in-the-middle attacks reported in the
context of edge computing do not carry sufficient unique-
ness compared with their counterparts in cloud computing
and Internet computing, while bad-data injection attacks
mainly happened in smart grids, whose generalization to
general edge computing systems is quite limited. We also
summarize the root causes of the attacks, outline the status
quo and grand challenges of edge computing security, and
propose future research directions.

The remaining of this paper is organized as follows.
In Section II, we present the basic architecture of edge
computing. In Section III, we demonstrate the state-of-
the-art security attacks and defense mechanisms that can
be practically implemented in edge computing systems.
Section IV outlines the root causes of edge computing

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1609

Xiao et al.: Edge Computing Security: State of the Art and Challenges

Fig. 1. Percentages according to the types of attacks targeting

edge computing infrastructures happened in real world.

security threats, presents the status quo and grand chal-
lenges in securing edge computing systems, and proposes
the future research directions. Finally, we conclude this
paper in Section V.

II. A R C H I T E C T U R E O F E D G E
C O M P U T I N G

In this section, we present a general architecture of edge
computing shown in Fig. 2, which mainly consists of three
layers: an edge device layer (EDL), an edge server layer
(ESL), and a cloud server layer (CSL). From the perspec-
tive of computational power, the systems built on the CSL
have the most powerful computation capability, followed
by the ones on the ESL. The devices at the EDL usually
have the lowest computational power.

A. Edge Device Layer

Edge devices are those low-level electronic devices
deployed at EDL which operate in the physical world to
complete tasks such as sensing, actuating, and controlling.
Each edge device is logically controlled by one or more
microcontrollers (MCUs), with each being a small com-
puter running on a single integrated circuit [11]. The
low-level software interface programmed in the MCUs
that provide controls to the device’s hardware is known
as firmware. All the functions, including sensing, con-
trolling, and computing, are coded in the firmware and,
therefore, handled by the MCUs. Edge devices can be
further categorized as IoT devices and mobile devices. IoT
devices are lightweight electronic devices that are inter-
connected or connected to the edge servers in ESL through
wireless protocols such as 4G/5G, Wi-Fi, and Bluetooth.
They usually run on lightweight preemptive/cooperative
real-time operating systems (RTOSs), e.g., FreeRTOS and
RT Thread [12] [13]. Once an RTOS is burned into the
chip of the IoT devices, it usually does not provide further
programming interfaces. Some examples of IoT devices

include smart home devices, health monitoring devices,
and smart warehouse carts in industrialized IoT (IIoT).
Most of the manufacturers of IoT devices adopt Cortex-
M series MCUs produced by STMicroelectronics [14].
Different from IoT devices, mobile devices usually have
more advanced and costly preemptive operating systems,
e.g., Android and iOS, providing programmable interfaces
for developers to code their own applications at the top
of the OSes. Some examples of mobile devices include
smartphones, tablets, and central controllers of smart vehi-
cles. Most of the manufacturers of mobile devices adopt
Cortex-A series MCUs produced by high-performance chip
manufacturers such as Qualcomm [15].

B. Edge Server Layer

ESL has a hierarchical structure with multiple sublayers
consisting of various edge servers with increasing compu-
tational power from bottom to up, as shown in Fig. 2.
The edge servers located at the lowest sublayer include
wireless base stations and access points (APs), which are
mainly deployed for communication purpose to receive
data from the edge devices and send control flows back to
them through different wireless interfaces. Upon receiving
data from edge devices, base stations/APs forward the
data to the edge servers located at the upper sublayer,
which are mainly in charge of handling computation tasks.
Upon receiving data passed from base stations/APs or edge
servers at the lower sublayers, the edge servers conduct
relevant computation and analysis tasks on their own.
If the complexity of a task exceeds the computation limits
of the current edge server, it would offload the task to the
servers located at the higher sublayers, which possess more
powerful computation capabilities. These servers then con-
clude with a sequence of control flows and pass them back
to the base stations/APs, which forward them to the edge

Fig. 2. General architecture of edge computing.

1610 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

Xiao et al.: Edge Computing Security: State of the Art and Challenges

devices in the end. Edge servers handle most of the core
computing functions such as authentication, authorization,
computation, data analytics, task offloading, and data stor-
age for edge computing.

C. Cloud Server Layer

CSL hosts center cloud servers and data centers, with
the cloud servers responsible for the highest level authen-
tication and authorization, computation, and integration
of different tasks offloaded from edge servers, and the
data centers in charge of storing a vast amount of data
generated by the edge devices and edge servers. The state-
of-the-art cloud servers and cloud data centers consist of
clusters of powerful machines. Because the security of CSL
has been extensively studied [16], [17], in this paper,
we mainly explore the security issues of EDL and ESL in
edge computing.

III. E D G E C O M P U T I N G S E C U R I T Y
A N D P R I VA C Y

In this section, we first summarize the major state-of-the-
art security threats and attacks faced by edge comput-
ing. These threats have mainly resulted from the design
flaws, misconfigurations, and implementation bugs. We
then explore the corresponding defense mechanisms that
are either detection based for the purpose of recognizing
attacks from normal activities or prevention based for
the objective of obstructing the attacks from happening.
In many cases, detection-based solutions may be the only
choice, especially for defending the attacks that exploit the
design flaws within a system since such flaws can only be
fixed based on a detection-patch logic. Finally, we outline
the root causes of the attacks and discuss the practicality
of launching/defending them.

A. DDoS Attacks and Defense Mechanisms

DDoS refers to a type of cyberattack in which attackers
aim to disrupt normal services provided by one or more
servers based on distributed resources such as a cluster of
compromised edge devices (also known as botnet) [18].
It is a powerful attack that aims to prevent the legitimate
use of a service. A traditional DDoS attack occurs when
an attacker persistently sends streams of packets to a vic-
tim from the compromised distributed electronic devices;
thus, the hardware resources of the victim are quickly
exhausted for handling these malicious packets and can
no longer process any legitimate request on time. In some
other DDoS scenarios, an attacker persistently sends mal-
formed packets that confuse an application or a protocol
of the victim to falsely conclude that all channels and
resources are occupied. Compared with cloud servers, edge
servers are more susceptible to DDoS attacks since they
are relatively computationally less powerful to maintain
strong defense systems as cloud servers do. In addition,
edge servers mainly provide services to edge devices that
are well-known to be error-prone in regard to security

Fig. 3. Typical architecture of the DDoS attack.

settings due to their computation-limited hardware and
heterogeneous firmware. Having noticed this, attackers
favor first compromising a number of edge devices and
turning them into weapons against edge servers. The Mirai
botnet is an infamous example where the attacker took
control of over 65 000 IoT devices within the first 20 h after
its release. These rogue IoT devices were then exploited
to launch a DDoS attack targeting high-profile edge ser-
vice providers such as Krebs, OVH, and Dyn [6]. Shortly
after the outbreak of Mirai, several variation botnets, e.g.,
Hajime and BrickerBot, were unearthed [18]. DDoS is the
most commonly adopted and easiest-to-exploit attack in
the practical world, as shown in Fig. 1. Hence, it poses
a significant threat to the real-world edge computing
services.

1) Attack Specifications: DDoS attacks may happen
when malicious edge devices communicate with the edge
servers. In a DDOS attack, an attacker first compromises a
cluster of edge devices and takes full control of them; then,
it commands each device to launch a denial-of-service
attack targeting the edge server, causing the shutdown of
its services. A typical architecture of a DDoS attack in edge
computing is shown in Fig. 3. DDoS attacks targeting edge
computing can be taxonomized as flooding-based attacks
and zero-day attacks.

a) Flooding-based attacks: Flooding-based attacks are
a type of DDoS attacks aiming to shut down the normal
service of a server based on a large amount of flooded mal-
formed/malicious network packets and are mainly classi-
fied as UDP flooding, ICMP flooding, SYN flooding, ping of
death (PoD), HTTP flooding, and Slowloris, according to
the attack techniques. In a UDP flooding attack, an attacker
continuously sends a large amount of noisy UDP packets to
a target edge server, causing the server incapable of han-
dling the benign UDP packets in time and thus interrupting
the normal UDP services provided by the edge server [19].
In an ICMP flooding attack, an attacker exploits the ICMP
protocol to craft an attack by sending a large number of
ICMP Echo Request packets to a target edge server as fast
as possible without waiting for the replies. This type of
attack consumes both outgoing and incoming throughputs
of the victim server since the server returns an ICMP
Echo Reply packet upon each receipt of a ping request,
resulting in a significant system-wide slowdown [20]. In a
SYN flooding attack, an attacker exploits the three-way

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1611

Xiao et al.: Edge Computing Security: State of the Art and Challenges

handshake of the transmission control protocol (TCP) by
initiating a huge amount of SYN requests with a spoofed IP
address to a target edge server, while the server responds
with a SYN-ACK packet to the spoofed IP for each SYN
request and waits for the confirmation ACK that never
comes [21]. In a PoD attack, an attacker creates an IP
packet with malformed or malicious content that has a
length greatly larger than the maximum frame size for a
standard IP packet (65 535 bytes) and splits the long IP
packet into multiple fragments and sends them to a target
server. Upon receipts of the fragments, the server must
reassemble all the fragments that end up with an IP packet
whose size is over 65 535 bytes. If the attacker continu-
ously sends a large number of such packets to the target,
the computation resources of the target server may be
completely occupied to reassemble all the fragments [22].
In an HTTP flooding attack, an attacker simply sends a
tremendous amount of HTTP GET, POST, PUT, or other
legitimate requests to an edge server. Since the edge server
is less likely able to handle a huge number of legitimate
requests in a timely manner due to the restricted computa-
tion power, its normal services can be easily throttled if a
large amount of HTTP traffics are received in a short period
of time [23]. In a Slowloris attack, an attacker creates
numerous partial HTTP connections, which, for example,
can be realized by only sending HTTP headers to a target
server but never completing one. In this case, the server
keeps all the open connections falsely in different con-
current threads/processes until the total number hits the
maximum concurrent connection pool size, causing the
shutdown of the server [24].

b) Zero-day DDoS attacks: A zero-day DDOS attack
is more advanced than flooding-based DDoS mentioned
earlier, but it is more difficult to implement. In such an
attack, an attacker must find an unknown vulnerability
(i.e., zero-day vulnerability) in a piece of code running on
the target edge server/device, which can cause memory
corruption and finally result in a service shutdown. For
instance, the common vulnerabilities and exposures (CVE)-
2010-3972 is a heap-based overflow that can cause a DoS
on Internet Information Services (IIS) 7.0 and IIS 7.5 [25].
This kind of attack is also the most difficult one to defend
against since it exploits a zero-day vulnerability that has
not been known to the public.

2) Current Defense Solutions: The root cause of
the flooding-based attacks is the protocol-level design
flaws/vulnerabilities within the network communication
protocols, while the root cause of the zero-day attacks
lies in the code-level vulnerabilities that can trigger
memory failures/corruptions. Accordingly, current defense
solutions against flooding-based attacks mainly adopt a
detect-filter philosophy, while those against the zero-
day attacks mainly focus on code-level vulnerability
identification.

a) Defense solutions against flooding-based attacks:
Detection of the flooding-based DDoS attacks can be

mainly classified into two categories: per-packet-based
detection and statistics-based detection.

Per-packet-based detections aim to detect flooding-
based attacks at the packet level. Intuitively, since a
flooding-based DDoS attack is launched mainly by sending
an enormous amount of malicious or malformed network
packets, detecting and filtering those packets can have an
effective defense. This observation was exploited in [26],
which proposed integrating packet filtering mechanisms
into congestion control frameworks to mitigate the attacks.
When a suspicious packet is identified, the network can
simply drop the packet before it arrives at the destined
edge server. Although this may sound trivial, detecting
whether a packet is a DoS-oriented malicious one is
never easy. Attackers can leverage advanced techniques
such as spoofing the packets using counterfeit IP/MAC
addresses and choosing carefully crafted HTTP headers
and agents [27] to make the DDoS attacks more stealthy.
Therefore, researchers turned to develop more effective
detection schemes. Yaar et al. [28] proposed a mechanism
to spot DDoS on a per-packet basis. Their method mainly
exploits the fact that packets coming from the same path
have the same identifier. Hence, if a packet has the same
identifier as a DDoS packet previously spotted, it is highly
likely that this packet is also DDoS-oriented. Similarly,
Luo et al. [29] investigated techniques by detecting pos-
sible DDoS packets based on packet identifiers. However,
a more sophisticated attacker can easily circumvent such
detection mechanisms by changing the identifiers of the
packets using tools such as hping3 [30]. Xu et al. [31]
then proposed a negative selection algorithm to quickly
figure out whether the IP address of a packet is legitimated
based on the eigenvalue sets to resist this type of DDoS.
Nevertheless, this solution approach requires the server to
maintain a list of legitimate IP addresses, which implies
that if a client changes its IP address, it has to report
the change to the server, making the whole process less
efficient.

Statistics-based approaches mainly detect DDoS attacks
based on the advent of clusters of DDoS traffics. The
advantage of such methods lies in that they do not
require the per-packet information such as packet iden-
tifier and IP/MAC addresses for attack detection. The
existing statistics-based detection solutions employ either
packet entropy or machine learning tools. Researchers
developed various entropy-based mechanisms to detect
possible DDoS traffics [32]–[34]. These methods not only
more or less require manual efforts, which may face great
challenges if the DDoS traffics are encrypted, but also need
the distribution of a large amount of traffics to achieve an
accurate detection. To automate the detection, researchers
switched to seek possible solutions from machine learning
and deep learning techniques. Livadas et al. [35] lever-
aged basic machine learning methods such as J48, naive
Bayes, and Bayesian network classifiers to detect botnet
DDoS. Zolotukhin et al. [36] proposed a deep learning
model using an autoencoder to detect encrypted DDoS

1612 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

Xiao et al.: Edge Computing Security: State of the Art and Challenges

traffics. Niyaz et al. [37] used neural networks to iden-
tify DDoS attacks in software-defined networks. Although
learning-based mechanisms require little human effort,
they are susceptible to overfitting, meaning that they may
perform differently on different types of DDoS attacks.
To sum up, one can see that statistics-based detection
needs a large amount of DDoS traffics for entropy com-
putation or training purpose, which implies that such
detection mechanisms can only begin to function after a
fair amount of DDoS traffics already damage the edge
servers.

b) Defense solutions against zero-day attacks: To
defend against this type of attacks, researchers developed
mechanisms such as pointer taintedness detection [38]
and ECC-memory [39] to spot possible memory leaks
in a program. Yet, such methods require the presence
of the original source codes, which are usually unavail-
able for edge devices. Later, Shoshitaishvili et al. [40],
Gupta and Shenoy [41], and Muench et al. [42] pro-
posed the approaches to perform memory analysis based
solely on firmware. Chua et al. [43], Song et al. [44],
and Zuo et al. [45] showed that with the help of deep
learning models, e.g., recurrent neural networks (RNNs),
graph neural networks (GNNs), and deep natural language
processing (NLP), one can identify vulnerabilities in
firmware with higher accuracy rates. Nevertheless,
the firmware is usually not available nowadays due
to encryption and antidebug fuses [46]. On the other
hand, discovering and fixing memory corruptions when
the firmware is unavailable is nontrivial. The only work
under our attention is the one by Chen et al. [47] who
demonstrated fuzzing mechanisms from the IoT-app side
to identify possible memory corruptions without the need
of firmware. However, this solution requires constant
human interactions, making it unscalable and infeasible
in some scenarios. Besides mechanisms associated with
vulnerability discoveries, researchers also sought ways to
actively protect edge devices from zero-day attacks. Fras-
setto et al. [48] proposed an in-process memory isolation
extension module to the binary to defend against possible
memory corruption attacks. Nevertheless, their method
was designed specifically for x86 platforms and might
consume extra computing resources, making it less feasible
to be adopted in most resource-constrained IoT devices.
Shirali-Shahreza and Ganjali [49] proposed an IoT firewall
using software-defined networking (SDN) to reduce the
attack surface of an exposed IoT device. Dietz et al. [50]
deployed lightweight isolation mechanisms on access
routers that serve as guards before an IoT botnet virus
can access real edge devices. Note that even though these
mechanisms can provide active protections, they cannot fix
the zero-day vulnerabilities and hence may be ineffective
if a zero-day vulnerability is too complex to trigger or has
not been discovered before.

3) Discussion: Based on the overviews on DDoS attacks
and defenses presented in Section III-A, one can see that

the root cause of flooding-based DDoS attacks is the
protocol-level flaws caused by the neglect of security in
the initial design, while the root cause of zero-day attacks
is the code-level vulnerabilities that can trigger memory
failures/corruptions. Flooding-based attacks are easy to
launch in the real world as attackers can simply create a
large number of malicious packets from the compromised
distributed devices, while zero-day attacks may not be
as common since discovering zero-day vulnerabilities in
a system requires extremely sophisticated analysis. Never-
theless, it is still quite practical to launch a zero-day attack
in practice since code-level vulnerabilities are difficult to
avoid when developers program for a large system with
millions of lines of codes. Such vulnerabilities are even
harder to avoid in edge computing as edge devices usu-
ally adopt partially fledged system software to trade off
stronger security with lower cost and better user experi-
ence.

