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1 | INTRODUCTION

Wooyoung Choi

Abstract

We consider resonant triad interactions of gravity-capillary
waves and investigate in detail special resonant triads that
exchange no energy during their interactions so that the
wave amplitudes remain constant in time. After writing the
resonance conditions in terms of two parameters (or two
angles of wave propagation), we first identify a region in
the two-dimensional parameter space, where resonant tri-
ads can be always found, and then describe the variations
of resonant wavenumbers and wave frequencies over the
resonance region. Using the amplitude equations recovered
from a Hamiltonian formulation for water waves, it is shown
that any resonant triad inside the resonance region can
interact without energy exchange if the initial wave ampli-
tudes and relative phase satisfy the two conditions for fixed
point solutions of the amplitude equations. Furthermore, it
is shown that the symmetric resonant triad exchanging no
energy forms a transversely modulated traveling wave field,
which can be considered a two-dimensional generalization

of Wilton ripples.

KEYWORDS
gravity-capillary waves, resonant triad interactions, symmetric Wilton

ripples

Resonant interactions of weakly nonlinear waves on the surface of water have been considered one
of the main mechanisms for the long-term evolution of wave spectrum and have been studied exten-
sively since the pioneering work of Phillips.! For surface gravity waves, resonant interactions occur
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among four waves, whose time evolution can be studied with a system of four amplitude equations>>

as confirmed experimentally by Longuet-Higgins and Smith* and McGoldrick et al.> A more general
theory of resonant four-wave interactions was developed by Zakharov® and has been further extended
by numerous researchers. See, for example, an extensive review of Dias and Kharif” and a textbook of
Mei et al.®

While it can be neglected for surface waves of relatively long wavelengths, the surface tension must
be included for short waves of a few centimeters or less. For surface gravity-capillary waves, as shown
in Ref. 9, resonant wave interactions occur among three waves that satisfy the following conditions for
wavenumber vectors k ; and wave frequencies @ ; (G =1273)

k] :k2+k3, (] :a)2+a)3, (1)
where @; and k; = |k ;| satisfy the linear dispersion relation given by

w; =gk T, g =g+ok;, k;=|kjl, T,=rtanh(k;d), )
with g and o being the gravitational acceleration and the surface tension coefficient divided by the fluid
density, respectively, and d is the water depth.

The nonlinear evolution of a resonant triad has been studied theoretically using a system of three
equations for the complex wave amplitudes of the triad A; (j = 1, 2, 3). The system was first obtained
via a method of multiple scale expansion’ or a variational formulation.'® McGoldrick”? showed that
the solutions of the amplitude equations can be written in terms of Jacobian elliptic functions and, in
general, the resonant triad exchanges their energies (proportional to |.A; |> with A; = |A;lexp(ip;))
periodically in time, while the total energy is conserved in the absence of viscosity. Laboratory exper-
iments were also performed by McGoldrick,'! Bannerjee and Korpel,'”> Henderson and Hammack, '
and Perlin et al.'# They observed the periodic exchange of energy through (often successive) resonant
triad interactions. See a review of Hammack and Henderson. '

In this paper, we consider a special resonant triad interaction during which no energy exchange
between the three waves occurs. In other words, even though they interact resonantly, their amplitudes
or | A;| remain unchanged in time. The only sign of their interaction can be observed in their phases
®;. When this happens, each wave under this special resonance would propagate with its own con-
stant speed whose nonlinear correction to the linear wave speed is proportional to wave steepness,
as discussed in detail in Section 5. This is more significant than Stokes's correction for monochro-
matic waves that is proportional to the square of wave steepness. Simmons'? discussed possible triad
solutions of constant amplitudes |.A;| in addition to time-periodic and constant-phase (¢;) solutions.
Nevertheless, no explicit conditions for the constant amplitude solutions were given. Recently, similar
constant-amplitude solutions were studied for the resonant four- and five-wave interactions of gravity
waves by Xu et al.'® and Shrira et al.,!” respectively.

While the resonant waves of constant amplitudes propagate with constant wave speeds, each of them
has a different wave speed and a different propagation direction. Therefore, the resulting wave field is
in general unsteady. For a resonant triad of constant amplitudes to become stationary in a moving
reference frame, or to become a traveling wave, more restrictive conditions are required beyond the
constant amplitude condition. Such solution was studied for one-dimensional gravity-capillary waves
by Wilton,'® who showed that the traveling wave solution can be found when the self-interaction of the
first harmonic of wavenumber k, (= k3) generates the wave frequency of the second harmonic (2k, =
k) at the second order such that 2w(k,) = w(k;). This condition is satisfied when k, = (g/20)1/ 2
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and the corresponding solution often referred to as Wilton ripples was described in terms of a special
resonant triad of constant amplitudes by McGoldrick.'”

Here, we explore explicit conditions for resonant triads of two-dimensional gravity-capillary waves
that exchange no energy during their interactions. Furthermore, we attempt to find special resonant
triads producing traveling wave fields in two horizontal dimensions, which can be considered a gener-
alization of one-dimensional Wilton ripples.

Starting with a second-order nonlinear pseudo-spectral model and its Hamiltonian in Section 2, the
amplitude equations for multiple resonant triad interactions are rederived and are compared with those
obtained previously using different methods in Section 3. With re-examining the resonant conditions
given by (1), we identify in Section 4 an explicit region of resonance in a two-dimensional parameter
space and describe the variations of wavenumbers and wave frequencies in the region. After finding
the conditions for resonant triads of no energy exchange, we find traveling wave solutions resulting
from such resonant interactions in Section 5.

2 | SECOND-ORDER MODELS FOR GRAVITY-CAPILLARY
WAVES

2.1 | Pseudo-spectral model

The weakly nonlinear evolution of surface gravity-capillary waves of small wave steepness can be
described by a second-order asymptotic model (eg, Ref. 20) written, in terms of the surface displace-
ment {(x, ¢) and the surface velocity potential ®(x, 1), as

g—f = —L[0]-VEVO) - LICLIRN, B = —g¢+ oV - IVovo+ Lo ()

where V is the horizontal gradient and L is the linear operator defined by
Llf]= / K(x—-§& f(&)dé,  FIKx)]=—kT, L[e7**]=-kTe 'k, 4)

with F representing the Fourier transform, k = |k|, and T = tanh kd. Although the system given by
21-23 the second-order model valid to O(e?) with
€ being the wave steepness (defined by the ratio of wave amplitude to characteristic wavelength) is

(3) can be extended to arbitrary order of nonlinearity,

adopted here to study resonant three-wave interactions that occur at the second order of nonlinearity.

