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Abstract

The free energetics of water density fluctuations in bulk water, at interfaces, and in
hydrophobic confinement inform the hydration of hydrophobic solutes as well as their
interactions and assembly. The characterization of such free energetics is typically per-
formed using enhanced sampling techniques such as umbrella sampling. In umbrella
sampling, order parameter distributions obtained from adjacent biased simulations must
overlap in order to estimate free energy differences between biased ensembles. Many
biased simulations are typically required to ensure such overlap, which exacts a steep
computational cost. We recently introduced a sparse sampling method, which circum-
vents the overlap requirement by using thermodynamic integration to estimate free
energy differences between biased ensembles. Here we build upon and generalize sparse
sampling for characterizing the free energetics of water density fluctuations in systems
near liquid-vapor coexistence. We also introduce sensible heuristics for choosing the
biasing potential parameters and strategies for adaptively refining them, which facili-

tate the estimation of such free energetics accurately and efficiently. We illustrate the
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method by characterizing the free energetics of cavitation in a large volume in bulk
water. We also use sparse sampling to characterize the free energetics of capillary
evaporation for water confined between two hydrophobic plates. In both cases, sparse
sampling is nearly two orders of magnitude faster than umbrella sampling. Given its
efficiency, the sparse sampling method is particularly well suited for characterizing free

energy landscapes for systems wherein umbrella sampling is prohibitively expensive.

Keywords: free energy method, umbrella sampling, thermodynamic integration, hydropho-

bic confinement

1 Introduction

At ambient conditions, water and many other liquids are close to coexistence with their vapor
phase. ' 1° Liquid water in the vicinity of hydrophobic surfaces is destabilized further, situ-
ating interfacial waters at the edge of a dewetting transition, and rendering them sensitive
to unfavorable perturbations.™!® Moreover, when confined between hydrophobic surfaces,
liquid water can become metastable (or even unstable) with respect to its vapor.2°37 Such
interfacial or confined waters, which are situated near liquid-vapor coexistence, play an im-
portant role in diverse processes, ranging from colloidal assembly and protein interactions, to
heterogeneous vapor nucleation and the loss or recovery of superhydrophobicity. 233638746 Tp
particular, displacing the interfacial or confined waters can incur a substantial free energetic

354749 Thuys, characterizing the free ener-

cost, and influence the kinetics of these process.
getics of water density fluctuations can shed light on the mechanistic pathways associated
with wetting-dewetting transitions in such systems, and also inform the magnitude of the
associated barriers. 33:36:45,50-55

To characterize the free energetics of rare water density fluctuations, it becomes necessary

to employ enhanced sampling techniques, such as umbrella sampling, which are computa-

tionally expensive. However, umbrella sampling can become prohibitively expensive when



the simulations themselves are very expensive or when a large number of biased simulations
are needed.?*?%1 To address these challenges and facilitate the computationally efficient
characterization of the free energetics of water density fluctuations, here we build upon a
sparse sampling method that we previously introduced,? and generalize it to study systems
near liquid-vapor coexistence. In the following sections, we will first use model (analytical)
free energy landscapes to illustrate the sparse sampling method, the reasons underlying its
successes, and situations when it is challenged. We then extend the sparse sampling method
to tackle such challenging scenarios. Both the accuracy and the efficiency of sparse sam-
pling rely on the choice of biasing potential parameters; we introduce sensible heuristics for
choosing such parameters and strategies for adaptively refining them. We then highlight the
efficiency of the sparse sampling method by using it to characterize the free energetics of wa-
ter density fluctuations in a large volume in bulk water. Finally, we apply sparse sampling
to a particularly challenging system, wherein water is confined between two hydrophobic
surfaces, and the free energetics of water density fluctuations display two basins that are

separated by a barrier.

2 Illustrating Sparse Sampling Using Model Landscapes

2.1 Umbrella Sampling vs Sparse Sampling

Characterizing the free energetics of order parameter fluctuations, which are too rare to be
observed in unbiased molecular simulations, requires the use of non-Boltzmann sampling
techniques such as umbrella sampling. To facilitate the sampling of such rare order param-
eter fluctuations, umbrella sampling prescribes the use of biasing potentials, which enhance
the likelihood with which otherwise improbable fluctuations are sampled. Although um-
brella sampling provides a powerful way to characterize the free energetics of rare order
parameter fluctuations, it exacts a steep computational cost, which can become prohibitive,

39,56-58,60,61,63

either when the biased simulations themselves are expensive, or when a large



number of biased simulations are needed to span the order parameter range of interest. To
address this challenge, we recently introduced a sparse sampling method,%? which employs
sparsely separated biased simulations, and can be orders of magnitude more efficient than
conventional umbrella sampling.

Although the sparse sampling method is generally applicable to any order parameter, here
we focus on an order parameter that represents the smoothed (or coarse-grained) number
of water molecules, N,, in an observation volume, v, of interest. We bias N, in lieu of the
closely related (discrete) number of waters, N,, in v, because performing biased molecular
dynamics (MD) simulations with a discrete order parameter results in impulsive forces. The
precise definition of N, as well as its dependence on the atomic positions, R, can be found

f. 64

in ref.% We wish to estimate the free energetics of water density (or rather N,) fluctuations,

F,(N) = —kgT'In P,(N), where kg is the Boltzmann constant, T is the system temperature,
and P,(N) = (§(N,—N))o, is the probability of observing N coarse-grained waters in v; here,
(OR))o = [dR O(R) exp(—BHo)/Qo represents the ensemble average of O(R), given the
generalized Hamiltonian, Ho(R), and Qo = [ dR exp(—SH,) is the corresponding partition
function. To facilitate the sampling of N,(R) over the entire N-range of interest, we use
potentials, U ;(NU), which bias N,,, and are parametrized by the vector, \; that is, we perform
biased simulations using the Hamiltonians, H5(R) = Ho(R)+Us(N,(R)). Using such biased
simulations, we can estimate averages in the biased ensembles, (O(R))5, and in particular,
we estimate the biased distributions, PM(N) = (§(N, — N))3, and the corresponding free

energetics, FNN) = —kgTIn PM(N). For the N-range sampled by a biased simulation,

F,(N) can then be related to F)(N) using the exact result

FU(N):FA(N)_UX(N)—i_FXv (1)

where F5 = —kgT'In <%> is the free energy difference between the biased and the unbiased

ensembles, and )5 is the partition function corresponding to H;. The derivation of Equa-



tion 1 is included as supplementary information. Using FUX(N ) obtained from the biased
simulation, and the known functional form of Uz (N), F,(N) can then be obtained to within
the unknown constant offset, F5.