Current defenses against DDoS attacks are still very lim-
ited. Per-packet-based detection of flooding-based attacks
either can be bypassed by more sophisticated DDoS attacks
that exploit address/identifier spoofing or need to main-
tain a large list of legitimate IP addresses that may be
subjected to frequent changes; statistics-based detection,
on the other hand, identifies DDoS attacks only after
groups of DDoS packets have already been sent to the
target edge servers, causing irreparable damages. Zero-day
attacks are even harder to defend as most offline detection
mechanisms cannot pinpoint the exact type or location
of the vulnerabilities, and most real-time online defense
systems can hardly figure out the attacks if the DDoS attack
shellcodes are encrypted or deliberately modified.

B. Side-Channel Attacks and Defenses

Side-channel attacks refer to those that compromise a
user’s security and privacy using any publicly accessible
information that is not privacy-sensitive in nature, namely,
side-channel information. Such public information is typ-
ically correlated “secretly” with certain privacy-sensitive
data that should be protected. Attackers then explore the
hidden correlations to finally infer the protected data from
the side channels. Since any public information can have
the potential to link to some sensitive data, side-channel
attacks can happen anywhere in the edge computing
architecture.

1) Attack Specifications: A typical architecture of side-
channel attacks is shown in Fig. 4. An attacker constantly
obtains certain side-channel information from the target
edge computing infrastructure and then feeds it into spe-
cific algorithms or machine learning models that output
the desired sensitive information. The most popular side
channels in edge computing include communication sig-
nals, electric power consumption, and smartphone /proc
filesystem or embedded sensors. The attacks exploiting
communication channels happen when the attacker con-
tinuously monitors the transmissions between two edge

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1613

Xiao et al.: Edge Computing Security: State of the Art and Challenges

Fig. 4. Typical architecture of the side-channel attack.

nodes, those exploiting power consumption occur after
the attacker steals power consumption data of the edge
devices, and those exploiting smartphone-based channels
happen when the attacker secretly accesses the smart-
phone and steals the information stored in the pub-
licly available /proc file or generated by the embedded
sensors.

a) Attacks exploiting communication channels: In edge
computing, exploiting communication signals has a high
potential to reveal sensitive information of a victim due
to the rich channel information. In this case, an attacker
can be any curious malicious node, which does not have
to be an edge device or an edge server, who continuously
sniffs the network traces and wishes to extract sensitive
information out of them. We can further taxonomize this
type of attacks into two subclasses: those exploiting packet
streams and those exploiting wave signals.

A packet is the atomic unit in most communication
channels. A sequence of packets contain rich information
and, hence, are widely exploited by attackers to infer sen-
sitive data. Li et al. [51] showed that the different coding
scheme employed by H.264 and MPEG-4 to reduce tempo-
ral redundancy in adjacent video frames can cause severe
privacy leak in home surveillance even if the video stream
is encrypted. They found that leveraging simple machine
learning algorithms such as k-nearest neighbors (k-NN)
and density-based spatial clustering of applications with
noise (DBSCAN) can achieve an accuracy as high as 95.8%
for inferring the four standard human daily activities
(dressing, styling hair, moving, and eating) defined by
the Health Insurance Portability and Accountability Act
(HIPAA). Ji et al. [52] adopted an inference model that
takes the long short-term memory (LSTM) deep learning
network as an attack vector to detect the existence of
wireless cameras and to infer the user presence around a
target house. They successfully achieved a prediction accu-
racy of 97.2% as a result. Researchers also demonstrated
that inference attacks can be launched by exploiting the
IoT traffic streams. Apthorpe et al. [53] monitored the
encrypted IoT traffics and developed a three-step attack by
first separating the traffic into individual device flows using
the IP addresses of the edge servers, then correlating each

flow with its responsible IoT device according to unique
identifiers, and finally inferring user activities from the
traffic rate changes. Chen and Qian [54] demonstrated
that due to a subtle timing channel vulnerability intro-
duced by most wireless routers that respond to different
TCP packets with different timing gaps, an attacker can
easily infer the correct TCP packet number and conduct
off-path TCP packet injection attacks.

Wave signals are another type of side channels existing
in a communication process and may have the potential to
reveal a victim’s sensitive information. One of the notable
examples is the electromagnetic interference (EMI). Enev
et al. [55] carried out an attack to infer the video con-
tent playing in modern TVs through the discernible EMI
signatures. Selvaraj et al. [56] showed that with the help
of intentional EMI (IEMI), an attacker can manipulate the
input and output signals of an IoT sensory device from the
physical layer and bypass the traditional integrity checking
mechanisms. Besides EMI, researchers also found that Wi-
Fi waves can be used as side channels to conduct inference
attacks. Li et al. [57] proposed a malware-less side-channel
attack by exploiting channel state information (CSI) to
infer a victim’s sensitive password input such as Alipay
code based on the finger movements. Existing studies also
showed that human brain wave data contain rich informa-
tion that can be used to conduct inference attacks. A group
of researchers from the University of Oxford studied the
privacy threat from brain–computer interfaces (BCIs) [58]
and showed that if an attacker can successfully capture the
raw electroencephalography (EEG) data (i.e., human brain
wave data), combined with machine learning algorithms
such as boosted logistic regression, stepwise linear discrim-
inant analysis (SWLDA), and Fisher’s linear discriminant
analysis (FLDA), the attacker can infer victim’s banking
information, month of birth, face, and geographic location
with the accuracies of 15%–40% better than the random
guessing attack. Xiao et al. [59] demonstrated that an
attacker can still infer a user’s fine-grained activities even
with reduced-featured EEG data.

b) Attacks exploiting power consumption: Power con-
sumption is an indicator of the electric usage of a system.
It carries information related to either the device that
consumes the energy as different devices have different
power consumption profiles when operating or the inten-
sity of computations in a computing task. Hence, it attracts
attention from a number of researchers to investigate its
link to sensitive data. We further categorize this type of
attacks into two subclasses: attacks exploiting power con-
sumption collected by meters and those exploiting power
consumption collected by oscilloscopes.

Smart meters can accurately measure the electric power
consumption of a household. Therefore, such data can
be exploited to infer sensitive household activities. In as
early as 1992, Hart [60] proposed a side-channel inference
method named nonintrusive appliance load monitoring
(NILM) to monitor simple device states, e.g., ON or OFF,
based on the energy consumption of individual appliances.

1614 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

Xiao et al.: Edge Computing Security: State of the Art and Challenges

This inference was benign as it was not employed for
malicious attacks. Later, Stankovic et al. [61] revised the
original NILM to conduct an inference attack and showed
that most household activities, such as cooking, wash-
ing, laundering, watching TV, gaming, and so on, can be
inferred from the energy data available in a smart meter
infrastructure. Clark et al. [62] carried out a side-channel
attack leveraging the power outlet of an edge device
and managed to infer the webpage that the device was
visiting with approximately 99% of accuracy. Later, they
extended the work to show that using the power energy as
an inference feature can even detect malicious malware
in an edge device with an accuracy of approximately
94% [63]. Even though this paper is not attack-oriented,
it indirectly shows that the sensitive behaviors of benign
software can also possibly be identified based solely on
power consumption. Recently, researchers found a new
physical channel, a thermal side-channel caused by power
consumption, and exploited it to more effectively conduct
time power attacks and hence compromising the edge data
center availability [64].

An oscilloscope is an instrument measuring the elec-
tronic information (e.g., voltage and current) of a hard-
ware device. In modern embedded devices, some chip
can perform complicated cryptographic algorithms such as
AES-CCM, with a hardcoded secret key in the chip. Such a
secret key cannot be directly cracked if no software-level
vulnerabilities are present. However, researchers found
that the power consumption of the hardware may be
susceptible to leaking the key. Örs et al. [65] demon-
strated that adopting simple power analysis and differ-
ential power analysis can reveal a significant amount
of information carried by the elliptic curve cryptosystem
on a field-programmable gate array (FPGA) chip. Ronen
et al. [46] showed that adopting correlation power analysis
can completely reverse the AES-CCM master key used to
encrypt/decrypt the firmware installed in the Philips hue
smart lights such that they can deliberately create any
malicious firmware and install on any Philips hue smart
light over-the-air. What is even worse is that as reported
in [66], nearly all cryptographic approaches and their
corresponding hardware are vulnerable to power analysis
attacks. Yet, launching power analysis attacks requires
an attacker to be able to physically access the target
device or through malicious apps, making this class of
attacks difficult to implement in practice.

c) Attacks exploiting smartphone-based channels:
Smartphones are key edge devices in many applica-
tions. Different from IoT devices, smartphones have more
advanced OSes and possess richer system information.
Therefore, compared with the less advanced IoT devices,
smartphones can be exposed to a broader attack surface.
We categorize the attacks into two subclasses: attacks
exploiting the /proc filesystem and those exploiting the
smartphone embedded sensors.

The /proc is a system-level filesystem created by the
kernel in Linux. It contains the system information such as

interrupt and network data. Even though it is a system-
level filesystem, it is readable by the user-level threads
and applications. Hence, accessing the /proc filesystem
does not require any additional permission. As a result,
/proc has been widely employed to perform side-channel
attacks. Chen et al. [67] proposed a UI state inference
attack through which an attacker can carry out UI phishing
to trick victims to make unwanted requests to edge servers
by using the memory data that are publicly available in
/proc. Diao et al. [68] exploited the interrupt information
stored in /proc/interrupts to infer sensitive informa-
tion of a smartphone such as pattern lock and foreground
running UI. Zhou et al. [69] made use of various side
channels such as tcp_snd, tcp_rcv, and BSSID available
from an Android device’s /proc to infer a user’s sensi-
tive information, including health condition, location, and
social network identity. Xiao et al. [70] further strength-
ened this paper by developing an approach to correlate
a victim’s social network identity with the smartphone
device used to access the social network in a more accurate
and practical manner. Yet, as a matter of fact, accessing
/proc requires an attacker to trick a victim to install a
malicious app, which is the bottleneck of such attacks.

Nowadays, a smartphone is integrated with a variety
of embedded sensors for handling various tasks. On the
one hand, these sensors can greatly elevate the function-
alities of the smartphone. On the other hand, they impose
security concerns of leaking sensitive information. Asonov
and Agrawal [71] and Zhuang et al. [72] independently
showed that it is feasible to infer a user’s keystroke by
analyzing the acoustic sounds emitted from the physical
keyboards which existed in early-stage smartphones. How-
ever, most current smartphones eliminate the physical key-
boards by employing touchscreens. Nevertheless, attackers
make a great effort to keep pace with this development.
Zhou et al. [73] cracked the pattern lock of a smartphone
by leveraging the acoustic signals reflected by the fingertip
captured through microphones. Cai and Chen [74] showed
that the tap keystrokes can be inferred using the smart-
phone accelerometer and gyroscope sensors. Recently,
Chen et al. [75] proposed a novel side-channel attack lever-
aging the victim’s eye movements from a video secretly
recorded by a smartphone camera, to infer the victim’s
keystrokes on a mobile device. One can see that embedded
sensors within a smartphone carry abundant information
that can be exploited to perform inference attacks.

Based on the earlier summary, we can further categorize
the side channels that can be exploited by attackers into
two classes: the controllable ones that include packet
streams as well as smartphone-based /proc filesystem and
embedded sensors, to which the access can be restricted,
and the uncontrollable ones that include wave signals and
power consumption, which exist unconditionally due to
the innate nature and are not modifiable.

2) Current Defense Solutions: The root cause of side-
channel attacks is the hidden correlation, which could

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1615

Xiao et al.: Edge Computing Security: State of the Art and Challenges

be very complicated and hardly identified, between
the sensitive data to be protected and the publicly
available side-channel information. Apparently, defenses
against side-channel attacks can be performed from two
directions: restricting the accesses to side-channel infor-
mation and protecting the sensitive data from infer-
ence attacks. Obviously, there exists no feasible defense
mechanism that can restrict the access to uncontrol-
lable side channels, leaving sensitive data protection the
only approach for such kind of attacks. In this section,
we first put forward an overview on data perturbation,
a well-researched technique for protecting sensitive data
from inference attacks; then, we summarize the defense
mechanisms that can restrict the accesses to side-channel
information.

a) Data perturbation: The most well-known pertur-
bation algorithm to protect sensitive data from inference
attacks is k-anonymity, which modifies the identifier infor-
mation of a piece of data before publishing its sensi-
tive attributes, making it indistinguishable from another
k − 1 pieces of data, with these k pieces of data forming
an equivalence class [76]. Machanavajjhala et al. [77]
found that k-anonymity suffers from the homogeneity
attack when the values of a sensitive attribute within an
equivalence class are identical. To overcome this issue,
they proposed l-diversity by ensuring each equivalence
class to have at least l distinct values for each sensitive
attribute [77]. However, Li et al. [78] pointed out that
l-diversity has two main limitations, i.e., it may be difficult
and unnecessary to achieve and it is insufficient to prevent
attribute disclosure when the distribution of a certain value
differs significantly from those of others for the same
sensitive attribute. Therefore, they proposed t-closeness to
overcome these two limitations by requiring the difference
between the distribution of a sensitive attribute value in
a class and that in the whole database is less than a
threshold [78]. Nevertheless, researchers noticed that the
earth mover’s distance metric used in t-closeness may not
be able to convincingly measure the “closeness” among
values [79].

On the other hand, even though k-anonimity and its
successors provide a reasonable privacy protection, they
do not have sound theoretical foundations to support their
privacy preservation capacity. A breakthrough was made
by Dwork [80], who presented the concept of �-differential
privacy, which formally defines privacy preservation with a
solid theoretical proof. A data randomization algorithm A
is said to provide �-differential privacy if

Pr[A(D1) ∈ S] ≤ eε × Pr[A(D2) ∈ S] (1)

where D1 and D2 are any two databases that differ by
a single entry, S is the collection of the results of A,
and � is a positive real number, namely, privacy bud-
get. In the same work, Dwork et al. [80] also proposed
the Laplace mechanism to achieve �-differential privacy

for numerical values by adding noises generated from a
Laplace distribution. To deal with entity objects, McSherry
and Talwar [81] presented the exponential mechanism
to achieve differential privacy. Since differential privacy
is the only privacy norm with strict mathematical proofs,
it has been widely deployed to defend against side-channel
information leaks. McSherry [82] implemented the Privacy
Integrated Queries (PINQ) platform that provides differen-
tially private data analysis through SQL-like programming
languages. Later, Roy et al. [83] built Airavat, a differ-
entially private platform for data computation over the
edge servers. Xiao et al. [84] injected differentially private
noises into procfs to prevent side-channel attacks on data
storage. Cheu et al. [85] proposed a distributed differential
privacy model via mixnet, which fits the decentralization
feature of edge computing. Yet, the problem of differential
privacy is that it may have limited protection effect if
the data are correlated [86]. More generally speaking,
differential privacy may not be applicable when the data
have a high global sensitivity, which requires strong noises
to perturb the data for privacy guarantees, thus sacrificing
the utility of the data [87].

b) Restricting accesses to side channels: As mentioned
earlier, an alternative approach to defend against side-
channel attacks is to restrict the accesses to the side-
channel information. Side-channel obfuscation on the
source code level is such a scheme to defend from the
software surface. Molnar et al. [88] proposed a mecha-
nism to eliminate control-flow side-channel attacks from
the C source code. Zhang et al. [89] developed a side-
channel detection scheme to monitor the abnormal cache
behaviors on cloud and edge servers. These two methods
directly perturb the side channels to obstruct the accu-
racy of inference algorithms leveraged by the side-channel
attacks. In recent years, as the development of TrustZone
technology advances quickly, researchers invented miti-
gation solutions using TrustZone-empowered hardware,
SGX, to prevent side-channel attacks [90], [91]. This
method mainly disallows unauthorized accesses to the side
channels protected in TrustZone.

3) Discussion: As mentioned earlier, the root cause of
side-channel attacks is the concealed correlations between
the publicly available side-channel information and the
sensitive data that should be protected. Side-channel infor-
mation leak is omnipresent and unavoidable, and side-
channel attacks are usually highly profitable, making the
attackers strongly motivated to launch such attacks. More-
over, with the advances in machine learning, especially
in deep learning, successfully performing a side-channel
attack is becoming much easier. On the other hand, in edge
computing, most of the attacks can be done through
traffic eavesdropping or malicious apps, which are easy
to realize. Even though the attacks exploiting the power
consumption data collected by oscilloscopes require an
attacker to physically contact the edge device, as many
edge devices share the same secret key (also known as

1616 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

Xiao et al.: Edge Computing Security: State of the Art and Challenges

master key) for a particular application, the attacker has
the incentive to physically attack one of the devices at a
high cost [46]. Hence, one can safely claim that all the
side-channel attacks can be practically launched.

Side-channel attacks are the most difficult ones to
defend against among all types of attacks considered in this
paper because they can be silently and passively launched.
As mentioned earlier, defense mechanisms based on data
perturbation techniques, such as differential privacy, can
effectively inhibit attackers from accurately inferring a
user’s sensitive information but they may sacrifice the
data utility. Existing research showed that Apple’s imple-
mentation of differential privacy results in a high privacy
loss of 16 per day, while the ideal loss should not be
greater than 2 [92]. Moreover, quantifying the tradeoff
between privacy protection and data utility for a par-
ticular application is still generally open. On the other
hand, defense solutions, such as source code-level obfus-
cation and hardware protection, can provide protection
by directly manipulating on or restricting access to the
side channels, but it is infeasible to apply them to each
single piece of side-channel information since most of such
information is undetectable and may vary from system to
system. In addition, ironically, many of the existing solu-
tions are vulnerable to side-channel attacks as well. The
most well-known platform implementations of differential
privacy, namely, PINQ and Airavat mentioned earlier, were
found vulnerable to a timing attack due to the logic design
flaws discovered by Haeberlen et al. [93]. Lee et al. [94]
exploited the branch history channel of SGX to successfully
infer the fine-grained control flow executed in SGX. Such
limitations exist on both edge servers and devices.

