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Abstract

The gyro-resonant cosmic-ray (CR) streaming instability is believed to play a crucial role in CR transport, leading
to the growth of Alfvén waves at small scales that scatter CRs, and impacts the interaction of CRs with the
interstellar medium (ISM) on large scales. However, extreme scale separation (λ=pc), low CR number density
(nCR/nISM∼10−9), and weak CR anisotropy (∼vA/c) pose strong challenges for proper numerical studies of this
instability on a microphysical level. Employing the recently developed magnetohydrodynamic particle-in-cell
method, which has unique advantages to alleviate these issues, we conduct 1D simulations that quantitatively
demonstrate the growth and saturation of the instability in the parameter regime consistent with realistic CR
streaming in the large-scale ISM. Our implementation of the δf method dramatically reduces Poisson noise and
enables us to accurately capture wave growth over a broad spectrum equally shared between left- and right-handed
Alfvén modes. We are also able to accurately follow the quasi-linear diffusion of CRs subsequent to wave growth,
which is achieved by employing phase randomization across periodic boundaries. Full isotropization of the CRs in
the wave frame requires the pitch angles of most CRs to efficiently cross 90° and can be captured in simulations
with relatively high wave amplitude and/or spatial resolution. We attribute this crossing to nonlinear wave–particle
interaction (rather than mirror reflection) by investigating individual CR trajectories. We anticipate that our
methodology will open up opportunities for future investigations that incorporate additional physics.
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1. Introduction

Cosmic rays (CRs) are an essential constituent of the Galaxy.
With energy density comparable to or exceeding other
components of the interstellar medium (ISM), CRs likely play
an important role ISM heating, chemistry, and dynamics over
timescales of ∼103–108 yr, as well as galaxy formation and
evolution over Gyr timescales (see, e.g., the reviews of
Ferrière 2001; Naab & Ostriker 2017; Zweibel 2017). The
dominant CR population is protons, with ∼GeV particles
representing the peak of the CR energy distribution; the typical
CR energy density of ∼1 eV cm−3 corresponds to a number
density nCR∼10−9 cm−3 (e.g., Grenier et al. 2015).

It is expected that CRs are primarily produced in collision-
less shocks, most likely from young supernova remnants (e.g.,
Baade & Zwicky 1934), via diffusive shock acceleration (e.g.,
Krymskii 1977; Bell 1978; Blandford & Ostriker 1978;
Drury 1983). They are then scattered across the Galaxy,
primarily following magnetic field lines in the turbulent ISM
and eventually escaping after a few million yr (Ginzburg &
Syrovatskii 1964).
Being a nonthermal high-energy particle population, the CRs

only infrequently collide with the ISM particles (this is greatest
at low energies, causing ionization and heating), but the CRs
and bulk ISM gas indirectly interact as they both couple to the
interstellar magnetic field. Through this indirect coupling, CRs
can exert pressure forces on the ISM gas that are dynamically
important. Moreover, being a (trans-)relativistic plasma comp-
onent, CRs in the ISM are highly buoyant, with a natural
tendency to escape from the Galaxy. As a result, the CR
component can possibly contribute to large-scale instabilities

and dynamo activity (Parker 1966, 1992) and to driving
galactic winds (Ipavich 1975; Breitschwerdt et al. 1991;
Zirakashvili et al. 1996; Everett et al. 2008; see also below).
At a microscopic level, the physics of the interaction

between CRs and background thermal ISM gas is extremely
rich. Considered as passive test particles, CRs can be scattered
diffusively by background ISM turbulence at the gyro-radius
scale (e.g., Jokipii 1966; Schlickeiser & Miller 1998; Yan &
Lazarian 2002), which is important for understanding CR
transport. For typical ∼GeV CR particles, the gyro-radius for
an ISM magnetic field of a few μG is on the order of
1012 cm—i.e., a microparsec. Considering the huge dynamic
range from the energy-containing scales of ISM turbulence to
the relevant wavelength (a factor of 108 in length), as well as
the anisotropy of the magnetohydrodynamic (MHD) cascade at
subparsec scales (Goldreich & Sridhar 1995), it is considered
unlikely for background turbulence to be the dominant source
of CR scattering for GeV particles (e.g., Zweibel 2013). There
are even some suggestions from spectral signatures that only
higher-energy (200 GeV) particles are affected by back-
ground ISM turbulence (Blasi et al. 2012).
Anisotropy in the distribution of CRs can destabilize Alfvén

waves. Of particular interest and relevance is the CR streaming
instability (CRSI; Kulsrud & Pearce 1969; Wentzel 1974;
Skilling 1975a, 1975b, 1975c). Instability occurs when the bulk
drift speed of the CRs exceeds the Alfvén speed in the
background plasma. The instability drives the growth of Alfvén
waves at the cost of free energy from CR anisotropy, and in the
absence of wave damping, the resulting scattering of particles
off the waves will effectively reduce the CR drift speed to the
Alfvén speed. This process limits the bulk flow speed of the
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CRs and simultaneously leads to energy and momentum
exchange between the CRs and background gas. As a
consequence, CRSI plays a fundamental role in the interaction
between the CRs and ISM gas and is the key element behind
the picture of CR self-confinement, as well as CR-driven winds
(see, e.g., Zweibel 2013, 2017; Amato & Blasi 2018 for
reviews). On much larger scales in galaxy clusters, the CRSI
may also be important in regulating heating (e.g., Guo &
Oh 2008; Enßlin et al. 2011; Fujita & Ohira 2011; Wiener
et al. 2013, 2018; Jacob & Pfrommer 2017; Wiener &
Zweibel 2018). Here, however, we shall focus on the parameter
regime appropriate for CR interactions with the ISM.

Studies of CR interactions with the ISM on large scales,
whether analytic or numerical, treat the CRs as fluidlike (e.g.,
Breitschwerdt et al. 1991, 1993; Enßlin et al. 2007; Sharma
et al. 2010; Pfrommer et al. 2017; Jiang & Oh 2018; Thomas &
Pfrommer 2019), generally adopting the assumption of
streaming, diffusion, or some combination. This is necessary
given the huge scale separation between the macroscopic scale
of astrophysical systems and the tiny gyro-scale of the CRs, but
this approach is subject to the prescriptions adopted to treat the
microphysical effects of CR diffusion and streaming.

In recent years, there has been a resurgence of interest in CR-
driven galactic winds. While most numerical studies to date
have adopted diffusion prescriptions (e.g., Jubelgas et al. 2008;
Booth et al. 2013; Hanasz et al. 2013; Salem & Bryan 2014;
Salem et al. 2014; Girichidis et al. 2016, 2018; Pakmor et al.
2016; Simpson et al. 2016; Jacob et al. 2018), there have also
been studies that compare wind outcomes when streaming
versus diffusive prescriptions are adopted for the CRs
(Ruszkowski et al. 2017; Wiener et al. 2017). The dynamics
of winds in which CRs stream at the Alfvén speed have
distinctive features, since the effective sound speed of gas
increases as its density decreases, enabling steady-state CR-
driven acceleration of cool gas to high velocities in typical
galactic potentials (Mao & Ostriker 2018). Most recently,
several studies of wind driving have considered even more
sophisticated treatment of the CR fluid, implementing pre-
scriptions for wave damping and for decoupling of CRs from
cold ISM components (Recchia et al. 2016; Farber et al. 2018;
Holguin et al. 2018). While all of the above studies highlight
the important role played by CRs, it is also evident that
different microphysical prescriptions can yield dramatically
different outcomes for wind properties. Currently, however,
microphysical coefficients that are adopted in simulations are
motivated on phenomenological grounds or based on classical
analytic theory of the CRSI, diffusion, and wave damping.
Development of a modern theoretical foundation for CR fluid
treatments, with coefficients calibrated from numerical studies
that directly follow the microphysics, will clearly aid progress
in this field.

At microscopic level, our current understanding of the CRSI
is limited to quasi-linear theory. We note that on the one hand,
the instability can become nonlinear when CR streaming is
sufficiently strong and eventually transition to the Bell
instability (Bell 2004) in more extreme environments, such as
super-Alfvénic shocks in supernova remnants. On the other
hand, there are additional uncertainties related to mechanisms
that lead to wave damping (see discussions in Section 7.2),
many of which again require numerical studies.

Numerical studies of the CRSI at a microphysical level per
force must involve particle-in-cell (PIC) methods and are

inherently challenging because of the extreme ratios between
the density of thermal and nonthermal particles and the scales
relevant for the background thermal plasma compared to CR
gyro-radii. Another difficulty is that the weak level of CR
anisotropy (of order a few times vA/c) must be accurately
represented, demanding a huge number of computational
particles (see Section 3). Both of these issues make it very
challenging for conventional PIC methods to study the CRSI,
especially in the regime relevant for the bulk of the ISM away
from CR injection sites (but see Holcomb & Spitkovsky 2018
and further discussion in Section 7.3).
Recently, we developed a new hybrid MHD-PIC method

(Bai et al. 2015), implemented within the Athena code package
(Stone et al. 2008). By treating the background thermal plasma
as a fluid described by MHD, we greatly alleviate the issue of
scale separation between the thermal gas and CRs. Using this
method, we are able to properly capture the basic properties of
the CRSI, particularly in astrophysically relevant/realistic
parameter regimes. For this purpose, in our first study, we
simplify by ignoring wave damping and concentrating on 1D
simulations that provide the highest possible resolution. By
employing several novel techniques, we demonstrate that our
method can accurately reproduce the linear growth of CSRI and
subsequently follow the quasi-linear diffusion (QLD) of
particles by scattering off of waves generated by the CRSI.
We anticipate that this effort will pave the way for future
studies that incorporate additional physics under a variety of
environments.
This paper is organized as follows. We describe the basic

theory of the CRSI in Section 2. In Section 3, we present the
techniques and methodology employed in our CRSI simula-
tions using the MHD-PIC approach. Our simulation setup is
described in Section 4. In Section 5, we present simulation
results from two fiducial runs. This is followed by a parameter
study in Section 6. Our results are discussed in a broader
context in Section 7, before we conclude in Section 8.
Additional numerical aspects of our simulations are described
in the Appendices.