In umbrella sampling, estimates of F for the different biased ensembles are obtained by
requiring an overlap in the range of N-values sampled by adjacent biased simulations, and
in particular, by matching FU(]\Nf )-values obtained from different biased simulations in the
overlap regions; algorithms such as the Weighted Histogram Analysis Method (WHAM) or
Multi-state Bennet Acceptance Ratio (MBAR) are typically used for this purpose.® " Such
an umbrella sampling strategy is powerful and has facilitated the characterization of the free
energetics of water density fluctuations in numerous contexts.>¢1%™ However, to satisfy
the above overlap requirement, it becomes necessary to run many long biased simulations.
In practice, the associated computational cost limits the size of v as well as the level of
simulation detail (e.g., classical vs ab initio MD%%61) for which F,(N) can be characterized.
In contrast, the sparse sampling method does not require overlap between adjacent biased
distributions.%? Instead, sparse sampling employs thermodynamic integration to obtain FY,
and in principle, it can facilitate estimation of FU(N ) at sparsely distributed N-values orders
of magnitude faster than conventional umbrella sampling. Below, we first describe the sparse

sampling method, as introduced in ref.,%? and discuss its advantages and shortcomings; then,

we generalize the sparse sampling method to address those shortcomings.

2.2 Sparse Sampling with a Linear Biasing Potential

62
£,

In re we introduced sparse sampling using a linear biasing potential, U¢(Nv) = ¢N,,

parameterized by ¢; that is, A = [¢], and the corresponding biased ensemble Hamiltonian,

Hy = Ho + Uy(N,). Equation 1 then becomes:

Fy(N) = FJ(N) = Us(N) + Fy. (2)



Instead of relying on an overlap in the N-values sampled by adjacent biased ensembles,
sparse sampling prescribes estimating F; by integrating dFy/dé = (dU,/d¢)s = (N,)g, that
is, by using the identity:

¢
F, = / (Vo) ordd. 3)

In practice, only a small number of biased simulations that sample well-separated N,-values
are performed; hence the term sparse sampling. Following Equation 3, the corresponding Fj-
estimates are then obtained by numerically integrating the averages, (NU>¢, obtained from
those simulations. To minimize integration errors in estimating Fy, the sparse sampling
method thus relies on capturing the variation of <]\va>¢, the average thermodynamic force
(and the integrand in thermodynamic integration), with ¢. In other words, to accurately
estimate Fy, the biased simulations must capture the functional dependence of (Nv)¢ on
¢. Indeed, our choice of a linear biasing potential, U¢(]\7v) — ¢N,, was informed by this
requirement. In particular, because d(N,)s/d¢ = —B(6N?), < 0, this choice ensures that
the average thermodynamic force, <]\7v>¢, decreases monotonically with ¢, and for certain
systems, the decrease can even be linear in ¢.™ Here, (§N2), is the variance of P?(N). In
ref.,%2 we used Equations 2 and 3 to efficiently estimate F,(N) in small volumes in bulk
water and at interfaces, and in large volumes in heterogeneous interfacial environments such
as protein hydration shells. However, as highlighted in ref.,%? and discussed in further detail

below, the use of a linear potential is not suitable for sparse sampling systems near liquid-

vapor coexistence.

2.3 Sparse Sampling Systems Near and Far from Coexistence

To illustrate the differences between systems near and far from liquid-vapor coexistence, we
consider two model systems characterized by distinct analytical free energy profiles (Fig-

ure la). System 1 is representative of a system far from liquid-vapor coexistence, and is

monostable: Fq,(l)(N ) = %/@m(N — nl(ig))z; the corresponding distribution, P,(N), is Gaussian.



In contrast, system 2 resembles a system close to liquid-vapor coexistence, and is bistable:

FP(N) = k(N = ni2))2(N = nl?)? — ¢, N, with distinct basins at low and high N-values.

liq
We have designed Fv(l)(]\?) and FU(Q)(N) so that the high N (liquid) basins for the two model
systems are similar to one another, and to a 3 nm spherical observation volume in bulk

water, which we will consider in the following section. To do so, we choose Bk, = 0.00318,

iy = 3720, Bry = 1.2x1071°, i3, = 500, np) = 3600 and B¢y, = 0.3, where 8 = 1/kpT. Al

liq —
though Fél)(]g/' ) and F? (N) are representative of commonly encountered free energy profiles

far from and near liquid-vapor coexistence respectively, we note that these model systems

are purely illustrative. For typical systems of interest, such F,(N)-profiles will not be known

a priori; rather, our goal will be to characterize them using sparse sampling.

The first step in characterizing the F,(N)-profiles of the above systems using sparse
sampling is to obtain the averages, <]\7U>¢, for several ¢-values. In lieu of performing biased
simulations, we infer the biased free energetics, Fj’(]\Nf ), by reweighting the FU(N )-profiles for

the two systems using Equation 2. The locations of the minima in F?(N) then provide us

with the averages, (N,),, that would be obtained from the corresponding biased simulations.

We assume that all biased simulations are initialized with either high N,-values (]\71,0 ~ nl(ilq))

or low N,-values (NUO ~ 0). Thus, if F?(N) displays multiple minima separated by a barrier,
we assign to (Nv>¢ the minimum that is closest to ]\vao, noting that in realistic simulations, a
barrier of only a few kgT is sufficient to localize the system in the basin it was initialized in.
In this instance, (Nv>¢ does not represent a true biased ensemble average, but an estimate of
the average that would be obtained from a biased simulation, and one that may suffer from

serious inaccuracies due to the loss of ergodicity, which accompanies a bistable F¢(N).

