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Abstract

This paper describes the design and implementation of our new multigroup, multidimensional radiation
hydrodynamics code FORNAX and provides a suite of code tests to validate its application in a wide range of
physical regimes. Instead of focusing exclusively on tests of neutrino radiation hydrodynamics relevant to the core-
collapse supernova problem for which FORNAX is primarily intended, we present here classical and rigorous
demonstrations of code performance relevant to a broad range of multidimensional hydrodynamic and multigroup
radiation hydrodynamic problems. Our code solves the comoving-frame radiation moment equations using the M1
closure, utilizes conservative high-order reconstruction, employs semi-explicit matter and radiation transport via a
high-order time stepping scheme, and is suitable for application to a wide range of astrophysical problems. To this
end, we first describe the philosophy, algorithms, and methodologies of FORNAX and then perform numerous
stringent code tests that collectively and vigorously exercise the code, demonstrate the excellent numerical fidelity
with which it captures the many physical effects of radiation hydrodynamics, and show excellent strong scaling
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well above 100,000 MPI tasks.
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1. Introduction

In recent years, there has been an explosion of techniques and
codes to solve the equations of radiation hydrodynamics in
astrophysical environments (Hubeny & Burrows 2007; Krumholz
et al. 2007; Stone et al. 2008; Marek & Janka 2009; Swesty &
Myra 2009; Miiller et al. 2010; Shibata et al. 2011; Vaytet et al.
2011; Zhang et al. 2011, 2013; Davis et al. 2012; Kuroda et al.
2012; Ott et al. 2012, 2013; Couch 2013; Kolb et al. 2013; Couch
& O’Connor 2014; Teyssier 2015; Bruenn et al. 2016; Roberts
et al. 2016; Nagakura et al. 2018; O’Connor & Couch 2018).
To address a broad class of radiation hydrodynamics problems,
we have recently developed an entirely new multidimensional,
multigroup radiation hydrodynamic code, FORNAX, primarily, but
not exclusively, to study core-collapse supernovae (CCSNe;
Skinner et al. 2016; Radice et al. 2018; Burrows et al. 2018;
Vartanyan et al. 2018). However, to keep this paper manageable
and focused, we reserve for a later paper the explicit tests of the
specifically neutrino radiation hydrodynamics of relevance to the
CCSNe problem and focus on tests relevant to generic radiation-
hydrodynamic problems.

Most of FORNAX is written in C, with only a few Fortran 95
routines for reading in microphysical data tables, and we use an
MPI/OpenMP hybrid parallelism model now optimized for
Cray and KNL architectures. FORNAX employs general
orthogonal coordinates in one, two, and three spatial dimen-
sions; solves the comoving-frame, multigroup, two-moment,
velocity-dependent transport equations to O(v/c); and uses the
M1 tensor closure for the second and third moments of the
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radiation fields (Dubroca & Feugeas 1999; Vaytet et al. 2011).
FORNAX can accommodate any orthogonal geometry, though
for the CCSN problem we generally employ a spherical grid. In
this paper, we describe in detail the computational philosophy
and methods of FORNAX (Section 2), the formulation of the
equations (Section 3), the discretization approach (Section 4),
specifics concerning reconstruction, solvers, and coupling
(Section 35), the algorithmic steps (Section 6), the implementa-
tion details of the dendritic grid in 3D spherical coordinates
(Section 7), the results of numerous standard hydrodynamic
(Section 8) and radiation (Section 9) test problems, and
conclude with some general observations in Section 10.

2. General Description of FORNAX

The hydrodynamics in FORNAX is based on a directionally
unsplit, Godunov-type finite-volume method. Fluxes at cell
faces are computed with the fast and accurate HLLC
approximate Riemann solver based on left and right states
reconstructed from the underlying volume averages. The
reconstruction is accomplished via a novel algorithm we
developed specifically for FORNAX that uses moments of the
coordinates within each cell and the volume-averaged variables
to reconstruct total variation diminishing (TVD)-limited, high-
order profiles. The profiles always respect the cells’ volume
averages and, in smooth parts of the solution away from
extrema, yield third-order accurate states on the faces.

The code is written in a generalized covariant/coordinate-
independent fashion, and so can employ any coordinate
mapping (see Appendix A). This allows the use of an arbitrary
orthogonal coordinate system and facilitates the artful distribu-
tion of zones in a given geometry. To circumvent Courant
limits due to converging angular zones when using spherical
coordinates, the code can deresolve in both angles (f and ¢)
independently near the origin and polar axes as needed,
conserving hydrodynamic and radiative fluxes in a manner
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similar to the method employed in SMR (static mesh
refinement) codes at refinement boundaries. The use of such
a “dendritic grid” (discussed further in Section 7) allows us to
avoid angular Courant limits near coordinate singularities,
while maintaining accuracy and enabling one to employ the
useful spherical coordinate system natural for the supernova
problem. All components of the velocity vector are included in
the hydrodynamics, enabling, e.g., the evolution of a rotating
flow in 2D axisymmetry.

Importantly, the overheads for the calculations of various
geometric quantities such as Christoffel symbols are minimal,
since the code uses SMR, and hence the terms need to be
calculated only once (in the beginning). Therefore, the
overhead associated with the covariant formulation is almost
nonexistent. In the context of a multispecies, multigroup,
radiation hydrodynamics calculation, the additional memory
overhead is small (note that the radiation typically requires
hundreds of variables to be stored per zone). The additional
costs associated with occasionally transforming between
contravariant and covariant quantities and in the evaluation of
the geometric source terms are negligible, especially in the
context of a radiation hydrodynamics calculation.

The various radiation species (photons or neutrinos) are
followed using an explicit Godunov method applied to
radiation transport operators, but an implicit method is used
for radiation source terms. In this way, the radiative transport is
handled locally, without the need for a global solution on the
entire mesh. This is also the recent approach taken by Just et al.
(2015), Roberts et al. (2016), and O’Connor & Couch (2018),
though with some important differences. By addressing the
transport operator with an explicit method, we significantly
reduce the computational complexity and communication
overhead of traditional multidimensional radiative transfer
schemes by circumventing the need for global iterative solvers
that have typically shown to be slow and/or problematic
beyond ~ 10,000 cores. We have demonstrated excellent strong
scaling in three dimensions, well beyond the 100,000 MPI
tasks using FORNAX on KNL and Cray architectures
(Appendix E).

The light-crossing time of a zone generally sets the time step,
but since the speed of light and the speed of sound in the inner
core are not far apart in the core-collapse problem after bounce,
this numerical stability constraint on the time step is similar to
the CFL constraint of the explicit hydrodynamics. For cases in
which this near correspondence does not obtained, we have
implemented a reduced-speed-of-light approximation, although
we do not employ this approximation in our core-collapse
simulations. Radiation quantities are reconstructed with linear
profiles, and an HLLE-like solver is used to determine
numerical fluxes at zone boundaries. These HLLE fluxes are
corrected to obtain the correct asymptotic behavior in the
diffusion limit (Berthon et al. 2007). The momentum and
energy transfer between the radiation and the gas are operator-
split and addressed implicitly.

When using spherical coordinates in 2D and 3D, gravity is
handled with a multipole solver (Miiller & Steinmetz 1995),
where we generally set the maximum spherical harmonic order
necessary equal to 12. The monopole gravitational term is altered
to approximate general-relativistic (GR) gravity (Marek et al.
2006), and we employ the metric terms, g,, and g,, derived from
this potential in the neutrino transport equations to incorporate GR
redshift effects (in the manner of Rampp & Janka 2002; see also

Skinner et al.

Skinner et al. 2016). For the CCSN problem, we have used for our
recent 2D and 3D simulations the K = 220 MeV equation of state
(EOS) of Lattimer & Swesty (1991), the SFHo EOS (Steiner et al.

2013), and the DD2 EOS (Hempel & Schaffner-Bielich 2010;
Typel et al. 2010).

With gravity, energy conservation is excellent before and
after core bounce (Section 8.9). However, as with all other
supernova codes, at bounce the total energy as defined in
integral form experiences a glitch by >10* erg,® due to the fact
that the gravitational terms are traditionally handled in the
momentum and energy equations as source terms, hence the
equations are not solved in conservation form.

Though constructed originally for the CCSN problem,
FORNAX is a flexible general radiation-hydrodynamics code
that functions well in a variety of geometries and coordinate
systems. As already stated, in this paper we focus on this
generic character as we demonstrate its strengths and
capabilities and do not here emphasize its implementation in
its original CCSN context. This we leave to a future paper
geared specifically to the use of FORNAX in studying CCSNe.
Again, the main advantages of the FORNAX code are its
efficiency due to its use of explicit transport, its excellent strong
scaling to hundreds of thousands of cores (Appendix E), its
multidimensional transport capabilities, and its interior static
mesh derefinement near spherical coordinate singularities
(Section 7).

3. Formulation of the Equations

In FORNAX, we use a general covariant formalism based on
an arbitrary orthogonal metric to write our equations in a way
that makes no reference to any particular geometry or set of
coordinates. Perhaps the biggest advantage of this approach is
flexibility; as we discuss below, switching geometries and
coordinates in FORNAX is straightforward.

3.1. Hydrodynamics

As is standard practice, we denote the contravariant components
of a vector with raised indices, covariant components with lowered
indices, covariant differentiation with a semicolon, and partial
differentiation with a comma, and make use of Einstein notation
for summation over repeated indices. Here and throughout this
work, we adopt a coordinate basis. In this notation, the equations
of Newtonian hydrodynamics can be written

Pt (i = O, (1a)
(P + (pv'v; + P8 )i = S, (1b)
. P
(pe): + [Pvl(e + —)] = Sk, (Ic)
o),
(PX); + (pXv').; = Sx. (1d)

where e is the specific total energy of the gas, X is an arbitrary
scalar quantity that may represent, e.g., composition, and S;, S,
and Sy are source terms that account for additional physics. The
contravariant components of the velocity are v = dx'/dt, i.e.,
they are coordinate velocities. In a coordinate basis, the

6 . . . .
In comparison, most supernova codes experience a jump in the total energy at
bounce in excess of 10°° erg.
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covariant derivatives can be expanded to yield

1 )
P, + E(ﬁ i =0, (2a)
1 .
(pvp)e + ﬁ[\/? T =ThTh + 8, (2b)
1 . P
(pe); + f[@ pV’(e + ;]] =S, (2¢)
1 )
(pX): + ﬁ(\/? pXvh); = Sx, (2d)

where g is the determinant of the metric, I jic are the Christoffel
symbols, defined in terms of derivatives of the metric, and
T*, = pviv; + P&’} is the fluid stress tensor.

Note that we have chosen to express the momentum equation
as a conservation law for the covariant components of the
momentum. There is good reason to do so. Written this way,
the geometric source terms, I‘ljk T*;, vanish identically for
components associated with ignorable coordinates in the
metric. A good example is in spherical (r, 8, ¢) coordinates,
where, since ¢ does not explicitly enter into the metric, the
geometric source terms vanish for the pv, equation. Physically,
pve 18 the angular momentum, so we are left with an explicit
expression of angular momentum conservation that the
numerics will satisfy to machine precision, rather than to the
level of truncation error. In general, the covariant expression of
the momentum equation respects the geometry of the problem
without special consideration or coordinate-specific modifica-
tions of the code.

3.2. Radiation

FORNAX evolves the zeroth and first moments of the
frequency-dependent comoving-frame radiation transport
equation. Keeping all terms to O(v/c) and dropping terms
proportional to the fluid acceleration, the monochromatic
radiation moment equations can be written

Eyi+ (F) + VE);
+ ViR — 0,(wP)] = Rug, (3a)
Eji+ (P + VE);
+ViE; — Vi 0,(vQy) = Ryj. (3b)
In Equations (3), £, and F,; denote the monochromatic energy
density and flux of the radiation field at frequency v in the

comoving frame, P/ is the radiation pressure tensor (second

moment), kaji is the heat-flux tensor (third moment), and R, g
and R,; are source terms that account for interactions between
the radiation and matter. These interaction terms are written

RI/E :.j,, - CHI/EIH (43)
Rl/j = —c(ky + UV)E/]? (4b)

where j, is the emissivity, x,, is the absorption coefficient, and
o, is the scattering coefficient. Correspondingly, there are
energy and momentum source terms in the fluid equations:

1 [e%¢}
S = ——f R, dv, Sa
j 2 J j (52)
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Sp= — f (RZ,E + V—ZR,,,-)dz/. (5b)
0 c

As in the fluid sector, we rewrite these covariant derivatives as
partial derivatives, introducing geometric source terms in the
radiation momentum equation.

FORNAX can treat either photon or neutrino radiation fields.
For neutrinos, Equations (3) are solved separately for each
species, and Equations (5) are summed over species.
Additionally, the electron fraction is evolved according to
Equation 2(d), with X = Y, and

Sx = Z j(; f.w(jw — chyEy) dv, (6)

where s refers to the neutrino species and

—Nav) !l s =1,
€Sl/ = (NAV)_I’ S = Up>» (7)
0, S = Uy

where N, is Avogadro’s number.