2. Basic Theory

In this section, we briefly review the theory of the CRSI,
which largely follows the description in Kulsrud (2005). We
focus on the growth and saturation of the instability. While
wave damping is another important ingredient for the CRSI,
it will be addressed in our follow-up work and is not
considered here.

2.1. Physical Mechanism

Without rigorous mathematical derivation, the basic physics
of the CRSI can be understood schematically as illustrated in
Figure 1. Consider a static background thermal plasma with
constant density ρ0 and constant magnetic field = ˆB B x0 with
B0>0. The Alfvén speed is thus pr=v B 4A 0 0 . Coexisting
with the background plasma is a population of CRs. Let the
initial CR velocity distribution be isotropic in a frame that drifts
relative to the background gas at velocity vD, with the drift
velocity along the background field x̂. Without loss of
generality, let vD>0 (along the direction of the magnetic
field). Let f0(v) or f0(p) denote the initial particle velocity or
momentum distribution function, monotonically decreasing
with increasing p. Note that individual CR particle speeds
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greatly exceed vD; hence, approximately half of the particles
travel forward/backward with respect to the gas. For particles
with mass m, charge q, and Lorentz factor γ, the cyclotron
frequency Ωc and gyrofrequency Ω read

gW = W = W ( )
qB

mc
, . 1c c

0

The CR particles can experience gyro-resonance with
circularly polarized Alfvén waves when the pattern of particle
gyration matches that of the waves and the frequency of
the waves experienced by the particles matches their
gyrofrequency. To satisfy the first condition, forward-traveling
CRs can resonate with left-handed, forward-propagating
Alfvén waves, whereas backward-traveling CRs can resonate
with right-handed, forward-propagating Alfvén waves (see
Appendix A for our adopted conventions for left-/right-
handedness). To satisfy the second condition, the parallel
velocity of a particle vP must satisfy

w - = W » -  ( )kv kv , 2

where ω and k are the frequency and wavevector of the Alfvén
wave (we only consider wavevector k along the magnetic field),
and the ± sign corresponds to right-/left-polarized modes,
respectively. Note that ω=kvA, while typically, the CR
velocity (and its projection) vP?vA. We can thus omit ω in
the above equation. In other words, the CR particles travel so
rapidly that Alfvén waves simply appear as a static pattern.

Now consider CR particles in velocity space decomposed
into components parallel and perpendicular to the background
magnetic field (vP, v⊥) and pick a representative particle located
at point O shown in Figure 1. To facilitate the illustration, we
now assume that particles are nonrelativistic (but it can be
easily generalized to relativistic CRs), and hence f0(v) is
constant along a circle centered on (vD, 0) (blue solid circle in
Figure 1). Clearly, f0 is larger (smaller) inside (outside) the
circle. For linear Alfvén waves, their associated electric field

vanishes in the wave frame. Because magnetic fields do no
work on particles, each particle trajectory in velocity space
must follow a circle centered on (vA, 0) (black dashed circle in
Figure 1). Wave–particle interaction generally leads to a QLD
of particle pitch angle toward removing the gradient of f0(v)
across the dashed circle near point O. We see that when
vD>vA, for forward-traveling CR particles near O (left panel),
the net outcome should be that more particles with higher vP on
the right-hand side of point O diffuse along the dashed circle
toward smaller vP. In net, when vD>vA, the diffusion (via
resonant interactions) of particles irreversibly gives momentum
to the left-handed Alfvén waves, feeding their growth.
Similarly, for backward-traveling CR particles (right panel),
more particles on the right side of O diffuse along the dashed
circle to the left side, with the change in vP feeding the growth
of right-handed Alfvén waves. We can also easily see that if
vD<vA, instead of wave excitation, the Alfvén waves will be
damped.
This discussion illustrates how the CRSI is driven by the

anisotropy of the CRs. At the same time, it suggests that CRSI
growth is sustained by QLD of the CRs, which produces
secular and irreversible changes in the background plasma.
This means that for a numerical method to capture linear
growth of CRSI, it must properly capture QLD as well, which
is an important fact to bear in mind when we discuss numerical
methods in Section 3.

2.2. Linear Instability of Waves

We now proceed to a more quantitative description of the
CRSI. Its derivation follows from standard procedures, as
detailed in Kulsrud (2005). Here we only summarize the
necessary results needed for setting up and analyzing the
simulations.
For convenience, in the discussions below and throughout

this paper, we assume that the masses of CR and background
ions are identical (being m). As will be seen in Section 3.1, the

Figure 1. Schematic illustration of the basic physics of the CRSI. When the bulk CR drift velocity vD exceeds the Alfvén speed vA, forward-traveling CR particles
excite left-polarized, forward-propagating Alfvén waves, whereas backward-traveling CR particles excite right-polarized, forward-propagating Alfvén waves. We are
taking particles located near a position O in velocity space as an example. Also note that the sizes of the blue and black circles should be comparable but have to be
exaggerated in this schematic figure. See Section 2 for details.

3

The Astrophysical Journal, 876:60 (31pp), 2019 May 1 Bai et al.



value of m has no physical significance and can always be
absorbed into a factor for the charge-to-mass ratio. We thus
drop it and express the momentum and energy of individual CR
particles as

g g= = ( )p v E c, , 3p
2

where v is a particle’s velocity and γ is its Lorentz factor. In
other words, we effectively take m=1. However, we do retain
the symbol m in certain places for better clarity.

As defined earlier, we use f0(p)=f0(p) to denote the initial
CR distribution function in the frame moving at vD, where the
distribution is isotropic, with the total CR number density given
by ò p= ( )n p f p dp4CR

2
0 . For Alfvén waves with perturbations

proportional to exp [i(kx−ωt)], the CR-modified dispersion
relation reads

w w= W - -  ( )[( ) ] ( )k v
n

n
kv Q iQ1 , 4

i
c D

2 2
A
2 CR

1 2

where ni is the density of background ions. The role of CRs is
reflected in the two-dimensionless factors

ò
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p
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⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

( )
( )

( )
( )

( )

Q k dp
p f p
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res res
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2

2
0

CR

res
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where the dependence of Q1 and Q2 on k is reflected in the
resonant momentum

= W( ) ( )p k k, 6cres

which is the minimum CR momentum to resonate with an
Alfvén wave with wavenumber k (at zero pitch angle).5

Physically, the term associated with 1 in the (1−Q1) factor
is due to the background CR current along B0. The Q1 term is
from the nonresonant response of CR particles to the waves. It
is straightforward to show that Q1 approaches 1 in the long-
wavelength limit and monotonically decreases to zero in the
short-wavelength limit. Thus, the real part of the CR
contribution is bounded. The imaginary part, namely, the Q2

term, results from the resonant response of CR particles to the
waves. Note that at a given k, only particles with p>pres
contribute to Q2, as expected.

In the limit nCR/ni=1, the real part of the dispersion
relation (Equation (4)) is clearly dominated by the k v2 A

2 term;
hence, the term proportional to (1−Q1) can be neglected. In
this case, the dispersion relation largely gives normal Alfvén
waves, which can slowly grow or damp owing to the imaginary
part of the dispersion relation (i.e., the Q2 term from the
resonant response). This is the general CRSI originally derived
(Kulsrud & Pearce 1969), where the forward-propagating
modes, both left- and right-handed, grow at the same rates,

given by

G = W -
⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )k

n

n

v

v
Q k

1

2
1 , 7

i
c

DCR

A
2

and hence the growing modes are essentially linearly polarized.
Clearly, instability occurs only when vD>vA. Moreover, the
maximum growth rate is of the order (nCR/ni)Ωc at wave-
lengths that maximize Q2 (to reach order unity), which
typically correspond to the resonant scale with the lowest-
energy CRs. Backward-propagating modes are damped.
More specifically, the initial distribution function is

commonly considered to be a power law with

 µ a- +( ) ( )f p p p p p, , 80
4

0 max

and f0(p)=0 otherwise. Fermi acceleration gives α=0 (e.g.,
Bell 1978; Blandford & Ostriker 1978). In typical ISM
conditions, the Galactic CR population corresponds to
α≈0.7 for CR particle energy beyond ∼GeV, and
nCR/ni∼10−9. The Q2 factor is given by

p a
a

=
+
+

-

-

a a

a a

- + - +

- + - +

⎛
⎝⎜

⎞
⎠⎟( ) ( )

( ) ( )

( ) ( )Q k p
p p

p p2

1

2
, 92 res

min
2

max
2

0
1

max
1

where pmin=Min[Max(pres, p0), pmax]. The maximum growth
rate is achieved at pres=p0, or

= º W ( )k k p . 10c0 0

This corresponds to the resonant wavelength for particles with
p=p0 (and zero pitch angle). In the limit  ¥pmax , we have

p a
a

p a
a

=

+
+ W
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+
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2

0
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0
0

Taking into account the term from (1−Q1) breaks the
degeneracy between the left- and right-handed modes,
especially when nCR/ni increases. In particular, it makes the
right-handed modes grow faster and more dominant toward
short wavelengths (see Figure 2), and eventually, it smoothly
transitions to the nonresonant Bell mode at kk0 (Bell 2004).
This transition occurs when (Amato & Blasi 2009)

 ( )n

n

v

p v
. 12

i D

CR A
2

0

For the simulations in this work, we fiducially adopt
vD/vA=2, p0/vA=300, α=0.5, and nCR/ni=10−4 to
10−3. The resulting dispersion relation is shown in Figure 2,
which displays all features discussed above. Note that for
application to realistic large-scale ISM conditions, a very low
value of low nCR/ni∼10−9 is appropriate, such that the left-/
right-handed modes are degenerate. However, in practice, the
values of nCR/ni we use in the simulations have to be much
higher in order to follow wave growth and particle QLD within
a reasonable computational time. We see that for our fiducial
parameters, the transition to nonresonant modes occurs when
nCR/ni10−3.

