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Abstract

The free energetics of water density fluctuations in bulk water, at interfaces, and in

hydrophobic confinement inform the hydration of hydrophobic solutes as well as their

interactions and assembly. The characterization of such free energetics is typically per-

formed using enhanced sampling techniques such as umbrella sampling. In umbrella

sampling, order parameter distributions obtained from adjacent biased simulations must

overlap in order to estimate free energy differences between biased ensembles. Many

biased simulations are typically required to ensure such overlap, which exacts a steep

computational cost. We recently introduced a sparse sampling method, which circum-

vents the overlap requirement by using thermodynamic integration to estimate free

energy differences between biased ensembles. Here we build upon and generalize sparse

sampling for characterizing the free energetics of water density fluctuations in systems

near liquid-vapor coexistence. We also introduce sensible heuristics for choosing the

biasing potential parameters and strategies for adaptively refining them, which facili-

tate the estimation of such free energetics accurately and efficiently. We illustrate the
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method by characterizing the free energetics of cavitation in a large volume in bulk

water. We also use sparse sampling to characterize the free energetics of capillary

evaporation for water confined between two hydrophobic plates. In both cases, sparse

sampling is nearly two orders of magnitude faster than umbrella sampling. Given its

efficiency, the sparse sampling method is particularly well suited for characterizing free

energy landscapes for systems wherein umbrella sampling is prohibitively expensive.

Keywords: free energy method, umbrella sampling, thermodynamic integration, hydropho-

bic confinement

1 Introduction

At ambient conditions, water and many other liquids are close to coexistence with their vapor

phase.1–10 Liquid water in the vicinity of hydrophobic surfaces is destabilized further, situ-

ating interfacial waters at the edge of a dewetting transition, and rendering them sensitive

to unfavorable perturbations.11–19 Moreover, when confined between hydrophobic surfaces,

liquid water can become metastable (or even unstable) with respect to its vapor.20–37 Such

interfacial or confined waters, which are situated near liquid-vapor coexistence, play an im-

portant role in diverse processes, ranging from colloidal assembly and protein interactions, to

heterogeneous vapor nucleation and the loss or recovery of superhydrophobicity.23,36,38–46 In

particular, displacing the interfacial or confined waters can incur a substantial free energetic

cost, and influence the kinetics of these process.35,47–49 Thus, characterizing the free ener-

getics of water density fluctuations can shed light on the mechanistic pathways associated

with wetting-dewetting transitions in such systems, and also inform the magnitude of the

associated barriers.33,36,45,50–55

To characterize the free energetics of rare water density fluctuations, it becomes necessary

to employ enhanced sampling techniques, such as umbrella sampling, which are computa-

tionally expensive. However, umbrella sampling can become prohibitively expensive when
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the simulations themselves are very expensive or when a large number of biased simulations

are needed.39,56–61 To address these challenges and facilitate the computationally efficient

characterization of the free energetics of water density fluctuations, here we build upon a

sparse sampling method that we previously introduced,62 and generalize it to study systems

near liquid-vapor coexistence. In the following sections, we will first use model (analytical)

free energy landscapes to illustrate the sparse sampling method, the reasons underlying its

successes, and situations when it is challenged. We then extend the sparse sampling method

to tackle such challenging scenarios. Both the accuracy and the efficiency of sparse sam-

pling rely on the choice of biasing potential parameters; we introduce sensible heuristics for

choosing such parameters and strategies for adaptively refining them. We then highlight the

efficiency of the sparse sampling method by using it to characterize the free energetics of wa-

ter density fluctuations in a large volume in bulk water. Finally, we apply sparse sampling

to a particularly challenging system, wherein water is confined between two hydrophobic

surfaces, and the free energetics of water density fluctuations display two basins that are

separated by a barrier.

2 Illustrating Sparse Sampling Using Model Landscapes

2.1 Umbrella Sampling vs Sparse Sampling

Characterizing the free energetics of order parameter fluctuations, which are too rare to be

observed in unbiased molecular simulations, requires the use of non-Boltzmann sampling

techniques such as umbrella sampling. To facilitate the sampling of such rare order param-

eter fluctuations, umbrella sampling prescribes the use of biasing potentials, which enhance

the likelihood with which otherwise improbable fluctuations are sampled. Although um-

brella sampling provides a powerful way to characterize the free energetics of rare order

parameter fluctuations, it exacts a steep computational cost, which can become prohibitive,

either when the biased simulations themselves are expensive,39,56–58,60,61,63 or when a large
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number of biased simulations are needed to span the order parameter range of interest. To

address this challenge, we recently introduced a sparse sampling method,62 which employs

sparsely separated biased simulations, and can be orders of magnitude more efficient than

conventional umbrella sampling.

Although the sparse sampling method is generally applicable to any order parameter, here

we focus on an order parameter that represents the smoothed (or coarse-grained) number

of water molecules, Ñv, in an observation volume, v, of interest. We bias Ñv in lieu of the

closely related (discrete) number of waters, Nv, in v, because performing biased molecular

dynamics (MD) simulations with a discrete order parameter results in impulsive forces. The

precise definition of Ñv as well as its dependence on the atomic positions, R, can be found

in ref.64 We wish to estimate the free energetics of water density (or rather Ñv) fluctuations,

Fv(Ñ) = −kBT lnPv(Ñ), where kB is the Boltzmann constant, T is the system temperature,

and Pv(Ñ) = 〈δ(Ñv−Ñ)〉0, is the probability of observing Ñ coarse-grained waters in v; here,