The second-order system given by (3) can also be written as Hamilton's equations:®

o _SE 00 _ _SE 5
ot 5D’ a8’

where the total energy E can be written as E = E, + E5 + O(e*) with E, = O(e") given by

E, = %/(g §2 = ®L[®] + V¢V dx, E; = %/{ch-m — {(L[@])* } dx. (6)
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2.2 | Spectral model

The second-order model (3) can be written in spectral space, when { and @ are expressed as

C(x,1) = / a(k, 1) e **dk, O(x,1) = / bk, 1) e **dk, (7

where a(k, t) and b(k, t) represent the Fourier transforms of ¢ and ®, respectively. As ¢ and @ are real
functions, one can see that a(—k,t) = a*(k,t) and b(—k,t) = b*(k,t), where the asterisks represent
complex conjugates. Then, by taking the Fourier transform of (3), one can obtain the second-order
evolution equations for a(k, t) and b(k, t) in spectral space as

d db
a_? — kT b= // ao’l’z bl 02 50_1_2 dk1’2, E + (g + sz)a = / ﬁO,l,Z bl b2 50_1_2 dkl,27 (8)

where dk; , = dk,dk;, and the coefficients & ; , and f ; , are given by
1
12 = ko ki —kokyToTy. o2 =50k - ky+ ki ko TV T), ©))

with ky = kand T, = T = tanh(kd). In (8) and (9), just for brevity, the following short-hand notations
have been used

aj =a(kj,t), bj :b(kj,t), 60_1_2 :6(k0_k1 —kz), (10)

where 6(k) is the Dirac delta function, and k; and 7 are defined in (2).
As expected from (5), Equation (8) can also be written as a Hamiltonian system:
Ja _oH =~ 0b_ _oH (11
Jt  6b* ot ba*
where the Hamiltonian H is given by H = H, + H; + 0(e3) with H, = E,,/(27r)2 given, from (6),
by

! " R 1
H2 = 5/[(g+0'k2)aa + kT bb ]dk, H3 = E/// hl,2,3 bl b2 as 61+2+3 dkl,2,3' (12)

As the subscripts 1 and 2 can be interchanged without altering the integrals, i , 5 given by
hias =—(ky - ky+ ki kyT\T), 13)

satisfies the symmetry condition of h; ; 3 = h, ; 3. Then, from (11), & ; , and f ; , defined in (9) can
be expressed, in terms of £ ; 3, as

1 1
Uy 10 = z(h—o,l,z +hi_0,2) Boin = _Ehl,z,—O' (14)

The evolution equations for a and b given by (8) were previously obtained by Krasitskii** directly
from the approximate Hamiltonians given by (12). Here, it is shown that the same evolution equations
can be obtained from the pseudo-spectral model and therefore the two formulations are equivalent.
In general, when it is combined with fast Fourier transform, the pseudo-spectral model is useful for
numerical computations, while the spectral model is advantageous for theoretical analysis.
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31 AMPLITUDE EQUATIONS FOR RESONANT TRIADS

Although the complex amplitude equations for a single resonant triad have been previously obtained
by McGoldrick® and Simmons,!? we present, from a Hamiltonian system (11) of Krasitskii,>* a rela-
tively simple derivation of the complex amplitude equations for resonant triads of continuous spectrum
without introducing Krasitskii's canonical transformation. Some differences of the resulting amplitude
equations from the previous models are briefly discussed.

3.1 | Reduced Hamiltonian for resonant three-wave interactions
As shown by Zakharov,® when introducing z(k, t) defined by

1/2 1/2

Wy * . 8k *

a=|>— [z(k,1) + 2" (=k, D], b=i| — [z(k,1) + z"(=k, D], (15)
28 2wy

withg, =g+ ok? and coi = g, kT, Hamilton's equations (11) can be reduced to a single equation for
z(k, 1):
Jdz .6H

0z _,0H 16
o oz (16)

When (15) is substituted into (12), the Hamiltonian H can be expressed, in terms of z(k, ), ast

H /Cl)k ZZ dk+ [//UI(IZ)B Z 22 Z3 + Zl Z; Z;) 51_2_3 dk1’2’3
///U1(22)3 (2] 25 25 + 21 22 23) S14043dky 53, amn

where z; = z(k, 1) and U and U? ., are given by

123 123
(D 2)
U3 =Uss 1 —U_155-Us 2, Uhs=Uis+ Uz +Us ), (18)
with
1/2 1/2 202
w [0}
Uss =_< 8182 W3 ) h1,2,3 =< 8182 W3 > ki -k, + 12 (19)
32wy, g3 32w w, g3 g1
In (18), U1(12)3 (j = 1,2) are symmetric>* in the sense that
(D )] 2 2 2
Us3=U5, Ui =Uy15=U51,. 20)

When z(k, ¢) is introduced in (15), only a single amplitude equation given by (16) needs to be solved
and, therefore, is more convenient for further analysis than the original system (8) for two variables a
and b. Meanwhile, when solved numerically, both (8) and (16) require the same computational efforts
because z(k, #) has no relationship with its complex conjugate, while a(—k, t) = a*(k,t) and b(—k, 1) =
b*(k,1).