In Figure 1b (symbols), we show estimates of (N,),, computed accordingly for equally

spaced ¢-values. Although (NN,), decreases monotonically with ¢ for both systems, there

are significant differences in the (NV,)4 vs. ¢ response of the two systems. For system 1, the

dependence of (N,), on ¢ is particularly simple; (IV,)4 decreases linearly with ¢. Moreover,

identical estimates of (V,), are obtained regardless of how the biased simulations are initial-



(a) 6000 a=r=-=] Ouog———— (c) 50 S
500 | a=2-- - | DB m
4500 . 3000 R ] —
= . s ! ! . = 3000 r \Il'l
<. 3000 3 1 = 2000 T i ol \
= \ - Co 1500 | &
1500 \ 1000 + | N 4
~~~~~~~~ \\s\\ N d N
0 ‘ T 0 .o 0 A
0 1200 2400 3600 10 1 2 3 45 0 1200 2400 3600
N B¢ N
(d) . (9 ‘ . () 3000 S
S Bp=—-04 —— 450 t o =1/ o =92
= Bp=03 —— 1
Bé =1.0 : -
] — /' =300 | {2000
PR SN LR &
< ' \ i = 150 | = 1000 .
— ] \ /
%_1 Lt ~ -1
g :’ . L 1 . 0t ) ) q 0 7\ ) )
0 12000 2400 3600 3000 3500 4000 0 1200 2400 3600
N N N

Figure 1: Sparse sampling with a linear biasing potential, U¢(]\77J) = ¢N,. (a) Two model
systems with distinctive free energy profiles are considered: system 1 displays a monostable
free energy profile, Fél)(N) (black), whereas system 2 is bistable, Féz)(N) (red). Both
systems have the same minimum and curvature in the liquid basin (high N), but Fv(z)(N )
deviates substantially from Fzgl)(N ) at lower N. (b) The response of the average number of
waters, (NU>¢, to the strength of the biasing potential, ¢, at evenly- (and sparsely-) spaced
¢-values is shown. For system 1, (NU>¢ decreases linearly with ¢, whereas <]\7v>¢ displays
a sharp decrease for system 2. Moreover, (]\71,>¢ displays hysteresis for system 2; that is,
for certain values of ¢, <Nv)¢ depends on whether the system was initialized in the dry
state (upward arrow) or the wet state (downward arrow). (c) For system 1, the sparse
sampled F,(N)-values (at N = (N,)s, black squares) accurately capture Flsl)(N ) over its
entire range. In contrast, sparse sampling fails to characterize FU(N ) for system 2 (red
circles) over a significant range of intermediate N-values. Moreover, the hysteresis in (Nv)¢
results in substantial errors in estimating Fy, which propagate to FU(N ) for low N-values.
(d) Extrema of the biased free energy profiles, F¢(N), can be obtained from the intersection
of F,/ON and —9U,/ON = —¢. For system 1, dF,/ON increases monotonically with N,
and intersects —¢ only once for all values of ¢, suggesting that the corresponding Fj’(N ) are
monostable. For system 2, multiple (three) intersections are observed for certain ¢-values,
suggesting bistability in the corresponding F?(N). (e) As expected, all the biased free energy
profiles, F¢(N), are monostable for system 1. (f) In contrast, the biased free energy profiles
for system 2 are bistable in the range, —0.4 < ¢ < 1, and explain the hysteresis observed
in panel b for this ¢-range.



ized. The integral, Fiy = f0¢<Nv)¢/d¢’ (Equation 3), can thus be estimated accurately for each
of the 8 equally-spaced ¢-values. Then, Equation 2 can be used to obtain estimates of FU(N )
at N = <J\~fv)¢. These estimates are shown in Figure 1c, and are in excellent agreement with
Fgl)(N ). The linear dependence of (N,)4 on ¢ also means that the N,-values sampled in
the biased simulations are distributed across the N-range of interest, enabling determination
of FU(N ) over that entire range. Thus, the sparse sampling method in conjunction with a
linear potential is particularly well suited for characterizing the free energetics of systems
far from coexistence.

In contrast with the gradual decrease of (N,)s with increasing ¢ for system 1, (N,)q
decreases sharply over a narrow range of ¢-values for system 2, as shown in Figure 1b.
Thus, for uniformly spaced ¢-values, high and low N,-values are sampled well in the biased
simulations, but intermediate values are not. Consequently, there is a large range of N-values
(200 < N < 3400) for which estimates of F,(N) cannot be obtained (Figure 1c). Moreover,

the gap in our knowledge of the functional form of (N,), versus ¢ results in significant
errors in our estimation of F}, for the higher ¢-values, and thereby in estimates of F,(N) for
the lower N-values (Figure 1c). To make matters worse, for the ¢-range over which (N,)g
decreases from high to low values, biased simulations initialized with low and high N,-values
result in very different estimates of (N,)y; that is, hysteresis is observed in (N,), versus ¢
(Figure 1b).

To understand this contrast between systems 1 and 2, we recognize that the N,-values
sampled in a biased simulation will be in the vicinity of a minimum in F?(N). Extrema of
F?(N) obey 0F?/ON = 0, and because F¢(N) = F,(N) + Uy(N) — F; (Equation 2), the
extrema will satisfy OF,/ON = —9U,;/ON = —¢. In Figure 1d, we plot F,/ON for both
systems; for system 1, it is linear and increases monotonically with N, whereas for system
2, it varies non-monotonically with N. For system 1, there can thus be only one solution to

OF,/ON = —¢, and thereby only one minimum in F?(N) for any value of ¢ (Figure 1d). This

is indeed the case as shown in Figure le. The corresponding biased distributions, Pj’(N ), will



thus be unimodal, facilitating the efficient estimation of the thermodynamic force, (N,)o,
for all values of ¢. Moreover, these arguments apply to any system for which OF, /8]\7
increases monotonically with N, and correspondingly, FU(N ) is convex over the entire range
of N-values. In ref.,%2 we showed that heterogeneous surfaces, such as the protein hydration
shells, which display a wide range of chemistries from hydrophobic to hydrophilic, indeed
satisfy these criteria.

In contrast, the non-monotonic variation of dF,/ON with N for system 2 allows for
the possibility of three solutions to JF, /GN = —¢ in the range ¢uin < ¢ < Gmax (With
Bdmin = —0.4 and Byax = 1). In this ¢-range, Ff(N ) exhibits two minima and a maximum,
that is, two basins separated by a barrier, as shown in Figure 1f. The presence of a sufficiently
large barrier in F? (]\7 ) will localize the system to the basin it was initialized in, leading to
hysteresis and erroneous estimates of (N,)s. Moreover, for the wide range of N-values for
which OF, /ON decreases, 0*2F¢ /ON? = 9*F,/ON? < 0. As aresult, F?(N) will have negative
curvature in this N-range, precluding its sampling in the biased simulations, and resulting
in a sharp decrease in (Nv)¢ as ¢ is increased from ¢, t0 @uax. These issues arise from
the presence of locally concave regions of FU(N ), and hinder the sparse sampling method
from obtaining accurate estimates of F,(N) over the entire N-range of interest. Because

concave regions in F,(IN) are a common feature of systems near coexistence, the use of a