Future research on defending against side-channel
attacks in edge computing may focus on enhancing access
control models to better regulate the accesses to the
controllable side channels and the published data. Also,
besides being used as attack resources, side channels can
be employed as defense resources. The research conducted
by Clark et al. [63] demonstrated a good example of
detecting malware based on power consumption. Hence,
we perceive that using side channels to enhance defenses
may be a sound future research direction.

C. Malware Injection Attacks and Defense
Mechanisms

The action to effectively and stealthily inject/install mal-
ware into a computing system is called malware injection
attack. This type of attacks is one of the most dangerous
ones since malware is a significant threat to system security
and data integrity. In the traditional Internet or general-
purpose computer infrastructures where strong compu-
tational power is available to support high-performance
firewall or other threat protection systems, malware injec-
tion is not always feasible and possible. Nevertheless,
edge devices and the low-level edge servers can barely be
protected by a traditional firewall and, hence, are more
vulnerable to malware injection attacks.

Fig. 5. Typical architecture of the malware injection attack.

1) Attack Specifications: The typical architecture of the
malware injection attack is straightforward. As shown
in Fig. 5, the objective of the attack is to inject malware,
i.e., malicious codes, into edge devices or edge servers.

We classify malware injection attacks in edge comput-
ing into two categories: server-side injections (injection
attacks targeting edge servers) and device-side injections
(injection attacks targeting edge devices).

a) Server-side injections: There are mainly four types
of injection attacks targeting edge servers, namely, SQL
injection, cross-site scripting (XSS), Cross-Site Request
Forgery (CSRF) and Server-Side Request Forgery (SSRF),
and Extensible Markup Language (XML) signature wrap-
ping, which are elaborated as follows.

The SQL injection is a code injection technique that
destroys the back-end databases. To construct a normal
SQL query, a legitimate user is allowed to manipulate
only the designated areas (e.g., name and date) to get
the results from the server. However, an attacker may
manage to circumvent this constraint by inputting escape
characters (such as quotation marks) along with the query
string. In this case, the server may mistakenly execute
everything the attacker inputs after the escape characters.
This vulnerability usually exists when a database man-
agement system does not filter escape characters for SQL
processing. SQL injection not only is a serious threat to
data confidentiality and integrity but also allows attackers
to inject malicious scripts, e.g., using SELECT ... INTO
OUTFILE command. Hence, SQL injection is one of the
main methods for malware injection [95].

XSS is a client-side attack in which an attacker injects
malicious codes (usually HTML/JavaScript codes) into
data content, which can be accessed and executed auto-
matically by the servers. Note that the modifier “client-
side” here does not refer to the edge device side, but rather
the edge server side in which an edge server works as a
“client” to visit or access the services provided by other
edge servers or the cloud server. Therefore, contrary to
the traditional general-purpose computing systems, XSS
is a type of injection attacks that happen at the edge
server level in edge computing. The attack is caused by
the fact that the edge servers do not filter code from data
content. Even though XSS is not a novel attack and its
mechanism has been well studied, it is still a serious threat
to edge computing infrastructures. An XSS vulnerability
was reported in the Cisco Edge Director framework that
can lead to arbitrary code executions [96]. Martin and
Lam [97] created an automatic model checker based on
the goal-directed model checking to find XSS and SQL
vulnerabilities in a large amount of codes.

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1617

Xiao et al.: Edge Computing Security: State of the Art and Challenges

CSRF is an attack in which an end user (i.e., an edge
server in this case) is forced to execute unwanted actions
through Web applications. SSRF is an attack in which edge
servers are abused to read or alter the internal resources.
The root cause of both attacks is the coarse-grained design
of the verification mechanism, such as a weak identity
verification method that can be easily broken. By exploit-
ing coarse-grained verification, an attacker can spoof as
a “legitimate” edge server to send a command to other
edge servers without being discovered, making other edge
servers to be subjected to the CSRF and SSRF attacks.
Typically, CSRF and SSRF mainly target the traditional
Internet infrastructures. It was found in 2016 that edge
systems are also susceptible to these two attacks [98].

XML signature wrapping happens when an edge com-
puting infrastructure acquires Simple Object Access Proto-
col (SOAP) as its communication protocol, which transmits
the messages using the XML format. In this attack, a mali-
cious attacker first intercepts a legitimate XML message,
creates a new tag, and places a copy of the original
message (which may contain verification parameters such
as tokens) within the new tag (also known as the wrapper)
to form a “giant” tag-value pair. Next, the attacker replaces
the original values with malicious codes in the original
message and combines the modified original message with
the “giant” tag-value pair by placing the new pair before
the regular tag-value pairs of the original message. Upon
receiving this tampered message, the victim edge server
would first verify the message, which could succeed since
the attacker did not delete the original values (containing
the still-valid verification information) but rather puts
them into a new tag (wrapper). Once verification succeeds,
the server would execute the malicious code injected by the
attacker [99].

b) Device-side injections: Various diverse methods for
injecting malware into IoT devices exist since IoT devices
are highly heterogeneous on both hardware and firmware.
The most common approach to remotely inject malware
is to exploit the zero-day vulnerabilities that can lead to
remote code execution (RCE) or command injection. One
of the most infamous examples is the “IoT Reaper” virus
captured in 2017, which infects millions of IoT devices
through the Internet protocol and Wi-Fi by exploiting
at least 30 RCE vulnerabilities existing in 9 different
IoT devices ranging from the network router to IP cam-
era [100]. In academia, Cui et al. [101] discovered that
the HP-RFU (remote firmware update) protocol adopted
by LaserJet printers allows an attacker to modify any
predeployed firmware of a printer due to the lack of sig-
nature verification check. Hernandez and Buentello [102]
found that the Smart Nest Thermostat lacks proper pro-
tection for firmware update, allowing an attacker to
update an arbitrary firmware using a USB connection.
Maskiewicz et al. [103] pointed out that the firmware
update mechanism used by the Logitech G600 mouse
is buggy and allows an attacker to infect a firmware
through networking or USB. Recently, Ronen et al. [46]

implemented an attack to remotely and contactlessly
inject malicious firmware into IoT devices using the zig-
bee light link protocol. Note that the above-mentioned
attacks are typically referred to as firmware modification
attacks.

Injecting malware that has cross-accessing capability
into mobile devices is not trivial since major mobile
OSes, such as iOS and Android, adopt an app-isolation
mechanism, i.e., the sandbox mechanism, to ensure that
every app is isolated virtually on memory and no app can
access other apps’ resources and contents unless permit-
ted from the kernel level [104]. Wang and Chen [105]
conducted an early study to summarize how legitimate
API calls, e.g., intent and scheme that are open to all
mobile developers, can possibly allow an attacker to inject
malicious contents into other third-party benign apps.
Ren et al. [106] exploited the OS-level structure called
Android Task Structure (ATS) to passively inject malicious
UIs to benign apps. Xiao et al. [107] improved Ren’s work
by exploring active attacks exploiting ATS, making the
ATS-based injection attack more feasible and powerful in
practice. Even though these attacks sound powerful, they
may not cause significant damages to the edge computing
infrastructure as they directly exploit the Android official
APIs and structures. To carry out more dangerous attacks,
attackers tend to use third-party malicious libraries that are
not only more powerful but also less likely to be detected.
Chen et al. [108] found that 6.84% of official Android
apps from the Google Play Store and 2.94% of iOS apps
from the Apple App Store use harmful libraries such as
PhaLibs that opens a backdoor for code injection. Note
that all the attack mechanisms mentioned earlier require
a victim to install the attacker’s malicious app to begin
with, since they all require the assistance from the native
Android OS at some level. This limitation may diminish
that the practicality for launching such attacks in the
real world as a victim has to be tricked to install the
malicious app in the first place. To overcome this limita-
tion, Li et al. [109] made a breakthrough by discovering a
serious design vulnerability in Android WebView, which
allows an attacker to remotely inject malicious apps into
a legitimate Android device through a malicious website.
This method can achieve most of the attack effects (e.g.,
stealing other app’s resources and UI hijacking) and an
app-required attack can have without the need of installing
a malicious app into a victim’s device—it only requires the
victim to open the webpage using its smartphone.

2) Current Defense Solutions: The root cause of server-
side injections is the protocol-level design flaws, while
the root cause of device-side injections lies in both code-
level design flaws as well as the adoption of coarse-
grained access control models. Accordingly, the defenses
against server-side injections mainly adopt the detection
filter philosophy, while those against device-side injections
mainly focus on a code-level analysis for malicious
behavior detection and fine-grained access control.

1618 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

Xiao et al.: Edge Computing Security: State of the Art and Challenges

a) Defenses against server-side injections: Defenses
against server-side injections also consider the four major
types of attacks: SQL injection, XSS, CSRF/SSRF, and XML
signature wrapping.

Since SQL injection attacks were discovered at the
time when SQL databases were invented, defense and
detection mechanisms have been studied for a fairly long
time. Halfond et al. [110] categorized the early research
into detection-focused and prevention-focused. Detection-
focused techniques basically employ code checking with
various schemes such as static analysis, dynamic debug-
ging, blackbox testing, and taint-based analysis, while
prevention-focused techniques target to prevent any illegal
SQL queries from being executed by means such as setting
up a proxy filter and employing instruction-set random-
ization (ISR). In the same work, Halfond et al. [110] also
pointed out that most of the early defense mechanisms
were not mature and that only two of them may have
the potential to resolve practical SQL injection attacks.
The first one is the lattice-based static analysis framework
proposed by Huang et al. [111], which not only achieves
defense against SQL injection on a full surface but also
manages to run in real time. Yet, the major limitation of
this mechanism is that it only protects the servers built
on PHP, while many servers are built on other back-end
languages such as Java and C#. The second mechanism
was designed by Livshits and Lam [112], which is specific
to Java programs, while SQL injections can happen in
other back-end languages such as PHP and C#. Recently,
researchers proposed improved mechanisms by compar-
ing input queries with programmer intended queries to
check inconsistencies for possible SQL injection identifi-
cation or even simply remove SQL query attribute values
for further analysis before a query can be executed [113],
[114]. Yet, these mechanisms require a fair amount of
manual effort to begin with. Therefore, researchers started
to seek possible solutions from machine learning or deep
learning. For examples, Jackson and Bennet [115] located
SQL injection vulnerabilities in a program using NLP, and
Ross et al. [116] evaluated multiple machine learning tech-
niques and showed that they can achieve high accuracy for
detecting SQL injection attacks.

Similar to SQL injection, the defense mechanisms
against XSS have been studied for a fairly long time. Based
on the survey conducted by Gupta and Gupta [117], early
studies focused on ten types of defense schemes, including
manually implementing hardcoded rules at the client side
to inhibit XSS malicious codes from being executed and
adopting ISR to turn the malicious codes into harmless
ones, just to name a few. Gupta et al. [117] also mentioned
that these early studies cannot completely resolve all types
of XSS attacks. Recent research improved the early stud-
ies by adding context-aware sanitization into XSS detec-
tion to make it more robust with reduced false positive
rates [118]. Rathore et al. [119] also leveraged learning
techniques to detect XSS vulnerabilities and achieved over
97% accuracy.

Compared to SQL injection and XSS, CSRF and
SSRF have a much shorter history. The number of
defense mechanisms targeting CSRF is still limited.
Jovanovic et al. [120] proposed a defense approach based
on secret token, while Johnson [121] presented a CSRF
defense scheme based on referer header checking. Later,
Barth et al. [122] showed that these two mechanisms can
fail if being adapted to new variations of CSRF, e.g., login
CSRF; they proposed a modified version of referer header
method by forcing the client side to send a origin header
to defend against the login CSRF. Yet, this mechanism
requires effort from the client side, which may increase the
computational burden of edge devices. Czeskis overcame
this limitation by offloading the detection task to the
server side to create a lightweight protection platform.
The defense against SSRF is even more limited. Fung and
Lee [123] proposed a privacy-preserving defense mech-
anism against SSRF by embedding clients’ credentials in
requests. Srokosz et al. [124] revised the static web appli-
cation firewall (WAF) approach making it able to defend
against SSRF.

XML signature wrapping became popular when the
SOAP protocol was introduced in the industrial world;
hence, it has the shortest history among all server-side
malware injection attacks. Compared to other server-
side injection attacks, wrapping attacks are not difficult
to defend against due to their limited attack surface
and simple attack forms. Jensen et al. [125] proposed a
schema hardening approach on the basis of W3C XML
Schema for countering the wrapping attack. Gupta and
Thilagam [126] developed a side-channel based detection
mechanism by counting the frequency of each node in
a requested service to spot suspicious wrapping attack.
Kumar et al. [127] developed a detection method by
introducing positional tokens.

b) Defenses against device-side injections: For injec-
tion attacks targeting IoT devices, as we mentioned ear-
lier, the main threat comes from firmware modification
attacks. Currently, limited research exists to investigate
the corresponding defense mechanisms. To the best of
our knowledge, Cui et al. [101] was the first to propose
the defense mechanisms to mitigate firmware modification
attacks. Inspired by the idea of address space layout ran-
domization (ASLR) and ISR, they proposed the autotomic
binary structure randomization (ABSR) that takes arbitrary
executables or firmware as the input and outputs a variant
of the original with reduction of unused codes to minimize
the attack surface. They also proposed a software symbi-
otic method that injects intrusion detection functionality
into the binary firmware of the existing IoT devices to
inhibit malicious modifications. Even though the ideas of
these two mechanisms are reasonable, their realizations
are never easy, and Cui et al. [101] did not present any
specific methodology on the implementation of these two
mechanisms. Lee and Lee [128] proposed a blockchain-
based cryptographic approach to securely update firmware
for IoT devices. However, this design adopted the proof-

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1619

Xiao et al.: Edge Computing Security: State of the Art and Challenges

of-work (PoW) algorithm that is not only computationally
prohibitive both on hardware and on time in IoT but also
lacks the ability to detect malicious codes, making this
method impractical in defense. Moreover, it is unconvinc-
ing that this blockchain-based mechanism can fit the edge
computing infrastructure. Weiser et al. [129] proposed to
isolate sensitive data and codes from other nonsensitive
ones using the memory protection unit (MPU) to inhibit
firmware modification attacks under RISC-V. However, this
approach requires that the microcontroller (MCU) of an
IoT device is to be equipped with an MPU. Moreover, it only
supports the RISC-V instruction set, while the Advanced
RISC Machine (ARM) and the Microprocessor without
Interlocked Pipelined Stages (MIPS) are more popular—
in fact, ARM has approximately 95% of the IoT market
share [130]. In summary, defending against malicious
firmware modification attacks remains largely underex-
plored at the end device.

Malware injection attacks targeting mobile devices
exploit the design flaws of the mobile OSes as well as
the usage of malicious libraries. Schmerl et al. [131]
and Wu et al. [132] independently proposed the static
analysis methods to identify possible malicious uses of
dangerous Android APIs. Backes et al. [133] developed
a library detection technique that can resist the common
code obfuscations and detect security vulnerabilities and
malicious behaviors in Android libraries. Xiao et al. [107]
proposed a task interference checker, TICK, to eliminate
malware injection by making use of the ATS. Unfor-
tunately, currently, no practical solution exists that can
counter the remote malware injection attack exploiting
WebView mentioned in [109] unless implementing pro-
tective schemes at the Android kernel or redesigning the
Android OS.

3) Discussion: One can see that the root cause of server-
side injections is the protocol-level design flaws, while
those of device-side injections include code-level design
flaws and the adoption of device-level coarse-grained
access control. All server-side injections can be practically
launched, and as a matter of fact, they have been widely
exploited in industry. Even though device-side injections
may not be as common as their counterparts at the
server side, all the device-side injections mentioned in
this section were implemented using physical IoT/mobile
devices, proving that they can be launched practically in
the real world.

The defense mechanisms targeting edge device malware
injection/modification are quite unsatisfied. To the best of
our knowledge, there exist no ideal or mature solutions
to defend against the zero-day injections, firmware mod-
ification attacks, and remote WebView infections. More-
over, current solutions (e.g., code-level static analysis)
provide belated actions that cannot prevent damages as
they cannot be utilized as real-time weapons; additionally,
they require full access to either the firmware or the source
codes, which may not be available most of the time. On the

Fig. 6. Typical structure of the authentication/authorization attack.

other hand, the existing defenses based on weak signature
verification are ineffective, and fine-grained access control
for malware injection prevention sounds promising but
has not been investigated. Therefore, defending malware
injection attacks remain to be a grant challenge, especially
at the edge device side in edge computing.

D. Authentication and Authorization Attacks and
Defense Mechanisms

Authentication is an action of verifying user identities
who request certain services. Authorization is a process
determining access rights and privileges of an entity, con-
firming that the entity behaves based on its rights without
crossing boundaries. Authorization is usually proceeded
with authentication for identity verification. In edge com-
puting, authentication is generally performed between
edge devices and edge servers. Under certain circum-
stances, it is also performed among edge devices or among
edge servers in a decentralized way (so-called trigger-
action platforms) [134]. Authorization in edge comput-
ing often refers to the activity when an edge server
grants permissions to a certain edge device or its appli-
cations. Yet, it is also possible for devices/applications
to grant permissions to other devices/applications in
a trigger-action scenario, e.g., the home automation
system.