4. Numerical Discretization

To maintain conservation while admitting discontinuous
shock solutions, we adopt a finite-volume discretization of the
equations presented in Section 3. Independent of geometry or
coordinates (x), the volume element can always be expressed as
dV = /g d*x. Similarly, for arbitrary orthogonal coordinates,
the area element is dA = /g d°x. Averaging the equations
over control volumes (cells) leads to a set of exact equations
describing the evolution of cell-volume-averaged quantities.

Applying the divergence theorem, we express the divergence
terms in each equation as a net flux through cell faces. For
example, the volume-averaged density in cell (i, j, k) evolves
according to

dp; j . 1

dt Vijk
X [(pv°A0)i+1/2jk — (pPV°A0)i—1/2,)k
+ (PV'ADi 1726 — (V' A j—1/2.4
+ (p2A)ijkr12 — (V2 A2)ijk—1/2]- (8)

Two things are of note. First, by integrating over cell volumes,
we have transformed our set of partial differential equations
into a large set of coupled ordinary differential equations.
Second, Equation (8) is exact, provided the fluxes on each face
are taken to represent cell face area-averaged quantities.

Source terms appear in nearly all evolution equations and,
for consistency, must also be volume-averaged. If these source
terms were linear in the conserved variables, this volume-
averaging would be trivial. Unfortunately, all source terms are
nonlinear, which requires that we make choices for how the
volume-averaging is carried out. For example, the geometric
source terms in Equation 2(b) are typically treated as

1
o J Ve Tt d s ) T (). ©)

where angle brackets indicate a volume-average over a given
cell, and T%,(U) is the stress tensor computed from the vector
of volume-averaged conserved variables. It is straightforward
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to show that the error in this approximation is O(Ax?), but this
is not a unique second-order accurate expression. Adopting
alternative expressions for some geometric source terms can
have desirable properties, such as exact conservation of angular
momentum (see Appendix A).

With space fully discretized, we now turn to the issue of
temporal evolution. Each of our equations can be written in the
form
86_? + (‘FIQ)! = Snon-stff + Ssiff> (10)
where Q is some volume-averaged quantity evolved on the
mesh, F ’Q is the area-averaged flux of that quantity, and the
volume-averaged source terms have been grouped together
according to whether or not they are stiff. The only terms
currently treated by FORNAX that are stiff are the interaction
terms that couple radiation and matter and the terms that handle
reactions (nuclear or chemical). These stiff terms require an
implicit treatment for numerical stability since the characteristic
timescales for these interactions may be extremely short
compared to the explicit Courant time step for matter or
radiation. All other terms are treated explicitly and are evolved
together without operator splitting. The explicit time integra-
tion is currently carried out using Shu & Osher’s (1988)
optimal second-order TVD Runge—Kutta scheme.

The frequency dependence of the radiation moments is
represented in discrete groups linearly or logarithmically
spaced between a user-specified minimum and maximum
frequency.’ The number of groups per species N, s¢ 18 also set by
the user and can be different for each species. Unless otherwise
indicated, the radiation moments and interaction coefficients
are integrated over each frequency group, appearing with a
subscript g. For example,

Vey1/2
Ey = f E,, dv (11)
Vg—1/2
is the energy density of species s in group g, which has units of
energy density. In integrating over frequency groups, the
monochromatic radiation moment Equations (3) become the
group-integrated moment equations, given for each group g
(and for each species s) by

Eyi + (Fy + VEy),

. v, .
+vig| P — f o, wPhdy | = Rep,
) Vg—1/2
Fyji 4 (PP + VFy), (12a)
VL — vig f 0,008 ydv = Ry, (12b)

Vg—172

5. Reconstruction, Solvers, and Interaction Terms
5.1. Reconstruction

The hydrodynamics in FORNAX is evolved using a
directionally unsplit, high-order Godunov-type scheme. Having
already described the underlying spatial discretization of the

7 Alternatively, the user may specify the frequency range using equivalent
energies in MeV, a standard unit for neutrino radiation.
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variables as well as the time-stepping scheme, the essential
remaining element is a method for computing fluxes on cell
faces. Since FORNAX employs Runge—Kutta time stepping,
there is no need for the characteristic tracing step or transverse
flux gradient corrections required in single-step unsplit
schemes. This approach has the great advantage of relative
simplicity, especially in the multiphysics context. FORNAX
follows the standard approach used by similar codes, first
reconstructing the state profile at cell faces and then solving the
resulting Riemann problem to obtain fluxes.

There are many potential approaches to reconstructing face
data based on cell values. One particularly popular approach is
to reconstruct the primitive variables (p, P, and v') using the
method described by Woodward & Colella (1984), the so-
called piecewise-parabolic method (PPM). This method is
based on the idea of reconstructing profiles of volume-averaged
data, with curvilinear coordinates incorporated by reconstruct-
ing the profiles in volume coordinates rather than in the original
coordinates themselves. This approach can be problematic in
the vicinity of coordinate singularities. Blondin & Lufkin
(1993) suggested a generalized approach to PPM in cylindrical
and spherical coordinates. Unfortunately, it can be shown that
their approach cannot be used generically and, in fact, fails
even for standard spherical coordinates. Here, we present an
alternative approach that works in arbitrary geometries and
coordinates, which contains PPM as a special case.

We begin by writing down an expression for a general nth-
order polynomial:

p) =) g, (13)

=0

where c; is the coefficient of the jth-order monomial. As in
PPM, we wish to construct a polynomial p(x) consistent with
pi» the volume-average of the quantity p in cell i. In our
formulation, the volume-average of p(x) must then satisfy a set
of constraint equations of the form

p;=(p)i

= gl (14)

where x;11,2 = x; = Ax/2 and the quantities (x/); can be
precomputed for each cell either directly or via Romberg
integration, then stored in one-dimensional arrays. For the case
n =0, i.e., for piecewise-constant reconstruction, this yields
the trivial result that p(x) = p,. For n > 0, we must further
constrain the reconstruction. To proceed, we first distinguish
between cases where n is even and #n is odd. For odd n, we form
a symmetric stencil around each edge containing data in n + 1
cells and require that (p); = p; in each cell i. This necessarily
yields continuous left and right states at cell interfaces, but that
continuity may be broken by the subsequent application of a
slope limiter. For even n, we similarly constrain the polynomial
within a symmetric stencil of n + 1 cells, this time centered on
a given cell, yielding potentially discontinuous data at cell
faces even before the application of a slope limiter.

In FORNAX, since we most often employ third-order
piecewise-parabolic reconstruction (n = 2), we now describe
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it in more detail. The reconstruction of p(x) in cell i depends on
the data values p; 1, p;, and p; . Note that this requires the
same number of ghost cells as linear reconstruction, is of
similar cost, and being of higher order, produces superior
results for many problems, as we show below and in Section 8.

To begin, if p; is a local extremum of the data, then the
reconstruction in cell i is taken to be piecewise-constant.
Otherwise, three constraints in the form of Equation (14) are
used to form the linear system

a b, (15)

2 &) Piti1

1)t (%) [co] Pi1
1 (x)ig1 ()i
which is then solved for the unique interpolation coefficients
co, ¢1, and cp. The resulting polynomial is then used to
determine pg;_;,, = p(xi-1/2), the right state at the lower face
of cell i, and p; ;. n = D (Xiy1,2), the left state at the upper
face of cell i. If pg;_, s, is sufficiently close to either p; ; or p;
such that p(x) has an extremum for x € (x;_, x;), then PRi-1/2
is reset to ensure that p(x) is monotone on this interval and has
zero slope at x; 1. The value of p; ;| /, is reset in an analogous
manner as needed. Next, p(x) is reconstructed once more
according to the solution of the linear system

1 (x); &2 |la Di ) (16)

I Xiciy2 xizfl/z lco] PRri-1,2

1 Xit12 x,%ruz “ PLivi
If neither state has been reset by prior monotonicity constraints,
then the solutions of Equations (15) and (16) are identical.
Finally, if p(x) has an extremum in cell i, then either pg; , ,, or
PLi+1/>—Whichever state is nearest to the extremum—is reset
to ensure that p(x) is monotone in cell i with zero slope at
that face.

For smooth data away from extrema, this process yields a
third-order-accurate piecewise-parabolic reconstruction at the
lower and upper faces of each cell. Once the reconstruction step
is completed in all cells and for all variables, the resulting left
and right states at each face, which are derived from distinct
interpolation parabolas, are then passed to a Riemann solver to
obtain the numerical flux at that face as described in the next
section.

5.2. Riemann Solvers

FORNAX currently implements three choices for computing
fluxes as a function of the reconstructed left and right states: the
local Lax—Friedrichs, HLLE, and HLLC solvers. The HLLC
solver, incorporating the most complete information on the
modal structure of the equations, is the least diffusive option
and is the default choice. Unfortunately, so-called three-wave
solvers are susceptible to the carbuncle or odd—even instability.
Many schemes have been proposed to inhibit the development
of this numerical instability. In FORNAX, we tag interfaces
determined to be within shocks (by the pressure jump across
the interface) and switch to the HLLE solver in orthogonal
directions for cells adjacent to the tagged interface. In all our
tests, this very simple approach has been successful at
preventing the instability, incurs essentially no cost, and is
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typically used so sparingly that the additional diffusion
introduced into the solution is likely negligible.

To O(Ax?), we compute face-averaged fluxes between cells
using approximate Riemann solvers applied to reconstructed
states at the area centroid of each face. For the hydrodynamic
fluxes, we use the HLLC solver of Batten et al. (1997) and
Toro et al. (1994). For the fluxes of the radiation moments
(specifically, the F' and czPJ’- terms), we use the HLL solver as
in Harten et al. (1983). As has been pointed out by multiple
authors, the HLL solver applied to our radiation subsystem
yields fluxes that fail to preserve the asymptotic diffusion limit.
To recover this limit, we have found it sufficient to introduce a
correction to the energy fluxes of the form

_ SgFp — S FR + €SpSL(Er — Ep)

F g,Lc](;rrected - B S s (17)
R — OL

with

€= min(l, ! ) (18)
Teell

In Equation (18), 7 is an approximation to the optical depth
of a cell in the direction normal to the face, computed using a
simple arithmetic average of the total opacity (absorption plus
scattering) of the cells on either side of the face. In
Equation (17), Sy and Sk are the wavespeed estimates for the
fastest left- and right-going waves, F; and Fy are the normal
components of the reconstructed radiation fluxes on the left and
right sides of the face, and E; and Ey are the reconstructed
radiation energy densities on the left and right sides of the face.
Note that when 7. < 1, the corrected numerical fluxes are
identical to the standard HLL fluxes. Note further that from
here on, we drop indices referring to radiation species (photon
or neutrino) and frequency group for clarity, though each of
these radiation terms are computed per species and per group.

Since we evolve the comoving-frame radiation moments, the
intercell fluxes include advective terms that depend on the fluid
velocity component normal to the faces. For consistency and
accuracy, we make use of the contact (i.e., particle) velocity
(v*) computed during the construction of the hydrodynamic
fluxes in the HLLC Riemann solver. At a given cell face, these
advective fluxes are then set to

V¥ER, v <0

(VE) = {V*EL s o (192)
ViFr, v¥<O0

(F) = {V*FL’ Lo (19b)

where the subscripts L and R indicate quantities reconstructed
to the left or right side of the cell face, respectively. In other
words, we use the reconstructed quantities in the upwind
direction, defined with respect to v*, the particle velocity at a
given cell face computed by the Riemann solver for the
hydrodynamics.

Several terms in the radiation moment equations depend upon
the gradient of the velocity field. Ultimately, volume averages of
each of these velocity-gradient-dependent terms are needed. These
are approximated, as in the calculation of the geometric source
terms, by combining separately volume-averaged components as

(i) m (V) 4 (D) (V). (20)
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As before with the advective fluxes, we again make use of the
particle velocities computed during the Riemann solve for the
hydrodynamic fluxes. In addition to the normal components,
we also need the transverse components; these are available in
the construction of the hydrodynamic fluxes as well. Thus, given
the velocity components on every face of a cell, we assume a
linear profile (in our generic coordinates x') for the intracell
velocities and compute the volume-averaged partial derivatives
directly via finite differences across the cell. Finally, to construct
the volume-averaged velocities (v¥), we compute the volume-
average of the linear profile in each direction k.