5 The dispersion relation shown here is equivalent to Equations (11)–(13) in
Amato & Blasi (2009), with slight differences in sign conventions. The terms
Q1 and Q2 arise from integrals containing df/dp (see also Equation (69) in
Chapter 12 of Kulsrud 2005); this is the mathematical embodiment of the
situation depicted in Figure 1, in which a gradient in f leads to wave growth.
We have performed integration by parts to simplify the results, and df/dp no
longer appears.
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2.3. QLD of Particles

The growth of the CRSI creates a spectrum of Alfvén waves.
The intensity of the waves at wavenumber k is described by
I(k), so that

ò
d

=( ) ( )I k dk
B

B
, 13

2

0
2

where angle brackets represent spatial averages. In Appendix A,
we describe the procedures to decompose parallel-propagating
Alfvén waves into different modes (left-/right-handed, forward/
backward propagation), from which we obtain I(k) for
each mode.

In a spatially uniform medium (as in our simulations), QLD
leads to pitch angle scattering in the frame of the Alfvén waves,
with pitch angle θ more commonly replaced by μ≡cos θ. We
use subscript “w” to denote quantities measured in this frame.
The evolution of fw, the CR distribution function in the wave
frame in a homogeneous system, is described by (e.g.,
Jokipii 1966; Kulsrud & Pearce 1969)

m

m
n m

m
¶
¶

=
¶

¶

- ¶
¶

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( )

f

t

f1

2
, 14w

w

w
w

w

w

2

where

n m p= W( ) ( ) ( )k I k , 15w res res

and

mº W ( ) ( )k p 16c w wres

is the wavenumber of the resonant waves.6

Our simulations are conducted in the frame where the initial
CR distribution is isotropic, whose relative velocity to the wave
frame is Δv≡vD− vA. Using subscripts “P” and “⊥” to denote
components parallel and perpendicular to background field B0,
and to first order of Δv=c, we have for particle momenta

g= = + D^ ^   ( )p p p p v, . 17w w, ,

With conservation of phase-space volume, it follows that the
distribution functions f=fw. The conversion relations between
the two frames read

m m m m= +
D

= + -
D⎜ ⎟⎛

⎝
⎞
⎠ ( ) ( )p p

v

v

v

v
1 , 1 , 18w w

2

where v∼c is the velocity corresponding to momentum p. In
the quasi-linear regime, the distribution function only deviates
slightly from f0; hence, we can write f (p, μ)=f0(p)+δf (p, μ).
Transforming to the wave frame, and to the leading order of
δf/f0 and Δv/c, we obtain

m m

d m m

=

» + -
¶

¶
D

( ) ( )

( ) ( ) ( )

f p f p

f p f p
f

p

v

v

, ,

,
ln

. 19

w w w

w w w w
w

0
0

In the wave frame, we have

m
d
m

¶
¶

»
¶
¶

-
¶

¶
D ( )

f f f

p

v

vln
. 20w

w w w

0

In the fully saturated state, we expect ¶fw/¶μw=0; hence, the
pitch angle distribution should satisfy

d
m

d m
¶
¶

»
¶

¶
D

 »
¶

¶
D ( )

f f

p

v

v
f

f

p

v

vln ln
. 21

w
w

sat 0
sat

0

The amplitude of the Alfvén waves in the saturated state can
also be estimated. The net momentum density acquired by the
CRs after saturation is reached is

 ò òm d
p

D = =
¶

¶
D( ) ( )p f d p

f

p

v

v
p dp

4

3 ln
. 22CR sat

3 0 3

Note that with ∂f0/∂p<0, this implies that if initially,
Δv=vD− vA>0, in saturation, the CR distribution must
have acquired a momentum deficit, D < 0CR . In the limit that
all CRs are relativistic, this yields

D » -
D

á ñ ( )n v

c
p

4

3
, 23CR

CR

where ò òá ñ ºp f pd p f d p0
3

0
3 . For the nonrelativistic CR

limit, the momentum reduction is D » - Dmn vCR CR .
The deficit in CR momentum must have been transferred to

forward-propagating Alfvén waves. Note that there is an
equipartition in kinetic and magnetic energies in Alfvén waves,
with the effective momentum density in waves (the Poynting
flux divided by vA

2; see Kulsrud 2005) given by

 r
d

= ( )v
B

B
. 24wave A

2

0
2

Following the discussion in Kulsrud (see also Wentzel 1974),
this momentum density represents the growth of Maxwell and
Reynolds stresses in waves needed to transfer the CR

Figure 2. Linear dispersion relation of the CRSI with a truncated power-law
CR distribution function (Equation (8)), with fiducial parameters vD=2vA,
p0/m=300vA, and s=4.5. Three values of nCR/ni are adopted, as shown
with red (10−2), blue (10−3), and black (10−4) lines. The growth rates for left-
(solid) and right- (dashed) handed modes are shown separately. Note the
gradual development and dominance of the nonresonant Bell mode at
nCR/ni10−3. We focus on the regime with smaller nCR/ni, being more
realistic in the bulk of the ISM.

6 In calculating ν from Equation (15), we use (∣ ∣)I kres and choose the intensity
for left-/right-handed waves for positive/negative μw. Also note that our
normalization of I(k) only accounts for the magnetic energy spectrum (it will be
doubled for the total energy spectrum). Because of these normalization choices,
our expression for ν does not have a factor of one-fourth.
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momentum to the bulk gas and is exhibited as a small fractional
change in the momentum of the bulk gas.

Equating D∣ ∣CR with wave, we can obtain the expected
saturation level for magnetic fluctuations. For ultrarelativistic
and nonrelativistic cases, we simply have

d
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The real situation (as we consider) is, of course, somewhere in
between nonrelativistic and ultrarelativistic, but the dependence
of wave amplitude on the basic problem parameters is clear.
These relations show that the saturation level of the instability
is limited by the initial free energy in CR streaming. The above
upper limit for magnetic field amplitudes would be reduced in
the presence of damping.

The timescale for the CRs to relax to a state of isotropy in the
wave frame is characterized by the scattering frequency ν,
which depends on both the pitch angle and the wave
amplitudes. This means that scattering across different pitch
angle ranges can take different amounts of time. Still, one may
define a characteristic scattering frequency for the bulk CR
population as

n n m
d

~ ~ W( ) ( )p
B

B
, . 26QLD

2

0
2

Note that wave growth is eventually quenched as the gradient
in distribution function is smeared out through QLD. This
suggests that another way to estimate the wave saturation
amplitude is by equating the above νQLD with Γ from
Equation (7), which is indeed similar (to order of magnitude)
to the more rigorous estimate discussed above.

2.4. Reflection across 90° Pitch Angle

In Equation (16), when m  0m (i.e., the pitch angle
approaches 90°),  ¥kres , i.e., the resonant wavelength
becomes infinitely small. There is little energy in the waves
generated from the CRSI toward the shortest wavelength,
leading to a bottleneck for particles to be scattered across this
90° pitch angle. This is a well-known problem, and without
crossing the 90° pitch angle, the CRSI would saturate
prematurely far from fully utilizing the free energy in the
system.

This problem has been discussed extensively in the
literature. Within quasi-linear theory, relaxing the magneto-
static approximation (Equation (2)) allows for additional
resonant interactions when both forward- and backward-
propagating waves are present (Schlickeiser 1989), covering
a pitch angle of Δθ∼2vA/c around 90°.

Magnetic mirroring is more commonly invoked in over-
coming the 90° problem (e.g., Felice & Kulsrud 2001). With a
magnetic moment º ^M p B22 being an adiabatic invariant, a
particle will experience a backward mirror force when its
guiding center travels along a positive gradient in total field
strength. For a particle pitch angle sufficiently close to 90°, this
mirror force can lead to reflection, thus directly jumping
over the 90° barrier. With total field strength =B

d d+ » +( )B B B B B1 20
2 2

0
2

0
2 , the critical pitch angle

cosine below which mirror reflection can occur is thus given by

m
d

» ( )B

B

1

2
. 27mir

0

One thus expects mirror reflection to take over when QLD
manages to scatter particles to pitch angle μ∼μmir.
Note that mirror reflection requires slow changes in field

strength over many particle gyro-orbits. Given that a broad
range of wave spectra is excited by the CRSI, including those
at small scales (kres

−1) for particles of a given momentum, we
can also imagine the opposite situation, where changes in field
strength occur more abruptly. For instance, an abrupt change
of perpendicular field by δBdis would change the direction of
particle motion by δBdis/B0, and in the meantime, the change
of particle pitch angle is also on the order of ∼δBdis/B0.
Depending on the gyro-phase, particles have a good chance to
be reflected when μδBdis/B0.
The (extreme) scenario outlined above falls into the category

of nonlinear wave–particle interaction: considering particle
orbits in perturbed fields (rather than unperturbed fields, as
in quasi-linear theory) gives resonance broadening (e.g.,
Dupree 1966; Völk 1973; Achterberg 1981) and alleviates
the 90° problem. It is more effective toward larger wave
amplitudes and eventually enters the regime of strong MHD
turbulence (Yan & Lazarian 2008). As we will show, our
analysis suggests that this effect is primarily responsible
for overcoming the 90° barrier; for more discussion, see
Section 5.4.

3. Numerical Method

There are several challenges that confront numerical study of
the CRSI. First, there is substantial physical scale separation,
which is exhibited as follows.

1. The separation between microscopic scales of the back-
ground plasma, including the electron and ion skin depths
(c/ωpe or c/ωpi that full- or hybrid-PIC simulations must
resolve, where ωpe and ωpi are the electron and ion plasma
frequencies) and the resonant scale of the CRSI (∼gyro-
radii of the lowest-energy, transrelativistic CRs). The
ratio of the two scales is at least of the order c/vA, which
is prohibitively large for conventional PIC simulations if
one were to approach realistic conditions.

2. For QLD of particles, individual CR particles must
encounter a sufficient number of independent wave
packets, so as to experience random-walk behavior in
pitch angle evolution.

3. The issue with particles scattering across the 90° pitch
angle. Particles with pitch angle near 90° have resonant
wavelengths much shorter than their gyro-radii, implying
that the most unstable wavelength of the CRSI must be
very finely resolved.