linear potential is not appropriate for sparse sampling such systems.

2.4 Extending Sparse Sampling to Systems near Coexistence

To generalize the sparse sampling method for systems near coexistence, here we explore
the use of a biasing potential with a different (non-linear) functional form. In particular,
we consider the frequently used parabolic potential, UK,N*(]\E,) = %H(Nv — N*)%, which
is parameterized by A = [k, N*]. For sufficiently large k-values, such a biasing potential

can regularize the corresponding biased free energy profile, F&V (N ), ensuring that it is

10



monostable. To illustrate this point, we first rewrite Equation 1 for this potential:

Fy(N) = FN(N) = Ugn+(N) + Fy v (4)

For F*N"(N) to be monostable, dF*""/dN = 0 ought to have only one solution, and
correspondingly, so should dF,/dN = —dU, y+/dN = —x(N — N*). In Figure 2a, we again
plot dr? / dN for system 2 (as in Figure 1d); however, we now search for its intersection with
—k(N — N*) with Sk = 0.003. In particular, we see that lines corresponding to —r(N — N*)
for several different N*-values intersect dF> / dN only once when a sufficiently large k-value
is chosen. As a result, the corresponding biased free energy profiles all display a single
basin (Figure 2b). Moreover, the biased simulations facilitate sampling of N, over the entire
range of N-values, and the corresponding (]\71,>,.€, n+-values increase systematically with N*

(Figure 2¢). In fact, the monotonic increase of (N,), n+ with N* is guaranteed because
O(N,) 5+ /ON* = BE(ONZ) .+ > 0.

Using Equation 4, we can then estimate FU(N ) at the (]\71,),{7 ~n+-values shown in Figure 2c.
We can obtain F/®"" (N ) directly from the biased simulations, and to a good approximation,
BESN' (N = (N,)wn+) ~ $log(2m(6N2), n+). Similarly, U, y-(N) is readily obtained as:
Uen+(N = (N,)on+) = %/@((NU)mN* — N*)2. The first two terms on the right hand side of
Equation 4, thus obtained, are shown in Figure 2d. In the sparse sampling approach, the
final term, F), y+, is obtained using thermodynamic integration. The estimation of F, - is
simplified somewhat if a single x-value is adopted, and N* is varied in the biased simulations.
In particular, by using dF, n+/dN* = (dU, y+/dN*), n+, and performing thermodynamic

integration from a reference value, N*

gy to the N* of interest, Fiy« = Fj, y+ — FHer*ef can be

obtained as:

N*

N
Fn- = / <dUn,N*//dN*I>K,N*’dN*I - / K<N*I - <Nv>n,N*’>dN*/ (5>

* >k
ref ref

In this way, Fy v+ = Fy+ + F,; yx_ is obtained to within an unknown constant, F y= , by

11
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Figure 2: Sparse sampling system 2 using a harmonic potential, UK,N*(Nv) = g(]\ﬁ, — N*)%
(a) Extrema of the biased free energy profiles, 5" (N), can be obtained from the inter-
section of OF,/ON and —dU, n-/ON = —r(N — N*). For sufficiently large , only one
intersection will be observed for all N*-values, suggesting that the biased free energetics
ought to be monostable. (b) The biased free energy profiles, F*N"(N) are indeed monos-
table, as expected. (c¢) The average number of waters, (N,). v+ in v, increases monotonically
with N*. (d) The first two terms on the right hand side of Equation 4, F*N"(N) and
—U,n+(N), are shown for N = (N,). n+. (e) The average thermodynamic force, which must
be integrated to obtain Fj, -, the free energy difference between biased and unbiased en-
sembles, is shown as a function of N*. (f) The free energy differences, Fy+ = F,, n+ — F, N
obtained by integrating the results in panel e, are shown for the N*-values considered here.

(2) The sparse sampled F,(N)-values (at N = (N,).n-) accurately capture F (@ )(N ) over its
entire range.

12



using estimates of (IV,). n+ obtained from the biased simulations. The constant, Fy Nz if

desired, can be obtained by thermodynamic integration from 0 to s as:

K

" 1
FH’N:ef - / <dUH,’N:ef/d/€/>H/7Nr*efd/€/ - 5/ <(N® - Nr*ef>2>l‘€',N:efdl€/' (6>
0 0

Alternatively, if N} is chosen to be a basin of F,,(N), there will be significant overlap between
the unbiased and the (reference) biased ensembles, allowing F, y+_to be estimated using free
energy perturbation. ™

For system 2, we first plot the thermodynamic force (the integrand in Equation 5) as a
function of N* in Figure 2e. We note that the integrand varies non-monotonically with N* in
contrast with the corresponding integrand for a linear biasing potential (Figure 1b). We then

choose N to be nl(i;)

(which is a minimum of FéQ)(N )), and use numerical integration to
obtain Fy« for all the simulated N*-values (Figure 2f). Having obtained Fy~, we can then
use Equation 4 to obtain sparse sampling estimates of F,(N) at N = (N,). n- to within

the constant, F}, N7, We do not estimate F), NZ but instead shift F,(N) vertically to set

the zero of F,(N) at N = N*;. As shown in Figure 2g, the free energy profile, F,(N), thus
obtained, is in excellent agreement with FéQ)(N ), highlighting that when the sparse sampling
method is used in conjunction with a parabolic potential, it can be used to characterize the
free energetics of systems near coexistence. A discussion of the similarities and differences

between the sparse sampling method and related techniques, such as Umbrella Integration

(UI),™ is included as supplementary information.

2.5 Choosing the Biasing Potential Parameters Judiciously

The sparse sampling method can be used to efficiently sample F,(/N); however, its practical
implementation relies on the judicious choice of the biasing potential parameters, x and
N*. As shown in Figure 2e, the average thermodynamic force, dFy-/dN*, does not vary

monotonically with N*; thus, care must be exercised in choosing N*-values that capture its

13



functional form. To do so, we propose choosing N*-values in an adaptive fashion. To begin
with, we employ equally spaced N*-values, which span the desired N -range (from 0 to nyq).
The average thermodynamic force, dFy-/dN* = (dU, n+/dN*)n+ = K(N* — (N,) o),
obtained from the biased simulations, is then inspected, and in regions where it changes
relatively abruptly, N*-values are chosen to perform additional simulations. In section 3, we
will illustrate this strategy to estimate Fv(]\Nf ) in a large spherical volume in bulk water.
Care must also be exercised in our choice of k. In Figures 2a and 2b, we showed that
when a parabolic potential with a sufficiently large & is used, dF,/dN = —k(N — N *) has
only one solution for all choices of N*, which then implies that dF'*N" /dN = 0 has only one
solution, and the biased free energetics, FN"(N), are monostable for all N*. However, if &
is chosen to be too small, dF,/dN = —k(N — N*) can have 3 roots for certain values of N*,
with the corresponding F/“N"(N) being bistable, as shown in Figures 3a and 3b (green) for