〈O(R)〉0 ≡
∫

dR O(R) exp(−βH0)/Q0 represents the ensemble average of O(R), given the

generalized Hamiltonian, H0(R), and Q0 ≡
∫

dR exp(−βH0) is the corresponding partition

function. To facilitate the sampling of Ñv(R) over the entire Ñ -range of interest, we use

potentials, Uλ̄(Ñv), which bias Ñv, and are parametrized by the vector, λ̄; that is, we perform

biased simulations using the Hamiltonians, Hλ̄(R) = H0(R)+Uλ̄(Ñv(R)). Using such biased

simulations, we can estimate averages in the biased ensembles, 〈O(R)〉λ̄, and in particular,

we estimate the biased distributions, P λ̄
v (Ñ) = 〈δ(Ñv − Ñ)〉λ̄, and the corresponding free

energetics, F λ̄
v (Ñ) = −kBT lnP λ̄

v (Ñ). For the Ñ -range sampled by a biased simulation,

Fv(Ñ) can then be related to F λ̄
v (Ñ) using the exact result

Fv(Ñ) = F λ̄
v (Ñ)− Uλ̄(Ñ) + Fλ̄, (1)

where Fλ̄ ≡ −kBT ln
(

Q
λ̄

Q0

)

is the free energy difference between the biased and the unbiased

ensembles, and Qλ̄ is the partition function corresponding to Hλ̄. The derivation of Equa-
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tion 1 is included as supplementary information. Using F λ̄
v (Ñ) obtained from the biased

simulation, and the known functional form of Uλ̄(Ñ), Fv(Ñ) can then be obtained to within

the unknown constant offset, Fλ̄.

In umbrella sampling, estimates of Fλ̄ for the different biased ensembles are obtained by

requiring an overlap in the range of Ñ -values sampled by adjacent biased simulations, and

in particular, by matching Fv(Ñ)-values obtained from different biased simulations in the

overlap regions; algorithms such as the Weighted Histogram Analysis Method (WHAM) or

Multi-state Bennet Acceptance Ratio (MBAR) are typically used for this purpose.65–70 Such

an umbrella sampling strategy is powerful and has facilitated the characterization of the free

energetics of water density fluctuations in numerous contexts.5,16–19,71 However, to satisfy

the above overlap requirement, it becomes necessary to run many long biased simulations.

In practice, the associated computational cost limits the size of v as well as the level of

simulation detail (e.g., classical vs ab initio MD60,61) for which Fv(Ñ) can be characterized.

In contrast, the sparse sampling method does not require overlap between adjacent biased

distributions.62 Instead, sparse sampling employs thermodynamic integration to obtain Fλ̄,

and in principle, it can facilitate estimation of Fv(Ñ) at sparsely distributed Ñ -values orders

of magnitude faster than conventional umbrella sampling. Below, we first describe the sparse

sampling method, as introduced in ref.,62 and discuss its advantages and shortcomings; then,

we generalize the sparse sampling method to address those shortcomings.

2.2 Sparse Sampling with a Linear Biasing Potential

In ref.,62 we introduced sparse sampling using a linear biasing potential, Uφ(Ñv) = φÑv,

parameterized by φ; that is, λ̄ = [φ], and the corresponding biased ensemble Hamiltonian,

Hφ = H0 + Uφ(Ñv). Equation 1 then becomes:

Fv(Ñ) = F φ
v (Ñ)− Uφ(Ñ) + Fφ. (2)
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Instead of relying on an overlap in the Ñ -values sampled by adjacent biased ensembles,

sparse sampling prescribes estimating Fφ by integrating dFφ/dφ ≡ 〈dUφ/dφ〉φ = 〈Ñv〉φ, that

is, by using the identity:

Fφ =

∫ φ

0

〈Ñv〉φ′dφ′. (3)

In practice, only a small number of biased simulations that sample well-separated Ñv-values

are performed; hence the term sparse sampling. Following Equation 3, the corresponding Fφ-

estimates are then obtained by numerically integrating the averages, 〈Ñv〉φ, obtained from

those simulations. To minimize integration errors in estimating Fφ, the sparse sampling

method thus relies on capturing the variation of 〈Ñv〉φ, the average thermodynamic force

(and the integrand in thermodynamic integration), with φ. In other words, to accurately

estimate Fφ, the biased simulations must capture the functional dependence of 〈Ñv〉φ on

φ. Indeed, our choice of a linear biasing potential, Uφ(Ñv) = φÑv, was informed by this

requirement. In particular, because d〈Ñv〉φ/dφ = −β〈δÑ2
v 〉φ ≤ 0, this choice ensures that

the average thermodynamic force, 〈Ñv〉φ, decreases monotonically with φ, and for certain

systems, the decrease can even be linear in φ.72 Here, 〈δÑ2
v 〉φ is the variance of P φ

v (Ñ). In

ref.,62 we used Equations 2 and 3 to efficiently estimate Fv(Ñ) in small volumes in bulk

water and at interfaces, and in large volumes in heterogeneous interfacial environments such

as protein hydration shells. However, as highlighted in ref.,62 and discussed in further detail

below, the use of a linear potential is not suitable for sparse sampling systems near liquid-

vapor coexistence.

2.3 Sparse Sampling Systems Near and Far from Coexistence

To illustrate the differences between systems near and far from liquid-vapor coexistence, we

consider two model systems characterized by distinct analytical free energy profiles (Fig-

ure 1a). System 1 is representative of a system far from liquid-vapor coexistence, and is

monostable: F
(1)
v (Ñ) = 1

2
κm(Ñ −n

(1)
liq )

2; the corresponding distribution, Pv(Ñ), is Gaussian.
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In contrast, system 2 resembles a system close to liquid-vapor coexistence, and is bistable:

F
(2)
v (Ñ) = κb(Ñ − n

(2)
vap)2(Ñ − n

(2)
liq )

2 − φbÑ , with distinct basins at low and high Ñ -values.