The MHD-PIC approach uniquely alleviates the first scale
separation issue by bypassing the microscopic plasma scales
(ion skin depth) of the background thermal plasma. However,
the remaining two issues remain challenging. Clearly, very
high resolution is needed to capture scattering across the 90°
pitch angle. In the meantime, when employing periodic
boundary conditions, a sufficiently long simulation domain
that covers many resonant scales is essential so that particles do
not experience the same wave packets upon reentering the

6

The Astrophysical Journal, 876:60 (31pp), 2019 May 1 Bai et al.



domain. This issue will be discussed further in Section 3.4 and
Appendix C.

In addition to the above challenges of physical scale
separation, another challenge in modeling the regime of
interest for the large-scale ISM is the huge ratio between the
number densities of CR particles and background ISM
particles, nCR/ni∼10−9. The CR and ISM pressures, how-
ever, are generally within an order of magnitude of each other.
For modeling the large-scale ISM with its extremely small
nCR/ni, the MHD-PIC method is advantageous in comparison
to full- or hybrid-PIC, in that there is no need to represent the
background plasma with individual particles.

The third major challenge is that capturing the resonant
condition still requires very large number of CR particles. For a
given resonant mode, particles of a given momentum can (if
capable) contribute only at a specific pitch angle. Correspond-
ingly, only a tiny fraction of particles can potentially be in
resonance with a given MHD wave mode. This issue may be
seen from another viewpoint. The level of anisotropy in the CR
distribution function is of the order vD/c=1. Such a weak
level of anisotropy must be accurately represented by the
angular distribution of particles, again demanding a huge
number of particles in each cell.

Even though the MHD-PIC method is able to concentrate all
particles in the CRs, properly capturing CRSI is still
challenging when vD/c=1. To overcome this issue, we
employ the δf method, which dramatically improves the signal-
to-noise ratio and allows us to successfully simulate the CRSI
with a substantially reduced number of particles (see
Section 3.2 and Appendix B). Below, we describe our
methodology in detail.

3.1. Formulation

We solve CR-modified MHD equations in the conservative
form7
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where P*≡Pg+B2/2,  ≡−vg×B/c is the electric field, I
is the identity tensor, and the total energy density of the gas is
defined as
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. 31
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In the above, ρ, vg, and Pg are gas density, velocity, and
pressure, and Γ is the adiabatic index. Note that we have
adopted the units where magnetic permeability is unity so that
factors of (4π)−1/2 that would otherwise appear with the
magnetic field are eliminated.

The CR number density nCR and current density JCR are
defined as

ò
ò
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where qCR is the individual CR particle charge, p and v are the
momentum and velocity of individual CR particles, and f (t, x,
p) is the local CR momentum distribution function.
While the MHD formulation is nonrelativistic, the CR

particles can be relativistic. We define an artificial speed of
light  for the CR particles, and the overall formulation is
consistent as long as   vA (typical MHD velocities). For an
individual particle j, we have pj=γjvj, with the Lorentz factor
given by
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The particle equation of motion reads
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Note that, as mentioned earlier, we have dropped the individual
particle mass in the definition of particle momentum. This mass
is absorbed to the factor q/(mc), representing particle charge-
to-mass ratio. Also note that the physical speed of light c has no
significance in any equations where it appears: inspection of
Equations (29), (30), (32), and (34) shows that c appears only
in the combinations JCR/c, c , and q/mc and, for numerical
purposes, can be absorbed into the parameter (q/mc).
In our simulations, ideal MHD equations for the background

thermal plasma are solved using the Athena MHD code (Stone
et al. 2008), which is a higher-order Godunov code with
constrained transport to enforce the divergence-free condition
of the magnetic field. The corner transport upwind (Gardiner &
Stone 2005, 2008) method is adopted for time integration. We
use the Roe Riemann solver (Roe 1981) and third-order
reconstruction in characteristic variables. The CR particles are
implemented as Lagrangian particles, and the coupling between
CRs and the background plasma is handled by adding source
terms in the gas momentum and energy updates, as indicated
on the right-hand sides of Equations (29) and (30). The CR
particle equation of motion (Equation ((34)) is solved by the
standard Boris integrator (Boris 1970). A standard triangular-
shaped cloud (TSC) scheme (Birdsall & Langdon 2005) is used
for interpolating grid quantities to particle locations and
depositing particle quantities back to the grid (e.g., to evaluate
nCR and JCR in Equation (32)). Details of the CR implementa-
tion are described in Bai et al. (2015).

3.2. The δf Method

The original CR implementation in Bai et al. (2015)
interprets individual particles as representing the full distribu-
tion function f (x, p) and evaluates physical quantities such as
nCR and JCRdirectly according to Equation (32). We refer to
this approach as the “full-f method,” which can be subject to
large Poisson noise.

7 These equations are simplified from those derived in Bai et al. (2015) in that
terms related to the CR-modified Hall effect are dropped. As discussed there,
these terms are important only when (nCRvD)/(nvA)1, corresponding to very
strong CR streaming. In our simulations, this ratio is 10−3, and in reality, the
ratio is several orders of magnitude lower.
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In the case where the distribution function is close to some
equilibrium distribution f0(x, p), one can use the fact that f0 is
already known analytically and employ individual particles as
Lagrangian markers taken to represent the difference, δf,
between f0 and the full distribution function f. This is known as
the δf method (e.g., Dimits & Lee 1993; Parker & Lee 1993;
Hu & Krommes 1994; Denton & Kotschenreuther 1995; Kunz
et al. 2014). The basis of the δf method is the Liouville
theorem, which requires that the full distribution function f be
constant along particle trajectories in phase space (i.e.,
characteristics).

To implement the δf method, we first record the initial value
of f at t=0 for all particles (which is essentially f0). Then, at
every time t, we assign a weight wj to each particle j given by

d
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Physical quantities such as the CR number density and current
density are obtained by
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where S(r) is the shaping function used in particle interpolation
(i.e., the TSC scheme), and nCR,0 and JCR,0 are obtained
analytically from f0. By contrast, the full-f method corresponds
to setting wj=1, nCR,0=0, and JCR,0=0. In this way, the δf
method dramatically reduces the Poisson noise of the back-
ground particle distribution, allowing the signal from the δf part
to be substantially boosted.

In practice, we have found that the δf method is essential.
Without employing it (i.e., using the full-f method), and using
our fiducial simulation parameters, we barely observe the
development of the CRSI, even using ∼104 particles per cell,
and the system is almost entirely dominated by Poisson noise
(see Appendix D for more information).

We note that with the δf method, exact conservation of the
total (gas and CR) momentum and energy, achieved in the full-f
method, is lost. This is inevitable, since the formulation of the
δf method is intrinsically nonconservative. However, the
benefit from low noise is of overwhelming importance for
the CRSI problem, and in practice, we find that the error in total
momentum and energy is negligible throughout all of our
simulations.

3.3. The κ Distribution

While the CRSI is commonly analyzed with f0 being a simple
truncated power law (Equation (8)), this is incompatible with the
δf method. The reason is that the δf method requires f0 to be finite
at all p, since it serves as the normalization factor in the weighting
function, Equation (35). To avoid divergence, we modify f0 to be
a κ distribution (e.g., see Summers & Thorne 1991 and references

therein for motivation),
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which has the property that f (p) is a constant when p=p0,
and f (p)∝p−2(κ+1) as p?p0.
The dispersion relation remains the same, except with the

factors of Q1(k) and Q2(k) in Equation (5) replaced by
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where the dependence on k is expressed in s0≡
p0/pres=kp0/mΩc. The Q1 integral can be evaluated numeri-
cally, and in the limit nCR/ni=1, the growth rate can be
obtained analytically by substituting Equation (40) into
Equation (7).
In Figure 3 (top panel), we show the linear growth rate in the

same way as in Figure 2 but for f0 being a κ distribution. We
see that in the long-wavelength limit (pres?p0 or s0=1), we
have µ k-Q s2 0

2 1. In the short-wavelength limit, we have
µ -Q s2 0

1. The results are consistent with a power-law
distribution function in the same limits, with α=2(κ+1).
The growth rate varies smoothly in between the two limits,
with the peak growth rate only slightly reduced compared to
the truncated power-law case. It is this analytical growth rate
that we aim to test with further study.
In the bottom panel of Figure 3, we further show the

analytical growth rate for different drift velocities at fixed
nCR/ni=10−4. Increasing the drift velocity has a similar effect
as increasing nCR/ni, which increases the overall growth rate
(roughly linearly). It also makes the right-handed mode stand
out, which becomes more notable for vD10vA. In this paper,
we restrict our explorations to vD8vA.

3.4. Simulation Box Size and Phase Randomization

Even equipped with the δf methods and a κ distribution
function, it is difficult to accurately recover the linear growth of
the CRSI with a numerical simulation. Over a large suite of
tests with a wide range of numerical setups, we have found that
sustained growth of the CRSI at the rate predicted by theory is
only achieved when the simulation box size is extremely long.
Otherwise, the desired growth rates are found only at very early
stages, and they become erroneous shortly afterward (we
demonstrate this in Appendix C).
Further adjusting the numerical speed of light  reveals that

in order to properly recover growth rates, the required
simulation box length L should be such that the time for the
CR particles to traverse the simulation domain, =tcross

m( )L , exceeds the growth timescale for CRSI, 1/Γmax.
Given that Γmax∼(nCR/ni)Ωc, and using Equation (16), this
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may be further translated to
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This phenomenon is related to the validity of the random
phase approximation for QLD discussed at the beginning of
Section 3, which feeds instability growth. For CRSI, CR
particles should constantly experience different wave packets
throughout the growth process. With wave growth, we may
regard the wave packets as being altered over the timescale of
~G-

max
1 . With the fastest particles traveling at  along the

background field, a simulation box longer than Lmin guarantees
that all particles experience “new” wave packets after
traversing the entire box and reenter from the other side.

However, for reasonable simulation values of ni/nCR, the
required Lmin could easily reach a few hundred or thousand
times the resonant/most unstable wavelengths (using
ni/nCR∼109 as in the bulk ISM, the number could be
billions). The condition of LLmin thus would impose a
prohibitive requirement for simulating the CRSI, even in 1D.