Bk = 0.0005. To ensure that F»N"(N) is monostable for all N*-values, &, the slope of the
lines in Figure 3a, must be larger in magnitude than the largest negative slope of dF,/ dN.

In other words, a good choice of & is one that ensures the convexity of F»N"(N) for all N

by satisfying the criterion:

LPFNT PF, U,y d2F,
v T v TN T v 0. (7)
dN2  dN?  dN?  dN?

Thus, if F” _ is the largest value that —szf’N*/dNﬂ takes, we ought to choose k > F”

max max*

However, given that we wish to estimate F,(N), the values taken by d?F,/dN? are not

known to us a priori, and neither is F” Moreover, choosing excessively large values of

max*
k is also not recommended, because they can lead to significant errors in estimates of the
average thermodynamic force, k(N* — (]\71,>,4, ~+), by amplifying small errors in our estimates
of (]\7@>,i, ~+.% Such errors in the thermodynamic force are then propagated to Fy- through

thermodynamic integration (Equation 5), and eventually onto F,(N) (Equation 4). Thus,

although it is important to choose a sufficiently large x-value that exceeds F”__, it is not

max’

14
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Figure 3: The importance of choosing a sufficiently large value of k. (a) When & is chosen
to be too small, —dU, y+/dN = —k(N — N*) intersects OF /8N three times for certain
N*-values, suggesting that the corresponding biased free energy profiles, F*N (N ), ought
to be bistable. (b) The biased free energy profiles, F*N"(N), are indeed bistable for select
N*-values, as expected. (c) In biased ensembles with bistable free energetics, FyN" (N),
regions with d?FN" /dN? < 0 can not be sampled. The sharp increase in <Nv>nN* with
increasing N*, shown here, is symptomatic of this inability of biased simulations to sample
certain N, Values The bistability in F/>N"(N) also leads to hysteresis in (N,), y+; that is,

(Nv>,€ ~+ depends on whether the system was initialized in the dry state (upwald arrow) or
the wet state (downward arrow). (d) Estimates of dF,/dN can be obtained at N = (N,),. n-
(blue circles) from the biased simulations; the accuracy of these estimates is evident from
their agreement with the exact dF? /dN (red dashed line). A line connecting the points
that correspond to the sharpest decrease in dF,/dN is shown (blue), and the magnitude of
its slope is defined as Fy;. Fy/; provides a lower bound (and a rough estimate) for £, the

est* max’

highest value that —d?F,/dN? takes, and also informs our revised choice of .
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advisable to choose an excessively large k-value because the length of time for which biased

simulations must be run to obtain comparable errors in F,(N) grows with 2.
Given these competing requirements, how do we optimally choose k7 As a rule of thumb,
we propose choosing Bk to be a multiple of (JN2)5!, that is, 8k = a(6N?)g! with « in the

range, 3 < a < 5. The choice is underpinned by the observation that SF”_ ., the maximum

max’

negative value assumed by SBd*F,/ dN2?, is often comparable to its (positive) value in the
liquid basin, (§N2)5!, which is readily accessible from an unbiased simulation. We have
found that s chosen in accordance with this rule of thumb tends to satisfy the criterion in

Equation 7 (that is, x > F”_ ). However, in the unlikely event that our initial choice of

max

k is too small, our biased simulations will exhibit a number of symptoms. In particular, if

Kk < F”

max’

for certain N*-values, d>F~N"/ dN? will be negative over a range of N-values,
which will not be sampled in the biased simulations. Consequently, there will be a sharp
change in (]\71,},.@, ~+ as a function of N*, as shown in Figure 3c. A second symptom of a small
k is the appearance of hysteresis in <]\7v),i’ ~+ (Figure 3c¢), making it prudent to perform two
sets biased simulations that are initialized in the liquid and vapor basins, respectively. Thus,

when k is chosen to be smaller than F”_ . we encounter all of the same challenges that were

max’

encountered when using a linear biasing potential.
If our initial choice of k turns out to be too small, how do we choose a revised k-value? Can
our initial set of biased simulations inform this revised choice? To address these questions,

we recognize that the response curves can also provide estimates of dF,,/ dN at N = (]\7@),@ e

through:
dF,

dN (N = <Nv>n,N*) ~ _’%(<Nv>n,]\f* - N*) (8>

To obtain this equation, we recognize that dF,/dN = dF*N" /dN — k(N — N*) (Equation 4),
and that dFN" /dN ought to be 0 for N = (N,), n+. Estimates of dF,/dN thus obtained
are shown in Figure 3d, and display two clusters at low and high N-values. Although
dF,/dN increases with increasing N within the clusters, it decreases as we move from the

low-N cluster to the high-N cluster, implying that d?F, /dN? < 0 for intermediate N-values.
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By identifying points that display the sharpest decrease in dF, /dN , and estimating the

magnitude of the slope of the line connecting those points, F', (Figure 3d), we can obtain

est

that is, £, < F”

est ~ * max"

a rough estimate of F__: in fact, F!, provides a lower bound on F

max’ max’

Thus, if our choice of « is smaller than Fl, — that is, if k < F, < F . — it was clearly

too small. To be safe, we propose the heuristic that « be larger than some multiple of

F// .

est?

that is, k > aF”

est?

with 3 < o < 5. If this criterion is violated and either of the two
low-x symptoms, discussed above, are observed, we recommend that the revised s be chosen
according to: Kpew =  max(Kog, Fhy); that is, the revised (larger) value of x ought to be

chosen to be « times either the previous (smaller) value of k or F!.  whichever is greater.

est?
Thus, inspecting dF,/ dN not only provides us with a third symptom of a small %, but it
also provides a way to choose the revised (higher) value of k. Simulations with this higher
value of k can then be repeated at all the N*-values. However, using a single k-value for
all biased simulations is not necessary. We can also combine our initial low-x simulations

(that are outside the hysteresis region) with the newer high-x simulations to obtain F,(N).

In section 4, we will illustrate how to integrate simulations with different x-values.

3 Fluctuations in a Large Volume in Bulk Water

Here we use sparse sampling to characterize the free energetics, FU(N ), of observing N wa-
ters in a spherical volume of radius, R, = 3 nm, in bulk water. Because the volume contains
a large number, n;, ~ 3700, water molecules on average (Figure 4a), a large number of
simulations are needed to obtain FU(N ) using umbrella sampling. Indeed, 147 biased simu-