We have designed F
(1)
v (Ñ) and F

(2)
v (Ñ) so that the high Ñ (liquid) basins for the two model

systems are similar to one another, and to a 3 nm spherical observation volume in bulk

water, which we will consider in the following section. To do so, we choose βκm = 0.00318,

n
(1)
liq = 3720, βκb = 1.2×10−10, n

(2)
vap = 500, n

(2)
liq = 3600 and βφb = 0.3, where β ≡ 1/kBT . Al-

though F
(1)
v (Ñ) and F

(2)
v (Ñ) are representative of commonly encountered free energy profiles

far from and near liquid-vapor coexistence respectively, we note that these model systems

are purely illustrative. For typical systems of interest, such Fv(Ñ)-profiles will not be known

a priori; rather, our goal will be to characterize them using sparse sampling.

The first step in characterizing the Fv(Ñ)-profiles of the above systems using sparse

sampling is to obtain the averages, 〈Ñv〉φ, for several φ-values. In lieu of performing biased

simulations, we infer the biased free energetics, F φ
v (Ñ), by reweighting the Fv(Ñ)-profiles for

the two systems using Equation 2. The locations of the minima in F φ
v (Ñ) then provide us

with the averages, 〈Ñv〉φ, that would be obtained from the corresponding biased simulations.

We assume that all biased simulations are initialized with either high Ñv-values (Ñv

0
≈ n

(1)
liq )

or low Ñv-values (Ñv

0
≈ 0). Thus, if F φ

v (Ñ) displays multiple minima separated by a barrier,

we assign to 〈Ñv〉φ the minimum that is closest to Ñv

0
, noting that in realistic simulations, a

barrier of only a few kBT is sufficient to localize the system in the basin it was initialized in.

In this instance, 〈Ñv〉φ does not represent a true biased ensemble average, but an estimate of

the average that would be obtained from a biased simulation, and one that may suffer from

serious inaccuracies due to the loss of ergodicity, which accompanies a bistable F φ
v (Ñ).

In Figure 1b (symbols), we show estimates of 〈Ñv〉φ, computed accordingly for equally

spaced φ-values. Although 〈Ñv〉φ decreases monotonically with φ for both systems, there

are significant differences in the 〈Ñv〉φ vs. φ response of the two systems. For system 1, the

dependence of 〈Ñv〉φ on φ is particularly simple; 〈Ñv〉φ decreases linearly with φ. Moreover,

identical estimates of 〈Ñv〉φ are obtained regardless of how the biased simulations are initial-
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ized. The integral, Fφ =
∫ φ

0
〈Ñv〉φ′dφ′ (Equation 3), can thus be estimated accurately for each

of the 8 equally-spaced φ-values. Then, Equation 2 can be used to obtain estimates of Fv(Ñ)

at Ñ = 〈Ñv〉φ. These estimates are shown in Figure 1c, and are in excellent agreement with

F
(1)
v (Ñ). The linear dependence of 〈Ñv〉φ on φ also means that the Ñv-values sampled in

the biased simulations are distributed across the Ñ -range of interest, enabling determination

of Fv(Ñ) over that entire range. Thus, the sparse sampling method in conjunction with a

linear potential is particularly well suited for characterizing the free energetics of systems

far from coexistence.

In contrast with the gradual decrease of 〈Ñv〉φ with increasing φ for system 1, 〈Ñv〉φ

decreases sharply over a narrow range of φ-values for system 2, as shown in Figure 1b.

Thus, for uniformly spaced φ-values, high and low Ñv-values are sampled well in the biased

simulations, but intermediate values are not. Consequently, there is a large range of Ñ -values

(200 . Ñ . 3400) for which estimates of Fv(Ñ) cannot be obtained (Figure 1c). Moreover,

the gap in our knowledge of the functional form of 〈Ñv〉φ versus φ results in significant

errors in our estimation of Fφ for the higher φ-values, and thereby in estimates of Fv(Ñ) for

the lower Ñ -values (Figure 1c). To make matters worse, for the φ-range over which 〈Ñv〉φ

decreases from high to low values, biased simulations initialized with low and high Ñv-values

result in very different estimates of 〈Ñv〉φ; that is, hysteresis is observed in 〈Ñv〉φ versus φ

(Figure 1b).

To understand this contrast between systems 1 and 2, we recognize that the Ñv-values

sampled in a biased simulation will be in the vicinity of a minimum in F φ
v (Ñ). Extrema of

F φ
v (Ñ) obey ∂F φ

v /∂Ñ = 0, and because F φ
v (Ñ) = Fv(Ñ) + Uφ(Ñ) − Fφ (Equation 2), the

extrema will satisfy ∂Fv/∂Ñ = −∂Uφ/∂Ñ = −φ. In Figure 1d, we plot ∂Fv/∂Ñ for both

systems; for system 1, it is linear and increases monotonically with Ñ , whereas for system

2, it varies non-monotonically with Ñ . For system 1, there can thus be only one solution to

∂Fv/∂Ñ = −φ, and thereby only one minimum in F φ
v (Ñ) for any value of φ (Figure 1d). This

is indeed the case as shown in Figure 1e. The corresponding biased distributions, P φ
v (Ñ), will
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thus be unimodal, facilitating the efficient estimation of the thermodynamic force, 〈Ñv〉φ,

for all values of φ. Moreover, these arguments apply to any system for which ∂Fv/∂Ñ

increases monotonically with Ñ , and correspondingly, Fv(Ñ) is convex over the entire range

of Ñ -values. In ref.,62 we showed that heterogeneous surfaces, such as the protein hydration

shells, which display a wide range of chemistries from hydrophobic to hydrophilic, indeed

satisfy these criteria.