We resolve this issue by realizing that the effect of the long
simulation box can be equivalently achieved by directly
randomizing particle phases when a particle crosses the
periodic boundary; both approaches allow particles to effec-
tively see different wave packets at all times to conform to
the random phase approximation. In our simulations, upon
boundary crossing, we fix a particle’s total velocity, as well as
its parallel velocity along the background magnetic field,
whereas we randomize its gyro-phase. By this simple approach,
we completely eliminate the requirement of L>Lmin. Also,
under the δf method, the phase randomization procedure does
not introduce more errors to momentum/energy conservation.

4. Simulation Setup and Diagnostics

We set up the simulations in the frame of the “unperturbed”
CRs, where their background distribution function is isotropic,
f0(p)=f0(p). This is also the f0 for the δf method, with
background CR current JCR,0=0. We set the background
density to ρ0=1 and pressure P0=0.6, with an ideal gas
equation of state with adiabatic index Γ=5/3 (so that sound
speed r= G =c P 1s 0 0 ). While thermodynamics has no
effect on the system, we adopt the adiabatic rather than
isothermal equation of state to better characterize energy
conservation of the system (see Section 6.1.1). In 1D (along the
x̂ axis), the background magnetic field is set to B0=1 along x̂,
so that the Alfvén speed r= =v B 1A 0 0 .
For all simulations, we initialize the background gas to a

velocity = - ˆv v xD0 . Since we are working in the frame where
the CRs are initially isotropic, this means that the CR
distribution streams to the right (along the direction of the
mean magnetic field) with speed vD relative to the gas. On top
of the background state, we initialize the system with a
spectrum of Alfvén waves propagating along background B0.
For each wavenumber ∣ ∣k , there are four modes corresponding
to forward and backward propagation and left and right
polarization. The wavenumber coverage ranges from k=
2π/Lx to k=2π/(2Δx) (except that the longest wave is
initiated with zero amplitude), where Lx=NxΔx is the
simulation domain size, and Nx and Δx are the number of
grid cells and cell size in x̂. Correspondingly, a total of
4(Nx/2−1) modes are initialized. We choose the wave
amplitudes to be such that

=( ) ( )I k A k, 422

so that wave energy is equally distributed in logarithmic k
space, and the total wave energy integrated over 1 dex in k is a
fraction 2A2 ln 10 of the background field energy (see
Equation (13)); the factor of 2 accounts for velocity perturba-
tions). Each mode is initialized with a random phase.
We choose code units such that individual CR particles have

a cyclotron frequency Ωc=1 in the background field B0. This
corresponds to the factor q/mc=1 in Equation (34). Thus, our
code unit of length is di=vA/Ωc=1. We note that, while
irrelevant to MHD, di is equivalent to the ion skin depth c/ωpi

for the background plasma. Our MHD-PIC framework
typically applies to scales greater than di.
The CR particles are injected with f0(p) being a κ

distribution. We choose κ=1.25 throughout this work,
corresponding to f0(p)∝p−4.5, at large p or α=0.5 in
Equation (8). In practice, we divide the momentum space into
eight bins ranging from 0.01p0 to 100p0, with half a dex per
bin. We inject an equal number (Np) of CR particles per cell per

Figure 3. Linear dispersion relation of the CRSI for a κ distribution
(Equation (38)) with κ=1.25 with fiducial parameters nCR/ni=10−4,
vD=2vA, and p0/m=300vA. The top panel varies nCR/ni, while the bottom
panel varies vD/vA, as indicated in the legends. The growth rates for the left-
(solid) and right- (dashed) handed modes are shown separately.
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bin so as to guarantee a sufficient number of particles in each
bin (otherwise, there would be too few particles toward lower
and higher energies). Within each bin in each cell, particles are
sampled according to f0(p) in that momentum range and
symmetrically distributed in pitch angle and phase. More
specifically, once a set of random momentum p, pitch angle θ,
and gyro-phase f is generated, four particles are injected
at the cell center whose momenta are q q(p pcos , sin

f q f)pcos , sin sin , and its permutations with q p q -
and f p f + .

We note that particles with p<0.01p0 and p>100p0 are
not included in the simulation, whereas we still use a
background distribution function f0 that covers the entire
momentum space. This will introduce some inconsistencies.
However, since these momenta are sufficiently far from the
peak of f0, the waves that they drive are typically beyond what
can be accommodated in our simulation box (and, moreover,
the simulation time is typically not long enough for these
modes to grow).

4.1. Choice of Parameters

The ISM in our Galaxy spans a wide range of conditions in
various phases. In an average sense, nCR/ni is on the order of
∼10−9, vA/c∼10−5

–10−4, and the bulk of the energy is in
GeV CR particles that are mildly relativistic. While the
parameters that we adopt are by no means fully realistic
(this would be unachievable), we aim to achieve as much
scale separation as possible to mimic conditions in the large-
scale ISM.

We choose the artificial speed of light  =v 300A and
a characteristic momentum in the CR distribution of

= =p v v3000 A A. With this choice, Equation (33) yields
g = 20 , so as to mimic the fact that the dominant CR
population in the ISM is transrelativistic ∼GeV particles.

The fact that  = 300 is larger than vA=1 by more than 2
orders of magnitude allows for sufficient separation, making
the transformation between different reference frames well
within the nonrelativistic limit (e.g., a drift velocity as large as
∼10vA only amounts to about 3% of ). With our choices,
the wavelength for the most unstable mode is given by
λm≈2π/k0=2πp0/Ωc≈1885 in code units.

Based on Equation (7) for the growth rate of CRSI, the two
main physical parameters are the CR number density ratio
nCR/ni and the CR drift velocity vD/vA. As already seen in
Figure 3, given our choices of  and p0, the density ratio
nCR/ni has to be well below 10−3 to make the left- and right-
handed modes grow at about equal rates (as in standard CRSI).
We thus choose nCR/ni=10−4 as fiducial and vary it within
[10−5, 10−3]. Note that further smaller values would make the
waves grow too little within a reasonable computational time.
We take vD=2vA for our fiducial model and also consider
higher drift velocities up to 8vA.

8

The remainder are numerical parameters. Fiducially, we choose
a simulation box size L/di=9.6×104, resolved by 9600 cells
(Δx/di=10). The fiducial box is ∼50 times the most unstable
wavelength, which is more than sufficient for particles with
p∼p0, but it better accommodates more energetic particles with
p10p0. Note that without implementing phase randomization,
from Equation (41), the box size Lmin would have to be ∼300
times longer than our fiducial choice. We also conduct a
simulation with a shorter box size for comparison.
The level of noise in the simulation depends on the number of

particles. Fiducially, we choose Np=256 particles per momen-
tum bin per cell (in total, 2048 per cell), but we also consider a
case with fewer particles. The initial wave amplitude is fiducially
chosen to be A=10−4. Note that A should not be too small,
otherwise the initial evolution would be noise-dominated. It
should also not be too large, which would trigger artificial QLD of
particles from the beginning. A more detailed discussion about
noise in our simulations is given in Appendix B.
In Table 1, we list all simulation runs presented in this paper.

We will primarily focus on fiducial run Fid and M3 (higher
nCR/ni). For other simulations, we generally vary just one
parameter from run Fid at a time and examine the role of both
physical and numerical parameters. Note that in the simula-
tions, almost all computational cost is spent on the CR parts,
given the large number of particles per cell. For our fiducial
run, a typical time step is ´ W- -6 10 c

2 1, and the entire run to
t= W-10 c

6 1 costs about 4×104 CPU hours on Intel Xeon E5-
2690 v4 CPUs.

4.2. Diagnostics

We first measure the linear growth rate of the CRSI. Over
constant time intervals, we decompose the perpendicular
magnetic field and velocity profiles into four Alfvén modes
and obtain I(k, t) for each mode (see Appendix A). A linear fit
is then performed to ln[I(k, t)], with the slope being 2Γ(k). This
is done within the early phases of evolution before QLD starts
to modify the CR distribution function.
Another diagnostic is to directly measure the CR distribution

function. Thanks to the δf method, this again can be done with
great precision. In the simulation frame, we simply compute
f (p, μ)=f0(p)+δf (p, μ), where f0 is analytic and δf can be
obtained in the same way, binning particles onto a p−μ grid
using the weighting scheme in Equation (35).
We can further combine the above information, aiming to test

QLD directly. This involves transforming f (p, μ) into the wave
frame using Equation (19) and then solving Equation (14), with
I(k) feeding into the calculation. The results can be compared with
the measured CR distribution function.
Finally, we have tracked a (small) subset of particles in

certain runs over certain time intervals; we combine this
information with the field data to investigate how particles
overcome the 90° barrier.

5. Simulation Results: Run Fid and M3

In Figure 4, we show the evolutionary history of the total wave
energy for the first five runs listed in Table 1. In this section, we
first focus on the two main simulation runs, Fid and M3, and will
also briefly discuss run M5. With wave amplitude A=10−4, the
total wave energy integrated over the wave spectrum in k space
and summed over all four modes is about 3.2×10−7 (compared
to 0.5 for the background magnetic field energy density). The

8 In terms of energy density, we have ECR/EB∼45 under the fiducial
parameters, which is much larger than the order-unity value that applies
through most of the ISM. We note, however, that while the total energy density
of CRs matters for large-scale ISM dynamics, it is not directly relevant for the
CRSI because the free energy of the CRSI comes from CR anisotropy (i.e.,
streaming) rather than total CR kinetic energy. Nonetheless, with

~ ( )( )E E n n vB iCR CR A
2, our run with nCR/ni=10−5 better approaches

the realistic limit. One can also reduce  vA to 100 or smaller to reduce this
ratio, although this would limit the range of vD that can be more reliably
covered by simulations.
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wave energy slowly decreases at first, which is due to numerical
damping of high-k modes at grid scale, as well as damping of
backward-propagating modes. Shortly afterward, exponential
growth of the CRSI becomes clear, leading to a rapid increase
of wave energy. This continues to time t∼105 for run Fid and
t∼104 for run M3, after which wave growth slows down as QLD
starts to substantially modify the particle distribution function.
Subsequent growth is slower and characterized by a combination
of saturation of the fastest-growing modes excited by low-energy
particles and the linear growth of longer-wavelength modes
resonant with (less abundant) higher-energy particles. Eventually,
for run M3, the wave energy plateaus, marking system saturation.
The wave energy density in the saturated state for run M3 is
comparable to the estimates in Equation (25). However, for run
Fid, in which the saturated energy density should simply be 1 order
of magnitude smaller, this is not yet reached.