lations, each run for 1 ns, were needed to ensure overlap between adjacent biased ensembles,
and obtain the free energy profile, F,(N), shown in Figure 4d (red curve). Sparse sampling
provides an efficient alternative to obtain FU(N ) at sparsely sampled N-values; given the

proximity of bulk water at ambient conditions to liquid-vapor coexistence, we make use of

a parabolic potential, U, y+~. We first perform an unbiased simulation to estimate, <5N3>0,
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and choose fr = a<5N3>51 = 0.016 using v = 5. We then perform biased simulations with

(1)

this value of k, and 7 sparsely spaced N*-values that span from 0 to N -

The average number of water molecules, <]\7U),$7 ~+, obtained from the 7 biased simulations
increase as N* is increased (Figure 4b, green squares). However, the thermodynamic force,
dFy-/dN* = k(N* — (N,)..n+), which must be integrated to obtain Fy. (Equation 5), varies
non-monotonically with N*, first increasing at low N*, then decreasing gradually, only to
increase abruptly at the highest N*-values (Figure 4c). This abrupt increase suggests that
the functional form of the integrand may not be adequately captured in the high N*-region.

Nevertheless, the sparse sampled F,(N)-values (Figure 4d, green squares), obtained using

the (N,).n+-values from these 7 simulations alone, not only capture F,(N) qualitatively,
but also display semi-quantitative agreement with the exact FU(N ) obtained from umbrella
sampling (red curve), with the error in the free energies being roughly 15%.

To better capture the functional form of dFy+/dN*, and to improve the accuracy with
which the Fy+-values, and thereby the sparse sampled FU(N ) profile are estimated, we include
four additional simulations; two each between the three highest N*-values. This increases the
resolution with which we are able to characterize dFy+/dN* in a targeted fashion, providing
estimates in the N*-range where they are needed the most. The corresponding results,
shown by the yellow circles in Figures 4b-d, highlight the improvement in our knowledge of
the functional form of the dFy«/dN* (Figure 4c), and the corresponding improvement in
our estimation of F,(N) (Figure 4d), which result from the four additional simulations. This
procedure of inspecting the variation of the integrand with N* and employing additional
simulations in regions of substantive variation to adaptively augment our characterization of
the functional form of the integrand can be repeated further to obtain even more accurate

estimates of F,,(N). Here, we perform two more simulations at such N*-values, and obtain
estimates of F,(N) (blue triangles), which are not only in excellent quantitative agreement
with the umbrella sampling results, but also differ only marginally from estimates in the

previous iteration (yellow circles), suggesting that convergence has been achieved. However,
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Figure 4: Employing the sparse sampling method to characterize the free energetics of water
density fluctuations in a large volume in bulk water. (a) A snapshot of the simulation box
highlighting the spherical observation volume of radius, R, = 3 nm, in bulk water, which
contains roughly 3700 water molecules on average. (b) The variation of (]\7@),% N+ with N*
is roughly linear, facilitating the sampling of the entire Nv—range of interest. Green squares
correspond to the data obtained from the 7 initial simulations, whereas the yellow circles cor-
respond to results from 4 additional biased simulations, which were subsequently performed
to better estimate the functional form of dFy+/dN*. Similarly, the blue triangles represent
results from 2 more biased simulations that were performed in the third and final iteration.
(c) Estimates of dFx«/dN* obtained from our biased simulations highlight its complex de-
pendence on N*. Our initial simulations (green) suggest that at low N*, dFy«/dN* increases
as with increasing N*, then decreases gradually, before increasing sharply at high N*-values.
To better capture the functional form of dFy+/dN* at high N*, we add two simulations each
between the 3 highest N* values (yellow), which improve our knowledge of its functional
form, and thereby ought to improve our estimates of Fy«, and eventually, FU(N ). This pro-
cedure of successively adding simulations in regions where dF'y+ /dN* varies sharply with N*
can be continued; here we add two more simulations in the third iteration (blue). (d) The
sparse sampled F,(N) obtained using only the 7 initial simulations (green) is in good quali-
tative agreement with the exact umbrella sampling result (red line). The targeted addition
of 4 more simulations (yellow) results in quantitative agreement with umbrella sampling,
but is achieved with only a few percent of the computational expense. Adding the final 2
simulations (blue) results in only a small change in our estimate of F, (N). (e) Estimates
of OF,/ON obtained at N = (N,).n- highlight a sharp decrease around N = 3200; the
magnitude, F, . of the slope of the line (black) connecting the points around this decrease
provides us with a rough estimate for F . Given that our choice of  is sufficiently (4.2

times) larger than F , we do not anticipate bistability in our biased simulations.
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in contrast with the umbrella sampling, which incurred a computational overhead of 147 ns,

obtaining the sparse sampled F,(NN) (blue triangles) in Figure 4d required only 13 biased

simulations, each run for 0.2 ns, for a total simulation time of 2.6 ns. Thus, we were able to

estimate F,(N) roughly 2 orders of magnitude faster using sparse sampling.

Although no sharp jumps in <J\~fv),{7 N+ were observed upon increasing N* in Figure 4b,
we nevertheless estimate OF,/ON at those N = (N,). n--values (Figure 4e, symbols) to
ensure that our choice of k was sufficiently large. By connecting the points that display the

sharpest decrease in 0F,/ ON with a line (Figure 4e, black line), we estimate SF”, ~ 0.004,

est

and correspondingly, x/F!, ~ 4.2, suggesting that our initial choice of xk was sufficiently

est

large.

4 Water in hydrophobic confinement

Here we use sparse sampling to characterize the free energetics of water density fluctuations

in confinement between two square hydrophobic plates, roughly 4 nm by 4 nm in size, that

are separated by 1.6 nm (Figure 5a). For this separation, F, (V) is known to feature two
basins:* a liquid (high N) basin and a vapor (low N) basin (Figure 5c¢, red curve). Moreover,
in the vicinity of the barrier that separates the two basins, that is, near the maximum in