When z(k, t) is written as

z2(k, 1) = Z(k,1)e' ™, 1)
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the Hamiltonian H can be expressed, from (17), in terms of Z, as
H = /a)kzz “‘dk + [//Ul(12)3 Z*l’ ZQ, 23 e—i(COl_Coz_CU})t + Zl Z; Z; ei(a)l_wz_w3)t) 51_2_3 dk1’2’3
/// 1(22)3 Zf Z; Z; e—i((ul+wz+w3)t + Zl Zz ZB ei(w]+w2+w3)r) 51+2+3 dk1,2,3’ (22)

where Z ;= Z(k i t). Following Zakharov,° under the resonant conditions (1), the exponential term
(oscillating in fast time) disappears. Therefore, the second integral denoted by H:

H = ///Ul(lz)s (Z12,25+ 2,25 25) 8153 dky 53, (23)

can be considered the Hamiltonian responsible for the slowly varying time evolution of resonant tri-
ads. On the other hand, the last integral in (22) represents nonresonant wave interactions that vary in
fast time. Notice that H denotes the reduced Hamiltonian given by (23), while H represents the orig-
inal Hamiltonian given by (17). Then, from (16) and (21), the evolution equation for resonant triad
interactions can be obtained as

0Z . M

o ~lez .

which yields

o =1//Ué 12212 50—1—2d"1,2+21//Uz( Vo2t 2280010 dky o, (25)

where Uz(lg = Uz(ll) o has been used for the last integral and Z(k, 7) is assumed to vary slowly in time.
This is the Zakharov equation for resonant gravity-capillary waves, which describes the time evolution
of all possible resonant triads in spectral space. In addition to conservation of the reduced Hamiltonian

H:

dH _5HOZ | 5M 0Z°

dr 6Z ot  6Z* ot (26)
it can be shown that (25) conserves energy and momentum:
9 [ wizrak=0, L [kizPak=0 @7
dr 7 dr -

where the resonance conditions (1) along with the symmetry condition for U(g 1)2 in (20) have been
used.

With a canonical transformation to eliminate the last integral of (17) at the second order, Krasitskii>*
obtained the same Hamiltonian as (23) in terms of a new canonical variable, but his evolution equation
for the new variable describes both resonant and nonresonant wave interactions (or both fast and slow
time evolutions) when the original variable z(k, t) is recovered. As we are interested in the evolution
of the slowly varying complex amplitudes of resonant waves, Equation (25) is written for Z(k, ), not

the canonical variable of Krasitskii.2*
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Previously, in their amplitude equations for a single resonant triad, McGoldrick? and Simmons'®

used a different slowly varying complex amplitude A(k,?), but it can be shown that A and Z are
related as

zgk 1/2
Z(k,t) = <;> Ak, 1). (28)

In Appendix A, the amplitude equation of A(k, t) is discussed in comparison with that of Z(k,1).

To derive (25), Z(k, t) is assumed to vary slowly in time, but no assumption on its bandwidth in spec-
tral space (or, equivalently, its spatial variation in physical space) has been imposed. Further reductions
can be made when the bandwidths around discrete resonant wavenumbers are non-zero (although they
are assumed small), or in particular when the amplitudes of resonant waves vary slowly in space. For
example, Simmons'? obtained a system of three partial differential equations for the amplitudes of a
single resonant triad that vary slowly in both time and space. Another interesting resonant triad inter-
action can occur between long gravity waves and short gravity-capillary waves in water of finite depth.
A system of partial differential equations describing a long wave and the slowly varying envelope of
short waves was proposed by Benney>>->° and Djordjevic and Redekopp.?’ It is worthwhile to remark
that these reduced models can be readily obtained from the slowly varying amplitude equation (25) by
assuming that the wave spectrum is narrow-banded.

In the following discussions, focusing on discrete wave modes, (25) will be reduced to a system of
ordinary differential equations using discrete approximations to Z.

3.2 | Discrete spectrum

When we assume that a nonlinear wave field can be represented by a superposition of N discrete modes
so that Z(k, t) can be written as

N
Zkty= ). Z,0ék —k)), (29)
j=—N
with k_; = —k, the reduced Hamiltonian is given by

= D U (22,2, +2/2,22) 61

I,m,;n
1,m,n>0

=2 Y U 1Z 22,0008 Ay 8 (30)

Lmn>0
where Z; is expressed as
Z;=1z,le, @31
and A, ,, , is defined by A, . = @, — @,, — @,,. Then, from
dZ;/dt =i(5H/62;), (32)
the amplitude equations can be obtained as

dz;
. M M

m,n>0
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where U(].)
n,j,m

triads can be obtained.
For a single resonant triad (N = 3), the reduced Hamiltonian H is given, from (30), by

= Ur(l : r; J has been used. From (33), the amplitude equations for any number of resonant

H=2¢%(ﬁZﬁg+&Z¥@=4U$ﬁzmzw&NmA, (34)

where A is defined as
A=¢ -9y — 3. (35)
From this Hamiltonian, the three amplitude equations can be obtained, from (33), as

dz, dz, dz

T=IJ/OZQZ3, ?=17()Z]Z3, T—l}’ozlzz, (36)
where y, =2U 1( 12) ; 1s given by
Yo = gy \, L (mmen N\ e ) 37)
0 8w, 0,83 -123 80185 3-12 8wy38; 23,~1

with A, , 5 given by (13). From (1) with » ;> 0, it should be noticed that Z; is the amplitude of the
highest frequency mode in the triad. As the coefficients of the three amplitude equations (36) are the
same, they can be made one by rescaling ¢ if convenient. As shown in Appendix A, the coefficients are
all different if A ; are used for the amplitudes.

As discussed previously for continuous spectrum, in addition to conservation of the reduced Hamil-
tonian H for a resonant triad, the amplitude equations given by (36) have two additional conservation
laws, which can be written, from (27), as

d 3 ) d 3 2
ar lZl @) ] T lZ k|2 ] =0 9
=

It can be shown that these conservation laws along with the resonance conditions (1) are equivalent to
the Manley-Rowe relations,?® which can be written as

d d
a(|zll2+|zzlz) 0, 5(|ZI|2+|23|2) 0. (39)

Hereafter, with focusing on gravity-capillary waves whose wavelengths are generally small com-
pared with water depth, we assume k;d > 1, or, equivalently, d — oo, for which y, is given by

1/2

W W05 ks k, k, 1 1 1

= —(k, - k)+—(k, - k)+ —(k, - k))+kikky| ————— )|, 40
Yo <8klk2k3> [a)3( 1K) a)z( 3 k) wl( 2 k) 17273 w, w3 (40)

where we have used the linear dispersion relation in deep water, cof = gk;.
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4 | RESONANCE CONDITIONS IN DEEP WATER

Simmons'? discussed graphically how to find a resonant triad, but explicit expressions of k ; satisfying
the resonance conditions are often convenient. When k; are written as

k; = k;(cosb;,sind,), (41)

there are six unknowns (k ; and 0 ; for j = 1, 2, 3) among which three parameters can be chosen arbi-
trarily after the three scalar conditions of resonance given by (1) are applied. After assuming 8, = O (for
the highest frequency mode) without loss of generality, one should be able to express k; (j = 1,2,3) in
terms of 6, and 65. Previously, McGoldrick? described the resonance conditions in terms of, for exam-
ple, k, and k5. As can be seen in the followings, the description in terms of 8, and 65 is convenient to
identify a region of resonance, where all resonant triads reside, and to obtain explicit expressions of
k; from a bi-quadratic equation.