1) Attack Specifications: A typical architecture of the
authentication/authorization attack is shown in Fig. 6.
If an attacker intends to directly access protected edge
servers or edge devices, it would be blocked by the
authentication system. Therefore, the attacker seeks the
methods to bypass the authentication process, performing
an unauthorized access.

We taxonomize the attacks into four types: dictionary
attacks, attacks exploiting vulnerabilities in authentica-
tion protocols, attacks exploiting vulnerabilities in autho-
rization protocols, and overprivileged attacks, with the
first two targeting authentication protocols and the rest
targeting authorization protocols. Dictionary attacks hap-
pen when an attacker employs a credential/password
dictionary to crack the credential-enabled authentication
system. For the attacks exploiting weaknesses in authenti-
cation and authorization protocols, we, respectively, con-
sider WPA/WPA2 as well as SSL/TLS protocols, and the
OAuth protocol, since they are the most widely adopted
ones in edge computing. Overprivileged attacks occur

1620 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

Xiao et al.: Edge Computing Security: State of the Art and Challenges

when an app or a device is granted access rights that are
stronger or more than it needs.

a) Dictionary attacks: Authentication-based attacks
pose a significant threat for securing the edge
computing infrastructures. The most straightforward
authentication-based attack is a dictionary attack,
in which an attacker possesses a dictionary containing
the mostly used credentials/passwords and inputs all the
possible credentials/passwords in this dictionary to the
target authentication system in order to find a possible
match. This type of attacks is also known as brute-force
attacks, a term that is widely used in the industry. The
dictionaries of commonly used passwords are extremely
easy to retrieve, and plenty of public dictionaries are
downloadable from open-source communities [135]. Yet,
launching dictionary attacks against different protocols
and different authentication mechanisms require different
techniques. Lu and Cao [136] and Nam et al. [137]
discovered that the three-party password-authenticated
key exchange (S-3PAKE) protocol, which is sometimes
used by Bluetooth, is vulnerable to the offline-dictionary
attack right after the initial session key is established.
However, employing a large dictionary can be extremely
time-consuming if a single-threaded attack is used.
Therefore, Nakhila et al. [138] proposed the parallel
active dictionary attack that can be 100-fold faster than the
traditional single-threaded one when attacking the WPA2-
PSK Wi-Fi networks. With the development of biometric
technology, adopting biometric features (e.g., fingerprints)
as an authentication factor has become prevailing since
people tend to believe that biometric features are more
secure and tamper-proof [139]. However, this belief may
not be absolutely correct. Roy et al. [140] proposed new
schemes to create a synthetic master print that is able
to match with a huge number of target fingerprints by
employing the covariance matrix adaptation evolution
strategy (CMA-ES), differential evolution (DE), and
particle swarm optimization (PSO).

b) Exploiting weaknesses in authentication proto-
cols: On the one hand, a dictionary attack is easy to
launch; on the other hand, it has serious drawbacks
such as high resource consumption and low success rate.
Therefore, researchers tend to investigate more efficient
attacks by discovering the design flaws of the authen-
tication protocols. Cassola et al. [141] observed the
weak binding vulnerability existing in the WPA enter-
prise authentication protocol and presented a practical
and stealthy evil twin attack against WPA. Bhargavan
and Leurent [142] identified a new class of transcript
collision attacks targeting the TLS authentication protocol,
which can result in practical impersonation and down-
grade attacks. Felsch et al. detected a key reuse vulnera-
bility existing in four edge/cloud vendors’ authentication
services, and pointed out that exploiting this vulnerability
allows an attacker to arbitrarily impersonate a host or a
device [143]. Vanhoef and Piessens [144], [145] identified
severe design flaws in some of the OSes and platforms

that allows an attacker to force nonce reuse in WPA2,
then finally making it possible to replay, decrypt, and forge
authentication messages.

Besides the vulnerabilities identified in WPA/WPA2 pro-
tocols, researchers also investigated the weaknesses of
the authentication protocols in 4G and 5G networks.
Tu et al. [146] developed a signaling diagnosis tool that
uncovers six functional safety issues in 4G and showed
that with such issues, a legitimate user can be denied 4G
services. Rupprecht et al. [147] identified four security
flaws in some implementations of 4G LTE, which allow an
attacker to launch a man-in-the-middle (MITM) attack in
a protected 4G LTE network and peek into sensitive unen-
crypted data. Hussain et al. [148] uncovered the security
design flaws in the attach, detach, and paging procedures
of the 4G LTE protocol, based on which they were able
to create new attacks that can enable an adversary to
spoof the location of a legitimate user without presenting
correct credentials. Later, Hussain et al. [148] improved
the work by uncovering security vulnerabilities in cer-
tain 5G implementations [149], with which an attacker
can learn a victim’s location and inject fabricated paging
messages.

c) Exploiting weaknesses in authorization protocols:
Authorization-based attacks usually exploit the design
weaknesses or logic flaws existing in authorization pro-
tocols in order to achieve unauthorized access to the
sensitive resources or perform privileged operations, also
known as the overprivileged issue. In edge computing
systems, OAuth is a widely used authorization proto-
col designed for multiparty authorization [150], [151].
In OAuth, three parties, i.e., a user, a service provider,
and a relying party, are involved. The purpose of OAuth
is to let the service provider access the user’s resources
(stored in the relying party) only after the user grants
the access rights to the service provider. The initial ver-
sion of OAuth, i.e., OAuth 1.0, which has been broken,
is vulnerable to fixation attacks that happen when the
service provider requests token approval from the relying
party [152]. Hence, most vendors adopt OAuth 2.0 in
practice. Even though OAuth 2.0 is not vulnerable at
the theoretical level, some of the misimplementations can
cause concerns. Chen et al. [152] identified that the OAuth
protocol in 59.7% of the mobile applications was incor-
rectly implemented. Sun and Beznosov [153] analyzed the
OAuth single sign-on (SSO) system for 96 relying party
vendors and uncovered several critical vulnerabilities that
allow an attacker to access victim’s personal information
without authorization.

d) Overprivilege attacks: Besides the problem of the
OAuth protocol, researchers also identified overprivileged
issues in typical authorization systems. Fernandes
et al. [5] reported that the Samsung smart home platform,
SmartThings, has severe overprivileged issues, allowing
an attacker to develop malicious SmartApps that can
launch overprivileged attacks such as changing door
pin and falsely turning on a fire alarm. Jia et al. [154]

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1621

Xiao et al.: Edge Computing Security: State of the Art and Challenges

developed a graph-based algorithm to automatically
excavate the overprivileged weaknesses in a smart home
system. Based on these weaknesses, they created several
attacks to control victim’s smart home devices without
authorization. Felt et al. [155] found that about one-third
of the Android apps have the overprivileged problem.
Ho et al. [156] conducted security analysis on the current
off-the-shelf smart lock products and found that all of
them are vulnerable to at least one of the following
uncovered attacks: allowing an attacker to evade a device
revocation mechanism or a smart lock app/protocol to
undesirably unlock a user’s door.

2) Current Defense Solutions: The root cause of dic-
tionary attacks is the adoption of weak credentials in
authentication protocols, while the root cause of the
other three types of attacks is the protocol-level design
flaws or the implementation-level flaws. Accordingly,
the defenses against dictionary attacks mainly focus on
adding a stronger authentication layer or hardening the
password verification processes, and the defenses against
the other three types of attacks mainly adopt the phi-
losophy of patching/strengthening the current proto-
cols or conducting code-level analyses. Authentication is
the security entry point of a system. Most attackers take
down edge devices or edge servers beginning with com-
promising the authentication systems at the first place.
Therefore, securing authentication in an edge computing
system is critical.

a) Defending against dictionary attacks: In Section III-
D1a, we demonstrate a fair amount of work exploiting
dictionary attacks to break possible weak credentials in
edge computing. Intuitively, one may perceive that simply
mandating complicated passwords for authentication may
resolve the problem; however, this may not be feasible for
at least three reasons. First, due to the limited computation
power issue in edge infrastructures, adopting complicated
passwords may increase the computation overheads. Sec-
ond, unlike the traditional Internet applications such as
social networks, edge computing infrastructures have way
more subscribers, i.e., edge devices. Using complicated
passwords increases the storage burden. Third, storing
credentials in IoT devices is not secure since they are
fragile on security and are more vulnerable to password
leakage. Therefore, researchers have been seeking alterna-
tives to defend against dictionary attacks. Many existing
studies considered raising the cost of dictionary attacks
by adding one more layer of authentication, which is
known as two-factor authentication. Pinkas and Sander
proposed the first two-factor authentication technique
by adding a challenge that can be easily answered by
human beings but infeasible to be answered by automated
programs from dictionary attacks [157]. The most well-
known two-factor authentication mechanisms use vari-
ous features as the second authenticator, e.g., finger-
prints [158], face authentication [159], authentication
code via SMS messages [160], graphic texts [161], or even

ambient sound [162]. However, all these two-factor
authentication schemes more or less require human inter-
actions such as inputting authentication codes, which are
hardly applicable to the edge computing systems where
automated edge devices operate on. On the other hand,
unfortunately, all the two-factor authentication techniques
mentioned earlier were proven to be insecure practically.
Mulliner et al. [163] and Wang et al. [164], respectively,
showed that SMS-based authentication is vulnerable to
mobile Trojan and brute-force attacks. Joshi et al [165]
proposed multiple attack vectors targeting the current
fingerprint authentication systems. Zhou et al. [166]
showed that by illuminating an attacker using infrared,
the attacker can impersonate a target victim against a
face recognition system with over 70% of success rate.
Wang et al. [167] demonstrated that using a convolutional
neural network (CNN) can defeat graphic-text authenti-
cation. Shrestha et al. [168] pointed out that employing
ambient sound as an authentication factor can be easily
cracked with almost zero effort. These results indicate
that exploring human-less more secure two-factor authen-
tication mechanisms is desperately needed. There also
exists research that focuses on inhibiting dictionary attacks
by revising the current authentication protocols. Boneh
et al. [169] proposed using the Balloon password-hashing
algorithm based on memory-hard functions to raise the
cost of offline-dictionary attacks. Nevertheless, this defense
mechanism significantly sacrifices authentication effi-
ciency. Jarecki et al. [170] introduced a device-enhanced
password-authenticated key exchange (DEPAKE) proto-
col to mitigate the online and offline dictionary attacks
without the need of public key infrastructure (PKI) set-
tings. This scheme can effectively inhibit offline dictionary
attacks but has a limited impact on online dictionary
attacks.

b) Hardening authentication protocols: To defend
against attacks exploiting the vulnerabilities in authen-
tication protocols, researchers chose to either enhance
the security of the communication protocols or secure
the cryptographic implementations. Liu [171] proposed
to use active jammer and wireless packet injection to
inhibit the brute-force attack for decrypting the WPA traf-
fics. Noh et al. [172] revised the original key exchange
process in the WPA/WPA2 protocol by adopting the public
key cryptography which can reduce the threat of sev-
eral vulnerabilities including the evil twin. Nevertheless,
these solutions cannot prevent the key reuse problem in
WPA/WPA2. On the other hand, to secure the crypto-
graphic implementations, Sivakorn et al. [173] proposed a
blackbox verification mechanism to prevent possible host-
name impersonations; Bhargavan et al. [174] leveraged
symbolic execution to detect whether a TLS 1.3 implemen-
tation is vulnerable to various well-known attacks existing
in TLS 1.2 such as Logjam or the Triple Handshake. These
mechanisms are offline ones that cannot achieve real-time
protection but can minimize the attack surfaces against the
TLS implementations.

1622 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

Xiao et al.: Edge Computing Security: State of the Art and Challenges

To harden the 4G and 5G network protocols,
Tu et al. [146] proposed a three-step solution by:
1) adding a slim layer for signaling transferring;
2) decoupling domains in the 4G radio resource
control (RRC) layer; and 3) coordinating similar functions
at different systems. By doing so, one can ensure that
a legitimate user would not be denied services in a 4G
network. Duan and Wang [175] proposed a theoretical
protocol for fast authentication in 5G heterogeneous
networks (HetNets) using SDN. Zhao et al [176]
developed a lightweight scalable secure cross-layer
authentication architecture for 5G by leveraging RF
fingerprints as a piece of evidence to defend against
possible impersonation-related attacks. Ni et al. [177]
proposed a cryptographically secure service-oriented
authentication protocol for 5G-Enabled IoT using network
slicing. Yet, even though these methods can strengthen the
4G and 5G network protocols from different perspectives,
securing them practically at the implementation level
might still be a long-haul journey.

c) Hardening authorization protocols: Authorization
in an edge computing infrastructure is equally important
compared to the authentication system. Without a
properly designed authorization mechanism, an attacker
can exploit the weaknesses in the authorization system
as well. As mentioned earlier, many implementations of
the OAuth protocol are problematic, even though OAuth
2.0 is theoretically secure. Yang et al. [178] proposed a
static code analysis method to check and fix the OAuth
implementation vulnerabilities based on three OAuth
service providers: Google, Facebook, and Sina. Shehab
and Mohsen [179] developed an application-based
OAuth Manager framework to prevent the misuses of
the current OAuth APIs. Cirani et al. [180] implemented
an OAuth protocol specifically targeting HTTP/CoAP
services to provide authorization for IoT-based
applications.

d) Defending against overprivileged attacks: Overpriv-
ileged issues mainly exist in IoT systems and mobile
devices. Tian et al. [181] proposed an NLP-based method
to check the inconsistencies between an IoT App’s
implementation and its description in order to identify
overprivileged exploits. Celik et al. [182] developed a
taint-based analysis for tracking and preventing the sen-
sitive information leakage due to overprivileged designs
of IoT apps. Bastys et al. [183] proposed an information
tracking technique to monitor possible information leak
from overprivileged apps. Celik et al. [184] successfully
identified 20 flawed apps among the 35 SmartApps on the
SmartThings platform using IoTGuard, a model-checking-
based solution, to automatically identify overprivileged
apps. These mechanisms need the authorizer to be able
to access the source code of an IoT app, which may not
be available most of the time. Jia et al. [185] proposed a
mechanism to prevent overprivileged attacks by comparing
the “contexts” of behaviors with the ones in the past
to identify possible suspicious inconsistencies. Similarly,

Schuster et al. [185] developed a technique called envi-
ronmental situation oracles (ESOs) to enforce IoT access
control through situational environments [186], which
are almost identical to the concepts of “contexts.” This
technique requires not only a fine-grained definition on
contexts but also a long time for the legitimate contexts to
be built, making the mechanism infeasible to be deployed
in practice.

Strengthening the current permission models adopted
by mobile OSes is a common approach to defending
against the overprivileged attacks targeting smartphone
devices. Wang and Chen [187] developed a semantic
permission generator for Android, which interprets an
app’s description and grants the permissions needed by
the app based on the interpretation. This semantic-based
method assumes that the app developer is honest when
writing the app’s description, ignoring the possibility that
the developer can be a malicious attacker as well. To over-
come this issue, Fernandes et al. [188] developed a system-
level sandbox to place the codes that are in charge of
requesting sensitive permissions. These codes would then
be isolated for further analysis to ensure that no over-
privileged permissions can be granted mistakenly. Yet, this
method requires not only the user to root the device for
installing the sandbox but also a fair amount of manual
efforts. To mitigate these limitations, Sikder et al. [189]
proposed 6thSense, a mechanism to inhibit the permis-
sion abuse toward Android sensors from overprivileged
apps by utilizing three different machine learning mod-
els, i.e., Markov chain, Naive Bayes, and logistic model
tree (LMT). Aafer et al. [190] proposed a technique to
effectively locate the overprivileged components of an
Android app based on a graph abstraction algorithm and
the logical reasoning algorithm.

3) Discussion: Obviously, the root cause of dictionary
attacks is the adoption of weak credentials, while the
root cause of the other three attacks is the protocol-
level design flaws or the implementation-level flaws.
Launching dictionary attacks in edge computing systems
is relatively easy, as an attacker can build a credential
dictionary with little or a reasonable amount of effort.
Nevertheless, defending against dictionary attacks might
be hard, as attackers may have their own channels to
build their own dictionaries that may contain abundant
information to crack the authentication system. More-
over, two-factor defense mechanisms were proven to be
ineffective as all were broken practically. On the other
hand, attacks exploiting the weaknesses of authentication
and authorization protocols need more effort to conduct,
as the attackers have to identify the protocol vulnera-
bilities and compromise the edge servers. Nevertheless,
cracking an authentication/authorization protocol implies
that the attackers can break into the system and then
launch various other attacks. Overprivileged attacks are
common in IoT and mobile devices, and many real-world
overprivileged apps have been identified [155], [181].

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1623

Xiao et al.: Edge Computing Security: State of the Art and Challenges

Yet, the corresponding defenses are generally ad hoc and
ineffective.