In contrast, the non-monotonic variation of ∂Fv/∂Ñ with Ñ for system 2 allows for

the possibility of three solutions to ∂Fv/∂Ñ = −φ in the range φmin ≤ φ ≤ φmax (with

βφmin = −0.4 and βφmax = 1). In this φ-range, F φ
v (Ñ) exhibits two minima and a maximum,

that is, two basins separated by a barrier, as shown in Figure 1f. The presence of a sufficiently

large barrier in F φ
v (Ñ) will localize the system to the basin it was initialized in, leading to

hysteresis and erroneous estimates of 〈Ñv〉φ. Moreover, for the wide range of Ñ -values for

which ∂Fv/∂Ñ decreases, ∂2F φ
v /∂Ñ

2 = ∂2Fv/∂Ñ
2 < 0. As a result, F φ

v (Ñ) will have negative

curvature in this Ñ -range, precluding its sampling in the biased simulations, and resulting

in a sharp decrease in 〈Ñv〉φ as φ is increased from φmin to φmax. These issues arise from

the presence of locally concave regions of Fv(Ñ), and hinder the sparse sampling method

from obtaining accurate estimates of Fv(Ñ) over the entire Ñ -range of interest. Because

concave regions in Fv(Ñ) are a common feature of systems near coexistence, the use of a

linear potential is not appropriate for sparse sampling such systems.

2.4 Extending Sparse Sampling to Systems near Coexistence

To generalize the sparse sampling method for systems near coexistence, here we explore

the use of a biasing potential with a different (non-linear) functional form. In particular,

we consider the frequently used parabolic potential, Uκ,N∗(Ñv) = 1
2
κ(Ñv − N∗)2, which

is parameterized by λ̄ = [κ,N∗]. For sufficiently large κ-values, such a biasing potential

can regularize the corresponding biased free energy profile, F κ,N∗

v (Ñ), ensuring that it is
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monostable. To illustrate this point, we first rewrite Equation 1 for this potential:

Fv(Ñ) = F κ,N∗

v (Ñ)− Uκ,N∗(Ñ) + Fκ,N∗ (4)

For F κ,N∗

v (Ñ) to be monostable, dF κ,N∗

v /dÑ = 0 ought to have only one solution, and

correspondingly, so should dFv/dÑ = −dUκ,N∗/dÑ = −κ(Ñ −N∗). In Figure 2a, we again

plot dF
(2)
v /dÑ for system 2 (as in Figure 1d); however, we now search for its intersection with

−κ(Ñ −N∗) with βκ = 0.003. In particular, we see that lines corresponding to −κ(Ñ −N∗)

for several different N∗-values intersect dF
(2)
v /dÑ only once when a sufficiently large κ-value

is chosen. As a result, the corresponding biased free energy profiles all display a single

basin (Figure 2b). Moreover, the biased simulations facilitate sampling of Ñv over the entire

range of Ñ -values, and the corresponding 〈Ñv〉κ,N∗-values increase systematically with N∗

(Figure 2c). In fact, the monotonic increase of 〈Ñv〉κ,N∗ with N∗ is guaranteed because

∂〈Ñv〉κ,N∗/∂N∗ = βκ〈δÑ2
v 〉κ,N∗ ≥ 0.

Using Equation 4, we can then estimate Fv(Ñ) at the 〈Ñv〉κ,N∗-values shown in Figure 2c.

We can obtain F κ,N∗

v (Ñ) directly from the biased simulations, and to a good approximation,

βF κ,N∗

v (Ñ = 〈Ñv〉κ,N∗) ≈ 1
2
log(2π〈δÑ2

v 〉κ,N∗). Similarly, Uκ,N∗(Ñ) is readily obtained as:

Uκ,N∗(Ñ = 〈Ñv〉κ,N∗) = 1
2
κ(〈Ñv〉κ,N∗ − N∗)2. The first two terms on the right hand side of

Equation 4, thus obtained, are shown in Figure 2d. In the sparse sampling approach, the

final term, Fκ,N∗ , is obtained using thermodynamic integration. The estimation of Fκ,N∗ is

simplified somewhat if a single κ-value is adopted, and N∗ is varied in the biased simulations.

In particular, by using dFκ,N∗/dN∗ = 〈dUκ,N∗/dN∗〉κ,N∗ , and performing thermodynamic

integration from a reference value, N∗

ref , to the N∗ of interest, FN∗ ≡ Fκ,N∗ − Fκ,N∗

ref
can be

obtained as:

FN∗ =

∫ N∗

N∗

ref

〈dUκ,N∗′/dN∗′〉κ,N∗′dN∗′ =

∫ N∗

N∗

ref

κ(N∗′ − 〈Ñv〉κ,N∗′)dN∗′ (5)

In this way, Fκ,N∗ = FN∗ + Fκ,N∗

ref
is obtained to within an unknown constant, Fκ,N∗

ref
, by
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using estimates of 〈Ñv〉κ,N∗ obtained from the biased simulations. The constant, Fκ,N∗

ref
, if

desired, can be obtained by thermodynamic integration from 0 to κ as:

Fκ,N∗

ref
=

∫ κ

0

〈dUκ′,N∗

ref
/dκ′〉κ′,N∗

ref
dκ′ =

1

2

∫ κ

0

〈(Ñv −N∗

ref)
2〉κ′,N∗

ref
dκ′. (6)

Alternatively, if N∗

ref is chosen to be a basin of Fv(Ñ), there will be significant overlap between

the unbiased and the (reference) biased ensembles, allowing Fκ,N∗

ref
to be estimated using free

energy perturbation.73

For system 2, we first plot the thermodynamic force (the integrand in Equation 5) as a

function of N∗ in Figure 2e. We note that the integrand varies non-monotonically with N∗ in

contrast with the corresponding integrand for a linear biasing potential (Figure 1b). We then

choose N∗

ref to be n
(1)
liq (which is a minimum of F

(2)
v (Ñ)), and use numerical integration to

obtain FN∗ for all the simulated N∗-values (Figure 2f). Having obtained FN∗ , we can then

use Equation 4 to obtain sparse sampling estimates of Fv(Ñ) at Ñ = 〈Ñv〉κ,N∗ to within

the constant, Fκ,N∗

ref
. We do not estimate Fκ,N∗

ref
, but instead shift Fv(Ñ) vertically to set

the zero of Fv(Ñ) at Ñ = N∗

ref . As shown in Figure 2g, the free energy profile, Fv(Ñ), thus

obtained, is in excellent agreement with F
(2)
v (Ñ), highlighting that when the sparse sampling

method is used in conjunction with a parabolic potential, it can be used to characterize the

free energetics of systems near coexistence. A discussion of the similarities and differences

between the sparse sampling method and related techniques, such as Umbrella Integration

(UI),74 is included as supplementary information.