4.1 | General case

After nondimensionalizing k; and ; as
K, =@©/9"k, Q=(c/)" o, 42)
the linear dispersion relation is given by
Q=K (1+K}). 43)
Then, the resonance conditions (1) can be rewritten as

K, cos 0, + K5cos0; = K, K, sinf, + K5 sinf; =0, 44)

1/2

1/2
) = 3

K+ =k (1+k2) 7 +k

1/2
I ).

(1+K;3 (45)

where Q; > 0 have been assumed. Then, K, and K5 can be found as

sin 6, sin 6,

=2 K. =
2 Sin 632 b 3

46
sin 03, (46)

where 03, = 05 — 6, vanishes only for one-dimensional waves, which will be discussed separately.
When (46) is substituted into (45), an equation for K can be obtained, in terms of 6, and 65, as a
bi-quadratic equation given by

sin® sin® 6 : sin® 0, sin® 0
1+ 2 ) +4 2 S k!

Sin3 932 Sin3 032 Sin() 032

sinf,  sinfy sin’ 0, sin’ 6,
+2 (| 1+ = - 1+ — -
sinf3,  sinb3; sin” 03,  sin” 03,
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) .2 . .
sin” 0 sin” 0 sin 6, sin 6

2 2 4 3 2 3| g2
) L2 ;2 1
sin“ 03, sin” 03, sin” 03,

sinf,  sin6; 2 sin 0, sin 65
w1+ —%-- +4— =0. S
sinfs, sin6s, sin” 05,

Before finding a region in the (,, 8;)-plane where Equation (47) has positive real roots for K2, one
should notice that, because K, and K in (46) must be positive, the resonance region must be contained
inside two triangular regions in the second and fourth quadrants of the (6,, 6;)-plane, bounded by

0; =0, +r, -r<6,<0, 0<65;<m, (43)
and
63=62—ﬂ', 0302$7I, —ﬂ'se:;so (49)

As it can be confirmed numerically that the second and third coefficients of the quadratic equation for
Kl2 are negative inside these regions while the discriminant is always positive, (47) would have only
one positive root for K12 along with one negative (or nonphysical) root when the first coefficient is
positive:

£(8,,05) = (sin® B3, + sin’ 0, — sin’ 0;)” + 4sin’ 0, sin’ 0 > 0. (50)

Otherwise, no positive real solutions for K]2 can be found. One more care must be taken as (47) is
equivalent to (co% - w% - a)g)2 = (12w2w3)2. In other words, one should exclude a region, where Q; =
Q, — Qs, instead of Q| = Q, + Q5, as K| = K, + K5 has been assumed.

Figure 1 shows the resonance region (shaded) in the (6,, 65)-plane, in which a single positive solution
for K always exists. Therefore, all resonant triads must lie in the shaded region. The boundaries of the
resonance region given by f(6,,0;) = 0 are tangent to the 8, and 6;-axes at 0, = +x/2and 0; = +7/2,
respectively. Notice that the 8, and 65-axes should be excluded except for the origin (which corresponds
to one-dimensional waves) because the resonance conditions given by (44) cannot be fulfilled if two
waves are propagating in the x-direction, while the third wave is propagating obliquely from the x-axis.

Figures 2 and 3 show the variations of K; and ; inside the resonance region located in the fourth
quadrant of the (0,, 05)-plane. The similar behaviors can be found in the second quadrant. In particular,
Figure 3 showing contour lines of Q; are useful for experimental studies, where wave frequencies are
controlled. To better understand Figure 3, we consider an experiment, where the frequency Q, is fixed
to be QTXP. Then, in Figure 3(A), along a contour line corresponding to the value of QTXP (chosen to
be 3 and denoted by a dashed line), one can see the variation of 6, and 65 along the contour line, or
the functional relationship between 6, and 65, for possible resonant triads. For a given value of Q,,
notice that only a certain range of 8, (or 65) is allowed. By drawing the same contour line (dashed)
for Q; = Q7" in Figure 3(B), the variation of Q, can be observed from the intersections between the
contour curve for Q; = QTXP and contour lines for ©,. Similarly, the variation of £ can be seen from
Figure 3(C).
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T
0,0
_Tc [ L N T T T o ]
- 0 T
(92

FIGURE 1 Region for resonant three-wave interactions (shaded area) in the (6,, 6;)-plane defined by (48), (49),
and f(6,,6,) > 0, where f is defined by (50). The dashed line represents the symmetric case of §; = -6,

0.0 /4 ) 0.0 /4 w2 0.0 /4 2

0.0 s 0.0 0.0

0, /4Tl [ 0, w4

-n/2 b —n/2 —n/2

(A) (B) ©

FIGURE 2 Contour plots of (dimensionless) resonant wavenumbers (K ;) in the fourth quadrant of the
(6,,05)-plane: (A)3 < K, <5;:(B)0.5 <K, <5;(C) 0.5 < K5 <5. The increment between the two neighboring
contour levels is 0.5 and the arrows indicate the direction of increasing contour levels. Notice that the plot in (C) can be

obtained from the plot in (B) by replacing 6, and 65 by —6; and —6,, respectively, as there is no real distinction
between 6, and 6,

4.2 | One-dimensional waves

For one-dimensional waves, it is more convenient to find the relationship between K, and K5 directly
from the resonance condition (45):