E. Comparison Study on Security Issues in Edge
Computing and Cloud Computing

Having discussed the attacks and defense solutions for
edge computing, we now compare the security issues
between cloud computing and edge computing. Cloud
computing is a practice of utilizing centralized remote
servers and data centers in the Internet for data stor-
age, processing, and analysis. The end devices in a cloud
computing system are typically fully fledged computers
that connect to the cloud servers mainly through the
wired Internet. Note that some “so-called” cloud systems,
such as SmartThings whose end units are IoT devices,
usually delegate most of the services to local hubs that
handle the IoT services at different regions; hence, they
are not strictly cloud computing platforms [5]—such sys-
tems actually follow the edge computing paradigm. Edge
computing, on the other hand, adopts a decentralized
hierarchical design that may involve low-profile comput-
ers and devices as edge servers [191]. The end units in
an edge computing system are typically IoT and mobile
devices that are much more resource-constrained com-
pared with fully fledged computers, and they connect to
the edge servers mainly through wireless protocols such
as Wi-Fi and 4G/5G. Due to this architectural difference,
edge computing can provide location-aware, bandwidth-
sufficient, real-time, privacy-enhanced, and low-cost ser-
vices compared to cloud computing, as we mentioned
in Section I. Therefore, even though edge computing
and cloud computing are similar with respect to the
offered services and functionalities, the scopes of attack
measures are largely different. We summarize the major
differences between cloud computing and edge comput-
ing with respect to security attacks in the following
paragraphs.

1) DDoS Attacks: In flooding-based DDoS attacks,
attackers tend to exploit the vulnerabilities of network
protocols of the target system. Clouding computing typ-
ically employs heavyweight network protocols such as
HTTP/HTTPS, FTP, and SMTP as cloud servers have more
computational resources for strong security protocols,
while edge computing typically adopts lightweight net-
work protocols such as CoAP, MQTT, and UDP due to the
resource constraints of edge servers. Such a difference
makes the attacking effort significantly larger in a cloud
computing system. On the other hand, since compromising
fully fledged computers are becoming more and more
difficult as the firewalls running on them are getting more
and more powerful, DDoS attacks may no longer be that
effective in cloud computing. However, as most of the
edge devices are low-end computing units with limited
computational power, it is easier for an attacker to first
compromise a number of edge devices and then exploit
them to launch flooding-based DDoS attacks (such as

Mirai [7]). Hence, flooding-based DDoS is still practically
effective in edge computing systems. Nevertheless, both
edge computing and cloud computing suffer from zero-day
DDoS attacks as code-level flaws can happen regardless of
the difference of the computing platforms. According to
an official report published by CVE, in the year of 2018,
cloud computing infrastructures suffer from more zero-day
vulnerabilities than edge computing infrastructures do,
indicating that cloud computing may be more vulnerable
to zero-day DDoS attacks [192].

2) Side-Channel Attacks: Attackers have a wider attack
surface to launch side-channel attacks in edge computing
as edge devices are typically connected wirelessly and
they are more approachable to attackers. More specifically,
attackers in cloud computing often choose to extract valu-
able information through eavesdropping [193] or care-
fully crafted queries in side-channel attacks as the cloud
devices are generally protected by relatively powerful
firewalls [194]. Therefore, cloud computing is typically
vulnerable to the side-channel attacks that exploit packet-
based communication channels, and attacks exploiting
wave signals are generally unfeasible in cloud computing
since wired connections instead of the wireless ones are
adopted. In edge computing, attackers have more side
channels to manipulate. They can easily access diverse
side-channel information by either compromising or stay-
ing close to an edge device, launching various device-side
side-channel attacks such as those exploiting the wire-
less communication channels, power consumption, and
smartphone-based channels.

3) Malware Injection Attacks: Generally, in malware
injection attacks targeting cloud computing, attackers tend
to first launch server-side injections to take down a cloud
server and then infect the client devices via the compro-
mised cloud server, while in edge computing, attackers
tend to first launch device-side injections to take down
a number of edge devices and then abuse them to take
down an edge server [193]. The reason behind such a
phenomenon lies in that client devices in cloud computing
are usually not interconnected, and thus, taking down a
few of them may have limited influential impact; on the
other hand, edge devices in edge computing are typically
interconnected, and thus, taking down a few can have a
much more significant impact if the attacker spreads its
attacks among these interconnected devices. In addition,
since compromising a cloud device is much more difficult
than compromising an edge device, malware injection
attacks are more specific and popular in edge computing
systems. This is in accord with the practice in which the
majority of device-side injection attacks target IoT and
mobile devices.

4) Authentication and Authorization Attacks: While
both edge computing and cloud computing are vul-
nerable to dictionary attacks, edge devices have a
higher chance of employing weak credentials than those

1624 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

Xiao et al.: Edge Computing Security: State of the Art and Challenges

in cloud computing [195], making dictionary attacks
more popular and practical in edge computing. Also,
edge computing is vulnerable to attacks exploiting
weaknesses in wireless-based authentication protocols
such as WPA/WPA2, Bluetooth, and 4G/5G, while cloud
computing is vulnerable to attacks exploiting weaknesses
in those such as SSL/TLS that can be applied to wired pro-
tocols. On the other hand, even though both edge comput-
ing and cloud computing are vulnerable to attacks exploit-
ing weaknesses in authorization protocols, edge comput-
ing is more susceptible compared with cloud computing
because cloud computing has relatively simple authoriza-
tion scenarios due to the centralized design which involves
less number of communication parties. Nevertheless, edge
servers are deployed in a decentralized way, involving
more communication parties and complicating the whole
authorization process. In addition, overprivileged attacks
mainly occur in IoT and mobile devices. They are typically
specific to edge computing systems since such systems have
much more complex access control scenarios than general-
purpose computing systems do.

IV. R O O T C A U S E S , G R A N D
C H A L L E N G E S , A N D
F U T U R E R E S E A R C H

In this section, we first summarize the root causes of secu-
rity threats and outline the remaining grand challenges;
we then propose a few potential future research directions
toward strengthening the edge computing security.

A. Root Causes of Security Issues

As mentioned in Section III, current edge computing
infrastructures suffer from serious cyberattacks, which may
result in huge financial loss. The leading root causes of
these security threats lie in the unavoidable flaws or vul-
nerabilities in protocol and code designs as well as their
implementations, the concealed correlations between the
public and the protected private/secure data, and the lack
of fine-grained access control, which are elaborated as
follows.

1) Protocol-Level Design Flaws: Protocol is the funda-
mental support for basic functions such as communica-
tions and data processing in edge computing from the
theoretical perspective. Therefore, designing secure pro-
tocols is critical to maintain a healthy edge computing
ecology. Unfortunately, as shown in Section III, many of
the current protocols adopted by edge computing systems
have design flaws because their designers mainly focus on
utility and user experience, treating security as something
unimportant if not unnecessary. By exploiting the design
flaws, an attacker can achieve attack goals ranging from
simply shutting down a normal service (e.g., DDoS) to
fully controlling an edge device or server (e.g., malware
injection attacks).

2) Implementation-Level Flaws: Implementation is the
process of practically realizing the edge computing
functionalities. Even if a protocol may be proven secure
mathematically, it does not necessarily mean that its imple-
mentation is secure. Logic flaws in an implementation can
neutralize the security strength of a protocol which has
been proven strictly secure. There are two main reasons
leading to the implementation-level flaws: 1) develop-
ers may misunderstand the foundations of the protocol
and 2) migrating a protocol from other platforms to the
edge computing platform may cause adaptivity inconsis-
tencies. Implementation flaws can be equally serious as the
protocol-level design flaws. By exploiting implementation
flaws, an attacker can bypass the security features provided
by the protocol (e.g., authentication attacks).

3) Code-Level Vulnerabilities: Code is the basic unit of
a program, which defines the exact execution flow a
processor should follow. As mentioned in Section III, many
attacks are, in fact, the results of the code-level vulner-
abilities. Note that implementation-level flaws and code-
level vulnerabilities are two different concepts, with the
former mainly referring to the logic flaws in a practical
realization and the latter mainly referring to the system
bugs that can cause memory failures/corruptions. Such
vulnerabilities include stack/heap overflow, use-after-free
dangling pointer, format string, and so on [196]. The
presence of such vulnerabilities lies in the thoughtless
programming process when coding for millions of lines of
codes. By exploiting these vulnerabilities, an attacker can
achieve attack goals ranging from simply shutting down a
normal service to fully controlling an edge device or server
(e.g., malware injection attacks).

4) Data Correlations: In an edge computing system, tons
of data would be generated from the edge infrastructures
constantly, with some of them being sensitive and placed
under strict protections, while others are less sensitive and
exposed to the public without protection. However, there
may exist hidden correlations between the sensitive data
and the insensitive data, which may not be straightfor-
ward. Nevertheless, by exploiting these correlations and
leveraging various attack models, an attacker can infer the
sensitive data (e.g., side-channel attacks) or even tamper
them (e.g., bad-data injection attacks) based on the insen-
sitive data.

5) Lacking Fine-Grained Access Controls: Access control
is one of the most important security measures, through
which an entity is permitted to access only the least
resources it needs. Such a measure has a good repu-
tation in protecting traditional general-purpose comput-
ing systems for a long time, but it cannot be directly
adapted to edge computing due to the more complex
and fine-grained permission scenarios. Many current edge
computing systems implement only coarse-grained access
control mechanisms or even do not employ any access
control mechanism. Lacking a fine-grained access control

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1625

Xiao et al.: Edge Computing Security: State of the Art and Challenges

specifically designed for edge computing applications may
significantly lower the bar of launching an attack (e.g.,
authorization attacks and man-in-the-middle attacks).

B. Status Quo and Grand Challenges

After summarizing the major root causes of secu-
rity threats, we then present the status quo and grand
challenges in securing an edge computing system that a
researcher and a practitioner need to be aware of.

1) Lacking Consideration of Security-by-Design: The pri-
mary goal of edge computing is to provide a more efficient
and lightweight computing platform for emerging appli-
cations such as IoT and smart cities. Therefore, designers
tend to focus more on performance rather than security
when designing an application-specific edge computing
architecture. Such an insufficient consideration of security-
by-design directly exposes the edge computing infrastruc-
tures to broader attack surfaces.

2) Nonmigratability of Security Frameworks: The secu-
rity frameworks for traditional general-purpose comput-
ing systems have been extensively studied for a fairly
long time and they are regarded as having the ability to
provide strong security guarantees in defending against
various attacks. Yet, these security frameworks cannot
be directly migrated to edge computing systems due to
several unresolvable gaps such as contrasting computa-
tion power, diverse OSes and software, different network
topologies, and disparate protocols. Moreover, the security
frameworks designed for one edge computing application
may not be directly migratable to another scenario due to
multiple reasons such as heterogeneity of edge devices and
communication protocols.

3) Fragmented and Coarse-Grained Access Control: Cur-
rent access control models for edge computing are frag-
mented and coarse-grained. They are fragmented because
different edge computing scenarios may adopt different
access control models that may be designed in totally
different manners with respect to permission segregat-
ing, granting, and accessing. This situation inhibits the
development of a unified and manageable access control
framework for various edge computing systems. Current
access control models are also coarse-grained as fine-
grained permissions that are specific to edge computing
are complex and underexplored.

4) Isolated and Passive Defense Mechanisms: Current
defense mechanisms for edge computing are isolated and
passive. They are isolated because each defense mecha-
nism shown in Section III may only be effective in coun-
tering one or a few attacks but ineffective for the majority
of other attacks. They are passive because most of the
defense solutions are executed based on preset rules and
do not have the ability to conduct autonomous and active
defense actions. These two weaknesses result in a rigid
and fixed defense surface, making most current defense
solutions adopt a philosophy of “detect then patch,” which

may only be effective after the occurrence of the attacks
being detected.

C. Future Research Directions
Based on the summaries on root causes, status quo,

and grand challenges of securing edge computing systems,
one can conclude that research on edge computing secu-
rity is far from satisfied and future research directions
lie in overcoming the grand challenges as well as the
existing vulnerabilities and weaknesses. On the one hand,
stronger defense solutions, especially preventive mecha-
nisms, to mitigate individual attacks are definitely needed;
on the other hand, new architectures that can incorporate
security mechanisms to protect the whole system in a more
unified way are worthy of exploration. Most importantly,
the philosophy of security-by-design should be broadly
adopted and always retrospected. In the following, we out-
line a basic idea that intends to secure edge computing
systems with a unified framework and present the future
directions along this line of research. The framework
contains three layers: an outer fine-grained access con-
trol layer, a middle-security function layer, and an inner
hardware-isolated OS layer.

The outer layer focuses on fine-grained access control,
which serves as a “door” to block the penetrations from
outside attackers. We perceive a design to employ a per-
mission model that can at least incorporate the information
of the following five components: who, when, where,
what, and how. If properly designed and strictly enforced,
such a fine-grained access control mechanism may have
the potential to mitigate attacks raised by protocol-level
design flaws, implementation-level flaws, and weak access
controls, which may result in flooding-based DDoS, attacks
exploiting controllable side channels, malware injection
attacks, and authentication and authorization attacks.

The middle layer intends to implement full-fledged
strong security mechanisms. We perceive to adopt SDN
and network function virtualization (NFV) at the edge
server level, in which SDN is adopted to filter malicious
traffics on a per-packet basis, while the NFV adopts more
advanced algorithms such as deep learning to detect
malicious behaviors in an autonomous and self-evolving
manner. The SDN and NFV empowered edge servers may
have the potential to inhibit packet-based attacks such
as DDoS, attacks raised from correlated data (requiring
learning-based detection), and weak access controls (that
may result in attacks such as malware injections).

The inner layer targets the unavoidable code-level
vulnerabilities. We perceive that designing a hardware-
isolation empowered OS at the edge device layer should
be a viable approach. Such an OS isolates the OS ker-
nel and all the sensitive device-level data into different
secure spaces using hardware-isolation so that they can
be immune to software bugs. This design may have the
potential to mitigate security issues caused by code-level
vulnerabilities such as zero-day DDoS attacks and zero-day
malware injection attacks.

1626 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

Xiao et al.: Edge Computing Security: State of the Art and Challenges

The major purpose of presenting the three-layer security
framework mentioned earlier is to “throwing bricks and
getting jades.” The research and development on edge
computing security are still in their infancy stages. Driven
by emerging applications as well as advances in modern
cryptography, innovative designs and implementations to
secure edge computing systems will thrive in the foresee-
able future.

V. C O N C L U S I O N

In this paper, we provided a comprehensive survey on
the most influential and basic attacks as well as the

corresponding defense mechanisms that can be practically
applied in edge computing systems. We also analyzed the
root causes of the attacks, summarized the status quo and
grand challenges in securing edge computing systems, and
proposed our future research.

A c k n o w l e d g m e n t s

This work was completed when Y. Xiao, Y. Jia, C. Liu,
and X. Cheng visited the School of Computer Science and
Technology, Shandong University, as Visiting Scholars.

R E F E R E N C E S
[1] (2017). Edge Computing Market Size Forecast in

the United States From 2017 to 2025, by Segment
(in Million U.S. Dollars). [Online]. Available:
https://www.statista.com/statistics/909308/united-
states-edge-computing-market-size-segment/

[2] (2019). Number of IoT Devices in Use Worldwide
From 2009 to 2020 (in Billion Units). [Online].
Available: https://www-statista-com.proxygw.
wrlc.org/statistics/764026/number-of-iot-devices-
in-use-worldwide/

[3] D. R. Butenhof, Programming With POSIX threads.
Reading, MA, USA: Addison-Wesley, 1997.

[4] B. Gallmeister, POSIX.4 Programmers Guide:
Programming for the Real World. Sebastopol, CA,
USA: O’Reilly Media, Inc., 1995.

[5] E. Fernandes, J. Jung, and A. Prakash, “Security
analysis of emerging smart home applications,” in
Proc. IEEE Symp. Secur. Privacy (SP), May 2016,
pp. 636–654.

[6] M. Antonakakis et al., “Understanding the Mirai
botnet,” in Proc. 26th USENIX Secur. Symp.
Vancouver, BC, Canada: USENIX Association,
2017, pp. 1093–1110.

[7] (2017). Financial Impact of Mirai DDoS Attack on
Dyn Revealed in New Data. [Online]. Available:
https://www.corero.com/blog/797-financial-
impact-of-mirai-ddos-attack-on-dyn-revealed-in-
new-data.html

[8] (2018). Botnet: No Jailtime for Mirai-Creators.
[Online]. Available: https://www.gdatasoftware.
com/blog/2018/09/31124-botnet-no-jailtime-for-
mirai-creators

[9] (2017). Most Commonly Encountered Types of
Malware Used in Industrial Cyber Attacks
Worldwide in 2017. [Online]. Available:
https://www.statista.com/statistics/271037/
distribution-of-most-common-malware-file-types/

[10] (2019). 2017 was ’Worst Year Ever’ in Data
Breaches and Cyberattacks, Thanks to Ransomware.
[Online]. Available: https://www.techrepublic.
com/article/2017-was-worst-year-ever-in-data-
breaches-and-cyberattacks-thanks-to-
ransomware/

[11] M. A. Mazidi, R. D. McKinlay, D. Causey, and
P. Microcontroller, Embedded Systems. Hoboken,
NJ, USA: Pearson, 2008.

[12] R. Barry, FreeRTOS Reference Manual: API
Functions and Configuration Options. Bristol, U.K.:
Real Time Engineers Limited, 2009.

[13] B. Xiong, “RT-thread programming guide release
0.3.3,” Tech. Rep.

[14] M. Mazzillo et al., “Silicon photomultiplier
technology at STMicroelectronics,” IEEE Trans.
Nucl. Sci., vol. 56, no. 4, pp. 2434–2442,
Aug. 2009.