For the terms involving frequency-space derivatives, we use
an approach similar to Vaytet et al. (2011), considering our
multigroup treatment as a generalized finite-volume discretiza-
tion of frequency space. The evolution equations for these
terms can be written as

Egi — Vii[WPgi12 — WPYg-121 = 0, (2la)
Foji = Vi[5 g1/2 — WQDe—1/2] = 0. (21b)

As in Vaytet et al. (2011), we adopt a simple upwind
formulation of these terms, defining the intergroup flux at a
given group boundary v,_;,, as

. [ P, vii< 0
WP 1p =14 ¢ 2 (B vy <0 (22a)
Ve—172 (Ph)r, v'j=0

. _
Vo172 (QyiilL, Via <0

WO )12 =1 " ! , , (22b)
Ve—1/2 (Qjir» Ve 2 0

where for a given frequency group g, (P)), = Pé{i / Av, is the
group-averaged spectral density, Av, is the group width, and
the subscripts L and R indicate the reconstruction of the spectral
densities to the left or right side of the group boundary,
respectively.

5.3. Interaction Terms

The interaction terms that couple the radiation and matter
can introduce significant stiffness into the system, requiring an
implicit treatment to provide stability to their numerical
evolution on hydrodynamic timescales. In FORNAX, we use
operator splitting to advance the system:

(pvpe = Sjs (23a)
(pe): = Sk, (23b)
(pX): = Sx, (23¢0)
Eso+ = Rygk, (23d)
Fygjr = Ryyj, (23e)

after the explicit transport update described above is applied. It
is essential to treat these terms after the explicit update to
capture stiff equilibria properly, as obtained in optically thick
environments.

Equations 23(b)—(d) treat the terms describing the emission
and absorption of radiation and their coupling to the material
energy and composition. The essential task is to solve the
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system
un+1 —u -n+1 n+1pn+1
=22 U —eniERD, (24
At s 2
Xn+1 — X ,
T T X Gy ey TETD, (24D)
t PR
En+1 — E-
S8 = sg :jsr;rl _ CK?QIE:;+1, (24c)

@ 9

where u denotes the material internal energy density and the
superscript denotes the state just after the explicit update described
above. Although Equations (24) are spatially decoupled, i.e., their
solution depends entirely on local data, if solved directly, they
would represent a large system of stiff nonlinear equations,
especially in the multispecies, multigroup context. Fortunately,
the solution of this system can be made simpler by separating
the updates into “inner” and “outer” parts. In the inner update, the
frequency groups are decoupled from one another and can be
updated using a direct implicit scheme. Then, in the outer update,
all that remains is to find the roots of just a few equations,
independent of the number of groups or species. This can be
accomplished using an iterative scheme. In the photon radiation
context, there is just a single equation, and in the CCSN context,
there are two. Without loss of generality, we continue our
description for the core-collapse case, where X represents the
electron fraction, Y,, and the opacities and emissivities depend on
both T and Y.,.

In the inner update, each individual frequency group is updated
using a fully implicit backward Euler scheme of the form
ES@' + At Jslzq

k
04

= (25)
14+ cAt /{fg

where the opacities and emissivities are computed using the
values of TX and Y* at outer iteration k. Equation (25) has the
important property wherein for ¢ At Hﬁg > 1, i.e., for large

optical depths, the updated energy, E!;,, approaches the thermal

equilibrium solution, jg’; / (c /@’;g).

In the outer update, the hydrodynamic quantities u and pY,
are updated implicitly according to the sum over groups (and of
species) of the emission and absorption terms. The integrated
changes in energy and composition are given by

k _
AEk = Z Z(Eég - Esg)v (263)
s g
AXK =37 376 (B — Ey). (26b)
s g
Finally, we compute the residuals
rk=uf —u + AEY, (27a)
rs = p(Yf —v,) — AXK, (27b)

where, like the opacities and emissivities, the internal energy
density u* depends on both 7% and Y*. The solution to our implicit
system is given by the values of T and ¥, for which rf = rf = 0.

8 More accurately, the numerical solution to our implicit system of two
equations consists of the vector [T, Y,]” that minimizes the norm of the relative
residual vector [rg/u~, rx/(pY,)I".
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To find these roots, we use a Newton—Raphson iteration, using
finite differences to form the Jacobian and employing a
backtracking line search algorithm to improve robustness.” At
each iteration, a linear system is solved for 6T*+! = Tk+1 — Tk
and 6Ye = Y**! — Y¥, the changes in temperature and electron
fraction, respectively, between iterations k and kK + 1. It is in
solving this linear system that our reduction to two equations has
obvious virtues. Convergence is checked by requiring that the
relative change of the temperature and composition between
iterations is below a user-specified tolerance, typically 10~°. In
practice, this procedure yields converged solutions within a few
iterations under a wide range of conditions.

Finally, Equations 23(a), (b), and (e) treat the momentum
coupling represented by the absorption and scattering of
radiative flux. For each frequency group, we first update the
jth component of the flux via the implicit backward Euler
scheme,

Fy
n+1 _
FS&I 1+ CAI(H"+1 + 0n+1) (28)

which is crucial for maintaining the correct asymptotic
behavior in the diffusion regime. To see this, consider the
relevant case of a near-equilibrium, static atmosphere with
large cell optical depths, as is approximately the case inside the
protoneutron star in the core-collapse problem. Under these
conditions, ||F||/(cE) < 1, so that the pressure tensor under the
M1 closure approaches the Eddington closure, P'; = (E/3)¢';.
The flux after the explicit transport update described above is
then given by

Foi = Fygj At

sgj 38] 58.J°

~ —AiS E” 29)
3

where the last approximate equality holds in a near-equili-

brium, optically thick atmosphere in which F ~ cE /T < ¢’E .

In this case, our implicit update yields the updated flux

n-j—l F7
sgJ 1+ CAt(KIVH*l + O_Vl+1)
c
~ l3(Hn+1+ OJ‘L+1):| 58.J° (30)

which is a temporally first-order accurate expression of Fick’s
law of diffusion. In other words, our operator-split implicit
update of the flux reduces to Fick’s law in the asymptotic limit
of high optical depth. The corresponding explicit material
momentum and energy updates are then given by

1 \ ~
ST TE Ry, 6D
s 8

(pv)" = (pv)~ —

(pe)"*!' = (pe)~ — %Z S (Fi' = F). (32
58

° Occasionally, this procedure may fail to converge, in which case we resort
to bisection. For photon radiation, this is typically guaranteed to converge
provided the matter temperature, 7, can be bracketed. For neutrino radiation,
we alternately bisect in 7 and Y, separately, holding the other variable fixed
and, upon convergence, retrying the line search. In the core-collapse context,
we find this procedure to be quite robust.
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Note that Equations (31) and (32) are not momentum- and
energy-conservative, respectively, because the equations them-
selves are not momentum- and energy-conservative as written
in the comoving frame. In Section 9.1, we demonstrate how
well FORNAX conserves total energy in a realistic core-collapse
problem for which the code was primarily intended. This
completes the description of our treatment of the interaction
terms.

6. Algorithmic Steps

The following describes an Euler push sequence (i.e., first
order in time) for the multispecies equations in the core-
collapse context. The generalization to a second-order Runge—
Kutta scheme is straightforward.

6.1. Step 1

Advance the explicit transport subsystem (including advec-
tive flux terms and geometrical and gravitational source terms)
by At:

P, + (pv).; =0, (33a)
(Ve + (pV'vj + P8 )i = —pg, (33b)
. P .
(pe); + [pv‘[e + —)] = —pv'e,, (33¢)
PJl;
(pYo)s + (pYev'),; = 0, (33d)
ESI/,t + (Fsly + Vl su);i - 0, (336)
Fyji + (PPl + ViFy).
+ W Fui — Vi Quji = 0. (330
6.2. Step 2
Advance the frequency advection subsystem by At
Eq i+ VP, — 0w Pl = (34a)
Fuji — i 0,(v Q) = 0. (34b)
6.3. Step 3

Advance the radiation—matter energy interaction subsystem
by At

(pe)J = _ZL (jyy - CK/SVESI/) dV’ (353)
X =3 [ 60l — eruku) v, (35b)
ESEJ :jjy - CK’SVESI/' (35C)

6.4. Step 4

Advance the radiation—matter momentum interaction sub-
system by At:

1 oo
e = =5 [ s + ) oy v, (36a)
c 5 Jo

(pe) = =3 [ (s + o) B v, (36b)
c ¢ Y0
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Figure 1. An example of the sort of dendritic grid one might employ for 3D
simulations. Note that as both the interior and the vertical axis are approached,
the angular sizes increase independently. This allows us to maintain respectable
resolution, while not being burdened by a severe Courant limit.

Fyjo = —c(ke + 0w) Foyj. (36¢)

7. Implementation of the Dendritic Grid in 3D
7.1. Motivation

The purpose of the spherical dendritic grid is to avoid the
narrowing of zones in polar and azimuthal angular extent
approaching the origin and the narrowing of zones in the azimuthal
extent approaching the polar axes that is characteristic of the
spherical polar coordinate mapping of a logically Cartesian grid.
For example, a unigrid in ordinary spherical polar coordinates
would have zones of size Ar x r Af x rsinf A¢. Even at
moderate angular resolution, this narrowing of zones can place a
severe constraint on the CFL time step. One approach to
circumvent this constraint is to coarsen the angular resolution as
needed in order to maintain a roughly constant zone aspect ratio.
Thus, we coarsen the polar angle in order to keep A0 ~ Ar/r as
r — 0, and similarly, we coarsen the azimuthal angle in order to
keep A¢p ~ Ar/rsinf as 6 — 0 or § — w. As a result, all
zones on the grid have roughly equal aspect ratios, and near the
origin where Ar is approximately constant, all zones have roughly
the same size. This implies that the CFL time step is essentially
constrained only by the minimum radial resolution, Ar,,, i.e., the
time step is not constrained by the resolution in either angular
direction. A sample arrangement of the dendritic grid in 3D is
given in Figure 1.

7.2. Static Coarsening

In FORNAX, angular resolution is always coarsened by a
factor of 2. Thus, wherever the zone aspect ratio would
otherwise deviate too far from 1, either A8 or A¢ is coarsened
as needed,'” and the aspect ratio of the neighboring zone

19 We do not allow both A@ and A¢ to be coarsened at the same radius, since
that would represent 4 to 1 coarsening.
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changes discontinuously by a factor of ~2. It is optimal to
coarsen in angle whenever a zone’s aspect ratio would fall
outside the range [1/+/2, /2], ensuring that any zone is at
most ~41% longer in any direction than in the others. It
follows that the CFL time-step constraint may be given by

At < A

< , 37
372 max; {v + ¢} ©7

where the max is taken over all zones i. Note that the notion of
coarsening does not here imply that the overall zone size is
increasing. On the contrary, in the portion of the grid where Ar
is constant, the zones are all roughly of equal size. Therein, the
resolution can be controlled simply by the value of Ary,.

To continue, let £y and ¢, denote the refinement levels in the
f- and ¢-directions, respectively, where the level £; =0
denotes the coarsest resolution level in the d-direction. We
require a minimum of two zones in the #-direction at the origin
and a minimum of four zones in the ¢-direction at the polar
axes, hence, the finest levels in each of these directions are
given by £y = log, Ny — 1 and ¢4 = log, N, — 2, where Ny and
N, are the number of zones on the finest level in the 6- and
¢-directions, respectively. For example, with a resolution of
Ny x Ny = 256 x 512 zones, we would have maximum levels
Z@ — typ — 7

The indexing scheme can be rather subtle. A given zone with
global coordinates (i, j, k) at levels ¢y(i) and ¢,(i, j) has a
neighbor (or neighbors) in the r-direction at coordinates (¢, j/, k')
atlevels £y(i") and £5(i’, j'). The global coordinates are related by

j' = |ngj| and k' = LanJ, where ny(i, i) = 200 ~6® and
ny(i, i', j, j') = 2%@"=6G) and |-] denotes the integer floor
operation.

7.3. Three-dimensional Reconstruction

The general approach of FORNAX toward reconstruction is
described in Section 5. However, with our dendritic grid, there
are numerous special considerations. When performing recon-
struction on the spherical dendritic grid in the r-direction in 2D
(and in both the r- and #-directions in 3D), we must take special
care at refinement boundaries to use a pencil of zones of
constant coordinate volume. For a given zone at refinement
level ¢, if its neighbor is at refinement level £; > £, in a given
angular direction d, then we perform a fine-to-coarse restriction
of the neighbor data to level ¢; using an appropriate volume-
weighted average. On the contrary, if its neighbor is at level
¢} < £;, then we perform a coarse-to-fine prolongation of the
data to level ¢4 using an interpolation of the neighbor data
based on the monotonized central difference (MC)-limited
linear slopes in the transverse direction(s).

The restriction from level £, down to level ¢4 in the
r-direction is then given by

JHnex—k'+ng
Zp:j/ Zq:k/wAVi[’q Ui[’q
J'ngs—k'+ng '
Zp:j/ Zq:kf AVqu
The analogous prolongation from level £y up to level £ in the
r-direction can be messy, but straightforward. Prolongation and
restriction are done in order to obtain a pencil of constant

coordinate volume, which is required to perform a volume-
coordinate-based reconstruction.