2.5 Choosing the Biasing Potential Parameters Judiciously

The sparse sampling method can be used to efficiently sample Fv(Ñ); however, its practical

implementation relies on the judicious choice of the biasing potential parameters, κ and

N∗. As shown in Figure 2e, the average thermodynamic force, dFN∗/dN∗, does not vary

monotonically with N∗; thus, care must be exercised in choosing N∗-values that capture its
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functional form. To do so, we propose choosing N∗-values in an adaptive fashion. To begin

with, we employ equally spaced N∗-values, which span the desired Ñ -range (from 0 to nliq).

The average thermodynamic force, dFN∗/dN∗ = 〈dUκ,N∗/dN∗〉κ,N∗ = κ(N∗ − 〈Ñv〉κ,N∗),

obtained from the biased simulations, is then inspected, and in regions where it changes

relatively abruptly, N∗-values are chosen to perform additional simulations. In section 3, we

will illustrate this strategy to estimate Fv(Ñ) in a large spherical volume in bulk water.

Care must also be exercised in our choice of κ. In Figures 2a and 2b, we showed that

when a parabolic potential with a sufficiently large κ is used, dFv/dÑ = −κ(Ñ − N∗) has

only one solution for all choices of N∗, which then implies that dF κ,N∗

v /dÑ = 0 has only one

solution, and the biased free energetics, F κ,N∗

v (Ñ), are monostable for all N∗. However, if κ

is chosen to be too small, dFv/dÑ = −κ(Ñ −N∗) can have 3 roots for certain values of N∗,

with the corresponding F κ,N∗

v (Ñ) being bistable, as shown in Figures 3a and 3b (green) for

βκ = 0.0005. To ensure that F κ,N∗

v (Ñ) is monostable for all N∗-values, κ, the slope of the

lines in Figure 3a, must be larger in magnitude than the largest negative slope of dFv/dÑ .

In other words, a good choice of κ is one that ensures the convexity of F κ,N∗

v (Ñ) for all Ñ

by satisfying the criterion:

d2F κ,N∗

v

dÑ2
=

d2Fv

dÑ2
+

d2Uκ,N∗

dÑ2
=

d2Fv

dÑ2
+ κ > 0. (7)

Thus, if F ′′

max is the largest value that −d2F κ,N∗

v /dÑ2 takes, we ought to choose κ > F ′′

max.

However, given that we wish to estimate Fv(Ñ), the values taken by d2Fv/dÑ
2 are not

known to us a priori, and neither is F ′′

max. Moreover, choosing excessively large values of

κ is also not recommended, because they can lead to significant errors in estimates of the

average thermodynamic force, κ(N∗−〈Ñv〉κ,N∗), by amplifying small errors in our estimates

of 〈Ñv〉κ,N∗ .68 Such errors in the thermodynamic force are then propagated to FN∗ through

thermodynamic integration (Equation 5), and eventually onto Fv(Ñ) (Equation 4). Thus,

although it is important to choose a sufficiently large κ-value that exceeds F ′′

max, it is not
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advisable to choose an excessively large κ-value because the length of time for which biased

simulations must be run to obtain comparable errors in Fv(Ñ) grows with κ2.

Given these competing requirements, how do we optimally choose κ? As a rule of thumb,

we propose choosing βκ to be a multiple of 〈δÑ2
v 〉

−1
0 , that is, βκ = α〈δÑ2

v 〉
−1
0 with α in the

range, 3 ≤ α ≤ 5. The choice is underpinned by the observation that βF ′′

max, the maximum

negative value assumed by βd2Fv/dÑ
2, is often comparable to its (positive) value in the

liquid basin, 〈δÑ2
v 〉

−1
0 , which is readily accessible from an unbiased simulation. We have

found that κ chosen in accordance with this rule of thumb tends to satisfy the criterion in

Equation 7 (that is, κ > F ′′

max). However, in the unlikely event that our initial choice of

κ is too small, our biased simulations will exhibit a number of symptoms. In particular, if

κ < F ′′

max, for certain N∗-values, d2F κ,N∗

v /dÑ2 will be negative over a range of Ñ -values,

which will not be sampled in the biased simulations. Consequently, there will be a sharp

change in 〈Ñv〉κ,N∗ as a function of N∗, as shown in Figure 3c. A second symptom of a small

κ is the appearance of hysteresis in 〈Ñv〉κ,N∗ (Figure 3c), making it prudent to perform two

sets biased simulations that are initialized in the liquid and vapor basins, respectively. Thus,

when κ is chosen to be smaller than F ′′

max, we encounter all of the same challenges that were

encountered when using a linear biasing potential.