9K, K3(K,y + K3)* =4 (1+K;) (1+K3) =0, (51)
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0, -4 0; —al

—m/2 H

/2

@ (B) ©)

FIGURE 3 Contour plots of (dimensionless) resonant wave frequencies (€;) in the fourth quadrant of the
(6,,65)-plane: (A) 2.5 <Q; <5;(B)0.5<Q, <5;(C) 0.5 < Q3 <5. The increment between two neighboring
contour levels is 0.5 and the arrows indicate the direction of increasing contour levels. To illustrate how to use these
plots, as an example, the contour line of Q, = 3 is represented by a dashed curve in (A), which shows the relationship
between 0, and 65 of all possible resonant triads with Q; = 3. Then, the values of Q, and Q; of the resonant triads with

€, = 3 can be determined by the levels of contour lines of €, and €5 intersecting with the (dashed) contour line of
Q, =3, as shown in (B) and (C), respectively

2.0 H 2.0
1shY
K 1ol
0.5
0 ‘
0 1 2 3 4 5
¢
(A)
FIGURE 4

(A) Wavenumbers (K) and (B) linear wave speeds (C; = Q; /K ;) of one-dimensional resonant triads
for varying & for j = 1 (solid), 2 (dashed), and 3 (dotted). Notice that the case of £ = 1 corresponds to Wilton ripples
and the variations of Q; are similar to those of K; shown in (A)

with K; = K, + K3 from (44). Notice that the real solution of (51) can be found only when K; (j =

1,2, 3) have the same sign, or the three waves are propagating in the same direction. More specifically,
the solution of (51) can be parameterized in terms of & as

2[@E + D+ (€ +98 + 1682 + 9 + 1)!/?]
) = = —
2= EO9E2 + 14 +9) . K3 =LKy, K, =(1+9K,, (52)

where £ is any positive real constant in 0 < & < co. This expression of K, can be found in Craik,>
who suggested to write (52) as an algebraic equation for £ whose coefficients depending on K,. Alter-
natively, as (52) determines K, for any positive real value of &, the variations of K; and C; can be
presented parametrically in terms of £, as shown in Figure 4. The variations of Q; for varying ¢ are
similar to those of K.

Of special interest is the case of & = 1, or, equivalently, K; = 2K, = 2K; = 2172 for which the
first (K,) and second (K| = 2K,) harmonics satisfy Q; = 2, from the resonance condition (1). This
implies that the first and second harmonics for £ = 1 have the same linear wave speed, or Q,; /K| =
Q,/K,, The nonlinear behavior of this particular triad of & = 1 was studied by Wilton,'® who showed
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that the Stokes expansion for K, = 2-1/2 becomes singular at the second order of nonlinearity. To
avoid the singularity, Wilton'® showed that the Stokes expansion needs to be modified to include the
first (K,) and second (K| = 2K,) harmonics at the leading order, and found a traveling wave solution
when the amplitude ratio of the second harmonic to the first is a half. These so-called Wilton ripples
were described, in terms of resonant interaction of three copropagating waves, first by McGoldrick.'’
Finite amplitude solutions have been also obtained numerically in Schwartz and Vanden-Broeck.>”
More recent references can be found in Vanden-Broeck.!

4.3 | Symmetric two-dimensional waves

When the wavenumber vectors of two propagating waves (k, and k3) are aligned symmetrically about
k. in other words, 6, = —05, Equation (47) can be simplified to

(K12+]) [(COS3 93—%)K12—(2—cos93)cos293 =0, (53)
so that K| can be found as

2 _ A2 —costy) cos? 0,

K eos 0, — 1 for — 0. < 03 < Ok (54)
where the denominator must be positive so that the symmetric waves exist only when |05| < 6,,,,, with
cosf, . =2"'3 or 6, ~37.467° (55)

The same expression of the maximum angle was found by McGoldrick® from the resonance conditions

for pure capillary waves. Because K| — oo as 8 — 6 the dispersion relation for gravity-capillary

max?

waves can be approximated by that for capillary waves as § — 6 Therefore, the two expressions

max-*
for 6., from the two dispersion relations coincide. Notice that the straight line in Figure 1 represents
symmetric triads, and its intersection with the curve of f(8,6,) = 0 defined by (50) represents the
maximum angle 0, ..

For symmetric triads, from (43) and (46), the relationships between Q;'s and K's are given by

Figure 5 shows the variations of K; and €2; with the angle of symmetric waves, or 05, along with the
linear wave speeds in the x-direction defined by C; = Qj/Kjx with K; = K cos6;. Both K; and Q;
increase with 65 to become infinity at 65 = 6,,,,. For one-dimensional waves (6; = 0), the expression
for K| given by (54) is equivalent to (52) with & = 1, for which the linear speeds of the three modes
in the resonant triad coincide. For 65 # 0, one can see, from (56), that the linear wave speeds in the
x-direction defined by ij =Q; /(K ; cos 8;) become identical, as shown in Figure 5(C). As seen for
one-dimensional Wilton ripples, if the nonlinear wave speeds match, the symmetric resonant triad
could form a wave field that travels in the x-direction with a constant speed although the wave field is

transversely modulated. This will be discussed in detail in Section 5.2.



CHABANE AND CHOI 541

0 02 04 06 08 1.0 0 02 0.4 0.6 08 10
0,/0 0,/0

3 max max

(A) (B)

0.2 0.4 0.6 0.8 1.0
0,/6

max

©)

FIGURE 5 (A) Wavenumbers K, (solid line) and K, = K3 (dashed) of symmetric resonant triads versus the
angle of wave propagation (05/6,,,,) with 6, defined by (55). (B) Wave frequencies Q, (solid) and Q, = Q, (dashed)
of symmetric resonant triads versus 65 /6,

(C) Linear wave speed C, versus 6;/6, ... Notice that the wave speed of

max* max *

the K;-mode given by C; = Q, /K, (solid line) matches the x-components of C, and C;, given by
C,, = C;, = Q;/(Kj cos 03) (symbols)

S | RESONANT INTERACTIONS WITHOUT ENERGY
EXCHANGE

Once the resonance conditions between three waves are satisfied, the amplitude equations are given,
after nondimensionalizing (36), by
dz, Z, dz

. d . 3 . 3
— =i 2,2y, 2 =il ZZ,, d—T3=1FOZIZQ', (57)

where Z ol and y, are nondimensionalized as

Z, =2,/ [gHB, T =t/(c/g)*, Ty=r/&"/c)H'E, (58)

with Iy given by (40) with replacing w; and k; by Q; and K, respectively. If necessary, notice that
I’y can be scaled out from (57) by introducing a new dimensionless time, T, = I'yz. It is well known
that the amplitude equations given by (57) can be solved analytically in terms of elliptic functions
(McGoldrick®) and, in general, the amplitudes oscillate periodically in time by exchanging energies
proportional to | Z; 2.