[15] L. Gwennap, “Qualcomm tips Cortex-a57 plans:
Snapdragon 810 combines eight 64-bit CPUs, LTE
baseband,” Microprocessor Rep., Linley Group,
Mountain View, CA, USA, Tech. Rep., 2014.

[16] Y. Yu, A. Miyaji, M. H. Au, and W. Susilo, “Cloud
computing security and privacy: Standards and
regulations,” Comput. Standards Interfaces,
vol. 54, pp. 1–2, Nov. 2017.

[17] S. Basu et al., “Cloud computing security
challenges & solutions—A survey,” in Proc. IEEE
8th Annu. Comput. Commun. Workshop
Conf. (CCWC), Jan. 2018, pp. 347–356.

[18] C. Kolias, G. Kambourakis, A. Stavrou, and
J. Voas, “DDoS in the IoT: Mirai and other
Botnets,” Computer, vol. 50, no. 7, pp. 80–84,
2017.

[19] L. Xiaoming, V. Sejdini, and H. Chowdhury,
“Denial of service (DoS) attack with UDP flood,”
School Comput. Sci., Univ. Windsor, Windsor, ON,
Canada, 2010.

[20] J. Udhayan and R. Anitha, “Demystifying and rate
limiting ICMP hosted DoS/DDoS flooding attacks
with attack productivity analysis,” in Proc. IEEE
Int. Adv. Comput. Conf., Mar. 2009, pp. 558–564.

[21] M. Bogdanoski, T. Shuminoski, and A. Risteski,
“Analysis of the SYN flood DoS attack,” Int. J.
Comput. Netw. Inf. Secur., vol. 5, pp. 1–11,
Jun. 2013.

[22] K. Elleithy, D. Blagovic, W. Cheng, and P. Sideleau,
“Denial of service attack techniques: Analysis,
implementation and comparison,” J. Syst.,
Inform., vol. 3, pp. 66–71, Jan. 2006.

[23] A. Dhanapal and P. Nithyanandam, “An effective
mechanism to regenerate HTTP flooding DDoS
attack using real time data set,” in Proc. Int. Conf.
Intell. Comput., Instrum. Control
Technol. (ICICICT), 2017, pp. 570–575.

[24] F. Wiens and A. Zitzmann, “Predation on a wild
slow Loris (Nycticebus coucang) by a reticulated
Python (Python reticulatus),” Folia Primatol.,
vol. 70, no. 6, pp. 362–364, 1999.

[25] (2010). CVE-2010-3972 Detail. [Online].
Available: https://nvd.nist.gov/vuln/detail/
CVE-2010-3972

[26] Y.-H. Hu, H. Choi, and H.-A. Choi, “Packet filtering
to defend flooding-based DDoS attacks [Internet
denial-of-service attacks],” in Proc. IEEE/Sarnoff
Symp. Adv. Wired Wireless Commun., Apr. 2004,
pp. 39–42.

[27] J. Zhang, Z. Qin, L. Ou, P. Jiang, J. Liu, and
A. X. Liu, “An advanced entropy-based DDOS
detection scheme,” in Proc. Int. Conf. Inf. Netw.
Autom. (ICINA), vol. 2, Oct. 2010,
pp. V2-67–V2-71.

[28] A. Yaar, A. Perrig, and D. Song, “Pi: A path
identification mechanism to defend against DDoS
attacks,” in Proc. Security Privacy, May 2003,
pp. 93–107.

[29] H. Luo, Y. Lin, H. Zhang, and M. Zukerman,
“Preventing DDoS attacks by identifier/locator
separation,” IEEE Netw., vol. 27, no. 6, pp. 60–65,
Nov./Dec. 2013.

[30] W. J. Buchanan, F. Flandrin, R. Macfarlane, and
J. Graves, “A methodology to evaluate rate-based
intrusion prevention system against distributed
denial-of-service (DDoS),” Cyberforensics, 2011.

[31] R. Xu, W.-I. Ma, and W. Zheng, “Defending against
UDP flooding by negative selection algorithm
based on eigenvalue sets,” in Proc. 5th Int. Conf.
Inf. Assurance Secur., vol. 2, Aug. 2009,
pp. 342–345.

[32] J. Zhang, Z. Qin, L. Ou, P. Jiang, J. Liu, and
A. X. Liu, “An advanced entropy-based DDOS
detection scheme,” in Proc. Int. Conf. Inf., Netw.
Autom. (ICINA), vol. 2, Oct. 2010,
pp. V2-67–V2-71.

[33] S. Yu, W. Zhou, R. Doss, and W. Jia, “Traceback of
DDoS attacks using entropy variations,” IEEE
Trans. Parallel Distrib. Syst., vol. 22, no. 3,
pp. 412–425, Mar. 2011.

[34] K. Kumar, R. C. Joshi, and K. Singh, “A distributed
approach using entropy to detect DDoS attacks in
ISP domain,” in Proc. Int. Conf. Signal Process.,
Commun. Netw., Feb. 2007, pp. 331–337.

[35] C. Livadas, R. Walsh, D. Lapsley, and W. T. Strayer,
“Usilng machine learning technliques to identify
botnet traffic,” in Proc. 31st IEEE Conf. Local
Comput. Netw., Nov. 2006, pp. 967–974.

[36] M. Zolotukhin, T. Hämäläinen, T. Kokkonen, and
J. Siltanen, “Increasing Web service availability by
detecting application-layer DDoS attacks in
encrypted traffic,” in Proc. 23rd Int. Conf.
Telecommun. (ICT), May 2016, pp. 1–6.

[37] Q. Niyaz, W. Sun, and A. Y. Javaid, “A deep
learning based DDoS detection system in
software-defined networking (SDN),” 2016,
arXiv:1611.07400. [Online]. Available:
https://arxiv.org/abs/1611.07400

[38] F. Qin, S. Lu, and Y. Zhou, “SafeMem: Exploiting
ECC-memory for detecting memory leaks and
memory corruption during production runs,” in
Proc. 11th Int. Symp. High-Perform. Comput.
Archit., Feb. 2005, pp. 291–302.

[39] S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, and
R. K. Iyer, “Defeating memory corruption attacks
via pointer taintedness detection,” in Proc. Int.
Conf. Dependable Syst. Netw. (DSN), Jun. 2005,
pp. 378–387.

[40] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel,
and G. Vigna, “Firmalice—Automatic detection of
authentication bypass vulnerabilities in binary
firmware,” in Proc. NDSS, 2015, pp. 1–15.

[41] S. V. Gupta and P. Shenoy, “System and methods
for run time detection and correction of memory
corruption,” U.S. Patent 8 510 596, Aug. 13, 2013.

[42] M. Muench, J. Stijohann, F. Kargl, A. Francillon,
and D. Balzarotti, “What you corrupt is not what
you crash: Challenges in fuzzing embedded
devices,” in Proc. Netw. Distrib. Syst. Secur. Symp.
(NDSS), San Diego, CA, USA, Feb. 2018, pp. 1–15.

[43] Z. L. Chua, S. Shen, P. Saxena, and Z. Liang,
“Neural nets can learn function type signatures
from binaries,” in Proc. 26th USENIX Secur. Symp.
(USENIX Security). Vancouver, BC, Canada:
USENIX Association, 2017, pp. 99–116. [Online].
Available: https://www.usenix.org/conference/
usenixsecurity17/technical-
sessions/presentation/chua

[44] W. Song, H. Yin, C. Liu, and D. Song, “DeepMem:
Learning graph neural network models for fast
and robust memory forensic analysis,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur.
(CCS), New York, NY, USA, 2018, pp. 606–618.
[Online]. Available:

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1627

Xiao et al.: Edge Computing Security: State of the Art and Challenges

http://doi.acm.org/10.1145/3243734.3243813
[45] F. Zuo, X. Li, Z. Zhang, P. Young, L. Luo, and Q.

Zeng, “Neural machine translation inspired binary
code similarity comparison beyond function
pairs,” in Proc. NDSS, 2019, pp. 1–15.

[46] E. Ronen, C. O. Flynn, A. Shamir, and
A.-O. Weingarten, “IoT Goes nuclear: Creating a
ZigBee Chain reaction,” in Proc. IEEE Symp. Secur.
Privacy, May 2017, pp. 195–212.

[47] J. Chen et al., “IoTFuzzer: Discovering memory
corruptions in IoT through app-based fuzzing,” in
Proc. NDSS, 2018, pp. 1–15.

[48] T. Frassetto, P. Jauernig, C. Liebchen, and
A.-R. Sadeghi, “IMIX: In-process memory isolation
extension,” in Proc. 27th USENIX Secur.
Symp. (USENIX Security). Baltimore, MD, USA:
USENIX Association, 2018, pp. 83–97.

[49] S. Shirali-Shahreza and Y. Ganjali, “Protecting
home user devices with an SDN-based firewall,”
IEEE Trans. Consum. Electron., vol. 64, no. 1,
pp. 92–100, Feb. 2018.

[50] C. Dietz et al., “IoT-botnet detection and isolation
by access routers,” in Proc. 9th Int. Conf. Netw.
Future (NOF), Nov. 2018, pp. 88–95.

[51] H. Li, Y. He, L. Sun, X. Cheng, and J. Yu,
“Side-channel information leakage of encrypted
video stream in video surveillance systems,” in
Proc. 35th Annu. IEEE Int. Conf. Comput. Commun.
(INFOCOM), Apr. 2016, pp. 1–9.

[52] X. Ji, Y. Cheng, W. Xu, and X. Zhou, “User
presence inference via encrypted traffic of wireless
camera in smart homes,” Secur. Commun. Netw.,
vol. 2018, Sep. 2018, Art. no. 3980371.

[53] N. Apthorpe, D. Reisman, and N. Feamster, “A
smart home is no castle: Privacy vulnerabilities of
encrypted IoT traffic,” in Proc. NDSS, 2017,
pp. 1–6.

[54] W. Chen and Z. Qian, “Off-path TCP exploit: How
wireless routers can jeopardize your secrets,” in
Proc. 27th USENIX Secur. Symp. (USENIX Security).
Baltimore, MD, USA: USENIX Association, 2018,
pp. 1581–1598.

[55] M. Enev, S. Gupta, T. Kohno, and S. N. Patel,
“Televisions, video privacy, and powerline
electromagnetic interference,” in Proc. 18th ACM
Conf. Comput. Commun. Secur. (CCS), New York,
NY, USA, 2011, pp. 537–550. [Online]. Available:
http://doi.acm.org/10.1145/2046707.2046770

[56] J. Selvaraj, G. Y. Dayanıklı, N. P. Gaunkar, D. Ware,
R. M. Gerdes, and M. Mina, “Electromagnetic
induction attacks against embedded systems,” in
Proc. Asia Conf. Comput. Commun. Secur., 2018,
pp. 499–510.

[57] M. Li et al., “When CSI meets public WiFi:
Inferring your mobile phone password via WiFi
signals,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur. (CCS), New York, NY, USA, 2016,
pp. 1068–1079. [Online]. Available: http://doi.
acm.org/10.1145/2976749.2978397

[58] I. Martinovic, D. Davies, M. Frank, D. Perito,
T. Ros, and D. Song, “On the feasibility of
side-channel attacks with brain-computer
interfaces,” Presented as the 21st USENIX Secur.
Symp. (USENIX Security). Bellevue, WA, USA:
USENIX, 2012, pp. 143–158. [Online]. Available:
https://www.usenix.org/conference/
usenixsecurity12/technical-sessions/
presentation/martinovic

[59] Y. Xiao, Y. Jia, X. Cheng, J. Yu, Z. Liang, and
Z. Tian, “I can see your brain: Investigating
home-use electroencephalography system
security,” IEEE Internet Things J., to be published.

[60] G. W. Hart, “Nonintrusive appliance load
monitoring,” Proc. IEEE, vol. 80, no. 12,
pp. 1870–1891, Dec. 1992.

[61] L. Stankovic, V. Stankovic, J. Liao, and C. Wilson,
“Measuring the energy intensity of domestic
activities from smart meter data,” Appl. Energy,
vol. 183, pp. 1565–1580, Dec. 2016.

[62] S. S. Clark, H. Mustafa, B. Ransford, J. Sorber,
K. Fu, and W. Xu, “Current events: Identifying
webpages by tapping the electrical outlet,” in
Proc. Eur. Symp. Res. Comput. Secur. Springer,

2013, pp. 700–717.
[63] S. S. Clark et al., “WattsUpDoc: Power side

channels to nonintrusively discover untargeted
malware on embedded medical devices,”
presented at the USENIX Workshop Health Inf.
Technol. Washington, DC, USA: USENIX, 2013.
[Online]. Available: https://www.usenix.org/
conference/healthtech13/workshop-
program/presentation/Clark

[64] M. A. Islam, S. Ren, and A. Wierman, “Exploiting
a thermal side channel for power attacks in
multi-tenant data centers,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., 2017,
pp. 1079–1094.

[65] S. B. Örs, E. Oswald, and B. Preneel,
“Power-analysis attacks on an FPGA—First
experimental results,” in Proc. Int. Workshop
Cryptograph. Hardw. Embedded Syst.. Springer,
2003, pp. 35–50.

[66] H. Gamaarachchi and H. Ganegoda, “Power
analysis based side channel attack,” CoRR, 2018.
[Online]. Available:
http://arxiv.org/abs/1801.00932

[67] Q. A. Chen, Z. Qian, and Z. M. Mao, “Peeking into
your app without actually seeing It: UI state
inference and novel Android attacks,” in Proc.
23rd USENIX Secur. Symp. (USENIX Security).
San Diego, CA, USA: USENIX Association, 2014,
pp. 1037–1052. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/chen

[68] W. Diao, X. Liu, Z. Li, and K. Zhang, “No pardon
for the interruption: New inference attacks on
Android through interrupt timing analysis,” in
Proc. IEEE Symp. Secur. Privacy (SP), May 2016,
pp. 414–432.

[69] X. Zhou et al., “Identity, location, disease and
more: Inferring your secrets from Android public
resources,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur. (CCS), New York, NY, USA, 2013,
pp. 1017–1028. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516661

[70] Y. Xiao, Y. Jia, X. Cheng, S. Wang, J. Mao, and
Z. Liang, “I know your social network accounts:
A novel attack architecture for device-identity
association,” IEEE Trans. Depend. Sec. Comput., to
be published.

[71] D. Asonov and R. Agrawal, “Keyboard acoustic
emanations,” in Proc. IEEE Symp. Secur. Privacy,
May 2004, pp. 3–11.

[72] L. Zhuang, F. Zhou, and J. D. Tygar, “Keyboard
acoustic emanations revisited,” ACM Trans. Inf.
Syst. Secur., vol. 13, no. 1, p. 3, Oct. 2009. .
[Online]. Available:
http://doi.acm.org/10.1145/1609956.1609959

[73] M. Zhou et al., “PatternListener: Cracking Android
pattern lock using acoustic signals,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur. (CCS),
New York, NY, USA, 2018, pp. 1775–1787.
[Online]. Available:
http://doi.acm.org/10.1145/3243734.3243777

[74] L. Cai and H. Chen, “TouchLogger: Inferring
keystrokes on touch screen from smartphone
motion,” in Proc. 6th USENIX Conf. Hot Topics
Security (HotSec). Berkeley, CA, USA: USENIX
Association, 2011, p. 9. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2028040.
2028049

[75] Y. Chen, T. Li, R. Zhang, Y. Zhang, and
T. Hedgpeth, “EyeTell: Video-assisted touchscreen
keystroke inference from eye movements,” in
Proc. IEEE Symp. Secur. Privacy (SP), May 2018,
pp. 144–160.

[76] L. Sweeney, “K-anonymity: A model for protecting
privacy,” Int. J. Uncertainty, Fuzziness Knowl.-Based
Syst., vol. 10, no. 5, pp. 557–570, 2002.

[77] A. Machanavajjhala, J. Gehrke, D. Kifer, and
M. Venkitasubramaniam, “L-diversity: Privacy
beyond k-anonymity,” in Proc. 22nd Int. Conf. Data
Eng. (ICDE), Apr. 2006, p. 24.

[78] N. Li, T. Li, and S. Venkatasubramanian,
“T-closeness: Privacy beyond k-anonymity and
l-diversity,” in Proc. 23rd Int. Conf. Data Eng.

(ICDE), Apr. 2007, pp. 106–115.
[79] K. Rajendran, M. Jayabalan, and M. Ehsan,

“A study on k-anonymity, l-diversity, and
t-closeness techniques focusing medical data,” Int.
J. Comput. Sci. Netw. Secur., vol. 17, no. 12,
pp. 172–176, Dec. 2017.

[80] C. Dwork, “Differential privacy: A survey of
results,” in Proc. Int. Conf. Theory Appl. Models
Comput. Springer, 2008, pp. 1–19.

[81] F. McSherry and K. Talwar, “Mechanism design via
differential privacy,” in Proc. 48th Annu. IEEE
Symp. Found. Comput. Sci. (FOCS), Washington,
DC, USA, Oct. 2007, pp. 94–103.