F,(N), there appears to be a “kink” or a sharp change in the slope of F,(N). In other words,
over a small range of N-values, FU(N ) displays high negative curvature. Recent work has
attributed such a kink in F, (V) to the presence of different dewetted morphologies on either
side of the kink.?>® In particular, Remsing et al. showed that the low-N (vapor) side of
the kink features vapor tubes spanning the confined region between the two plates, whereas
the high—N (liquid) side of the kink features isolated cavities that appear adjacent to one
plate or the other.3® Similar behavior has also been reported for dewetting on nanotextured

hydrophobic surfaces, wherein multiple kinks were observed in F,(/N), and were associated

with transitions between different dewetted morphologies.3
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Figure 5: Employing sparse sampling to characterize F,(N) in hydrophobic confinement.
(a) Snapshot of the simulation box highlighting water (red/white) in confinement between
hydrophobic plates (cyan). The two hydrophobic plates, roughly 4 nm by 4 nm in size, are
placed parallel to one another with a distance of 1.6 nm between them. The cuboid observa-
tion volume, v, which contains the confined waters, is also shown. (b) Estimates of (N,), y-
are shown for biased simulations performed using Sx = 0.016, and 12 sparsely spaced N*-
values. (c) The exact F,(N) obtained using umbrella sampling (red curve) displays two
distinct basins, and a sharp change in slope (kink) near N = 500. The sparse sampling es-
timates of F,(N) at N = (N,).n+ are in qualitative agreement with the umbrella sampling
results; however, there is a clear lack of quantitative agreement for N < 500. (d) Estimates
of dF,/ON obtained at N = (N,). - highlight a sharp decrease around N = 500; the mag-
nitude, F . of the corresponding slope (black line) provides us with a rough estimate of

est?
F/ .. (e) Based on the relative magnitudes of x and F/,, we elect to perform additional

est
higher & simulations at select N*-values in the vicinity of N = 500 (purple). (f) Estimates of
dF,/ON from the high-x simulations allow us to obtain a revised F; the revised x/F", ~ 5,
suggesting that higher s ensembles are likely to be monostable. (g) Estimates of F,, y+ for
all the biased simulations are shown. (h) The revised sparse sampling results are in excellent

agreement with those obtained using umbrella sampling (exact).
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To sparse sample the system shown in Figure 5a, we first choose Sk = 0.016, following our

rule of thumb (section 2.5). Given that this choice makes use of the curvature of F, (V) in the
liquid basin, it is unlikely to yield a x-value that exceeds the large negative curvature in Fv(]\? )
in the vicinity of a kink. We thus recognize that our initial choice of x is likely to result in
bistable biased free energy profiles, F%" (]\7 ); however, because the large negative curvature
in F,(N) is localized to a small N-region near the kink, F*""(N) ought to be bistable for
only a small range of N*-values. Using our initial choice of k, we run biased simulations for
12 sparsely distributed N*-values; the resulting values of <]\~7v),§7 ~n+ are shown in Figure 5b
as a function of N*. The increase in <]\7v),{’ N+ with N* appears to be gradual, apart from a
relatively sharp increase near N* = 500. By integrating dFy+/dN* = k(N* — (N,),. n+) with
respect to N* to obtain estimates of Fy+, and using Equation 4, we then obtain estimates
of F,(N) at N = (N,)..n- (Figure 5c, blue circles). The results display qualitative, but not
quantitative agreement with the exact umbrella sampling results (Figure 5c, red line).

To obtain more accurate estimates of FU(N ), and in particular, to ascertain whether the
sharp increase in (N,).ny+ near N* = 500 is symptomatic of bistability in FN"(N), we
plot estimates of dFU/dN at N = (]\71,>,i7N* in Figure 5d. We find that dFU/dN decreases
sharply in the vicinity of N = 500, and that the magnitude of the corresponding slope,

BF”. ~ 0.0086, and correspondingly, x/F

i v ~ 1.86, which is less than our chosen threshold

of a = 3. Taken together with the sharp increase in <]\~7U),€7 N+, this suggests that our initial
choice of k was not large enough to prevent bistability in F*¥"(N) near N* = 500. Thus,
either the biased simulations must be extended until a converged F*N" (N ) is obtained with
sufficient sampling of both its basins, or a larger value of x ought to be chosen to ensure that
the biased free energy profiles are monostable. This is a non-trivial choice, which must take
into consideration the possibility of hidden barriers, that is, barriers in collective variables
that are orthogonal to N,, and the anticipated height of those barriers. Here we follow
the prescription outlined in section 2.5, and choose a revised (higher) value of frx = 0.048.

However, given that the sharp decrease in dF, /dN occurs over only a small range of N-
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values (Figure 5d), we do not repeat all the biased simulations using this higher value of k.
Instead, we repeat our biased simulations with the higher x-value only for N*-values around
500; the k and N*-values that we adopt for the old and new biased simulations are shown
in Figure 5e. The higher x simulations allow us to augment our knowledge of dF,/ dN, and

obtain a revised estimate for F/,

(Figure 5f). Comparing the revised values, 5F

est

~ 0.0096,

and Srk = 0.048, we get a revised estimate of x/F”

vt ~ 5, which is above our threshold of

a = 3. Thus, we expect our revised choice of k to be large enough to facilitate sampling of
N, in the vicinity of the kink, without the appearance of bistability in F/*N"(N) or hysteresis
in (N,) e ne-

Given that we no longer employ a single value of s, in addition to estimating how F}, y-
varies with N* (for a given x), we must also estimate the change in F}, - as « is changed (for
the two N* values shown in Figure 5e). We find that the latter can be readily estimated using
the Bennett Acceptance Ratio (BAR) method ™ because changing x (while keeping N* the
same) leads to good overlap in N,-values sampled by the biased ensembles with different x-
values. In Figure 5g, we plot estimates of F); y+ for all the biased ensembles considered. With
all the F,, y»-values in hand, Equation 4 can then be used to obtain FU(N) at N = <]\7U)H7N*;
the resulting sparse sampled FU(N )-estimates are shown in Figure 5h, and display good
agreement with the umbrella sampling result. Finally, we note that the total computational
cost for performing sparse sampling is roughly 3 ns (16 simulations, 200 ps each), whereas

the cost for performing umbrella sampling is roughly 230 ns (38 simulations, 6 ns each), once