An interesting question is if resonant interactions can occur without such energy exchange. If res-
onant interactions happen without energy exchange, | Z;| should be independent of time although its
phase can vary in time so that dZ; /dt # 0. Simmons'? first noticed that it is possible to find time-
independent solutions for | Z;|, but provided little detailed description of resonant interactions with no
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energy exchange. Later McGoldrick!” described Wilton ripples as a special one-dimensional resonant
triad for which the amplitudes remain constant, but his description was limited to a one-dimensional
triad of £ = 1.

Trivial resonant triads without energy exchange exist when any two modes have zero initial ampli-
tudes, eg, | Z,| = |Z,| =0, or | Z,| = | Z5| = 0. This implies that the third mode is a monochromatic
wave train and should remain unchanged. If only one mode (eg, Z) has initially zero amplitude, the
other two modes of nonzero wave amplitudes (Z, and Z53) will interact resonantly and excite the mode
that is initially absent, or Z,, as can be seen from (57).

When all three resonant waves initially have nonzero amplitudes (no matter how small they are),
the existence of resonant triad interactions without energy exchange would depend on their initial
amplitudes and phases, which will be explored next.

5.1 | Fixed points

To find conditions under which no energy exchange occurs during resonant three wave interactions, it
is useful to write the evolution equations for | Z;|. Following Simmons,'? the system for | Z ;| can be
written as

dlle =F0|22||Z3| SinA, d|22| = —F0|Zl||Z3| SinA, d|Z3| = _F0|Zl||22| SinA’ (59)
dTr dr dr
dA 1 1 1
= =F0|ZI||ZZ||ZS|< - - >cosA, (60)
dr 1Z\2 12, 125

where A = ¢; — @, — @3, as defined in (35). Then, the evolution of ¢; (j = 1,2, 3) is governed by

do, 1Z,11Z,|
/R Ll JLTLPN ©1)
dr 1Z;]

with p and g being two remaining indices different from ;.

Looking for resonant triads that interact without exchange of energy is equivalent to finding fixed
points of the coupled system given by (59) and (60). It can be easily seen that the fixed points exist, or
d|Z;|/dt = 0, when

A=mn form=0,1, (62)

[ S
1Z\> 12,17 1Z5)°

=0, (63)

where | Z;| # 0 have been assumed because the zero amplitude cases were previously discussed. When
the two conditions for fixed points given by (62) and (63) are met, the right-hand side of (61) becomes
time-independent and, then, ¢ ; can be obtained as

@ zﬂjT+(Pj,0s (64)
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FIGURE 6 Surface of fixed points defined by (63). Any values of | Z;| on the surface are the fixed points of the
system given by (59) and (60) if Ay = mzx (m =0, 1)

where @; ; are initial conditions for ¢; and u; represent (constant) nonlinear frequency corrections
given by

1Z,I1Z,]
uj=(=D"T———. (65)
’ 1Z;1

When it is multiplied by | Z || Z,|| Z5|, the condition (63) with (65) is equivalent to

Hy — Hy — 3 =0, (66)

with which the condition for A given by (62) can be replaced by the condition for the initial phase
difference AO = (pl,() - @2’0 - (p3’0:

Ag=mn form=0,1. 67)

As shown in Figure 6, Equation (63) defines a surface in the three-dimensional | Z;|-space on which
fixed point solutions for | Z;| reside. Therefore, it can be concluded that any resonant triad can interact
without exchange of energy if | Z; | are located on the surface shown in Figure 6 and their initial phase
difference is O or 7. Otherwise, the wave amplitudes will vary in time, or energy exchange occurs inside
a resonant triad. It should be emphasized that the two conditions given by (63) and (67) must be met
at the same time for no energy exchange.

Under the conditions for fixed points given by (63) and (67), each mode of constant amplitude has
the wave speed given by (; + u;)/ K. Therefore, the nonlinear correction (u; /K ) resulting from the
resonant interaction is O(e) and is more significant than the Stokes correction that would appear at
O(e?).

In general, even when | Z; | are independent of time, each mode in a resonant triad propagates with its
own wave speed in its own direction. Therefore, the resulting wave field is not stationary in any moving
reference frame. For one-dimensional waves, Wilton ripples, or a fixed point solution for £ = 1 is the
only resonant triad that propagates with a constant speed. All other one-dimensional resonant triads
(€ # 1) produce unsteady wave fields even though their initial wave amplitudes satisfy the conditions
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for fixed points. Then, it is natural to ask if any two-dimensional resonant triad exchanging no energy
can form a traveling wave field, which will be addressed in the next section.

5.2 | Traveling waves: symmetric Wilton ripples

As discussed in Section 4.3, the three modes of a symmetric resonant triad (6, = —65) have the same
linear wave speed in the x-direction, necessary for a nonlinear traveling wave solution to exist. In
addition, if the amplitudes of the three modes are independent of time and their nonlinear corrections
to the linear wave speed match, the resonant triad becomes a traveling wave.