[82] F. D. McSherry, “Privacy integrated queries:
An extensible platform for privacy-preserving data
analysis,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data (SIGMOD), New York, NY, USA, 2009,
pp. 19–30. [Online]. Available: http://doi.acm.
org/10.1145/1559845.1559850

[83] I. Roy, S. Setty, A. Kilzer, V. Shmatikov, and
E. Witchel, “Airavat: Security and privacy for
MapReduce,” in Proc. Symp. Netw. Syst. Design
Implement. (NSDI), Apr. 2010, pp. 1–16. [Online].
Available: https://www.microsoft.com/en-
us/research/publication/airavat-security-and-
privacy-for-mapreduce/

[84] Q. Xiao, M. K. Reiter, and Y. Zhang, “Mitigating
storage side channels using statistical privacy
mechanisms,” in Proc. 22nd ACM SIGSAC Conf.
Comput. Commun. Secur. (CCS), New York, NY,
USA, 2015, pp. 1582–1594. [Online]. Available:
http://doi.acm.org/10.1145/2810103.2813645

[85] A. Cheu, A. Smith, J. Ullman, D. Zeber, and
M. Zhilyaev, “Distributed differential privacy via
shuffling,” 2018, arXiv:1808.01394. [Online].
Available: https://arxiv.org/abs/1808.01394

[86] J. Zhao, J. Zhang, and H. V. Poor, “Dependent
differential privacy for correlated data,” in Proc.
IEEE Globecom Workshops (GC Wkshps),
Dec. 2017, pp. 1–7.

[87] D. Kifer and A. Machanavajjhala, “No free lunch
in data privacy,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data (SIGMOD), New York, NY, USA,
2011, pp. 193–204. [Online]. Available:
http://doi.acm.org/10.1145/1989323.1989345

[88] D. Molnar, M. Piotrowski, D. Schultz, and
D. Wagner, “The program counter security model:
Automatic detection and removal of control-flow
side channel attacks,” in Proc. Int. Conf. Inf. Secur.
Cryptol. Springer, 2005, pp. 156–168.

[89] T. Zhang, Y. Zhang, and R. B. Lee, “CloudRadar:
A real-time side-channel attack detection system
in clouds,” in Proc. Int. Symp. Res. Attacks,
Intrusions, Defenses. Springer, 2016, pp. 118–140.

[90] R. Strackx and F. Piessens, “The Heisenberg
defense: Proactively defending SGX enclaves
against page-table-based side-channel attacks,”
2017, arXiv:1712.08519. [Online]. Available:
https://arxiv.org/abs/1712.08519

[91] Y. Fu, E. Bauman, R. Quinonez, and Z. Lin,
“Sgx-Lapd: Thwarting controlled side channel
attacks via enclave verifiable page faults,” in Proc.
Int. Symp. Res. Attacks, Intrusions, Defenses.
Springer, 2017, pp. 357–380.

[92] J. Tang, A. Korolova, X. Bai, X. Wang, and
X. Wang, “Privacy loss in Apple’s implementation
of differential privacy on MacOS 10.12,” 2017,
arXiv:1709.02753. [Online]. Available:
https://arxiv.org/abs/1709.02753

[93] A. Haeberlen, B. C. Pierce, and A. Narayan,
“Differential privacy under fire,” in Proc. 20th
USENIX Conf. Secur. (SEC). Berkeley, CA, USA:
USENIX Association, 2011, p. 33. [Online].
Available: http://dl.acm.org/citation.cfm?id=
2028067.2028100

[94] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and
M. Peinado, “Inferring fine-grained control flow
inside SGX enclaves with branch shadowing,” in
Proc. 26th USENIX Secur. Symp. (USENIX Security).
Vancouver, BC, Canada: USENIX Association,
2017, pp. 557–574. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/lee-sangho

1628 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

Xiao et al.: Edge Computing Security: State of the Art and Challenges

[95] C. Anley, “Advanced SQL injection in SQL server
applications,” in Proc. CGISecurity, 2002,
pp. 1–25.

[96] (2016). Cisco Fog Director Cross-Site Scripting
Vulnerability. [Online]. Available:
https://tools.cisco.com/security/center/content/
CiscoSecurityAdvisory/cisco-sa-20160201-fd

[97] M. Martin and M. S. Lam, “Automatic generation
of XSS and SQL injection attacks with
goal-directed model checking,” in Proc. 17th Conf.
Secur. Symp. Berkeley, CA, USA: USENIX
Association, 2008, pp. 31–43.

[98] A. Costin, “IoT/embedded vs. security: Learn from
the past, apply to the present, prepare for the
future,” in Proc. FRUCT Conf., 2017.

[99] M. McIntosh and P. Austel, “XML signature
element wrapping attacks and countermeasures,”
in Proc. Workshop Secure Web Services, 2005,
pp. 20–27.

[100] A. Greenberg. (2017). The Reaper IoT Botnet Has
Already Infected a Million Networks. [Online].
Available: https://www.wired.com/story/reaper-
iot-botnet-infected-million-networks/(visited on
01/13/2018)

[101] A. Cui, M. Costello, and S. Stolfo, “When firmware
modifications attack: A case study of embedded
exploitation,” in Proc. NDSS, 2013, pp. 1–13.

[102] G. Hernandez and D. Buentello, “Smart nest
thermostat a smart spy in your home,” in Proc.
Black Hat, 2014.

[103] J. Maskiewicz, B. Ellis, J. Mouradian, and
H. Shacham, “Mouse trap: Exploiting firmware
updates in USB peripherals,” in Proc. 8th USENIX
Workshop Offensive Technol. (WOOT). San Diego,
CA, USA: USENIX Association, 2014. [Online].
Available: https://www.usenix.org/conference/
woot14/workshop-program/presentation/
maskiewicz

[104] (2018). Application Sandbox. [Online]. Available:
https://source.android.com/security/app-sandbox

[105] R. Wang, L. Xing, S. Chen, and S. Chen,
“Unauthorized origin crossing on mobile
platforms: Threats and mitigation,” in Proc. ACM
Conf. Comput. Commun. Secur. (CCS), Nov. 2013,
pp. 635–646. [Online]. Available: https://www.
microsoft.com/en-us/research/publication/
unauthorized-origin-crossing-on-mobile-
platforms-threats-and-mitigation/

[106] C. Ren, Y. Zhang, H. Xue, T. Wei, and P. Liu,
“Towards discovering and understanding task
hijacking in android,” in Proc. 24th USENIX Secur.
Symp. (USENIX Security). Washington, DC, USA:
USENIX Association, 2015, pp. 945–959.
[Online]. Available: https://www.usenix.org/
conference/usenixsecurity15/technical-
sessions/presentation/ren-chuangang

[107] Y. Xiao, G. Bai, J. Mao, Z. Liang, and W. Cheng,
“Privilege leakage and information stealing
through the android task mechanism,” in Proc.
IEEE Symp. Privacy-Aware Comput. (PAC),
Aug. 2017, pp. 152–163.

[108] K. Chen et al., “Following devil’s footprints:
Cross-platform analysis of potentially harmful
libraries on Android and iOS,” in Proc. IEEE Symp.
Secur. Privacy (SP), May 2016, pp. 357–376.

[109] T. Li et al., “Unleashing the walking dead:
Understanding cross-app remote infections on
mobile WebViews,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur. (CCS), New York, NY,
USA, 2017, pp. 829–844. [Online]. Available:
http://doi.acm.org/10.1145/3133956.3134021

[110] W. G. J. Halfond, J. Viegas, and A. Orso, “A
classification of SQL injection attacks and
countermeasures,” Tech. Rep., 2006.

[111] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee,
and S.-Y. Kuo, “Securing Web application code by
static analysis and runtime protection,” in Proc.
13th Int. Conf. World Wide Web (WWW),
New York, NY, USA, 2004, pp. 40–52. [Online].
Available: http://doi.acm.org/10.1145/988672.
988679

[112] V. B. Livshits and M. S. Lam, “Finding security
vulnerabilities in java applications with static

analysis,” in Proc. USENIX Secur. Symp., vol. 14,
2005, p. 18. [Online]. Available: http://dl.acm.
org/citation.cfm?id=1251398.1251416

[113] P. Bisht, P. Madhusudan, and
V. N. Venkatakrishnan, “CANDID: Dynamic
candidate evaluations for automatic prevention of
SQL injection attacks,” ACM Trans. Inf. Syst. Secur.,
vol. 13, no. 2, pp. 14:1–14:39, Mar. 2010.
[Online]. Available: http://doi.acm.org/10.1145/
1698750.1698754

[114] I. Lee, S. Jeong, S.-S. Yeo, and J. Moon, “A novel
method for SQL injection attack detection based
on removing SQL query attribute values,” Math.
Comput. Model., vol. 55, nos. 1–2, pp. 58–68,
Jan. 2012.

[115] K. A. Jackson and B. T. Bennett, “Locating SQL
injection vulnerabilities in Java byte code using
natural language techniques,” in Proc.
SoutheastCon, Apr. 2018, pp. 1–5.

[116] K. Ross, M. Moh, T.-S. Moh, and J. Yao,
“Multi-source data analysis and evaluation of
machine learning techniques for SQL injection
detection,” in Proc. ACMSE 2018 Conf., New York,
NY, USA, 2018, pp. 1:1–1:8. [Online]. Available:
http://doi.acm.org/10.1145/3190645.3190670

[117] S. Gupta and B. B. Gupta, “Cross-Site Scripting
(XSS) attacks and defense mechanisms:
Classification and state-of-the-art,” Int. J. Syst.
Assurance Eng. Manage., vol. 8, no. 1,
pp. 512–530, 2017.

[118] G. Kaur, B. Pande, A. Bhardwaj, G. Bhagat, and
S. Gupta, “Defense against HTML5 XSS Attack
Vectors: A Nested Context-Aware Sanitization
Technique,” in Proc. 8th Int. Conf. Cloud Comput.,
Data Sci. Eng. (Confluence), Jan. 2018,
pp. 442–446.

[119] S. Rathore, P. K. Sharma, and J. H. Park,
“XSSClassifier: An Efficient XSS Attack Detection
Approach Based on Machine Learning Classifier
on SNSs,” J. Inf. Process. Syst., vol. 13, no. 4,
pp. 1014–1028, 2017.

[120] N. Jovanovic, E. Kirda, and C. Kruegel,
“Preventing cross site request forgery attacks,” in
Proc. Securecomm Workshops, Aug. 2006,
pp. 1–10.

[121] A. Johnson. (May 9, 2006). The Referer Header.
[Online]. Available:
http://cephas.net/blog/2007/02/06/the-referer-
header-intranets-and-privacy/

[122] A. Barth, C. Jackson, and J. C. Mitchell, “Robust
defenses for cross-site request forgery,” in Proc.
15th ACM Conf. Comput. Commun. Secur. (CCS),
New York, NY, USA, 2008, pp. 75–88. doi:
10.1145/1455770.1455782.

[123] B. S. Y. Fung and P. P. C. Lee, “A privacy-preserving
defense mechanism against request forgery
attacks,” in Proc. IEEE 10th Int. Conf. Trust, Secur.
Privacy Comput. Commun., Nov. 2011, pp. 45–52.

[124] M. Srokosz, D. Rusinek, and B. Ksiezopolski,
“A new WAF-based architecture for protecting Web
applications against CSRF attacks in malicious
environment,” in Proc. Federated Conf. Comput.
Sci. Inf. Syst. (FedCSIS), Sep. 2018, pp. 391–395.

[125] M. Jensen, C. Meyer, J. Somorovsky, and
J. Schwenk, “On the effectiveness of XML Schema
validation for countering XML Signature
Wrapping attacks,” in Proc. 1st Int. Workshop
Securing Services Cloud (IWSSC), Sep. 2011,
pp. 7–13.

[126] A. N. Gupta and P. S. Thilagam, “Detection of XML
signature wrapping attack using node counting,”
in Proc. 3rd Int. Symp. Big Data Cloud Comput.
Challenges (ISBCC). Springer, 2016, pp. 57–63.

[127] J. Kumar, B. Rajendran, B. S. Bindhumadhava,
and N. S. C. Babu, “XML wrapping attack
mitigation using positional token,” in Proc. Int.
Conf. Public Key Infrastruct. Appl. (PKIA),
Nov. 2017, pp. 36–42.

[128] B. Lee and J.-H. Lee, “Blockchain-based secure
firmware update for embedded devices in an
Internet of Things environment,” J. Supercomput.,
vol. 73, no. 3, pp. 1152–1167, 2017. [Online].
Available:

https://doi.org/10.1007/s11227-016-1870-0
[129] S. Weiser, M. Werner, F. Brasser, M. Malenko,

S. Mangard, and A.-R. Sadeghi, “TIMBER-V:
Tag-isolated memory bringing fine-grained
enclaves to RISC-V,” in Proc. NDSS, 2019,
pp. 1–15.

[130] Arm Market. Accessed: Jan. 14, 2019. [Online].
Available: https://www.arm.com/-/media/global/
company/investors/PDFs/Arm_SB_Q1_2018_
Roadshow_Slides_Final.pdf

[131] B. Schmerl, J. Gennari, J. Cámara, and D. Garlan,
“Raindroid: A system for run-time mitigation of
Android intent vulnerabilities [poster],” in Proc.
Symp. Bootcamp Sci. Secur. (HotSos), New York,
NY, USA, 2016, pp. 115–117. [Online]. Available:
http://doi.acm.org/10.1145/2898375.2898389

[132] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and
K.-P. Wu, “DroidMat: Android malware detection
through manifest and API calls tracing,” in Proc.
7th Asia Joint Conf. Inf. Secur. (Asia JCIS),
Aug. 2012, pp. 62–69.

[133] M. Backes, S. Bugiel, and E. Derr, “Reliable
third-party library detection in android and its
security applications,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur. (CCS), New York, NY,
USA, 2016, pp. 356–367. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978333

[134] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash,
“Decentralized action integrity for trigger-action
IoT platforms,” in Proc. Netw. Distrib. Syst.
Symp. (NDSS), 2018, pp. 18–21.

[135] (2017). 100 mb Password Dictionary. [Online].
Available: https://github.com/danielmiessler/
SecLists/tree/master/Passwords

[136] R. X. Lu and Z. F. Cao, “Simple three-party key
exchange protocol,” Comput. Secur., vol. 26, no. 1,
pp. 94–97, Feb. 2007.

[137] J. Nam, J. Paik, H. K. Kang, U. M. Kim, and
D. Won, “An off-line dictionary attack on a simple
three-party key exchange protocol,” IEEE
Commun. Lett., vol. 13, no. 3, pp. 205–207,
Mar. 2009.

[138] O. Nakhila, A. Attiah, Y. Jin, and C. Zou, “Parallel
active dictionary attack on WPA2-PSK Wi-Fi
networks,” in Proc. IEEE Mil. Commun. Conf.
(MILCOM), Oct. 2015, pp. 665–670.

[139] T. C. Clancy, N. Kiyavash, and D. J. Lin, “Secure
smartcardbased fingerprint authentication,” in
Proc. ACM SIGMM Workshop Biometrics Methods
Appl., 2003, pp. 45–52.

[140] A. Roy, N. Memon, J. Togelius, and A. Ross,
“Evolutionary methods for generating synthetic
MasterPrint templates: Dictionary attack in
fingerprint recognition,” in Proc. Int. Conf.
Biometrics (ICB), Feb. 2018, pp. 39–46.

[141] A. Cassola, W. K. Robertson, E. Kirda, and
G. Noubir, “A practical, targeted, and stealthy
attack against WPA enterprise authentication,” in
Proc. NDSS, 2013, pp. 1–15.

[142] K. Bhargavan and G. Leurent, “Transcript collision
attacks: Breaking authentication in TLS, IKE, and
SSH,” in Proc. Netw. Distrib. Syst. Secur. Symp.
(NDSS), 2016, pp. 1–17.

[143] D. Felsch, M. Grothe, J. Schwenk, A. Czubak, and
M. Szymanek, “The dangers of key reuse: Practical
attacks on IPsec IKE,” in Proc. 27th USENIX Secur.
Symp. (USENIX Security). Baltimore, MD, USA:
USENIX Association, 2018, pp. 567–583.

[144] M. Vanhoef and F. Piessens, “Key reinstallation
attacks: Forcing nonce reuse in WPA2,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur.
(CCS), New York, NY, USA, 2017, pp. 1313–1328.
[Online]. Available: http://doi.acm.org/
10.1145/3133956.3134027

[145] M. Vanhoef and F. Piessens, “Release the Kraken:
New KRACKs in the 802.11 standard,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur.
(CCS), New York, NY, USA, 2018, pp. 299–314.
[Online]. Available: http://doi.acm.org/
10.1145/3243734.3243807

[146] G.-H. Tu, Y. Li, C. Peng, C.-Y. Li, H. Wang, and
S. Lu, “Control-plane protocol interactions in
cellular networks,” in Proc. ACM Conf. SIGCOMM,

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1629

http://dx.doi.org/10.1145/1455770.1455782

Xiao et al.: Edge Computing Security: State of the Art and Challenges

New York, NY, USA, 2014, pp. 223–234. [Online].
Available: http://doi.acm.org/10.1145/2619239.
2626302

[147] D. Rupprecht, K. Jansen, and C. Pöpper, “Putting
LTE security functions to the test: A framework to
evaluate implementation correctness,” in Proc.
10th USENIX Workshop Offensive
Technol. (WOOT). Austin, TX, USA: USENIX
Association, 2016. [Online]. Available:
https://www.usenix.org/conference/woot16/workshop-
program/presentation/rupprecht

[148] S. R. Hussain, O. Chowdhury, S. Mehnaz, and
E. Bertino, “LTEInspector: A systematic approach
for adversarial testing of 4G LTE,” in Proc. NDSS,
2018, pp. 1–15.