again resulting in a nearly two orders of magnitude improvement in computational efficiency.

5 Conclusions

A characterization of the free energetics of water density fluctuations in bulk water, at

interfaces, and in hydrophobic confinement has substantially advanced our understanding of

4,14,16-18,71,76-81

hydrophobic hydration, interactions, and assembly. Such a characterization
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typically requires enhanced sampling techniques, such as umbrella sampling, which can be

expensive, 16:64

In particular, the requirement that order parameter distributions obtained
from adjacent biased simulations display overlap, exacts a steep computational cost, and
in certain contexts, can render umbrella sampling prohibitively expensive. We recently
introduced a sparse sampling method, which circumvents the overlap requirement central
to umbrella sampling, and instead uses thermodynamic integration to estimate free energy
differences between the biased and unbiased ensembles.%? By employing only a few sparsely
separated biased simulations, the sparse sampling method was able to estimate free energy
profiles at a small fraction of the computational cost exacted by umbrella sampling.

62
fl,

Although the sparse sampling method, as introduced in re is efficient in its estimation

of F,(NN), it is only suitable for systems with convex free energy landscapes, thereby excluding
the important class of systems which are at or close to coexistence. To estimate F,(N)
for systems near liquid-vapor coexistence, we generalized the sparse sampling method to
sample free energy landscapes with concave regions. Using model systems with analytical
landscapes, we first highlighted the challenges associated with sparse sampling systems near
coexistence. We then illustrated the use of a harmonic potential, U, y+ = %/{(NU — N*)2,
to regularize the free energy landscape. Importantly, both the accuracy and efficiency of
sparse sampling rely critically on the choice of the force constant, k, as well as the N*-values
for which biased simulations are performed. In order to minimize computational expense
while ensuring reasonable accuracy, we proposed the use of sensible heuristics which guide
the initial choice of the biasing potential parameters, x and N*. We also introduced criteria
for determining whether these initial choices needed to be refined, and proposed strategies
for adaptively choosing new values of k and N*, when needed.

To illustrate the efficiency of the sparse sampling method, we studied two realistic systems
close to liquid-vapor coexistence. First, we characterized FU(N ) in a large volume containing

roughly 3700 waters in bulk water at ambient conditions Although liquid water is stable

relative to its vapor at ambient conditions, it can undergo a cavitation transition undergo
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sufficient tension, which gives rise to concave features in FU(N ).5582°84 By choosing N*-
values adaptively, we obtained an accurate characterization of the free energetics of this
process. We also computed FU(N ) for water confined between two hydrophobic plates —
a system with distinct liquid and vapor basins. Due to the presence of a small region of
high negative curvature in Fv(N ), this system provides a more stringent test to the sparse
sampling method. By choosing x-values adaptively, sparse sampling again facilitates an
accurate characterization Fv(]\? ). In both cases, the computational expense of estimating
FU(N ) is roughly two orders of magnitude smaller than umbrella sampling.

Although we focus on the free energetics of water density fluctuations, the sparse sampling
method itself is general, and can be readily used with any order parameter. Moreover, it can
also be extended to higher dimensions, and used to sample multiple order parameters. The
efficiency of the sparse sampling method makes it particularly attractive for characterizing
the free energy landscapes of systems for which umbrella sampling is prohibitively expensive.
Such instances may arise when the (biased) simulations themselves are inherently expensive;
for example, it can be quite expensive to simulate crystalline systems with slow dynamics,
or to explicitly account for polarizability or electronic effects. 59038586 Alternatively, when a
large number of biased simulations are needed to satisfy the overlap requirement, and span
the order parameter range of interest, umbrella sampling can again become very expensive;
examples include the order parameter range of interest itself being large, inherent system
fluctuations being small, and a high dimensional order parameter phase space.8” % In each
of these contexts, wherein performing extensive umbrella sampling simulations may not be

feasible, we hope that the estimation of free energy profiles will be facilitated by the sparse

sampling method presented here.
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Simulation Details We perform all-atom molecular dynamics (MD) simulations using the
GROMACS package,” suitably modified to incorporate the biasing potentials of interest.
The leap frog algorithm ! was used to integrate the equations of motion with a 2 fs time-step,
and periodic boundary conditions were employed in all dimensions. The SPC/E model of
water?? was employed in all simulations, with the hydrogen bonds of water molecules being
constrained using the SHAKE algorithm.? The Particle Mesh Ewald algorithm% was used
to compute the long range electrostatic interactions, and short range interactions Lennard-
Jones and electrostatic interactions were truncated at 1 nm. The canonical velocity-rescaling
thermostat? was used to maintain a system temperature of 300 K.

Spherical Volume in Bulk Water

The spherical observation volume with a radius, R, = 3 nm, was placed at the center of a
cubic simulation box with a side of 10 nm. Simulations were performed in the NPT-ensemble
at a pressure of 1 bar, which was maintained using the Parrinello-Rahman barostat. To
allow for equilibration, the first 100 ps were discarded from each biased simulation.

Water in Hydrophobic Confinement

The simulation setup for the hydrophobic plates is the same as that used in ref.?> The plates
are 4 nm by 4 nm in size and are separated by 1.6 nm, so that the confinement region is
spanned by a 4 x4 x 1.6 nm? cuboid observation volume that is positioned between the plates.
Simulations were performed in NVT-ensemble with a buffering water-vapor interface, which

16,51,64

keeps the system at its coexistence pressure. To allow for equilibration, the first 500 ps

were discarded from each biased simulation.
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