If our initial choice of κ turns out to be too small, how do we choose a revised κ-value? Can

our initial set of biased simulations inform this revised choice? To address these questions,

we recognize that the response curves can also provide estimates of dFv/dÑ at Ñ = 〈Ñv〉κ,N∗

through:

dFv

dÑ
(Ñ = 〈Ñv〉κ,N∗) ≈ −κ(〈Ñv〉κ,N∗ −N∗) (8)

To obtain this equation, we recognize that dFv/dÑ = dF κ,N∗

v /dÑ−κ(Ñ−N∗) (Equation 4),

and that dF κ,N∗

v /dÑ ought to be 0 for Ñ = 〈Ñv〉κ,N∗ . Estimates of dFv/dÑ thus obtained

are shown in Figure 3d, and display two clusters at low and high Ñ -values. Although

dFv/dÑ increases with increasing Ñ within the clusters, it decreases as we move from the

low-Ñ cluster to the high-Ñ cluster, implying that d2Fv/dÑ
2 < 0 for intermediate Ñ -values.
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By identifying points that display the sharpest decrease in dFv/dÑ , and estimating the

magnitude of the slope of the line connecting those points, F ′′

est (Figure 3d), we can obtain

a rough estimate of F ′′

max; in fact, F ′′

est provides a lower bound on F ′′

max, that is, F ′′

est . F ′′

max.

Thus, if our choice of κ is smaller than F ′′

est — that is, if κ < F ′′

est . F ′′

max — it was clearly

too small. To be safe, we propose the heuristic that κ be larger than some multiple of

F ′′

est; that is, κ > αF ′′

est, with 3 ≤ α ≤ 5. If this criterion is violated and either of the two

low-κ symptoms, discussed above, are observed, we recommend that the revised κ be chosen

according to: κnew = α max(κold,F
′′

est); that is, the revised (larger) value of κ ought to be

chosen to be α times either the previous (smaller) value of κ or F ′′

est, whichever is greater.

Thus, inspecting dFv/dÑ not only provides us with a third symptom of a small κ, but it

also provides a way to choose the revised (higher) value of κ. Simulations with this higher

value of κ can then be repeated at all the N∗-values. However, using a single κ-value for

all biased simulations is not necessary. We can also combine our initial low-κ simulations

(that are outside the hysteresis region) with the newer high-κ simulations to obtain Fv(Ñ).

In section 4, we will illustrate how to integrate simulations with different κ-values.

3 Fluctuations in a Large Volume in Bulk Water

Here we use sparse sampling to characterize the free energetics, Fv(Ñ), of observing Ñ wa-

ters in a spherical volume of radius, Rv = 3 nm, in bulk water. Because the volume contains

a large number, nliq ≈ 3700, water molecules on average (Figure 4a), a large number of

simulations are needed to obtain Fv(Ñ) using umbrella sampling. Indeed, 147 biased simu-

lations, each run for 1 ns, were needed to ensure overlap between adjacent biased ensembles,

and obtain the free energy profile, Fv(Ñ), shown in Figure 4d (red curve). Sparse sampling

provides an efficient alternative to obtain Fv(Ñ) at sparsely sampled Ñ -values; given the

proximity of bulk water at ambient conditions to liquid-vapor coexistence, we make use of

a parabolic potential, Uκ,N∗ . We first perform an unbiased simulation to estimate, 〈δÑ2
v 〉0,
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and choose βκ = α〈δÑ2
v 〉

−1
0 = 0.016 using α = 5. We then perform biased simulations with

this value of κ, and 7 sparsely spaced N∗-values that span from 0 to n
(1)
liq .

The average number of water molecules, 〈Ñv〉κ,N∗ , obtained from the 7 biased simulations

increase as N∗ is increased (Figure 4b, green squares). However, the thermodynamic force,

dFN∗/dN∗ = κ(N∗−〈Ñv〉κ,N∗), which must be integrated to obtain FN∗ (Equation 5), varies

non-monotonically with N∗, first increasing at low N∗, then decreasing gradually, only to

increase abruptly at the highest N∗-values (Figure 4c). This abrupt increase suggests that

the functional form of the integrand may not be adequately captured in the high N∗-region.

Nevertheless, the sparse sampled Fv(Ñ)-values (Figure 4d, green squares), obtained using

the 〈Ñv〉κ,N∗-values from these 7 simulations alone, not only capture Fv(Ñ) qualitatively,

but also display semi-quantitative agreement with the exact Fv(Ñ) obtained from umbrella

sampling (red curve), with the error in the free energies being roughly 15%.

To better capture the functional form of dFN∗/dN∗, and to improve the accuracy with

which the FN∗-values, and thereby the sparse sampled Fv(Ñ) profile are estimated, we include

four additional simulations; two each between the three highest N∗-values. This increases the

resolution with which we are able to characterize dFN∗/dN∗ in a targeted fashion, providing

estimates in the N∗-range where they are needed the most. The corresponding results,

shown by the yellow circles in Figures 4b-d, highlight the improvement in our knowledge of

the functional form of the dFN∗/dN∗ (Figure 4c), and the corresponding improvement in

our estimation of Fv(Ñ) (Figure 4d), which result from the four additional simulations. This

procedure of inspecting the variation of the integrand with N∗, and employing additional

simulations in regions of substantive variation to adaptively augment our characterization of

the functional form of the integrand can be repeated further to obtain even more accurate

estimates of Fv(Ñ). Here, we perform two more simulations at such N∗-values, and obtain

estimates of Fv(Ñ) (blue triangles), which are not only in excellent quantitative agreement

with the umbrella sampling results, but also differ only marginally from estimates in the

previous iteration (yellow circles), suggesting that convergence has been achieved. However,
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in contrast with the umbrella sampling, which incurred a computational overhead of 147 ns,

obtaining the sparse sampled Fv(Ñ) (blue triangles) in Figure 4d required only 13 biased

simulations, each run for 0.2 ns, for a total simulation time of 2.6 ns. Thus, we were able to

estimate Fv(Ñ) roughly 2 orders of magnitude faster using sparse sampling.

Although no sharp jumps in 〈Ñv〉κ,N∗ were observed upon increasing N∗ in Figure 4b,

we nevertheless estimate ∂Fv/∂Ñ at those Ñ = 〈Ñv〉κ,N∗-values (Figure 4e, symbols) to

ensure that our choice of κ was sufficiently large. By connecting the points that display the

sharpest decrease in ∂Fv/∂Ñ with a line (Figure 4e, black line), we estimate βF ′′

est ≈ 0.004,

and correspondingly, κ/F ′′

est ≈ 4.2, suggesting that our initial choice of κ was sufficiently

large.