[149] S. R. Hussain, M. Echeverria, O. Chowdhury, N. Li,
and E. Bertino, “Privacy attacks to the 4G and 5G
cellular paging protocols using side channel
information,” in Proc. NDSS, 2019, pp. 1–15.

[150] E. Hammer-Lahav, The OAuth 1.0 Protocol,
document RFC 5849, IETF, 2010.

[151] D. Hardt, The OAuth 2.0 Authorization
Framework, document RFC 6749, IETF, 2012.

[152] E. Y. Chen, Y. Pei, S. Chen, Y. Tian, R. Kotcher, and
P. Tague, “OAuth demystified for mobile
application developers,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., 2014,
pp. 892–903.

[153] S.-T. Sun and K. Beznosov, “The devil is in the
(implementation) details: An empirical analysis of
OAuth SSO systems,” in Proc. ACM Conf. Comput.
Commun. Secur., 2012, pp. 378–390.

[154] Y. Jia, Y. Xiao, J. Yu, X. Cheng, Z. Liang, and
Z. Wan, “A novel graph-based mechanism for
identifying traffic vulnerabilities in smart home
IoT,” in Proc. IEEE Conf. Comput. Commun.
(INFOCOM), Apr. 2018, pp. 1493–1501.

[155] A. P. Felt, E. Chin, S. Hanna, D. Song, and
D. Wagner, “Android permissions demystified,” in
Proc. 18th ACM Conf. Comput. Commun. Secur.
(CCS), New York, NY, USA, 2011, pp. 627–638.
[Online]. Available: http://doi.acm.org/
10.1145/2046707.2046779

[156] G. Ho, D. Leung, P. Mishra, A. Hosseini, D. Song,
and D. Wagner, “Smart locks: Lessons for securing
commodity Internet of Things devices,” in Proc.
11th ACM Asia Conf. Comput. Commun. Secur.
(ASIA CCS), New York, NY, USA, 2016,
pp. 461–472. [Online]. Available:
http://doi.acm.org/10.1145/2897845.2897886

[157] B. Pinkas and T. Sander, “Securing passwords
against dictionary attacks,” in Proc. 9th ACM Conf.
Comput. Commun. Secur. (CCS), New York, NY,
USA, 2002, pp. 161–170. [Online]. Available:
http://doi.acm.org/10.1145/586110.586133

[158] A. T. B. Jin, D. N. C. Ling, and A. Goh,
“BioHashing: Two factor authentication featuring
fingerprint data and tokenised random number,”
Pattern Recognit., vol. 37, no. 11, pp. 2245–2255,
Apr. 2004.

[159] F. Schroff, D. Kalenichenko, and J. Philbin,
“FaceNet: A unified embedding for face
recognition and clustering,” in Proc. IEEE Conf.
Comput. Vis. pattern Recognit., Jun. 2015,
pp. 815–823.

[160] F. Aloul, S. Zahidi, and W. El-Hajj, “Two factor
authentication using mobile phones,” in Proc.
IEEE/ACS Int. Conf. Comput. Syst. Appl.,
May 2009, pp. 641–644.

[161] M. Dailey and C. Namprempre, “A text graphics
character CAPTCHA for password authentication,”
in Proc. IEEE Region 10 Conf. TENCON, vol. 2,
Nov. 2004, pp. 45–48.

[162] N. Karapanos, C. Marforio, C. Soriente, and
S. Čapkun, “Sound-proof: Usable two-factor
authentication based on ambient sound,” in Proc.
24th USENIX Secur. Symp. (USENIX Security).
Washington, DC, USA: USENIX Association, 2015,
pp. 483–498. [Online]. Available: https://www.
usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/karapanos

[163] C. Mulliner, R. Borgaonkar, P. Stewin, and
J.-P. Seifert, “SMS-based one-time passwords:

Attacks and defense,” in Proc. Int. Conf. Detection
Intrusions Malware, Vulnerability Assessment.
Springer, 2013, pp. 150–159.

[164] D. Wang, J. Ming, T. Chen, X. Zhang, and
C. Wang, “Cracking IoT device user account via
brute-force attack to SMS authentication code,” in
Proc. 1st Workshop Radical Experiential Secur.,
2018, pp. 57–60.

[165] M. Joshi, B. Mazumdar, and S. Dey, “Security
vulnerabilities against fingerprint biometric
system,” 2018, arXiv:1805.07116. [Online].
Available: https://arxiv.org/abs/1805.07116

[166] Z. Zhou, D. Tang, X. Wang, W. Han, X. Liu, and
K. Zhang, “Invisible mask: Practical attacks on
face recognition with infrared,” 2018,
arXiv:1803.04683. [Online]. Available:
https://arxiv.org/abs/1803.04683

[167] Y. Wang, Y. Huang, W. Zheng, Z. Zhou, D. Liu, and
M. Lu, “Combining convolutional neural network
and self-adaptive algorithm to defeat synthetic
multi-digit text-based CAPTCHA,” in Proc. IEEE
Int. Conf. Ind. Technol. (ICIT), Mar. 2017,
pp. 980–985.

[168] B. Shrestha, M. Shirvanian, P. Shrestha, and
N. Saxena, “The sounds of the phones: Dangers of
zero-effort second factor login based on ambient
audio,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur. (CCS), New York, NY, USA, 2016,
pp. 908–919. [Online]. Available: http://doi.
acm.org/10.1145/2976749.2978328

[169] D. Boneh, H. Corrigan-Gibbs, and S. Schechter,
“Balloon hashing: A memory-hard function
providing provable protection against sequential
attacks,” in Advances in Cryptology—ASIACRYPT.
Springer, 2016, pp. 220–248.

[170] S. Jarecki, H. Krawczyk, M. Shirvanian, and
N. Saxena, “Device-enhanced password protocols
with optimal online-offline protection,” in Proc.
11th ACM Asia Conf. Comput. Commun. Security
(ASIA CCS), New York, NY, USA, 2016,
pp. 177–188. [Online]. Available:
http://doi.acm.org/10.1145/2897845.2897880

[171] Y. Liu, “Defense of WPA/WPA2-PSK brute forcer,”
in Proc. 2nd Int. Conf. Inf. Sci. Control Eng.,
Apr. 2015, pp. 185–188.

[172] J. Noh, J. Kim, G. Kwon, and S. Cho, “Secure key
exchange scheme for WPA/WPA2-PSK using
public key cryptography,” in Proc. IEEE Int. Conf.
Consum. Electron.-Asia (ICCE-Asia), Oct. 2016,
pp. 1–4.

[173] S. Sivakorn, G. Argyros, K. Pei, A. D. Keromytis,
and S. Jana, “HVLearn: Automated black-box
analysis of hostname verification in SSL/TLS
implementations,” in Proc. IEEE Symp. Secur.
Privacy (SP), May 2017, pp. 521–538.

[174] K. Bhargavan, B. Blanchet, and N. Kobeissi,
“Verified models and reference implementations
for the TLS 1.3 standard candidate,” in Proc. IEEE
Symp. Secur. Privacy (SP), May 2017, pp. 483–502.

[175] X. Duan and X. Wang, “Fast authentication in 5G
HetNet through SDN enabled weighted
secure-context-information transfer,” in Proc. IEEE
Int. Conf. Commun. (ICC), May 2016, pp. 1–6.

[176] C. Zhao, L. Huang, Y. Zhao, and X. Du, “Secure
machine-type communications toward LTE
heterogeneous networks,” IEEE Wireless Commun.,
vol. 24, no. 1, pp. 82–87, Feb. 2017.

[177] J. Ni, X. Lin, and X. S. Shen, “Efficient and secure
service-oriented authentication supporting
network slicing for 5G-enabled IoT,” IEEE J. Sel.
Areas Commun., vol. 36, no. 3, pp. 644–657,
Mar. 2018.

[178] R. Yang, W. C. Lau, and S. Shi, “Breaking and
fixing mobile app authentication with
OAuth2.0-based protocols,” in Proc. Int. Conf.
Appl. Cryptogr. Netw. Secur. Springer, 2017,
pp. 313–335.

[179] M. Shehab and F. Mohsen, “Securing OAuth
implementations in smart phones,” in Proc. 4th
ACM Conf. Data Appl. Secur. Privacy (CODASPY),
New York, NY, USA, 2014, pp. 167–170. [Online].
Available: http://doi.acm.org/10.1145/2557547.
2557588

[180] S. Cirani, M. Picone, P. Gonizzi, L. Veltri, and
G. Ferrari, “IoT-OAS: An OAuth-based
authorization service architecture for secure
services in IoT scenarios,” IEEE Sensors J., vol. 15,
no. 2, pp. 1224–1234, Feb. 2015.

[181] Y. Tian et al., “SmartAuth: User-centered
authorization for the Internet of Things,” in Proc.
26th USENIX Secur. Symp. (USENIX Security),
Vancouver, BC, USA: USENIX Association, 2017,
pp. 361–378. [Online]. Available: https://www.
usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/tian

[182] Z. B. Celik et al., “Sensitive information tracking
in commodity IoT,” in Proc. 27th USENIX Secur.
Symp. (USENIX Security). Baltimore, MD,
USA: USENIX Association, 2018,
pp. 1687–1704.

[183] I. Bastys, M. Balliu, and A. Sabelfeld, “If this then
what?: Controlling flows in IoT apps,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur.
(CCS), New York, NY, USA, 2018, pp. 1102–1119.
[Online]. Available: http://doi.acm.org/
10.1145/3243734.3243841

[184] Z. B. Celik, G. Tan, and P. McDaniel, “IoTGuard:
Dynamic enforcement of security and safety policy
in commodity IoT,” in Proc. NDSS, 2019,
pp. 1–15.

[185] Y. J. Jia et al., “ContexloT: Towards providing
contextual integrity to appified IoT platforms,” in
Proc. NDSS, 2017.

[186] R. Schuster, V. Shmatikov, and E. Tromer,
“Situational access control in the Internet of
Things,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur. (CCS), New York, NY, USA, 2018,
pp. 1056–1073. [Online]. Available:
http://doi.acm.org/10.1145/3243734.3243817

[187] J. Wang and Q. Chen, “ASPG: Generating Android
semantic permissions,” in Proc. IEEE 17th Int.
Conf. Comput. Sci. Eng., Dec. 2014, pp. 591–598.

[188] E. Fernandes, J. Paupore, A. Rahmati, D.
Simionato, M. Conti, and A. Prakash, “FlowFence:
Practical Data Protection for Emerging IoT
Application Frameworks,” in Proc. 25th USENIX
Secur. Symp. (USENIX Security). Austin, TX, USA:
USENIX Association, 2016, pp. 531–548.
[Online]. Available: https://www.usenix.org/
conference/usenixsecurity16/technical-
sessions/presentation/fernandes

[189] A. K. Sikder, H. Aksu, and A. S. Uluagac,
“6thSense: A context-aware sensor-based attack
detector for smart devices,” in Proc. 26th USENIX
Secur. Symp. (USENIX Security). Vancouver, BC,
USA: USENIX Association, 2017, pp. 397–414.
[Online]. Available: https://www.usenix.org/
conference/usenixsecurity17/technical-
sessions/presentation/sikder

[190] Y. Aafer, G. Tao, J. Huang, X. Zhang, and N. Li,
“Precise Android API protection mapping
derivation and reasoning,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., 2018,
pp. 1151–1164.

[191] L. Qian, Z. Luo, Y. Du, and L. Guo, “Cloud
computing: An overview,” in Proc. IEEE Int. Conf.
Cloud Comput.. Springer, 2009, pp. 626–631.

[192] (2018). Top 50 Products by Total Number of
‘distinct’ Vulnerabilities in 2018. [Online].
Available: https://www.cvedetails.com/top-50-
products.php?year=2018

[193] (2018). Cloud Computing: Attack Vectors and
Counter Measures. [Online]. Available:
https://resources.infosecinstitute.com/cloud-
computing-attacks-vectors-and-counter-measures/

[194] M. Hylkema, “A survey of database inference
attack prevention methods,” Educ. Technol. Res.,
Tech. Rep., 2009.

[195] D. Barrera, I. Molloy, and H. Huang,
“Standardizing IoT network security policy
enforcement,” in Proc. Workshop Decentralized IoT
Secur. Standards (DISS), 2018, p. 6.

[196] S. Christey and R. A. Martin. (2007). Vulnerability
Type Distributions in CVE. [Online]. Available:
http://cwe.mitre.org/documents/vuln-
trends/vuln-trends.pdf

1630 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

Xiao et al.: Edge Computing Security: State of the Art and Challenges

A B O U T T H E A U T H O R S

Yinhao Xiao received the Ph.D. degree
in computer science from The George
Washington University, Washington, DC,
USA, in 2019, under the supervision of
Prof. X. Cheng.
He is currently a Faculty Member with

the School of Information Science, Guang-
dong University of Finance and Economics,
Guangzhou, China. He has published work
in top international conferences and journals, including the IEEE
INFOCOM and the IEEE INTERNET OF THINGS (IoT) JOURNAL. His current
research interests include the IoT security, smartphone security,
and binary security.
Dr. Xiao has served as a TPC Member at several academic

conferences, including the International Conference on Wireless
Algorithms, Systems, and Applications (since 2018) and the 2019
International Conference on Blockchain. He has also served as the
Web Chair for the 2018 IEEE International Conference on Industrial
Internet.

Yizhen Jia received the bachelor’s degree
in computer science from Beihang Univer-
sity, Beijing, China, in 2015. He is cur-
rently working toward the Ph.D. degree
with the Computer Science Department,
The George Washington University, Wash-
ington, DC, USA, under the supervision of
Prof. X. (Susan) Cheng.
He has published several technical papers

in top international conferences and journals, such as the IEEE
INFOCOM and the IEEE INTERNET OF THINGS (IoT) JOURNAL. His current
research interests include the Internet of Things, security, and edge
computing.

Chunchi Liu received the bachelor’s degree
(Hons.) in computer science from Beijing
Normal University, Beijing, China, in 2017.
He is currently working toward the Ph.D.
degree with the Computer Science Depart-
ment, The George Washington University,
Washington, DC, USA, under the supervision
of Prof. X. (Susan) Cheng.
He has published technical papers in top

international conferences and journals, such as the IEEE INFO-
COM and the IEEE INTERNET OF THINGS (IoT) JOURNAL. His current
research interests include blockchain, Internet of Things, security,
and applied cryptography.
Mr. Liu served as a TPC Member for a few conferences, such as

the 2019 IEEE Blockchain Conference and the International Con-
ference on Wireless Algorithms, Systems, and Applications 2019,
and a reviewer for several distinguished journals, such as the IEEE
Wireless Communications Magazine and the IEEE TRANSACTIONS ON

MOBILE COMPUTING.

Xiuzhen Cheng (Fellow, IEEE) received the
M.S. and Ph.D. degrees in computer science
from the University of Minnesota–Twin Cities,
Minneapolis, MN, USA, in 2000 and 2002,
respectively.
She was a Program Director for the U.S.

National Science Foundation (NSF) in 2006
(full time) and from 2008 to 2010 (part
time). She is currently a Professor with the
Department of Computer Science, The George Washington Univer-
sity, Washington, DC, USA. She has published more than 200 peer-
reviewed papers. Her current research interests include blockchain
computing, intelligent Internet of Things, privacy-aware computing,
wireless and mobile security, and algorithm design and analysis.
Dr. Cheng has served/is serving on the Editorial Board of several

technical journals, including the IEEE TRANSACTIONS ON COMPUTERS,
the IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, and IEEE
WIRELESS COMMUNICATIONS; and the Technical Program Committee of
many professional conferences/workshops, including ACMMobihoc,
ACM Mobisys, IEEE INFOCOM, IEEE ICDCS, IEEE ICC, and IEEE/ACM
IWQoS. She has also chaired several international conferences,
including ACMMobihoc 2014 and IEEE PAC 2018. She is the Founder
and the Steering Committee Chair of the International Confer-
ence on Wireless Algorithms, Systems, and Applications (WASA,
launched in 2006).

Jiguo Yu (Senior Member, IEEE) received
the Ph.D. degree from the School of Math-
ematics, Shandong University, Jinan, China,
in 2004.
He became a Full Professor at the School

of Computer Science, Qufu Normal Univer-
sity, Jining, Shandong, China, in 2007. He
is also a Full Professor with the Qilu Uni-
versity of Technology (Shandong Academy
of Sciences), Jinan, and the Shandong Computer Science Cen-
ter (National Supercomputer Center), Jinan. He is interested in
designing and analyzing algorithms for many computationally
hard problems in networks. His current research interests include
privacy-aware computing, wireless networking, distributed algo-
rithms, peer-to-peer computing, and graph theory.
Dr. Yu is a member of the Association for Computing Machinery

and a Senior Member of the China Computer Federation (CCF).

Weifeng Lv received the Ph.D. degree in
computer science from Beihang University,
Beijing, China, in 1998.
He is currently a Professor of computer

science, the Dean of the School of Computer
Science and Engineering, and the Vice Direc-
tor of the State Key Laboratory of Software
Development Environment, Beihang Univer-
sity. His current research interests include
massive information system, urban cognitive computing, swarm
intelligence, and smart cities.
Dr. Lv serves as the Vice-President and the Secretary-General

of the China Software Industry Association and the Director of the
National Engineering Research Center for Science and Technology
Resources Sharing Service. He received multiple internationally
renowned awards, including the Second Prize of the 2016 China
National Science and Technology Invention Award and the First
Prize of the 2010 Beijing Science and Technology Award.

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1631