Uj = (38)
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7.4. Domain Decomposition

FORNAX is parallelized with non-blocking point-to-point
communication and global all-to-all reduction using an
implementation of the MPI-3.0 standard. Non-blocking com-
munication allows us to hide most—if not all—of the
communication latency behind a significant amount of local
computation. Due to the structure of the dendritic grid, domain
decomposition becomes a non-trivial issue. Unlike the case for
a unigrid or for patch-based AMR/SMR, there is no known
optimal domain decomposition vis 4 vis load balancing.
Therefore, we rely on a type of greedy algorithm to map
the grid onto processors. In our decomposition algorithm, we
attempt to drive the maximum processor load as close to the
average load as possible, within reason. At the same time, we
attempt to minimize the total communication overhead required
to exchange ghost zone data among neighboring grids. Since
our decomposition algorithm scales as a power law in the
number of processors, Ny, it can take minutes to hours to
compute a single decomposition for a 3D grid with a given
resolution and spatial extent. However, we need only to
compute this once; the resulting decomposition can be saved to
a file and read in at startup.

We typically require the maximum processor load be no
more than 50% larger than the average load. This is not
possible for every conceivable Ny, but for a given target,
there is typically some nearby Np. for which our algorithm
yields sufficient load-balancing efficiency. We need only
search within some range of N around the target—a process
that can be performed in parallel—and select the value of Nproc
giving the most evenly balanced decomposition. Although our
algorithm is likely suboptimal, we still achieve near-perfect
strong scaling efficiency for Npoc 2 few x 10° (Appendix E).
This is due to the fact that the majority of zones belong to a
single logically Cartesian block that can be optimally
decomposed in a trivial manner. All that remains is to
decompose the coarsened dendritic portion of the grid in a
way that optimizes the overall load and communication
overhead.

7.5. Boundary Conditions

In spherical coordinates, certain unit vectors change sign
discontinuously across coordinate singularities, i.e., the # and (25
unit vectors change sign across the origin in the radial
direction, and the € and ¢ unit vectors change sign across the
axis in the polar direction. Following Baumgarte et al. (2013),
we enforce parity conditions on the signs of the corresponding
vector components in these ghost zones after copying the data
from active zones. In the azimuthal direction, the grid at
¢ = 2m is mapped periodically to the grid at ¢ = 0, so that the
data in the active zone (i, j, N,—1) are mapped to ghost zone
@i, j, —1) and, similarly, the data in the active zone (i, j, 0)
are mapped to ghost zone (i, j, N,). In the polar direction at the
axes, the data are periodically shifted in the azimuthal direction
by N,/2 zones as they are copied from the active zones into the
ghost zones. Thus, the active zone (i, 0, k) is mapped to the
ghost zone (i, —1, k), where k' = (k + N, /2)mod Nj. Finally,
in the radial direction at the origin, the active-zone data are
reflected in the polar direction and then periodically shifted
as they are copied into the ghost zones. Thus, the active zone
(0, j, k) is mapped to the ghost zone (—1, j/, k), where
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j =Ng—1—j and k' is as before. At the outer radial
boundary, FORNAX can employ a variety of boundary
conditions, including outflow conditions with or without a
diode restriction on the mass or radiation flux, Dirichlet and
Neumann conditions, and arbitrary user-specified conditions.

8. Hydrodynamic Tests
8.1. Mignone Reconstruction Tests

We have taken special care in treating the reconstruction of
quantities on the mesh and have formulated our reconstruction
methods to be agnostic to choices of coordinates and mesh
equidistance. As in Mignone (2014), we do this by forming our
reconstruction expressions in terms of volume-averaged
quantities and moments of the coordinates in each cell. The
moments are calculated at start up for the given mesh and
coordinates. In the radial direction, we have a uniform mesh
in coordinate x;, where the normal spherical radius r =
r,sinh(x /r;), with r, a constant parameter. We reconstruct
quantities in xy, i.e., we locally compute f(x;) to specify f on the
faces of each cell. The mesh in x; is entirely uniform. We have
no need of, and do not construct, f(r), where then the samples
of f would be non-uniformly distributed in r. The same is true
in the angular direction. Thus, we have no “non-equidistant”
reconstruction, and therefore, our reconstructions yield the
same results as Mignone (2014). For any choice of coordinates
in any geometry, the method works the same and forms a
consistent parabolic reconstruction from volume-averaged
inputs.

To demonstrate the scaling of FORNAX under this recon-
struction regime, we have performed at various resolutions the
L, error radial/spherical wind test discussed in Mignone
(2014). This hydrodynamic problem has an analytic solution
(Mignone, his Equation (89)), and we have conducted the test
for the Gaussian density profile provided in his Equation (73),
with his parameters (¢ = 10, b = 0) and (@ = 16, b = 0.5).
Figure 2 depicts the associated convergence scaling for the two
parameter sets, compared with quadratic (1/N?) behavior, and
should be compared with Mignone’s Figure 10. Despite the fact
that this study was performed for a non-uniform radial grid, the
expected scaling with resolution still emerges.

8.2. Centered and Off-centered Sedov Blast Wave

A standard test is the classical self-similar blast wave of
Sedov (1959) describing, e.g., the initial energy-conserving
phase of a supernova remnant. The problem consists of a
stationary background medium with uniform density p, and
near-zero pressure P into which a prescribed blast energy E is
deposited. Since P; = 0, the solution depends on only the two
parameters p; and Ey; it follows that the radius, r, and the time
since explosion, #, are related by a dimensionless similarity
variable, £. Thus, it can be shown that the position of the shock
radius is given by

NVE
() = go(E‘—t] ,

P1

(39)

where &, ~ 1.033 for an adiabatic equation of state with
v = 1.4. Following Kamm & Timmes (2007), we set the
dimensionless inputsto y = 1.4, p; = 1, Py =4 X 10_13, and
E, = 0.851072, such that the outer blast radius is at , = 1 at
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Figure 2. Plotted are the L; error measurements for the spherical wind problem found in Mignone (2014), as a function of number of radial zones (N,). These
resolution tests were performed with two sets of parameters for the initial Gaussian density profiles used in Mignone, with his parameter pairs (@ = 10, b = 0) (left
panel) and (a = 16, b = 0.5) (right panel; see Mignone 2014, his Equations (73) and (89)). The solutions to this hydrodynamic wind problem are analytic, facilitating
the demonstration of the rate of convergence to the correct solution. See the text in Section 8.1 for a discussion.

time t = 1. We use a three-dimensional spherical dendritic grid
with radial extent out to ryx = 1.2 and a resolution of
64 x 64 x 128 zones. The radial grid spacing is constant in
the interior with Ar = 0.01 out to r =~ 0.3, then smoothly
transitions to logarithmic spacing out to 7,x.

For our first test, we deposit all of E; in the zones
surrounding the origin. As expected, the subsequent blast is
aligned with the grid and maintains perfect spherical symmetry.
Next, we deposit the same energy in the zones closest to the
x-axis at » = 0.12 so that the blast is off-axis. This time, the
blast is not aligned with the grid and must cross the polar axis
as it expands. Figures 3 and 4 compare the density and internal
energy of the on- and off-axis blast waves, respectively. There
are small-scale axis artifacts in the density in the off-axis
version of the blast wave, but the blast wave remains fairly
spherical despite being nowhere aligned with the spherical grid.
The scale of the artifacts is smaller in the internal energy, since
pressure variations tend to be smoothed out behind the shock
where the pressure is large.

Overall, this test demonstrates that the internal geometric
boundary conditions at the origin and polar axes are correctly
applied. The artifacts at the axes are likely due to small errors in
reconstruction in the azimuthal direction with our dendritic
grid. The direction of the polar and azimuthal coordinate
vectors is divergent at the polar axis, hence angular variations
in the data there can only be resolved by a correspondingly
convergent grid. In the limit of a locally “planar” flow across
the poles, the rapid azimuthal variation comes entirely from the
coordinates themselves, not from the data, although these
variations must average to zero. Our dendritic grid deresolves
this rapid angular variation, introducing first-order errors due to
monotonicity contraints. However, these artifacts are confined
to a narrow polar axis region and do not adversely contaminate
the solution elsewhere.

8.3. Sod Shock Tube

To demonstrate the shock-capturing capabilities of FORNAX,
we consider the classical shock-tube test of Sod (1978). The
initial data consist of two states:

(1.0, 1.0), ifx<O,

(“P):{mlx,un,omam%. (40)
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Figure 3. Results of the three-dimensional Sedov blast wave test at time
trina = 1. We plot the density, p, for the on-axis (left) and off-axis (right) blast
waves along a slice at y = 0 using a linear gray color scale from p = 0 (white)
to p = 3 (black). The analytic shock radius location, rgp, is overplotted (red
dashed line). Small-scale axis artifacts are apparent in the off-axis version, but
the solution remains fairly spherical even though the blast is nowhere aligned to
the grid.

1A 1A
0 1 01
—1- 1A
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Figure 4. Same as Figure 3 but for the internal energy density, u, which is
plotted using a linear gray color scale from u# = 0 (white) to u = 0.25 (black).
Small-scale axis artifacts are less apparent, since pressure gradients tend to get
smoothed out behind the shock front.

The initial velocity is set to zero. For this test, we adopt an
adiabatic equation of state with index v = 1.4.

This test is not particularly challenging for modern HRSC
codes, but it is nevertheless interesting because it exhibits all
fundamental hydrodynamical waves. The exact solution
consists of a left propagating rarefaction wave, a right
propagating contact discontinuity, and a right propagating
shock.
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Figure 5. Density, pressure, and velocity (left, middle, and right panels, respectively) for the Sod test. The solid line is the analytic solution, while the dots show the
FORNAX results at a resolution of 64 grid points. All of the key features of the solution are correctly captured, but the contact wave is smeared over ~4 grid points.

Figure 5 shows the analytic solution and the results from
FORNAX using a coarse mesh of 64 points. The code correctly
captured all of the waves. The shock wave is sharply captured
within ~2 grid points, while the contact wave is smeared over
~4 grid points.

8.4. Double Mach Reflection

To test the sensitivity of the FORNAX code to the numerical
diffusion of contact waves, we perform the classic double Mach
reflection test of Woodward & Colella (1984). This test consists of
a Mach 10 oblique shock through air (y = 1.4), inclined with
respect to a reflecting boundary in which the incident and reflected
shocks then interact to produce a triple point. In the space between
the reflected shock and the contact discontinuity, an upward-
directed jet should form along the slip surface, but if the numerical
dissipation of the contact wave is too high, the formation of this
jet will be suppressed. We use a two-dimensional grid of
520 x 160 zones over the domain (x, y) € [0, 3.25] x [0, 1]
and position an oblique shock at xy = 1/6 inclined at an angle
a = /3 with respect to the x-axis. The pre-shock state is given
by (p, P, vy, Wr = (1.4, 1, 0, 0) and the post-shock state by
(0, P, v, v)L = (8, 116.5, 8.25sincv, —8.25cos ). The left
x-boundary is held fixed at the post-shock state and outflow
conditions are imposed at the right x-boundary. At the lower y-
boundary, the post-shock state is fixed for x < xp, and reflecting
boundary conditions are imposed for x > x;. Meanwhile, at
the upper y-boundary, the time-dependent shock position, x; =
xo + y/tana + 10t/ sin «, is used to set either the post-shock
state (x < x;) or the pre-shock state (x > xj).

Figure 6 shows the evolved system at fg,, = 0.2 using 30
linearly spaced contours of the density. The features at the
various shock fronts remain sharp, and in the region below the
triple point, a small upward-directed jet is indeed produced
along the slip surface. This indicates that numerical dissipation
of the contact wave is well controlled in FORNAX.

8.5. Rayleigh—Taylor Instability
8.5.1. Two-dimensional Rayleigh—Taylor Test

Here, we study the linear and nonlinear development of the
Rayleigh—Taylor instability in 2D. The initial data describe an
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Figure 6. Results at time #5,, = 0.2 of the double Mach reflection test. We use
a resolution of 520 x 160 Cartesian grid zones and plot 30 linearly spaced
contours of the density. On the right-hand side, the incident and reflected
shocks form a triple point, below which an upward-directed jet is formed along
the slip surface at y = 0.

unstably stratified fluid with

{

The gravitational acceleration g = 1/2 is parallel to the z axis,
and p, = 2, p; = 1, so that the Atwood number A = (p, — p;)/
(p, + pp) is 1/3. The boundary conditions are reflective for
z= =1 and periodic for x = £1/2. The initial pressure is
chosen to ensure hydrostatic equilibrium:

ifz >0,
otherwise.

Ph
Pi

(41)

Z
P@ =P+ [ pgd, (42)
-1
with P(—1) = 10/7 + 1/4. For this test, we adopt an adiabatic
equation of state with index v = 1.4.
At time t =0, the interface between the two fluid
components is perturbed to be

h(x) = hgcos(kx), 43)

with hy = 0.01 and k = 4w. The sharp interface is then
smoothed into a hyperbolic tangent profile with characteristic
length 0.005.