Surprisingly, when all symmetric resonant triads satisfy the conditions for fixed points given by
(63) and (67), the x-components of the nonlinear wave speed corrections become identical as K| =
2K, cos 0, = 2K5 cos 03 and py = 2u, = 2. This implies that any resonant symmetric triad without
energy exchange is indeed a traveling wave and can be considered a two-dimensional generalization
of Wilton ripples. These special symmetric waves will be referred to as symmetric Wilton ripples and
exist for [65] < 0«

From (63) and (65), the amplitudes of the symmetric Wilton ripples satisfy

212121 =12, = 1 Z3, (68)
while the nonlinear frequency corrections 4; can be expressed as
=2y =2 p3, Hy = (=1)"To|Z| (m=0,1). (69)

Linear stability of these fixed points is examined in Appendix B and the fixed point solutions are found
neutrally stable when only a single triad is considered.
To represent symmetric Wilton ripples in physical space, the surface displacement ¢ nondimension-
alized by (c/g)'/? can be obtained from
3
c=y [Aj(t) emi(Kx=27) 4 c o], (70)

Jj=1

where A are the dimensionless amplitudes given by A, = A;/(c/g)'/? and X = x/(c/g)!/?. Using
the following relationship between Z; and A; given by (28)

z,=(29,/k,)'* 4;, (71

the fixed point solutions given by (68) and (69) can be written, in terms of |4/, as
2|A, 1> = cos 0 |A5)> =cos O A, |7, g =2uy =2p5 = 2(=1)" g(O)QK |A,], (72)

where 0 = 05, K = K5, Q= Q,, and g(0) = cos’ 0 +2cos@ — 2 > 0. Then, by substituting A=
|A j| el T+050) with (67) into (70), the surface elevation ¢ of symmetric Wilton ripples can be written,
in physical space, as

(X,Y,T)=ay cos(K,Y) cosy =+ (cos 9/8)1/2 ag cos 2y + O(e?), (73)
where

w=K.X-Q[l+(cos0/32)'/?q(0) Kay| T, (74)
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FIGURE 7 Symmetric Wilton ripples given by (73) with K = 0.771, a, = 0.0154, and 6 = 0,,, /3=12.489°:
(A) m = 0; (B) m = 1. In each plot, the surface wave field over two wave wave periods is shown

with K, = Kcosf, K, = Ksin6, and a, = 4|A3|. Here, 6, = 63 = 0 have been chosen and the
plus and minus signs correspond to m=0 and 1, respectively. Figure 7 shows the surface profiles of
symmetric Wilton ripples. When 6 = 0, the one-dimensional Wilton ripple solution is recovered from
(73) and (74).

Using the classical Stokes expansion, it is confirmed in Appendix C that this traveling wave solution
is indeed a solution of the original second-order model given by (3).

6 | CONCLUSION

We have re-examined three-wave resonant interactions of gravity-capillary waves using the Zakharov
equation and its discrete approximation. After having identified the region of resonance, an alternative
to the previous representations of resonant wavenumbers and wave frequencies of McGoldrick”? and
Simmons'? has been proposed in terms of two propagation angles. This could provide a convenient
way to understand possible resonant triads.

A special attention has been paid to resonant triad interactions, in which no energy exchange occurs
so that the amplitudes of the triad remain constant during the interactions. The explicit conditions under
which such interactions exist have been found in terms of initial wave amplitudes and phases. Any triad
that violates the conditions must exchange energy and the amplitudes vary periodically in time. Among
constant-amplitude resonant triads, it is shown that all symmetric triads (with one wavenumber vector
bisecting the angle between the other two wavenumber vectors) can propagate with a constant wave
speed to form a transversely modulated traveling wave when the angle is smaller than the maximum
value given by Equation (55).

Previously, laboratory experiments of gravity-capillary waves have been performed to demonstrate
resonant triads with periodic exchanges of energy. It would be interesting to test if the solutions of con-
stant amplitudes, including symmetric Wilton ripples, described here can be observed. This question
is related to stability of the symmetric Wilton ripples. The linear stability analysis of fixed points of a
resonant triad presented in Appendix B is limited and more general perturbations beyond the resonant
triad have to be considered. Recently, Trichtchenko et al.3” investigated the stability of one-dimensional
Wilton ripples and found extremely small growth rates when they are unstable. Then, such instability
might be suppressed by viscosity.

Resonant triad interactions can also occur in density-stratified fluids and the constant amplitude
solutions could provide steady states or traveling wave solutions through resonant interactions between
surface and internal wave modes or different internal wave modes.

33-35
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APPENDIX A: AMPLITUDE EQUATIONS FOR A

Instead (15), one can introduce a slowly varying wave amplitude A as

a(k,1) = Ak, t)e'” + A*(—k,0)e””, bk, t)—1< )[A(k ne' — A*(—k,ne . (A

Previously, McGoldrick” and Simmons!? introduced this complex amplitude .A to obtain their ampli-
tude equations for a single resonant triad. By substituting into (23) the relationship between A and Z
given by (28), the reduced Hamiltonian 7{ 4 in terms of .4 can be written as

1 * * *
H, = /// VL (A7 As Ay + Ay AS A3) 6,55 dk 5, (A.2)
where Vl(lz)% is given by

8g1885 )"

1 18283

171(2)3 = V2,3,—1 - V—1,2,3 - V3,-1,2’ Vl,2,3 = <— U, 23" (A.3)
o W) W3

Then, the amplitude equation for .4 can be obtained as

oA [ w \Hs [ w ) )
E =1 <E) 6A* =1 E //VO,I,ZAI A250_1_2dk|’2 + 2 %’1,0A1A250+1_2dk1’2 N

(A4)

where the symmetry condition of Vz(11)0 = V2(1))1 has been used. As shown previously for Z, the evo-

lution equation for A also conserves the reduced Hamiltonian 7 4 along with the energy and linear
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momenta given by

d 2 d gkk 2
— dk =0, - [ — dk =0, A.
& [uiara=o. & [E a0 (A5)

respectively.
For a resonant triad, the amplitude equations for A ; can be found, from (A.4), as

dA, . dA, | . dA4; . .
? =1y A2A3, T =1)/2A3A1, T =1Y3 AIAQ’ (A6)

where y; (j =1, 2, 3) are related to y as

w. 3 172
y = Y 818283 Yo- (A7)
/ 2g; 01003

The explicit expressions of y; > 0 are given by

[/ o w w4 kT w-k w-k kT, 1

y1=1 2 @3 O3 TITL ) ok 4 22 343 1 1(w2w3_w%) . (AS)
2 [\kT, ks3T5 wy kok3THT5 2 T3 (of |
[/ o w w3 k,T. w3k w k kT 1

y2=1 3 @ T b T AR L Nl ] 22(0)30)1_‘_(05)’ (A9)
2 [\ksT5  kiTy ) kk3TiT; T; T, wy ]