4 Water in hydrophobic confinement

Here we use sparse sampling to characterize the free energetics of water density fluctuations

in confinement between two square hydrophobic plates, roughly 4 nm by 4 nm in size, that

are separated by 1.6 nm (Figure 5a). For this separation, Fv(Ñ) is known to feature two

basins:35 a liquid (high Ñ) basin and a vapor (low Ñ) basin (Figure 5c, red curve). Moreover,

in the vicinity of the barrier that separates the two basins, that is, near the maximum in

Fv(Ñ), there appears to be a “kink” or a sharp change in the slope of Fv(Ñ). In other words,

over a small range of Ñ -values, Fv(Ñ) displays high negative curvature. Recent work has

attributed such a kink in Fv(Ñ) to the presence of different dewetted morphologies on either

side of the kink.35,36 In particular, Remsing et al. showed that the low-Ñ (vapor) side of

the kink features vapor tubes spanning the confined region between the two plates, whereas

the high-Ñ (liquid) side of the kink features isolated cavities that appear adjacent to one

plate or the other.35 Similar behavior has also been reported for dewetting on nanotextured

hydrophobic surfaces, wherein multiple kinks were observed in Fv(Ñ), and were associated

with transitions between different dewetted morphologies.36
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To sparse sample the system shown in Figure 5a, we first choose βκ = 0.016, following our

rule of thumb (section 2.5). Given that this choice makes use of the curvature of Fv(Ñ) in the

liquid basin, it is unlikely to yield a κ-value that exceeds the large negative curvature in Fv(Ñ)

in the vicinity of a kink. We thus recognize that our initial choice of κ is likely to result in

bistable biased free energy profiles, F κ,N∗

v (Ñ); however, because the large negative curvature

in Fv(Ñ) is localized to a small Ñ -region near the kink, F κ,N∗

v (Ñ) ought to be bistable for

only a small range of N∗-values. Using our initial choice of κ, we run biased simulations for

12 sparsely distributed N∗-values; the resulting values of 〈Ñv〉κ,N∗ are shown in Figure 5b

as a function of N∗. The increase in 〈Ñv〉κ,N∗ with N∗ appears to be gradual, apart from a

relatively sharp increase near N∗ = 500. By integrating dFN∗/dN∗ = κ(N∗−〈Ñv〉κ,N∗) with

respect to N∗ to obtain estimates of FN∗ , and using Equation 4, we then obtain estimates

of Fv(Ñ) at Ñ = 〈Ñv〉κ,N∗ (Figure 5c, blue circles). The results display qualitative, but not

quantitative agreement with the exact umbrella sampling results (Figure 5c, red line).

To obtain more accurate estimates of Fv(Ñ), and in particular, to ascertain whether the

sharp increase in 〈Ñv〉κ,N∗ near N∗ = 500 is symptomatic of bistability in F κ,N∗

v (Ñ), we

plot estimates of dFv/dÑ at Ñ = 〈Ñv〉κ,N∗ in Figure 5d. We find that dFv/dÑ decreases

sharply in the vicinity of Ñ = 500, and that the magnitude of the corresponding slope,

βF ′′

est ≈ 0.0086, and correspondingly, κ/F ′′

est ≈ 1.86, which is less than our chosen threshold

of α = 3. Taken together with the sharp increase in 〈Ñv〉κ,N∗ , this suggests that our initial

choice of κ was not large enough to prevent bistability in F κ,N∗

v (Ñ) near N∗ = 500. Thus,

either the biased simulations must be extended until a converged F κ,N∗

v (Ñ) is obtained with

sufficient sampling of both its basins, or a larger value of κ ought to be chosen to ensure that

the biased free energy profiles are monostable. This is a non-trivial choice, which must take

into consideration the possibility of hidden barriers, that is, barriers in collective variables

that are orthogonal to Ñv, and the anticipated height of those barriers. Here we follow

the prescription outlined in section 2.5, and choose a revised (higher) value of βκ = 0.048.

However, given that the sharp decrease in dFv/dÑ occurs over only a small range of Ñ -
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values (Figure 5d), we do not repeat all the biased simulations using this higher value of κ.

Instead, we repeat our biased simulations with the higher κ-value only for N∗-values around

500; the κ and N∗-values that we adopt for the old and new biased simulations are shown

in Figure 5e. The higher κ simulations allow us to augment our knowledge of dFv/dÑ , and

obtain a revised estimate for F ′′

est (Figure 5f). Comparing the revised values, βF ′′

est ≈ 0.0096,

and βκ = 0.048, we get a revised estimate of κ/F ′′

est ≈ 5, which is above our threshold of

α = 3. Thus, we expect our revised choice of κ to be large enough to facilitate sampling of

Ñv in the vicinity of the kink, without the appearance of bistability in F κ,N∗

v (Ñ) or hysteresis

in 〈Ñv〉κ,N∗ .

Given that we no longer employ a single value of κ, in addition to estimating how Fκ,N∗

varies with N∗ (for a given κ), we must also estimate the change in Fκ,N∗ as κ is changed (for

the two N∗ values shown in Figure 5e). We find that the latter can be readily estimated using

the Bennett Acceptance Ratio (BAR) method75 because changing κ (while keeping N∗ the

same) leads to good overlap in Ñv-values sampled by the biased ensembles with different κ-

values. In Figure 5g, we plot estimates of Fκ,N∗ for all the biased ensembles considered. With

all the Fκ,N∗-values in hand, Equation 4 can then be used to obtain Fv(Ñ) at Ñ = 〈Ñv〉κ,N∗ ;

the resulting sparse sampled Fv(Ñ)-estimates are shown in Figure 5h, and display good

agreement with the umbrella sampling result. Finally, we note that the total computational

cost for performing sparse sampling is roughly 3 ns (16 simulations, 200 ps each), whereas

the cost for performing umbrella sampling is roughly 230 ns (38 simulations, 6 ns each), once

again resulting in a nearly two orders of magnitude improvement in computational efficiency.