According to analytic theory, & should evolve according to
the following equation:

h(x, t) = ho cosh(\JArg t)cos(kx). 44)

We perform simulations with resolutions ranging from 64 X
128 to 1024 x 2048. We track the mixing of the two fluid
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Figure 7. Amplitude of the interface perturbation for the single-mode 2D
Rayleigh-Taylor test. We show results from different resolutions and the
expected growth rate from analytic theory. We find perfect agreement with
linear theory up to ¢t ~ 1.75, when secondary instabilities start to appear in the
flow and the dynamics becomes fully nonlinear.

components by means of a passive scalar tracer. This is
initialized to be p — p;, so that the value 1 corresponds to the
heavy fluid, while the value O corresponds to the light fluid. We
track the growth of the initial perturbation by locating the 0.99
isocontour of the tracer. Figure 7 shows the perturbation
amplitude, normalized by its initial value, and the prediction
from analytic theory (Equation (44)).

At low resolution, the perturbations grow exponentially from
t =0, but the growth rate is somewhat smaller than that
predicted by analytic theory. The slower growth rate at low
resolution is not unexpected and is due to the numerical
viscosity, which modifies the Rayleigh-Taylor dispersion
relation (Dimonte et al. 2004; Murphy & Burrows 2008a).
We speculate that the reason why the initial perturbations grow
exponentially at low resolution is that they are not well
resolved. At higher resolution, the correct cosh time depend-
ence is recovered and the agreement with linear theory is
excellent up to time r~ 1.75, when the Rayleigh-Taylor
plumes start to break and rolls develop.

During the nonlinear phase of the evolution, secondary
Rayleigh-Taylor and Kelvin—Helmholtz instabilities appear
(Figure 8). These are seeded by the numerical noise, and their
detailed morphology, in the absence of explicit dissipation, is
known to be dependent on the details of the numerical scheme
(Liska & Wendroff 2003a). Despite the presence of these
features, FORNAX is able to preserve the sharp discontinuity in
the fluid tracer. Artificial mixing between the two fluid
components is only present in the Rayleigh-Taylor rolls,
where the flow develops features on scales comparable to those
of the grid.

8.5.2. Three-dimensional Rayleigh-Taylor Test

Neutrino-driven convection plays a central role in the
explosion mechanism of CCSNe (Burrows 2013; Burrows
et al. 2018; Radice et al. 2018; Vartanyan et al. 2018). In this
section, we benchmark FORNAX for the modeling of
convective flows by studying the nonlinear development of
the Rayleigh—-Taylor instability in 3D. We consider the setup
introduced by Dimonte et al. (2004), for which the dynamics is
dominated by mode couplings.

12
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The computational domain is a box with —L/2 < x,y <
L/2, —L <z< L, where L =10 in arbitrary units. We
consider a constant vertical gravitational acceleration g :=
—g =2, and we prepare initial conditions with density
stratification

1
— 1 Z F-1
p() po(l — O Poft ) : (45)
v P
where v = 5/3,
o ifz20,
= 4
Po {p, otherwise, (46)

and p, = 27 (p, + p)gL. We set p, = 3 and p, = 1, so that
the Atwood number A = (p, — p)/(p, + p) is 1/2. The
initial pressure is set to

~
Po

which ensures that the initial conditions are in hydrostatic
equilibrium. We track the concentration of the “heavy” fluid by
evolving a passive scalar field f, initialized to be one for
positive z and zero otherwise. We assume periodicity in the x
and y directions and hydrostatic boundary conditions at
z = £L. We use uniform grids and label our simulations by
the number of grid points in the x-direction so that, e.g., the
N128 run has a resolution of 128 x 128 x 256 points.

At time t =0, the interface between the two fluid
components is perturbed to be

1
hix,y) = — Z
8<k2+k2<16
+ bg cos(kyX)sin(k,Y) + ¢k sin(k, X)cos(k,Y)

+ dy sin(k, X)sin(k, Y)], (48)

where X = 27x/L and Y = 2xy/L. The coefficients ay, by, ci,
and dj, are sampled from a uniform distribution taking values
between —1 and 1, boundary excluded. H is a normalization
coefficient that we adjust after having sampled ay, by, cx, and
dy so that h;ms = 3 X 107*L. We remark that we use the same
initial conditions for all of our simulations, while Dimonte et al.
(2004) used a different number of modes in their initial
perturbation depending on the resolution. We also use the same
realization of the coefficients in Equation (48) for all the
simulations presented in this section. In this way, the
convergence of our numerical results can be better assessed.

When constructing the perturbed initial data, we compute the
cell-averaged density, internal energy, and heavy-fluid con-
centration, i.e., the quantities evolved by the finite-volume
scheme in FORNAX, by numerically integrating the profiles
discussed above on an auxiliary mesh with 50 times higher
resolution than the base grid in each direction.

The initial perturbations generate small buoyant bubbles that
interact and grow into larger bubbles as the system evolves, as
shown in Figure 9. We find that there is significant mixing
between the two fluids. This is evidenced by the intermediate
values taken by (f;,) (see Equation (49) below), especially in the
buoyant bubbles, which entrain a significant amount of the
heavy fluid. At late times, the topology of the interface between

(47)

[ax cos(kX)cos(k,Y)
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Figure 8. Passive tracer concentration for the single-mode 2D Rayleigh—Taylor test at three representative times. The resolution is 1024 x 2048. During the linear
phase of the instability, up to t ~ 1.75, the contact discontinuity is well preserved and there is no spurious mixing of the two fluid phases. Secondary instabilities,
seeded by the numerical noise, appear at later times, during the nonlinear phase of the evolution.

the two fluids becomes non-trivial, and we observe the
detachment of some of the bubbles.

The entrainment of the heavy fluid in the buoyant bubbles
and of the light fluid in the sinking plumes is not strongly
dependent on the resolution, but they appear to grow slightly
with resolution, as shown in Figure 10. This is presumably due
to the higher effective Reynolds numbers achieved in the best
resolved simulations. Note that we do not include an explicit
viscosity in these simulations; consequently, the dissipation
scale is a multiple of the grid scale. At high resolutions,
secondary instabilities with smaller wavenumbers and faster
growth rates are allowed to develop. Their presence might
explain the increase in the entrainment with resolution. Despite
these quantitative differences, we find a remarkable qualitative
agreement between the different resolutions with the gross flow
feature captured even at the lowest resolution of 64 x 64 x
128.

Following Dimonte et al. (2004), we compute the horizon-
tally averaged concentration of the heavy fluid,

(h) == [ dar ay.

and we define as the bubble penetration depth #,, the z-value at
which (f;,) reaches 99%. The profile of (f;) is observed to be
self-similar during the nonlinear development of the Rayleigh—
Taylor instability. We show the profile of (f,) obtained with
FORNAX at two representative times in Figure 11. Also shown
are the experimental results obtained by Dimonte et al. (2004),
as reported in that paper. This figure should be contrasted with
Figure 7 of Dimonte et al. (2004). We find good agreement
between the FORNAX results and the experimental data. The
agreement improves as the resolution increases, with the
exception of a spike appearing at late times in the N512 data
around z/h;, ~ —1. This is caused by the interaction of some of
the down-falling plumes with the boundary at the bottom of the
simulation box.

Following Andrews & Spalding (1990) and Dimonte et al.
(2004), we quantify the mixing degree between the heavy and
the light fluid with the metric

(49)

W= [0 = (e (50)
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Our results are shown in Figure 12. The growth rate of the
instability in the nonlinear phase is proportional to Agt?/L, as
predicted by theoretical models and confirmed by experimental
results (Dimonte et al. 2004). The progression of the mixing
between the two fluids as computed by FORNAX agrees well
with the experimental results reported in Dimonte et al. (2004).
We find that FORNAX compares favorably to the other Eulerian
codes presented in Dimonte et al. (2004), such as FLASH.
FORNAX yields results comparable in quality to those of
arbitrary Lagrangian—Eulerian codes with interface reconstruc-
tion methods (see Figure 8 of Dimonte et al. 2004). That said,
we want to remark that, as documented in Dimonte et al. (2004)
and as we have confirmed in preliminary calculations, the exact
rate of mixing between the two fluids depends to some extent
on the spectrum and the character of the initial perturbations.
We have not fine-tuned the initial conditions of our simulations
to match the experimental data.'' Nevertheless, we cannot
exclude the possibility that the better agreement with the
experimental data of FORNAX compared to the results from
the other Eulerian codes presented in Dimonte et al. (2004) is
due partly to the different choice of initial conditions.

We analyze the character of the fluctuations in f;, on the
original interface at z = 0 at an advanced time Agt?/L ~ 14
(Figure 13). We find good qualitative agreement between the
two highest resolution simulations. However, there are
quantitative differences. Particularly noticeable is the appear-
ance of smaller scale fluid features as the resolution is
increased. This is expected since we do not include an explicit
viscosity in our simulations. Instead, the dissipation scale is
related to the grid resolution, so that higher resolution
simulations have a larger effective Reynolds number.

We quantify this observation by computing the power
spectrum of f, on the original interface at z =0 at
Agt?/L ~ 14. We define the 2D spectrum of f;, as

7k = /f @) ]o—o exp (27rik : %)dzx (51)

1 we adopted the initial conditions of Dimonte et al. (2004) for the N064
resolution, and we have kept them fixed as we increased the resolution.
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Figure 9. Passive tracer concentration for the multimode 3D Rayleigh-Taylor test at two representative times. Red values indicate higher concentration for the
“heavy” fluid. The red surface is the 99% isocontour of the concentration. The resolution is 512 x 512 x 1024.

and the 1D spectrum as

ho = [[otk — of, doak (52)
Because of the periodic boundary conditions, the 2D spectrum
is nontrivial only for k = (k,, k,) with k,, k, integers. When
computing the 1D spectrum, we convert the integral into a
weighted summation following Eswaran & Pope (1988), i.e.,
we set

2mk

== 3 ho, (53)

ke lkel|=k

fy k) =

where N is the number of modes with k — 1/2 < ||k|| < xk +
1/2. Our results are shown in Figure 14.

We find that the spectrum appears converged for k ~ 2, as
could have been anticipated by looking at the dipolar
component of the oscillations in Figure 13. However, we find
that fluctuations with scales k ~ 10 are progressively sup-
pressed as the resolution increases. The lack of convergence at
these intermediate scales can be attributed to nonlinear mode

14

coupling becoming stronger as the effective Reynolds number
of the simulations increases. At smaller scales, the flow
becomes self-similar and develops an inertial range. We find
that the power spectrum follows the scaling expected from
Kolmogorov’s theory of turbulence for a passively advected
scalar field, i.e., |f,| o< k~5/3 (Pope 2000). We also find that, as
the resolution increases, a progressively larger part of the
inertial range is uncovered. At scales of less than ~5 grid
points, the power spectrum drops due to the direct effect of
numerical viscosity.

8.6. Kelvin—Helmholtz Instability

The Kelvin—Helmholtz (KH) instability is a two-dimensional
instability arising from a velocity shear within a fluid. The
instability results in vorticity, which can cascade into
turbulence. As such, it is of particular interest in the study of
CCSNe, where cascading turbulence can contribute to shock
revival.

We consider a fluid over the rectangular domain within
x € [0, 4] and z € [0, 2], with a setup similar to that found in
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Figure 10. Passive tracer concentration in the xz-plane for the multimode 3D Rayleigh-Taylor test at time Agt?/L ~ 14 for different resolutions. The dominant
features of the flow are in qualitative agreement between the different resolutions, despite the highly nonlinear nature of the flow at this time.

Lecoanet et al. (2016) and with a density jump characterized by
the initial conditions below. We conduct tests at low, medium,
high resolutions, defined as 512 x 256, 1024 x 512, and
2048 x 1024, respectively.

6—p[tanh (ﬁ) - tanh(ﬂ)] (54a)
200 a a

vV = ug X [tanh(ﬂ) — tanh(ﬂ)]
a a

w = Asin(mx) x [exp(—@) + exp(—%)],
o o

(54¢)

p=1+

(54b)

with a = 0.05, 0 = 0.2, z; = 0.5, and z, = 1.5. We define v
as the velocity in the x-direction and w as the velocity in the
z-direction.

The initial amplitude, A, of the perturbation in the vertical
(z-direction) velocity (w) is set to 0.01, and the initial density
perturbation, 6p/po, is set to 1.0. The initial pressure Py is 10,
the initial lateral velocity is constant, uy, is set to 1.0, and the
initial density p is set to 1.0. We assume an adiabatic gas with
adiabatic index vy = 5/3. The resulting Mach number (M) is
~0.25, consistent with quasi-incompressible flow. As is often
done in KH instability tests, we ignore gravity.

In Figure 15, we plot as a function of time the growth rate of
the maximum of w, the velocity in the z-direction. The linear
growth phase of the KH instability lasts until ¢ ~ 2.6 (in our
dimensionless units) for all models, which evolve virtually
identically, independent of resolution, until the nonlinear
regime.