1[( @, ) 0, k3T
=5\~

N Y on " ki ky+ - - +od)|. (A0
2 kiTy kT, a)3k1k2T1T2) b T, T, w; (wle a)3) ( )

In the limit of infinitely deep water (d — oo and T, - 1), (A.6) can be reduced to the system of

McGoldrick.” After replacing g ; by wf /k;, the coefficients y; can be reduced to those in Craik.?’
From (A.5), one can see that the system given by (A.6) also has the following conservation laws

P T SN
Jj= j=

When necessary, A il and y ; can be nondimensionalized as

A=A/ T=1/(o/8)".  T,=(%8) " 1, (A.12)

and, then, the expressions of I'; can be obtained by replacing w; and k; by Q; and K. Figure 8 shows
the variations of I'; over the resonance region in the fourth quadrant of the (6,, 6)-plane.

APPENDIX B: LINEAR STABILITY OF FIXED POINTS
To study stability of fixed point solutions of the system given by (59) and (60), we assume that

|Zj|=|zj,f|+|zj’.|, A=A+ A, (B.1)

where | Z; ;| for j = 1,2,3 and A ; represent the fixed point solutions satisfying (62) and (63), and |ij|
and A’ denote small perturbations such that | Z J’ |/1Z; sl < 1and A’/A; < 1. Then, by substituting



CHABANE AND CHOI 549
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-n/2 -m/2 -n/2
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FIGURE 8 Contour plots of (dimensionless) coefficients of the amplitude equations 1.5 <T'; < 5 in the fourth
quadrant of the (6,, 6;)-plane, where I'; = (c3/g%)V 4}/_ ; with y; given by (A.8)~(A.10) for infinitely deep water

(T; = 1). (A)T'y; (B) I'y; (C) I'5. The increment between the two neighboring contour levels is 0.5 and the arrows
indicate the direction of increasing contour levels

(B.1) into (59) and (60) and linearizing the system about the fixed points, we obtain

d|Z;| , d|Z§| B , d|Z§| B ,
o ==x|Z, f11Z;5 ;| A, m =F|Z sl Z;5 ;1 A, ” =F|Zf1Z, ;1A (B2)
dA’ 1Z 1Z)] 1Z;]
—— =F2Z 12, 411 Z5 4]l - - , (B.3)
dr R N P S PN RN FARE

where + and — signs need to be chosen for A, = 0 and z, respectively, and we have used sin(A, + A") =
+sin A’ ~ +A’ and cos(A, + A’) = £ cos A’ ~ +1. Then, from (B.2) to (B.3), one can obtain a single
equation for A’ as

2A7
A L oA =0, (B.4)
dr?

where Q' is given by

VAR VA VA S VA E VA R VA
9;222( 2717125, 217125, AN W

(B.5)
|Z, ;17 |Z, /I? |Z5 /13

As Q7 is always positive, A’ is oscillatory in time and, therefore, the fixed points are neutrally stable.

APPENDIX C: STOKES EXPANSION FOR SYMMETRIC WILTON RIPPLES

Here, we assume that all physical variables are nondimensionalized with respect to g and o or,
equivalently, set g = ¢ = 1. To find a traveling wave solution, we assume the problem can be made
steady in a reference frame moving in the X -direction with speed c. Then, the surface elevation ¢ and
the free surface velocity potential @ can be written as

{=C0EY), ©=0¢Y), E=X—cT. (C.1)
With (C.1), the equations for ¢ and @ can be found, from (3), as

oG5 +EIRI= VYO LICLOI, ¢ 4L+ VL= {VOTOL SO, (C2)
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where V = (0/0&, 0/0Y). For weakly nonlinear waves, we further assume that ¢, @, and ¢ can be
expanded in small wave steepness € as

E=6+6+0E), O=0,+D,+0(), c=cy+c +O0(), (C.3)

with §, = O(®,) = O(c,,) = O(e").
By substituting (C.3) into (C.2), the first-order equations for {; and ®; can be found, at O(e), as

%1, pro]=0 9P, v, =0 C4
—C0¥+ [ 1]— N —COE-FCI'F gl— . ()

For symmetric Wilton ripples given by (73), the first-order solutions are assumed to have both the first
and second harmonics:

¢ =ajcos(K,Y) e’ +a, P55 1 CC, @, = b cos(K,Y)e* + b5 .0, (C5)

where K, = K cos§ and K,=K sin 0. By substituting (C.5) into (C.4), one can obtain, for the first
harmonics,

by = —icy(K, /K)ay,  ¢;=(K+K)/K?, (C.6)
and, for the second harmonics,
by =—icyay, ¢ =(K./2+2K))/K. (C.7)

For the consistency between the two different expressions for cg in (C.6)—(C.7), one can obtain a rela-
tionship between K and K, which is nothing but the condition for symmetric waves given by (54)

At the second order, ¢, and @, are governed by
9y 9
—cg—=— + L[DP,] = c; == — V-({; VD) — LIS L[D]], (C.8)
73 713
—c&+é’ +V§—cﬂ—1vq> Vo +1(£[<1>])2 (C.9)
075¢ 2 27 4% TV 15 1) .

After substituting (C.5) into the right-hand sides of (C.8) and (C.9) and imposing the solvability condi-
tions on the right-hand side terms proportional to the first-order (or homogeneous) solutions, one can
obtain the expressions of ¢; and a, as

¢; = +cy(cos0/8)/2q(0) Ka,,  a, = +(cos0/8)'/%a;. (C.10)
Then, the surface elevation { = {; + {, + O(€e?) can be written as
¢ =2aq cos(KyY) cosy + 2a, cosQy) + 0(6‘3), (C.11)
from which (73) can be recovered with aj = 2a; and y = K ¢ given by

w=K.X-Q[l+(cos0/32)/%q(0) Kay| T. (C.12)