5 Conclusions

A characterization of the free energetics of water density fluctuations in bulk water, at

interfaces, and in hydrophobic confinement has substantially advanced our understanding of

hydrophobic hydration, interactions, and assembly.4,14,16–18,71,76–81 Such a characterization
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typically requires enhanced sampling techniques, such as umbrella sampling, which can be

expensive.16,64 In particular, the requirement that order parameter distributions obtained

from adjacent biased simulations display overlap, exacts a steep computational cost, and

in certain contexts, can render umbrella sampling prohibitively expensive. We recently

introduced a sparse sampling method, which circumvents the overlap requirement central

to umbrella sampling, and instead uses thermodynamic integration to estimate free energy

differences between the biased and unbiased ensembles.62 By employing only a few sparsely

separated biased simulations, the sparse sampling method was able to estimate free energy

profiles at a small fraction of the computational cost exacted by umbrella sampling.

Although the sparse sampling method, as introduced in ref.,62 is efficient in its estimation

of Fv(Ñ), it is only suitable for systems with convex free energy landscapes, thereby excluding

the important class of systems which are at or close to coexistence. To estimate Fv(Ñ)

for systems near liquid-vapor coexistence, we generalized the sparse sampling method to

sample free energy landscapes with concave regions. Using model systems with analytical

landscapes, we first highlighted the challenges associated with sparse sampling systems near

coexistence. We then illustrated the use of a harmonic potential, Uκ,N∗ = 1
2
κ(Ñv − N∗)2,

to regularize the free energy landscape. Importantly, both the accuracy and efficiency of

sparse sampling rely critically on the choice of the force constant, κ, as well as the N∗-values

for which biased simulations are performed. In order to minimize computational expense

while ensuring reasonable accuracy, we proposed the use of sensible heuristics which guide

the initial choice of the biasing potential parameters, κ and N∗. We also introduced criteria

for determining whether these initial choices needed to be refined, and proposed strategies

for adaptively choosing new values of κ and N∗, when needed.

To illustrate the efficiency of the sparse sampling method, we studied two realistic systems

close to liquid-vapor coexistence. First, we characterized Fv(Ñ) in a large volume containing

roughly 3700 waters in bulk water at ambient conditions Although liquid water is stable

relative to its vapor at ambient conditions, it can undergo a cavitation transition undergo
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sufficient tension, which gives rise to concave features in Fv(Ñ).55,82–84 By choosing N∗-

values adaptively, we obtained an accurate characterization of the free energetics of this

process. We also computed Fv(Ñ) for water confined between two hydrophobic plates —

a system with distinct liquid and vapor basins. Due to the presence of a small region of

high negative curvature in Fv(Ñ), this system provides a more stringent test to the sparse

sampling method. By choosing κ-values adaptively, sparse sampling again facilitates an

accurate characterization Fv(Ñ). In both cases, the computational expense of estimating

Fv(Ñ) is roughly two orders of magnitude smaller than umbrella sampling.

Although we focus on the free energetics of water density fluctuations, the sparse sampling

method itself is general, and can be readily used with any order parameter. Moreover, it can

also be extended to higher dimensions, and used to sample multiple order parameters. The

efficiency of the sparse sampling method makes it particularly attractive for characterizing

the free energy landscapes of systems for which umbrella sampling is prohibitively expensive.

Such instances may arise when the (biased) simulations themselves are inherently expensive;

for example, it can be quite expensive to simulate crystalline systems with slow dynamics,

or to explicitly account for polarizability or electronic effects.59,63,85,86 Alternatively, when a

large number of biased simulations are needed to satisfy the overlap requirement, and span

the order parameter range of interest, umbrella sampling can again become very expensive;

examples include the order parameter range of interest itself being large, inherent system

fluctuations being small, and a high dimensional order parameter phase space.87–89 In each

of these contexts, wherein performing extensive umbrella sampling simulations may not be

feasible, we hope that the estimation of free energy profiles will be facilitated by the sparse

sampling method presented here.
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Simulation Details We perform all-atom molecular dynamics (MD) simulations using the

GROMACS package,90 suitably modified to incorporate the biasing potentials of interest.

The leap frog algorithm91 was used to integrate the equations of motion with a 2 fs time-step,

and periodic boundary conditions were employed in all dimensions. The SPC/E model of

water92 was employed in all simulations, with the hydrogen bonds of water molecules being

constrained using the SHAKE algorithm.93 The Particle Mesh Ewald algorithm94 was used

to compute the long range electrostatic interactions, and short range interactions Lennard-

Jones and electrostatic interactions were truncated at 1 nm. The canonical velocity-rescaling

thermostat95 was used to maintain a system temperature of 300 K.

Spherical Volume in Bulk Water

The spherical observation volume with a radius, Rv = 3 nm, was placed at the center of a

cubic simulation box with a side of 10 nm. Simulations were performed in the NPT-ensemble

at a pressure of 1 bar, which was maintained using the Parrinello-Rahman barostat.96 To

allow for equilibration, the first 100 ps were discarded from each biased simulation.

Water in Hydrophobic Confinement

The simulation setup for the hydrophobic plates is the same as that used in ref.35 The plates

are 4 nm by 4 nm in size and are separated by 1.6 nm, so that the confinement region is

spanned by a 4×4×1.6 nm3 cuboid observation volume that is positioned between the plates.

Simulations were performed in NVT-ensemble with a buffering water-vapor interface, which

keeps the system at its coexistence pressure.16,51,64 To allow for equilibration, the first 500 ps

were discarded from each biased simulation.
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