In Figure 16, we plot the 2D density evolution at three times
(t =0, 3, and 6 in dimensionless units) over our grid. Initial
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density perturbations evolve to form characteristic vortices at
later times.

8.7. Liska—Wendroff Implosion Test

The two-dimensional implosion test of Liska & Wendroff
(2003b) consists of Sod-like initial conditions, but rotated by 45°
in a two-dimensional reflecting box. Specifically, the domain
extends from O to 0.3 along both the x- and y-directions, with
(p, P)setto (1, 1) for x + y > 0.15 and (0.125, 0.14) otherwise.
The gas is initially at rest and obeys an ideal gas equation of state
with v = 1.4. The solution is evolved until # = 2.5 on a uniform
400 x 400 mesh. This setup results in a shock, contact, and
rarefaction moving from the initial discontinuity that reflect off the
boundaries and interact. As highlighted by Stone et al. (2008), the
correct solution to this problem includes a low-density jet that
travels along the symmetry axis y = x. This problem is exquisitely
sensitive to the preservation of this reflection symmetry, with the
jet failing to form or wandering off y = x if symmetry is violated
even at the level of round off in the discretized update. The
directionally unsplit update in FORNAX is able to maintain this
symmetry, as shown in Figure 17. Additionally, the distance
traveled by the jet can be a useful measure of the numerical
diffusion of contacts. This is illustrated in Figure 17 in the
comparison between the results using linear and parabolic
reconstructions. In fact, at much higher resolutions, the jet
propagates into and interacts with the top-right corner of the
domain, as shown in Figure 18. Our results are comparable,
though perhaps characteristic of slightly higher numerical
diffusion, to the results presented in Stone et al. (2008).

8.8. Pressureless Dust Collapse

Here we investigate the nearly pressureless and homologous
collapse of a uniformly dense cloud of dust under its own self-
gravity. This problem has a solution described in Colgate &
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Figure 11. Horizontally averaged concentration of the heavy fluid at an early time (Agt?/L =~ 3; left panel) and at a late time (Agt>/L ~ 14; right panel). The blue
points are the experimental data extracted from Dimonte et al. (2004); the solid lines are FORNAX calculations at different resolutions. We find good agreement
between the numerical and the experimental data.

such that Py < (447G / ) p% roz, hence at #g,,, the outer edge of

0.20

i No64 A the cloud is collapsing at a Mach number of ~80. Finally, we

| —— Ni28 [ ] use a three-dimensional spherical dendritic grid with radial
0.15 - = N256 ] extent out to 7y, = 7000 km and a resolution of 200 x 64 x
r— N512 ] 128 zones. The radial grid spacing is constant in the interior

§ 010k N with Ar ~ 0.5 km out to approximately 15 km, then smoothly

B 1 transitions to logarithmic spacing out to ry,x.

L ] Figure 19 shows the density, p, and radial velocity, v, at time

0.05 ® ] tinal- We scale these by the cloud density and radius, pg and v,
N @ ] respectively, as obtained from Equations (56) and (57), which

- ® Dimonte et al. (2004) - in turn depend on the numerical solution for r.; obtained from

0.00 & et TR RS T S T SN RAERA N B Equation (55) at time #g,,. As evident from the figure, the
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[\]

0 2 4 6 8 10 cloud density remains constant throughout the cloud, and the
Agt*/L velocity remains linear. There is some smearing at the outer

Figure 12. Mixing degree as a function of the dimensionless time Agt?/L. The edge of the cloud due to finite pressure gradients, but

blue points are the experimental data extracted from Dimonte et al. (2004). The otherwise, the results are comparable to those obtained by
other lines are results from FORNAX calculations. We find that FORNAX agrees other authors (Mﬁnchmeyer & Miiller 1989; Mignone 2014).
well with the experimental data predicting the right growth rate of the This test demonstrates the code’s ability to obtain accurate

instability in the nonlinear regime. . . .
y & fluxes from reconstruction in the volume coordinate.

White (1966) and was used by Monchmeyer & Miiller (1989) 8.9. One-dimensional Core-collapse Mechanical Energy
to argue for the reconstruction of volume-averaged grid Conservation Test

variables over the corresponding volume centroids, rather than
the zone-centered coordinates. At a time ¢, the outer radius of
the cloud, . (¢), is given by the solution to the equation

We perform several spherical 1D core-collapse hydrodyna-
mical simulations without transport or GR corrections and with
Newtonian gravity to study energy conservation in FORNAX.

1/2 1/2 For this test, we use the SFHo equation of state (Steiner et al.
(MG}:F%—EH Hw%—ﬂ),m)

—y 2013). The total mechanical energy is defined as the sum of the
3 kinetic, internal, and gravitational potential energies on the
grid, extending out to 20,000 km. The latter is calculated as

ro o 1o

where py and ry are the cloud’s initial density and radius,

respectively. Once 7 is obtained, the cloud density p,(¢) is 1 S s
given by Egy = —— [ivepas, (58)
-3
P = po(@) , (56) where & is the gravitational potential. We take the jump in total
"o energy around bounce as an apt measure, since gravitation is

not implemented in automatically conservative form (the other
terms are), and bounce is the most problematic phase of core-

[87TG (Vo )]1/ 2 collapse simulations vis 4 vis total energy conservation.
Vel = —TF 0

and the radial velocity profile inside the cloud, v (r, ?), is given by

&7 Moreover, we continue the calculations to ~100 ms after

bounce for three resolutions: Lo (304 radial cells, green),
We use p, = 10° g em™3, ry = 6500 km, and an adiabatic Default (608 radial cells, blue), and Hi (1216 radial cells, red).
equation of state with v = 5/3, and evolve to fp, = 0.065 s. We find that energy is conserved from just before bounce to
The pressure is set to a negligibly small, constant value, P, just after bounce to approximately 10°°erg, 2 x 10% erg, and

16
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Figure 13. Passive tracer concentration in the xy-plane for the multimode 3D
Rayleigh-Taylor test at time Agt?/L ~ 14 for different resolutions. Note the
appearance of small-scale flow structures as the resolution is increased.

~3 x 10*8 erg, for the three resolutions

(Figure 20).
Earlier generations of codes, including AGILE-BOLTZ-
TRAN (Liebendorfer et al. 2004) and BETHE-hydro (Murphy

respectively,
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Figure 14. Power spectra of the heavy fluid concentration on the initial
interface z = 0 at Agt?>/L ~ 14. The spectra are normalized to have unit norm
and then compensated by k3 so that regions with Kolmogorov scaling appear
flat. As the resolution is increased, a progressively larger extent of the inertial
range is recovered.

2.5
2.0} 1
I1s5f J
©
o
=
S
o
5 1.0} 1
Low
0.5 Med |
High
Fit
0.0
0 7

Time

Figure 15. In the context of the Kelvin—Helmholtz study, the growth rate of the
maximum of w, the velocity in the z-direction as a function of time for three
different resolutions: low (blue), medium (red), and high (green). In thick
dashed black line, we plot the best-fitting exponential to the growth rate in the
linear regime, which breaks down at 7 ~ 2.6.

& Burrows 2008b), saw total energy shifts from just before
bounce to over 100 mas after bounce of on the order of
10°" erg. For comparison, CHIMERA (Bruenn et al. 2009,
2016) conserves energy to 0.5 Bethe (I B = 10°!erg) over
~1 s post-bounce. Our default resolution from before bounce to
~1 s after bounce conserves total energy to 0.05 B, an order of
magnitude better. Importantly, we find that the total energy is
conserved to ~10% erg from 10ms post-bounce to 100 ms
post-bounce. By comparison, using CoCoNUT for a New-
tonian core-collapse simulation and subtracting out neutrino
losses, Miiller et al. (2010) report energy conservation of
~2 x 10 erg from just before bounce to just after bounce,
and subsequent non-conservation for the following tens of
milliseconds at the ~10*® level. In Section 9.1, we perform an
analogous core-collapse test using multidimensional, multi-
species transport.
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Figure 16. Two-dimensional density evolution of the Kelvin—Helmholtz
instability over the grid at three different times: ¢ = 0, our initial condition
(top), t = 3 (middle), and ¢ = 6 (bottom). The vertical velocity perturbations
translate to density perturbations, forming vortices at later times.

9. Radiation Tests

9.1. Multidimensional Core-collapse Total Energy
Conservation Test

As a first test of our full radiation-hydrodynamics code, we
test the conservation of total energy by performing a 2D core-
collapse calculation on a grid with a resolution of 608 radial
cells by 128 polar-angle cells. We use Newtonian monopolar
gravity, the SFHo equation of state, 12 energy groups per
species, and our dendritic grid decomposed over 1024
processors. We track the gravitational potential energy (defined
as in Equation (58)), internal plus kinetic energy, and the total
laboratory-frame radiation energy at each time step, accounting
for the flux of each energy component through the outer radial
boundary.

The results of this test are shown in Figure 21. As previously
demonstrated in Section 8.9, we experience a glitch in the total
energy at bounce, since gravity is treated in non-conservation
form. With radiation transport, there are other additional
sources of energy non-conservation, e.g., due to the finite
tolerance of the implicit solver or due to the truncation of the
comoving-to-lab frame transformation in powers of v/c.
However, as Figure 21 demonstrates, the total energy remains
well controlled to within a few x ~10% erg (or to within 0.5%
relative to Eg,,) throughout the 500 ms of the simulation run. 12
Energy conservation within such low levels is especially
important considering the high-velocity energy fluxes crossing
the internal refinement boundaries of our dendritic grid in both
the radial and angular directions and across a distribution of
many processors.

9.2. Doppler-shift Test

To test the advection of radiation energy in frequency space
caused by strong spatial variations in the gas velocity, we
perform the Doppler-shift test of Vaytet et al. (2011). We use a
one-dimensional domain with 50 equally spaced zones between
x = 0cm and x = 10 cm with constant background density of

12° At the same time, the total mass is conserved to within a relative error of
~2 x 1078,
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p=1gem™ and zero opacity. The velocity varies smoothly
between v = 0 cm s~ at the left edge of the domain and v = A in
the center, where A = 5 x 107 cm s~!. At the left boundary, we
introduce a radiation field having a Planck spectrum at a
temperature 7'= 1000 K, which we resolve using 20 equally
spaced frequency groups from v = 0 Hz to v = 2 x 10'* Hz, with
two additional groups to account for radiation in the frequency
range 2 x 10'* Hz — oo. We evolve the system for 10 light-
crossing times in order to reach a steady state.

In Figure 22, we plot the difference between the Doppler-
shifted spectral energy distribution at the center of the domain,
E,(v = A), and the unshifted distribution at the left boundary,
E,(v = 0). We also plot the analytic solution, obtained from the
difference between the relativistic Doppler shift of the incident
spectrum into the frame comoving at velocity v = A and the
unshifted spectrum. To do this, we first multiply the laboratory-
frame frequencies by the relativistic Doppler factor,

1+ 0

-0

where 3 = A/c, to obtain the corresponding comoving-frame
frequencies. Then, we set &, = (47/c)B,, with frequencies
evaluated in the comoving frame, and finally divide by the
relativistic Doppler factor to transform the resulting spectrum
back into the laboratory frame.

The computed solution agrees well with the analytic solution
at almost all frequencies. The relative error is slightly larger
near v ~ 5 x 103 Hz, the peak of the Planck spectrum at
T = 1000K, where TVD slope limiting in our frequency
advection step results in a local first-order error. With 20
groups, the relative error is less than ~6.5% away from the
spectral peak, where it jumps up to ~23%. Running the same
test with 40 groups reduces the maximum relative error to
0.85% away from the spectral peak, where it jumps to 5.6%.

) (59)

9.2.1. Continuity of Laboratory-frame Flux at Transparent Shocks

To demonstrate further that FORNAX accounts properly for
frame effects, we show a comparison of the radial profile of the
total radiation energy density and flux calculated in the steady
state for a constant point luminosity source at the spherical grid
center. We set the material opacity to zero and impose a core-
collapse-like radial velocity field given by

r
—0.1 Vgnock > I < TFshock
Tshock
V) = —r 1 . 60)
F 2 Fhock

—Vshock 77—
\lrmax/rshock -1

where rg,occ = 100km is the location of a strong standing
shock of maximum velocity vg,oex = 0.1¢ and 7. = 1000 km
is the maximum radius.