Clearly, the wave energy evolution is much better discussed
on a k-by-k basis and should be accompanied by the evolution
of the particle distribution function. These will be addressed in
the following subsections for individual evolutionary phases.

5.1. Linear Wave Growth

In Figure 5, we show the Alfvén wave spectrum (in wave
intensity kI(k)) for the four modes (forward/backward

propagation, left/right polarization) at some early times during
the linear phases for the two runs. The initial wave intensity
of all modes has kI(k)=10−8 being constant, with δv/vA∼
δB/B0 at the level of a few × 10−4. Modes with ka few ×
10−2 are numerically damped. With very low numerical noise,
linear growth of all other forward-propagating modes is
observed from the beginning, whereas backward-propagating
modes always damp. The fastest-growing mode, resonant with
particles near p=p0, is found to be near k=km≈3.3×
10−3=Ωc/p0, as expected.
More quantitatively, we measure the linear growth rate of

forward-propagating modes on a k-by-k basis. This is done
within t=3× W-10 c

4 1 for run Fid and t= W-10 c
4 1 for run M3.

We also consider run M5 and measure its growth rate within
t=5× W-10 c

5 1. The results are shown in Figure 6 and
compared with analytical growth rates.
Overall, even though the modes are very densely populated,

the numerical growth rate matches the analytical results
remarkably well. For runs Fid and M5, both the left- and
right-handed modes grow at about the same rate, whereas for
run M3, the right-handed mode grows slightly faster, all being
consistent with theoretical expectations. We stress that phase
randomization is essential in achieving these results, as is
further discussed in Appendix C.
The growth of the CRSI is better captured toward low k,

whereas for high k, instability growth competes with wave
damping by numerical dissipation. As a result, the measured
growth rates cut off at some k∼kcut, which decreases
from run M3 to run M5 as the instability growth rate
decreases by about 2 orders of magnitude. In fact, because of
the small CRSI growth rate, kcut corresponds to about 20, 30,
and 45 grid cells for runs M3, Fid, and M5. This again
indicates that much higher numerical resolution is needed
to study the CRSI compared with typical pure MHD
instabilities.
Note that for run M3, although the difference in growth rate

between the left- and right-handed modes is small, the resulting
difference in wave amplitudes can be significant after a few
e-folding times. This is already evident in the bottom right
panel of Figure 5: within one e-folding time, the intensity of the
right-handed mode is already about twice that of the left-
handed mode. This will affect subsequent QLD of particles to
be discussed later.
As a side note, we have also conducted simulations with

drift speed vD between zero and vA. We find that all wave
modes are damped, and damping is the fastest at k∼km. In

Table 1
List of Main Simulation Runs

Run vD/vA nCR/ni Domain Size Domain Size Resolution Np per bin Runtime
Lx (di) Lx/λm (di per cell) (per cell) (W-

c
1)

Fid 2.0 1.0×10−4 9.6×104 51 10 256 106

M3 2.0 1.0×10−3 9.6×104 51 10 256 106

M5 2.0 1.0×10−5 3.2×104 17 10 256 1.5×106

vD4 4.0 1.0×10−4 9.6×104 51 10 256 106

vD8 8.0 1.0×10−4 9.6×104 51 10 256 106

Fid-Hires 2.0 1.0×10−4 6.4×104 34 4 256 106

Fid-Short 2.0 1.0×10−4 3.2×104 17 10 256 106

Fid-Np64 2.0 1.0×10−4 9.6×104 51 10 64 106

Fid-Np1024 2.0 1.0×10−4 9.6×104 51 10 1024 2×105

Note. Fixed parameters:  =v 300A , p0/mvA=300, κ=1.25, and initial wave amplitude A=10−4. Note that the most unstable wavelength is
λm=2πp0/(mΩc)≈1885di for all models.

Figure 4. Time evolution of total wave energy in runs Fid (black), M3 (green), and
M5 (cyan), as well as runs vD4 (blue dashed–dotted) and vD8 (red dashed–dotted).
All are in code units. Vertical dashed lines mark the end of the linear growth phase.
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the case of vD=0, forward-/backward-propagating modes
damp at the same rate, whereas for 0<vD<vA, damping of
forward-propagating modes is slower than that for backward-
propagating modes. They all agree well with the dispersion
relations.

5.2. Quasi-linear Evolution for Run Fid

Past the linear stage, QLD starts to modify the particle
distribution functions and drives the particle distribution
toward isotropy in the wave frame. In Figure 7, we show the
time evolution of the particle distribution function (δf/f0) via
four successive snapshots of the our fiducial run. For each
snapshot, the color scale represents occupation at a given p and
μ. We have also marked with dashed lines the loci in phase
space resonating with the same wavelength:

m = W = ( )p k const. 43c

From Figure 7, it is clear that over time, a deficit of particles
develops near μ∼1, while an excess develops near μ∼−1.
This change in δf reflects the tendency of QLD to scatter CRs
toward a new distribution that is isotropic in a frame that is
moving to the left with respect to the initial CR distribution.
Figure 7 also shows that an excess and deficit of particles
develop, respectively, to the right and left of μ=0; we discuss
this further below.
In Figure 8, we show the wave spectrum for the same

snapshots as in Figure 7. In these plots, we mark with dotted
vertical lines the k values for the corresponding dashed lines in
Figure 7. Over time, the spectrum of forward-propagating
waves grows at all but the lowest and highest k, with
comparable amplitudes for left and right polarizations.

Figure 5. Snapshot of the linear growth phase in runs Fid (left) and M3 (right). The top and middle panels show the profiles of the perpendicular components of the
magnetic field and velocity (black and red for the y and z components), normalized to B0 and vA. The bottom panel shows the wave spectra (dimensionless, in kI(k)) for
forward- (solid) and backward- (dashed) propagating modes. Left-/right-handed branches are marked in black/red.

Figure 6. Linear growth rate of the CRSI measured in runs M3 (top), Fid
(middle), and M5 (bottom), where black/red curves mark the left-/right-
handed polarization. Blue solid/dashed lines mark the analytical growth rate
expected from a κ distribution for the left-/right-handed modes.
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5.2.1. Overall Evolution

At t∼3–10× W-10 c
4 1, QLD has started to make appreci-

able changes to the particle distribution function. The initial
QLD is the fastest around particles in resonance with the
fastest-growing mode at k∼km=3.3×10−3, as can be
clearly identified in the second panel of Figure 7.9 As discussed
in Section 2.1, the way QLD acts to isotropize the CR
distribution is by scattering forward-traveling CRs from higher
to lower (positive) parallel velocities and backward-traveling
CRs from lower to higher (negative) parallel velocities. This is
exactly what we see in Figure 7, with excesses and deficits on
the left and right sides of the thick black dashed line.

With some CRs resonant with these waves giving up their
free energy through QLD, the growth of the most unstable
mode slows down. More slowly growing modes at longer
wavelengths have not yet grown to sufficient amplitudes to
yield appreciable QLD to particles in resonance with them at
this time, and thus still grow at the same rate. As a result, the
peak of the wave spectrum shifts toward longer wavelengths, as
seen from the time sequence in Figure 8.

Such wave growth then leads to further QLD for more
energetic particles, as can be seen in the last two panels of
Figure 7. By the end of our simulation at t= W-10 c

6 1, all
particles with p10p0 have undergone substantial QLD,
whereas for particles with p>10p0, only the ones with a
smaller pitch angle have undergone some QLD. While the
trend should continue over time, we are also limited by the
simulation box size, with corresponds to 50 times the most
unstable wavelength. Modes available for scattering particles
with p>10p0 are fairly limited and discretized, precluding
following QLD accurately (the discreteness can already be

seen in the last panel of Figure 7). We thus do not run this
simulation for longer.
Across μ=0, there is a substantial excess (deficit) of

particles with μ>0 (μ<0) for p0p10p0, which clearly
illustrates the 90° pitch angle problem. Evidently, redistribution
of the particle pitch angle occurs only on either side of μ=0,
but particles do not scatter across μ=0. In part, the failure to
scatter across μ=0 is due to a lack of wave power at large kx;
particles with small m∣ ∣ would only be able to resonate and
scatter off of short-wavelength waves. In our simulation,
kx>0.1 waves have very low amplitude due to damping (see
Figure 8; waves at kx>πNx/Lx are not resolved at all). In
addition, for run Fid, the amplitude δB/B0 is insufficient to
trigger reflection near m=0 for the bulk CR particles. We
further discuss the circumstances that lead to “premature”
saturation in the next subsection.
Particles with pp0 have also undergone QLD, which is

caused by shorter-wavelength modes with k>km. These
modes initially grow slower than the fastest-growing mode at
k=km, but they catch up toward later times and eventually
saturate at similar amplitudes, as can be seen from Figure 8.
Correspondingly, the evolution in the distribution function also
propagates toward the lower p side, as seen in Figure 7.
However, this is eventually limited by numerical dissipation.
Given our resolution, we already see from Figure 6 that modes
with k6km grow much slower than theoretical expectations
due to numerical dissipation. Considering the scattering across
the entire pitch angle range, and given that even particles with
p∼p0 are subject to premature saturation, we do not discuss
particles with p<p0 in general.
We have also examined run M5. The overall evolution is

largely similar to run Fid: the evolutionary stage at time t in run
M5 is similar to that at time t/10 in run Fid, which is also
visible from Figure 4. This is reasonable, given the exact factor
of 10 difference in wave growth rates. The QLD starts to
modify the CR distribution function after ~ ´ W-t 3 10 c

5 1,

Figure 7. The 2D distribution function δf/f0 in the lab (simulation) frame at four snapshots in run Fid. The dashed lines are contours in momentum space that are
resonant with the same wave (pμ=const), with the thick line marking pμ=p0. Note that the color ranges are different among different panels.