Since FORNAX calculates radiation quantities in the comov-
ing frame, the corresponding energy density and flux profiles
will have discontinuities at shocks. However, since the
radiation is uncoupled from the matter, the radiation quantities
should possess a smooth profile that goes as 1/ #* in the laboratory
frame. Thus, performing a simple Lorentz transformation back to
the laboratory frame should eliminate the discontinuity. Figure 23
depicts the radial profiles of the radiation energy density and flux,
each scaled to their values in the first radial zone, with the left and
right panels depicting the profile in the comoving and laboratory
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Figure 17. Results of the 2D implosion problem of Liska & Wendroff (2003b) at = 2.5 on a 400 x 400 mesh using linear (left) and parabolic (right) reconstruction

methods. Contours are shown for p = [0.35, 1.1] at 31 equidistant values and are exactly symmetric about y = x. The longer jet in the results at right reflect the lower
numerical diffusion characteristic of parabolic relative to linear reconstruction methods.
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Figure 19. Results of the three-dimensional pressureless dust collapse test at
time fgp, = 0. 065 s. The computed density, p (blue X), and velocity, v (orange
crosses), are scaled by the cloud density and velocity, p, and v, respectively,
— v B S = obtained from the semi-analytic solution (see text for details). The semi-
0.00 0.05 0.10 0.15 0.20 0.25 0.30 analytic solutions for the radial profiles of density (dashed—dotted) and velocity

X (dashed) are also shown. At a given radius, the data in all angular zones are
identical, indicating perfect spherical symmetry is maintained on infall. Results

_ — from one- and two-dimensional tests are also identical.
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Figure 18. Results of the 2D implosion problem of Liska & Wendroff (2003b) frames, respectively. The right-hand side panel shows that the
att = 2.5o0na 1600 x 1600 mesh using parabolic reconstruction. At this very Lorentz transformation has indeed removed the discontinuity.
hlgh resolution, the vortices at th.e tip of the jet have propagateq into .the upper This simple test is one way of demonstrating that FORNAX
right corner and reflected, running back along the top and right sides. The . K o A

overall structure of the solution, however, remains largely unchanged in handles the velocity-dependent terms in radiation Equations 3(a)
comparison to the lower resolution results shown in Figure 17. and (b) properly.
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Figure 20. The change in total mechanical energy (in 10*° erg), defined as the
sum of gravitational potential, internal, and kinetic energies, as a function of
time after bounce (in seconds) for three different resolutions: Lo (green, 304
radial cells), Default (blue, 608 radial cells), and Hi (red, 1216 radial cells).
Energy is conserved to better than 2 x 10*° erg at bounce for the default
resolution, and ~3 x 10" erg at the higher resolution. See text for a
discussion.
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Figure 21. We plot the gravitational potential (green), internal and kinetic
(blue), and laboratory-frame radiation (orange) energies (in 10°3 erg), as well as
the total energy (red) defined as their sum, vs. time after bounce (in seconds)
for a 2D, multispecies core-collapse simulation at our default resolution (608
radial cells by 128 polar-angle cells). In this run, we use the 16 M, progenitor
model of Woosley & Heger (2007; which was studied in Vartanyan et al. 2018)
with Newtonian gravity and our dendritic grid decomposed over 1024
processors. At each step of the calculation, we account for the flux of each
energy component onto and off the grid through the outer radial boundary. The
inset zooms in on the total energy 100 ms before and after bounce. The total
energy is conserved to within a few x~10%erg (to within 0.5% relative to
Egray) during the entire 500 ms of the run.

9.3. Frequency-dependent Opacity Test

To test the effect of a strong velocity gradient on a
frequency-dependent opacity function, we perform a modified
version of a test by Vaytet et al. (2011). We use a one-
dimensional domain with x € [0, 1] cm resolved over 100
zones and set a fixed velocity profile v = Dx, where D is either
0s " or 10"s~'. We use a density profile of p = 1/(Cx) with
C=02cm?g ! and set the gas temperature to Ty = 3K
everywhere. We use a frequency-dependent opacity with x,, =
100 cm? g=! for v < 2 x 10'3 Hz, transitioning smoothly to
k, = 1 cm? g~! over a region of width Av = 4.5 x 10° Hz as
shown in Figure 24. At the left boundary, we inject a Gaussian
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Figure 22. Difference between the shifted and unshifted energy spectra for the
Doppler-shift test. The energy difference in the computed solution (blue X) and
the analytic solution (black dashed line) are plotted. The relative error in the
solution is less than 6.5% except near the spectral peak at ~5 X 10" Hz,
where it jumps up to 23%, due to slope-limiting of the frequency-advected
spectrum, which results in a local first-order error.

radiation spectrum that is normalized to have total energy ag T}*
with T; = 1000 K, is peaked at v = 2 x 10'3 Hz, has FWHM
equal to two-thirds the width of the transition region, and is
resolved over 20 equally spaced frequency groups (also shown
in Figure 24). For each case, we evolve only the radiation
system for one light-crossing time, keeping the hydrodynamics
frozen.

Figure 25 shows selected group temperatures, T, = (&, /aR)l/ 4,
for the cases with D = 0 s~! (top) and D = 107 s~! (bottom). In
the zero-velocity case, the group energies are unshifted, and only
those groups with low-enough optical depth are able to stream
freely across the domain. By contrast, in the case with a strong
velocity gradient, the comoving-frame frequencies are Doppler-
shifted to the right where the opacities are lower. Thus, the energy
in groups 9-12 in the transition region of the opacity function is
able to stream more freely once optically thin conditions are
reached.

9.4. Multigroup Radiation Pulse Advection

To study the behavior of FORNAX in the strong diffusion
regime, where radiation is transported both by diffusion
through the gas and advection along with it, we perform a
variation of the pulse advection test of Krumholz et al. (2007;
see also Zhang et al. 2013), modified for our explicit transport
solver. We initialize the gas temperature and density profiles as

2
T="Ty+ (T — To)exp[—x—z), 61)
2w
Ty ar p T(;l 3
= po— + —| =L 73], 62
P P()Tl 3kB(T (62)

where T, and p, are the background temperature and density,
respectively; T, = 2T, is the peak of a Gaussian pulse of
thermal energy of width w; and 1 = (m, + m,) /2 is the mean
particle mass for ionized hydrogen. Following Zhang et al.
(2013), we use a temperature- and frequency-dependent
absorption opacity of the form

T -1/2 v -3 hv
’*““‘“G) (—) [‘ P(ﬁ)] ©
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Figure 23. Left: the profiles of the radiation energy density and flux, scaled to their values in the first radial zone, in the comoving frame vs. radius for a steady-state
constant point luminosity source. A non-trivial radial velocity field has been imposed that includes a strong standing shock (see Equation (60)). Right: the
corresponding scaled radiation energy density and flux profiles Lorentz-transformed into the laboratory frame. We note that the matter is assumed to be transparent,
hence the laboratory-frame profiles of the scaled radiation quantities should go as 1/ 2, which we indicate by the solid line. See text for a discussion.
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Figure 24. Opacity function (solid blue line) for the frequency-dependent
opacity test. The opacity changes from x, = 100 cm?> g~! for v < 2 x
10" Hz to k, = 1 cm? g™, transitioning smoothly over a frequency range of
width Av = 4.5 x 10° Hz. Overplotted is a scaled representation of the
incident energy spectrum (dashed orange line), which peaks at v =2 x
10"3 Hz and has FWHM equal to 2/3Av. The numbered frequency groups are
indicated by vertical dotted lines. Groups 8—13 comprise the opacity transition
region.

where k¢ iS some normalization constant, and we take
v1 = 2.821kg T, /h to approximate the spectral peak of a Planck
distribution at temperature 7. The problem dimensions are set
by the choice of an arbitrary length scale, w, and by the values
of the non-dimensional parameters 5 = v/c, M = v/ag, P=
ar Ty [(poag), and 7= kp(T)w, where kp = 3.457 Ko
(T/T))33 is the Planck mean opacity such that T represents
the optical depth of the pulse. For our version of this problem,
we choose w=1cm, §=0.01, M=0.1, P=0.1, and
ko = 0.2892 7 cm~!, where 7 is chosen to control which
diffusion regime characterizes the flow.

The product 57 is equal to the ratio of the radiation diffusion
and advection timescales. For (7 < 1, radiation diffusion
dominates, and the system is in the so-called “static diffusion”
regime, but for 57 > 1, advection dominates and the system is
in the “dynamic diffusion” regime. In either case, although the
velocity-dependent radiation work and advection terms will be
very different depending on the frame in which the equations
are solved, the results should be frame-independent. Therefore,
for both the static and dynamic diffusion regimes, we compare
runs in which the radiation pulse is initially at rest to runs in
which the radiation pulse is advected over twice its initial width
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Figure 25. Selected group temperatures, 7, = (Eg/aR)‘/ 4, for the frequency-
dependent opacity test. The velocity profile is given by v = Dx, where either
D = 0s"! for the zero-gradient case (top) or D = 10’ s~! for the strong
velocity gradient case (bottom). For the zero-velocity case, only radiation in
groups with very low opacities can stream freely across the domain, but for the
case with a strong velocity gradient, the energy in groups 9-12 inside the
opacity transition region is shifted to higher frequencies where the opacities are
smaller. This allows these groups to stream more freely once optically thin
conditions are reached.

and shifted back to lie on top of the unadvected results. In
either case, with 7 > 1, the radiation is in thermal equilibrium
with the gas, and the total pressure is initially constant.

We use a computational grid of length L = 20w resolved
over 512 zones, with eight radiation groups logarithmically
spaced over the frequency range [4 x 10'8, 4 x 10??] Hz. In
Figure 26, we show the resulting temperature, velocity, and
density profiles for both the advected and unadvected runs with
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Figure 26. Temperature (top), velocity (middle), and density (bottom) for the
multigroup pulse advection test with G7 = 1 in the static diffusion regime.
Profiles at the initial time (dotted blue line) and at time ¢t = 2w/(c for the
unadvected (solid orange line) and advected (dashed green line) runs are
shown. In both runs, the radiation pulse diffuses through the gas, and as
pressure support is lost, the density in the pulse increases. Although the
radiative work and advection terms are very different between the unadvected
and advected runs, the relative error between them is so small that they are
visually indistinguishable (see Figure 27 for a plot of the errors).

7= 100 such that §r = 1, putting the system in the static
diffusion regime. Over the course of the run, the radiation has
diffused through the gas, decreasing the temperature and
thermal pressure support in the pulse, hence the density
increases correspondingly. Since the advected and unadvected
runs are visually indistinguishable, we plot the relative errors of
the density and temperature in Figure 27, which are bounded
by 2.3 x 10 and 1.4 x 107° , respectively, in absolute value.

Similarly, in Figure 28, we plot the results for the case with
7 = 10* such that Gr = 100, which puts the system in the
dynamic diffusion regime. This time, there is hardly any
diffusion as the pulse is advected, since the radiation is
effectively trapped within the gas. In Figure 29, we plot the
relative errors of the density and temperature, which are
bounded by 1.4 x 10> and 1.5 x 10, respectively, in
absolute value.
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Figure 27. Relative errors between the unadvected and advected runs for the
density (solid blue line) and temperature (dashed orange line) in the multigroup
pulse advection test in the static diffusion regime with 57 = 1 (see Figure 26
for their profiles). The relative errors are bounded in absolute value by
2.3 x 107 and 1.4 x 10~ for the density and temperature, respectively. This
indicates very good agreement between these runs, despite the fact that the
radiative work and advection terms are very different from the vantage of the
different frames.
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Figure 28. Same as Figure 26 but for S7 = 100 in the dynamic diffusion
regime. Here, the radiation is trapped within the pulse, and there is hardly any
diffusion as it is advected across the grid. Again, the profiles for the unadvected
(solid orange line) and advected (dashed green line) runs are visually
indistinguishable (see Figure 29 for their relative errors).
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Figure 29. Same as Figure 27 but in the dynamic diffusion regime with
Bt = 100. The relative errors are bounded in absolute value by 1.4 x 1073 and
1.5 x 10~* for the density and temperature, respectively. Again, this
demonstrates good agreement between the unadvected and advected runs,
although the relative sizes of the terms is very different in each frame.

Importantly, these results demonstrate the ability of FORNAX
to reproduce the correct behavior to a high degree of accuracy
in both the static and dynamic diffusion regimes and for both
advected and unadvected flows. This represents a very sensitive
test of the code’s ability to model radiative trapping in the
CCSN. In the CCSN context, trapping of v, s by infalling matter
and their subsequent compression produces a spectrum of
degenerate v, whose energies can reach the ~100-300 MeV
range while preserving a relatively high lepton fraction, which
is a critically important aspect that allows the core to reach
nuclear densities at bounce.