9 The initial wave spectrum also leads to some QLD that slightly affects the
appearance of the distribution function (owing to contributions from high-k
modes) at early times, t5× W-10 c

4 1.
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and by the end of the simulation at = ´ W-t 1.5 10 c
6 1, QLD

is already close to being completed for particles with
p∼1− 3p0, except that they are stuck at μ=0. Given even
smaller wave amplitudes in run M5 than in run Fid, we do not
expect that further evolution would help with this 90° problem.

5.2.2. Quantitative Analysis

To see how well our simulation results compare with the
quasi-linear theory, we transform the distribution function to
the wave frame using Equation (19). For each particle bin (pw,
μw) at a given snapshot, we can find its resonant wavenumber
kres and corresponding I(kres) and compute the scattering
frequency ν from Equation (15). Then, we solve the QLD
Equation (14) over time numerically, with I(k) being updated
over a time interval ofD = W-t 500 c

1 (which is the frequency of
simulation data output).

In Figure 9, we show four snapshots in this process. Note
that for better comparison, we have chosen snapshots 1, 3, and
4 to correspond to snapshots 2, 3, and 4 in Figures 7 and 8. The
scattering frequency gradually increases to the level of
νmax∼10−4Ωc as the waves grow, and its appearance in
p−μ space again shows the characteristic features corresp-
onding to pμ=const from the resonance condition (modulo

that ν decreases toward larger p as particles become
relativistic). With short-wavelength modes being damped by
numerical dissipation, the scattering frequency for small values
of m∣ ∣p has a cutoff, leaving a gap around μ=0 that is broader
toward smaller p. This causes the 90° barrier for QLD, where
no particles can cross μ=0, as is the case when solving
Equation (14).
In the bottom panels, we show the particle distribution

function in the wave frame. Initially, fw− f0 is simply given by
Equation (19) taking δf=0, which is linear in μw. Note that for
particles with different momenta, both ¶ ln f0/¶ ln p and vw can
be different, yielding different slopes. With the κ distribution,
the slope is smaller for smaller p and approaches a constant
2(κ+1)Δv/c for relativistic particles (thus, the red and green
dotted lines overlap). Subsequent evolution has already been
discussed in Section 5.2.1 in the simulation frame, which
is straightforward to translate to the wave frame. Several
important results and features are worth noticing.
First, at early time (t2× W-10 c

5 1), evolution of the
numerical distributions follows the QLD prediction remarkably
well. This gives us confidence that our simulations properly
capture QLD, thanks to the phase randomization technique that
we employed.
Second, QLD drives the local slope of fw− f0 toward zero on

either side of μ=0 (see Equations (20) and (21)); piecewise
flattening is achieved at later stages of evolution, reached by
lower-energy particles first. This marks the saturation of the
CRSI in the local momentum space.
Third, particles undergoing QLD tend to get stuck at μ=0.

Eventually, the CRSI saturates because fw=const on both
sides of μ=0 for each p, although there is a discontinuous
jump at μ=0. This is the hallmark of premature saturation
of QLD.
Fourth, solving the QLD equation allows us to well

reproduce the saturated state for lower-energy particles
(p3p0), but this is not true for higher-energy particles
(p10p0). Given that the only missing ingredient in the QLD
Equation (14) is the process that governs the crossing of the 90°
pitch angle, this indicates that the μ=0 crossing does happen
(slowly) for higher-energy particles in our simulations.
Given the above results, we now check the requirements for

QLD to scatter particles to the critical pitch angle, such that the
condition for mirror reflection (Equation (27)) can be satisfied.
Seen from Figure 4, we have the rms δB/B0∼9×10−3,
giving μmir∼6×10−3. Within our simulation time of 106

W-
c
1, from Equation (14), we need kI(k)10−6 for effective

QLD. Reading from Figure 8, this gives a maximum
wavenumber kcut∼8km. Based on resonance conditions, the
minimum momentum for which QLD can scatter the particle to
reach μ=μmir is then

m
~ ~ ( )p

k

k
p p20 . 44m

min
mir cut

0 0

In other words, the waves in our simulation only have sufficient
power to scatter particles with ppmin to reach pitch angle
μmir, potentially allowing the mirror effect to yield reflection
(and deviate from the pure QLD result). However, from the
bottom right panel of Figure 9, representing the last snapshot of
the simulation, we see that even for p as small as ∼3p0,
deviation from QLD can be identified, though just by a very
small amount. Reading off the figure, deviation from QLD

Figure 8. Wave spectrum at different times during QLD in run Fid. The
vertical dotted lines mark the wavenumbers that particles located at the black
dashed lines in Figure 7 can resonate with.
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appears to begin for pmin between 3p0 and 10p0, which is
in tension with the expectation from mirror reflection
(Equation (44)). Further discussion of this issue is deferred to
Section 5.4, where a more detailed study based on run M3 is
presented.

5.2.3. Evolution of CR Drift Velocity

While it is generally convenient to use the reduction of CR bulk
drift velocity to describe how much CR particles have undergone
scattering through the CRSI, this drift velocity is clearly energy-
dependent. We can evaluate the energy-dependent drift velocity
vd(p) (to distinguish from the initial CR bulk drift velocity vD) in
the simulation frame as

ò
ò

m m m

m m
=( )

( ) ( )

( )
( )v p

f p v p d

f p d

,

,
, 45d

where v(p) is the velocity that corresponds to momentum p, and
f=f0+δf. Values of vd(p) can be simply obtained by
integrating over a horizontal line in Figure 7. We can further
integrate the distribution function over p to obtain the full drift
velocity vd,full.
In the left panel of Figure 10, we show the results for four

different representative particle momenta from p=p0 to 33p0.
Based on the previous discussion, the results are straightfor-
ward to interpret. The initial drift velocity in the simulation
frame is, by definition, zero. Low-energy CRs, which are
responsible for driving faster wave growth, undergo more rapid
initial QLD and a corresponding reduction their drift speed;
higher-energy CRs take much longer to catch up. However, the
CRSI and drift reduction of low-energy CRs saturates
prematurely, leading to only a modest reduction of vd, whereas
higher-energy CRs (p10p0) can overcome the μ=0 barrier
and are on the way to achieving complete isotropy. The overall
average drift vd,full decreases over time. Contribution to the

Figure 9. Top: four sequential snapshots of the scattering frequency ν of QLD (see Equation (15)) in momentum space in run Fid. Shown in color is log10(ν/Ωc).
Bottom: particle distribution function in the wave frame fw at the same four snapshots as in the top panel. Shown are ( fw − f0)/f0 for four representative momenta as a
function of pitch angle cosine μ, indicated by different colors (see legend). These momenta are also marked as black dashed lines in the top panels. Solid lines are
measured from the simulations, thick dashed lines mark the initial distribution, and dotted lines are reconstructed distribution functions by solving the QLD
Equation (14) in time.
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overall reduction is mostly from lower-energy particles with
momenta between ∼p0 and ∼3p0 at early times and higher-
energy particles with p∼10p0 at late times.

The drift velocity is frame-dependent. Similar to the above
procedure, we can measure the drift velocity in the wave frame
vd,w(p), and the results are shown in the right panel of
Figure 10. While the velocity difference between the two
frames is just vA, initial particle drift speeds within individual
momentum bins do not equal vA. This is because after a frame
transformation, particles with a given momentum p come from
a range of momenta near p from the original frame, making the
results depend on d ln f0/d ln p (see Equation (19)). Only the
full drift speed vd,w,full precisely equals vA, as expected. On
the other hand, in a fully saturated state, we would expect
vd,w(p)=0 for all p. However, we clearly see from the
figure that low-energy particles are stuck at nonzero vd,w(p),
whereas higher-energy particles require a longer time to
achieve saturation.

5.3. Quasi-linear Evolution for Run M3

With nCR/ni a factor of 10 larger, run M3 evolves much
more rapidly than run Fid. We choose four representative
snapshots at Ωct=104, 3×104, 105, and 9×105 and analyze
the results.

5.3.1. Overall Evolution

In Figure 11, we show the particle distribution function at
these snapshots, while Figure 12 shows the corresponding
wave intensity spectra. As discussed earlier, right-handed
modes grow faster near k∼km. This continues to t W-10 c

4 1.
Since these modes are resonant with backward-traveling CRs,
we see that at early times, QLD proceeds much more rapidly
for μ<0 particles resonant with these waves, leading to an
initial asymmetry in the particle distribution function.

With asymmetric wave growth and QLD, backward-travel-
ing CRs have used up more free energy, thus slowing down the
growth of right-handed waves. The left-handed modes, on the
other hand, continue to grow normally. This allows the left-
handed modes to eventually catch up with the right-handed
modes, and we see that by the time = ´ W-t 3 10 c

4 1, the left-
and right-handed modes at all wavelengths have similar
amplitudes. At the same time, the distribution functions for

forward- and backward-traveling CRs also tend to become
more symmetric about μ=0. However, the μ=0 barrier
remains at this stage for low-energy particles.
Between Ωct=3×104 and 105, we see that crossing of the

μ=0 barrier occurs, paving the way for full saturation. The
release of more free energy has led to some further wave
growth. This process continues until the end of our simulation,
with QLD continuing to extend to higher and higher energies.

5.3.2. More Detailed Analysis toward Saturation

As before, for run M3, we compute the CR drift velocity in four
different momentum bins for both the simulation frame and the
wave frame, and we show the results in Figure 13. We see that in
the simulation frame, the particles of all four momentum bins
eventually flatten at different levels of vd(p). In the wave frame,
they all reach vd(p) equal to zero,10 indicating that they are fully
isotropized and have achieved complete saturation.
This saturation is more evident in Figure 14, showing a time

sequence of the full distribution function in the wave frame,
with the same snapshots as in Figures 11 and 12. We can
clearly identify the isotropization of particles in the later two
snapshots, extending from the range of p0p10p0 at
t= W-10 c

5 1 to covering most of the particle population at the
end of the simulation. Because of this, and with most of the
particle population having a momentum close to p0, we see that
the full drift speed vd,full averaged over all particle populations
shown is reduced almost exactly by vA (Figure 13).
For run M3, we have also computed the scattering frequency

according to Equation (15) and solved the QLD Equation (14)
based on output data, and we show the results at four different
snapshots in Figure 15. The asymmetry in the scattering of
forward-/backward-traveling CRs at early times (t∼ W-10 c

4 1)
can be clearly identified in the top left panel. At later times, we
can see by comparing with Figure 11 that the extent to which
QLD has proceeded in momentum space is strongly related to
the region where scattering frequency is high.