9.5. Multigroup Gray-opacity Non-equilibrium Radiation
Shock

To test the FORNAX code’s ability to couple the multigroup
radiation subsystem to the hydrodynamics in a regime where
the fluid and radiation are out of equilibrium, we present here
the results of the classical gray non-equilibrium radiation shock
described by Zel’Dovich & Raizer (1969). Following that
work, we adopt the Eddington approximation and set the
radiation pressure tensor to (1), = (& / 3)&Y, where ¢ is the
Kronecker symbol. The shock structure has a semi-analytic
solution described by Lowrie & Edwards (2008). Using their
parameters with an upstream Mach number of M = 3, we
obtain a subcritical radiation shock whose temperature jumps
discontinuously at the shock interface. We set the constant,
gray absorption opacity to x = 577 cm~!, the mean particle
mass to p = my, and use an adiabatic EOS with v = 5/3.
We use a one-dimensional Cartesian domain with x €
[—0.0132, 0.00255] resolved over N, = 512 zones. The
problem is set in the rest frame of the shock, which we
initialize at x = 0. In the upstream state (x < 0), we set the gas
temperature Ty = 2.18 x 10° K, density p, = 5.69 g cm~3,
and velocity vp = 5.19 x 107 cm s~!, and using the Rankine—
Hugoniot jump conditions to determine the downstream state
(x < 0), weset [, = 7.98 x 10° K, density p, = 17.1 g cm~3,
and velocity v; = 1.73 x 107 cm s~!. Similar to Vaytet et al.
(2011), we use 8 radiation groups logarithmically spaced over
the frequency range v € [10" Hz, 10" Hz], initialize the
group radiation energy densities using a Planck spectrum at
the local gas temperature with zero radiation flux, and evolve
for 3 shock-crossing times to fpa = 9.08 x 10710 s, Finally,

23

Skinner et al.

44 /,
[, SN
i
4
7
v
0/.
g 7
T T ‘/‘/ o T/TO
./‘/ 9/T0
1 e . —
—1.0 —0.5 0.0
T [cm] X10_2

Figure 30. Computed gas temperature (blue points) and radiation temperature
(orange points) for the multigroup gray radiation shock with their semi-analytic
solutions (black lines) overplotted and an inset showing the detail of the non-
equilibrium Zel’Dovich spike region.

since the structure of the steady-state shock solution is
independent of the radiation propagation speed, ¢, and since
we must solve the semi-explicit radiation subsystem on a
hydrodynamic timescale, we adopt a reduced speed of light ¢ =
10(vy + ag), where ag = 1.73 x 10’ cm s~! is the upstream
sound speed.

Figure 30 shows the gas temperature structure at time #g,y
with the semi-analytic solution from Lowrie & Edwards (2008)
overplotted and an inset showing the detail of the Zel’Dovich
spike in the upstream temperature near the shock interface.
There is very good agreement between the two solutions,
including in the non-equilibrium spike region and in the
radiatively heated shock precursor in the downstream state. The
relative error between the solutions is bounded by 0.8%
everywhere; the agreement in the remaining variables is
similarly good. Since this test simultaneously exercises the
multigroup, velocity-dependent, Doppler-shift, and matter—
radiation coupling features of the FORNAX code, it also
simultaneously demonstrates the code’s ability to compute the
most problematic aspects of full radiation-hydrodynamics
accurately and consistently.

10. Conclusion

In this paper, we have described the methods and
implementation of the multigroup, multidimensional, radia-
tion-hydrodynamic code FORNAX and numerically exercised it
with a variety of standard and non-standard simulation tests.
These included tests of on- and off-center Sedov blast waves,
the Sod shock tube, double Mach reflection, the 2D and 3D
Rayleigh—Taylor and 2D KH instabilities, the Liska—Wendroff
implosion, pressureless dust collapse, energy conservation with
gravity and a complicated EOS, radiation advection and
Doppler (v/c) shifts in the context of strong velocity gradients,
the handling of velocity- and frequency-dependent opacity, and
non-equilibrium radiative shocks with the Zel’Dovich spike. We
demonstrated that FORNAX performs well and accurately for
all these tests, robustly handling non-trivial multi-dimensional
hydrodynamic and radiation-hydrodynamic problems. To date,
FORNAX has been employed to study CCSNe (Wallace et al.
2016; Burrows et al. 2018; Radice et al. 2018; Seadrow et al.
2018; Vartanyan et al. 2018), for which extensions that include
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approximate general relativity and inelastic scattering processes
are of relevance. The implementation of these effects is not
addressed here, but can be found in Marek et al. (2006; for the
former) and Thompson et al. (2003) and Burrows & Thompson
(2004; for the latter). In constructing FORNAX, we endeavored to
incorporate best numerical and solution practices, with the result
that the code is fast, scales well on most modern HPC platforms,
and has useful geometrical and grid flexibilities. Given this, we
anticipate its continued use to explore cutting-edge radiation-
hydrodynamical challenges of astrophysical import and plan to
extend its reach to include magnetic fields and neutrino
oscillations in the years to come.
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Appendix A
General Spherical Metric

We use the general spherical coordinates (x!, x2, x3), where
the physical spherical coordinates are related via the mappings

1
raxh=r sinh(ﬂ),

It

(64a)
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0(x2) = g + CxZ[l + (64b)

(]
1 + a\ x; ’
d(x?) = x3.
The invariant proper interval for regular spherical coordinates
is given by

ds® = dr* + r? d9* + r?sin? 0 d¢>.

(64¢)

(65)

For general spherical coordinates, such as those defined by
Equations (64), the invariant proper interval is given via the
chain rule by
ds?® = (01r)*(dx")?

+ r2(0,0)*(dx?)?

+ r2sin? 0 (dx3)2. (66)
Thus, with ds?> = 8, dx! dx”, we identify the metric compo-
nents as

g = (Oir)%, (672)
8» = 7’2(629)2a (67b)
833 = r*sin® 6. (67¢)

Since the metric g, is orthogonal (diagonal), the contravariant
components are simply the inverses of their covariant counter-
parts, i.e., g" = (g, for i = 1, 2, 3. The contravariant and
covariant components of the metric can be used to raise and
lower indices, respectively, i.e.,

Vi = ghy,, (68)
vy = g vH. (69)

Finally, the determinant of the metric, |g|, is defined as
Jlgl = r?(01r)sin6(9,0). (70)

Appendix B
Covariant Form of the Momentum Equation

In Equation 1(b), the covariant derivative of the tensor is
defined as

Tﬂy;a = T'“I/,O' + F/LAT)\V - F)\

o ov Tﬂ)\? (7 1)

where

v 1
F,ul/ = Eg)\d(gt/a,# + go'u,l/ - guv,a) (72)
is the connection coefficient (Christoffel symbol). Note that
connection coefficients are symmetric in their lower indices,
ie., F;\W = Ff,ﬂ. Note further that the Einstein summation
convention does not apply to connection coefficients.

From Equation (71) and a well-known identity (Weinberg
1972, pp. 106-107),

. 1
Iy = —/lgh
A \/E\/_A

(73)
it follows that

T[j:i = ﬁ(vlgl le),,‘ — F?,‘-T’,\,

(74)
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where we identify the first and second terms on the right-hand
side as the “flux term” and ‘“geometric source term”,
respectively. Thus, Equation 1(b) can be rewritten in the
equivalent form of Equation 2(b).

Appendix C
Connection Coefficients for Orthogonal Metrics

Using the definition in Equation (72), it can be shown that
the only non-zero connection coefficients are given fori = j by

Tl = (nylgi), (75a)
Iy = (g, (75b)
i 1 &j.i
B = —5?. (75¢)

Appendix D
Connection Coefficients for the General Spherical Metric

Using Equations (67) in Equations (75), we derive here the
connection coefficients for the general spherical metric and
their volume averages, defined as

— [+ el axt ax* e, (76)
\%4
where /|g| is as given in Equation (70) and
AV = f/f\/l(gj dx" dx? dx? 77)

is a given control volume. The coefficients are of only three
types: I'%;, I‘U, and I';.
The coefficients of type I'; are given by

1—\1 — (a r)
(T < o |
_ 2 2 1
SNET f (0%r) r? dx, (78a)
(930)
2y = 2
(),
- 2
e f (920) sin 0 dx2, (78b)
(I'3;) = 0. (78¢)
The coefficients of type Fj] are given by
(Th) = 0. (79a)
(i) = 0. (79b)
(T3) = <—(3l’) )
p
2
-0 3/3) f D) r dx. (79¢)
(M%) = (79d)
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ry=(42),

= (%), (79¢)
(I3,) = (cot§(920)),
— ; 2 2 7
= A Ccosd) fcos@(@zﬁ) dx?. (791)
The coefficients of type I‘;j are given by
2
[y _ [ _r@:0) >
) = (125
_ 1
A(r3/3)A(—cos0)
x f r? dy! f §in 0(0,0)° dx?, (80a)
L2
ply_ [ _rsin t9>,
(T'33) < e
_ 1
 AG3/3)A(—cos 6)
x [ axt [ sint00:0) a2, (80b)
(Tt =0, (80c)
2. — _ sinf cosf ’
(130 = (- St on?
R ) 2
= A—cosd) f sin” 6 cos 0 dx~, (80d)
(Iiy) =0, (80e)
(3) = 0. (80f)

In practice, we use numerical (Romberg) integration to
approximate only the volume-averaged connection coefficients

i 2 2 3 1 : 3 2
(T, (I'2), (F3)), (I'3y), and (I'y). Since I'3; = I'7;, we can
simply set (I'3;) = (I'3,), and by symmetry of the connection
coefficients in their lower coordinates, we can set (T'5,) = (I'3,)

3 3

and <F23>. = (I'5). )

Next, in order to get exact conservation of the ¢-angular
momentum, we wish to have the geometric source term for the
x*-momentum equation vanish, i.e., PATi = 0. Expanding in

repeated indices and substituting Equations (78), (79),
and (80), it follows that
(T3 833 + Ty @)V + (033 833 + [338)v2 = 0. (81)

Since v' and v in Equation (81) are completely arbitrary, it
must be that

I3 855 + T g = 133833 + 338, = 0. (82)

Thus, having calculated (g;,), (g,,) (&33)» (Ff3>, and (1“%3>, we
can set

() = — ig”) (), (832)
11
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100 Strong Scaling of FORNAX 3-d on Cori KNL
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Figure 31. This figure demonstrates our code’s raw per-cycle timing (top) and
excellent strong scaling efficiency (bottom) out to 110,000 MPI tasks. Due to
the greedy algorithm used to load-balance the decomposition of our dendritic
mesh, efficiency can improve with increasing task count as demonstrated here.

(T%) = - §g33> (T3), (83b)

822>

to ensure numerical conservation of the ¢-angular momentum
to machine precision.

Finally, to ensure that 9,P = 0 numerically when it ought
to be, we require that the flux term and the geometric source
term in the two-momentum equation cancel identically in a
finite-volume sense. Assuming v; = 0, only 7%; = P and I'},
survive. It follows that

L
Vgl

Taking the volume average of each side of Equation (84), it
follows that

(JIgl T2 = I'5,T? + T3, T, (84)

AA
2y =222
(r3) = 2

where Ay, = f Jlg| dx'dx? and AA, denotes the area difference
at the two upper and lower faces.

(85)

Appendix E
Some Strong Scaling Test Results

To benchmark the parallel performance of FORNAX under
production-run conditions, we ran a full radiation-hydrody-
namic core-collapse 3D simulations with 20 energy groups,
12th order multipole gravity with GR corrections to the
monopole component, and a resolution of 608 x 256 x 512
(radial, poloidal, toroidal) for 10 cycles with an increasing
number of pure MPI tasks out to 110,000 tasks. The results
shown in Figure 31 demonstrate that the code runs extremely
fast on NERSC/Cori II, with excellent strong scaling efficiency
over 90%. In fact, because of the way we use a greedy
algorithm to load-balance the decomposition of our dendritic
mesh, the efficiency peaks at larger task count.

Figure 32 demonstrates strong scaling results for FORNAX on
the Cray/XE6 on Blue Waters for full-star radiation-hydro-
dynamic simulations using 20 energy groups per neutrino
species and 1000 x 256 x 512 spatial gridding in spherical
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Figure 32. Top: wall clock time per time step (in seconds) vs. core count for
3D radiation-hydrodynamic runs. This is a strong scaling test on Blue Waters.
Red dashed is the ideal expectation, and blue is the realization using FORNAX.
Bottom: the corresponding parallel efficiency vs. core count for FORNAX (blue)
and CASTRO (green). Note that beyond ~10,000 cores, the efficiency of
CASTRO plummets, while that of FORNAX maintains high values. At
~160,000 cores, the efficiency of FORNAX is still ~75%. Our efficiencies
have improved slightly since this test on Blue Waters was performed (see
Figure 31). Perfect scaling would be a flat curve.

coordinates. We see excellent scaling results to ~130,000
cores. The lowest efficiency achieved was for ~130,000 cores
and was ~75%. A comparison was made to the corresponding
results for our previous supernova code CASTRO, which
requires an iterative transport solution and Krylov subspace
methods. After ~30,000 cores, FORNAX is five times more
efficient than CASTRO, and after ~100,000 cores FORNAX is
approximately 10 times as efficient. Moreover, the wall clock
and CPU-hour per time step comparisons have revealed that
FORNAX is also 10 times more favorable than CASTRO by
these metrics. This comparison is not meant as a criticism of
CASTRO, which has many state-of-the-art features and
capabilities (Zhang et al. 2011, 2013). It merely highlights
the differences between an implicit and explicit treatment of
radiative transport in the context of current computer
architectures and parallelism modalities.
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