Figure 10. Time evolution of the mean particle drift velocity in different momentum bins, together with the full drift velocity (see legend), for run Fid. We show
velocities measured in the simulation frame (left) and wave frame (right). The dashed line represents the mean drift velocity averaged over the entire particle
population.

10 The reason that the saturated drift velocity in the wave frame is not exactly
zero in Figure 13 is purely numerical, depending on the resolution employed in
binning particle momentum during simulation output (due to the sensitive
dependence of f0 on p). Finer binning makes the results closer to zero but with
more noise, and vice versa.

16

The Astrophysical Journal, 876:60 (31pp), 2019 May 1 Bai et al.



The bottom panels of Figure 15 give more quantitative
information about how quasi-linear evolution has progressed over
time. For lower-energy particles (with p∼p0−3p0), evolution
proceeds rapidly and can initially be well reproduced by solving
the QLD equation. During subsequent evolution, particle
distribution functions in fixed momentum bins are largely flat
(due to rapid QLD) on both sides, with a jump at μ=0. The
jump gradually decreases, as particles get scattered across μ=0,
which is the rate-limiting process for particle isotropization. For
higher-energy particles (p10p0), on the other hand, the crossing
of μ=0 is more rapid (leading to substantial deviation from
directly solving the QLD equation). The rate-limiting process for
isotropization then becomes QLD itself, especially at large μ.
A key result from our run M3 is efficient particle crossing of the

μ=0 barrier. We again first examine whether this is consistent
with mirror reflection. From Figure 4, we see that by the time of
t=6× W-10 c

4 1, the magnetic energy density approaches a
saturated value (d ~ ´ -B B 2 102

0
2 3), corresponding to

δB/B0∼0.045. This gives the mirror reflection threshold of
μmir∼0.032. Within a simulation time of ~ W-10 c

5 1, we need
kI(k)∼10−5 for effective QLD. This is achieved for k
up to kcut∼10km by looking at Figure 12 at = W-t 10 c

5 1.
According to the same calculation as in Equation (44), we find
that mirror reflection can be achieved for particles with
 m= ~-( )p p k k p3mmin cut mir

1
0. However, we see that by this

time, particles with pp0 are already fully isotropized, and
lower-energy particles have also undergone partial isotropization.
Again, we conclude that mirror reflection appears insufficient to
explain the detailed evolution of the momentum distributions.

5.4. Overcoming the 90° Barrier

To reveal the mechanism behind particle crossing of the 90°
pitch angle in run M3, we have randomly selected a subsample
of particles (1280 per energy bin) and closely followed
their trajectories for a time interval of W-200 c

1 starting from
= ´ W-t 6 10 c0

4 1. We count the number of particles that have

Figure 11. Same as Figure 7 but for run M3, showing the 2D distribution function of δf/f0 in the simulation frame at four snapshots.

Figure 12. Same as Figure 8 but for run M3, showing the wave spectrum at the
same four snapshots as in Figure 11.
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undergone reflection across 90° over this interval. Here we
consider the particle pitch angle in the wave frame that is
relative to the full magnetic field vector (rather than back-
ground field), which is marked by m¢w. To be counted, we
require m¢w before and after this time interval to be beyond

 ~v 0.0033A (chosen somewhat arbitrarily, but this does
not qualitatively affect the counting result). Among the four
central momentum bins from p=0.1p0 to 10p0, we find that 9,
13, 20, and 23 particles are reflected. We looked at the
trajectories of all of these particles and choose to show four
particles with characteristic behaviors from each momentum
bin in Figure 16.

5.4.1. Representative Cases

For the first particle with p≈0.2p0 that undergoes a
reflection, we see that, surprisingly, the field strength it

experiences is almost constant. Quantitatively, the perpend-
icular field strength over this time interval is δBä(0.0398,
0.0417). The range it spans translates to μmir=1.3×10−3.
While the particle does evolve quasi-adiabatically with many
gyrations (which is typical for lower-energy particles given
their small gyro-radii and lack of power at small scales), its m¢w
changes by a factor of several larger than the expected μmir.
Checking the magnetic field profile in the bottom panel, we
see that the particle is traveling against a shallow gradient
in Bz. The range of Bz experienced by the particle ä
(−0.081,−0.041), which changes the magnetic field orienta-
tion by ∼0.04. While this is not proof that the particle must be
reflected, it can well accommodate the change in particle m¢w,
which is less than 5×10−3.
For the second particle with p≈0.9p0, its higher velocity

allows it to traverse larger distances over the course of reflection,

Figure 13. Same as Figure 10 but for run M3, showing the evolution of the mean particle drift velocity in different momentum bins, together with the full drift velocity
(see legend).

Figure 14. The 2D distribution function δfw/f0 in the wave frame for four snapshots from run M3. The dashed lines are contours in momentum space with the same
resonance condition.
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and it experiences more rapid magnetic fluctuations. We have
again checked that variations in total field strength are insufficient
for mirror reflection. Reflection occurs again when the particle
travels against the gradient of individual field components, and in
this time, we have By increasing rapidly and Bz decreasing more
gradually. These variations change the magnetic field orientation
by∼0.05 within just a few particle gyrations, which is again more
than sufficient to account for the change in particle pitch angle
by ∼0.02.

In the remaining two examples, reflection occurs within
two gyro-orbits. These cases are more common among
relatively energetic particles: because of their larger gyro-
radii, they more often experience abrupt changes in magnetic
field. These changes average out to the leading order in
quasi-linear theory, except when they lead to reflection. We
see that the threshold pitch angle for reflection can be higher
for these particles and reach as large as μ∼0.1. This is
accompanied by abrupt changes in By and Bz at comparable
levels within the distance that the particle travels in one
gyration.

5.4.2. Nonlinear Wave–Particle Interaction

Overall, the four examples roughly cover the range of behaviors
of particles during reflection. They can be interpreted under the
framework of nonlinear wave–particle interaction (Völk 1973).
Reflection is most effective (almost instant) for the last two

cases in Figure 16, for which abrupt changes in fields occur on
a scale shorter than the distance that particle travels in one
gyro-time. In this regard, we can discuss the critical pitch angle
below which nonlinear wave–particle interaction takes over to
reflect particles as follows. For a particle with momentum
p (and velocity v), let μcrit be this critical pitch angle. It
travels by Lcrit∼2πvμcrit/Ω in one gyro-time, corresponding
to a wavenumber kcrit=Ω/(vμcrit)=Ωc/(pμcrit). Reflection
occurs when an abrupt change in magnetic field orientation
is comparable to μcrit. Noting that this depends on the
spectrum of waves at scales below some ζ(kcrit)

−1, we arrive
at a relation

òm ~
z

¥
( ) ( )C I k dk, 46

k
crit
2

crit

Figure 15. Same as Figure 9 but for run M3 at four different snapshots.
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where there is a square on the left-hand side because
μcrit∼δB/B0, while the right-hand side corresponds to its
square. We have also include dimensionless factors ζ and C
that encapsulate the roughness of the model.

The solution to this equation gives μcrit, which exhibits the
following features.

1. Higher wave intensity leads to smaller μcrit, because more
wave power at smaller scales makes reflection easier.

2. Higher particle momentum leads to larger μcrit, because a
larger gyro-scale accommodates more wave power to
build up abrupt field profiles.

3. If there is a lack of power at small scales, there can be
no solution, meaning that direct reflection in a couple
gyro-orbits is unlikely.

Clearly, all of these features qualitatively agree with our
findings. They are also justified through our discussions in
Section 5.4.1.

To be more quantitative, we note that while the integral of
I(k) over k gives the rms fluctuations, actual fluctuations can easily

exceed the rms value, and deviations by up to 3σ are not rare. We
thus take C∼32 to account for the upper end of the fluctuations.
We may further take ζ∼4, considering that waves with
wavelengths up to 4Lcrit can contribute significantly to the local
slope within this length scale of Lcrit (i.e., sinusoidal variations
have a roughly constant maximum slope in just one-fourth of the
periodic domain consecutively). With these numbers, and taking
p=4.5p0 for run M3, we can derive μcrit∼0.1 (which gives
kcrit/ζ∼1.8×10−3, and the integral gives 0.0011).
Equation (46) closely resembles Equation (54) of Völk

(1973), with their vosc∼0.25−0.3(vμcrit), interpreted as the
rms velocity oscillation amplitude of a particle in “the
fluctuation field that contributes to its diffusion.” The effective
diffusion coefficient at μ=0 is then given by ~ Wv3 osc

2 .
The discussions above apply to instant reflection upon

encountering abrupt field gradients. This corresponds to
the n=1 term in Equation (48) of Völk (1973). As one
lowers particle momentum, μcrit decreases, and eventually no
solution can be found. This situation applies to lower-energy
particles in Figure 16. More generally, higher-order effects

Figure 16. Four typical reflection events for a particle with p=0.23p0 (top left), 0.92p0 (top right), 1.39p0 (bottom left), and 4.52p0 (bottom right). They are selected
right after time t0=6× W-10 c

4 1. Among each group of plots, the top panels show the time evolution of the particle position in the wave frame, the perpendicular field
strength (individual components in colored lines and total in black dashed lines) experienced by the particle, and its pitch angle cosine in the wave frame relative to the
total field. The bottom panel shows the perturbed magnetic field profiles at the time of reflection.
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enter (corresponding to the n>1 terms), allowing particles
to be reflected over multiple gyrations in a fluctuating field.
Being less effective, it is consistent with fewer crossing
particles found in our particle counting in lower-energy bins.

6. Simulation Results: Parameter Study

Our fiducial run selects a parameter range that is physically
more realistic but numerically challenging, with small nCR/ni
and low CR drift velocity vD, leading to a relatively small
growth rate and low wave saturation level. In this section, we
vary the parameters around our fiducial run and conduct a two-
part parameter study. In Section 6.1, we examine the saturation
of the CRSI when vD is increased to higher values. In
Section 6.2, we discuss the results of varying solely numerical
parameters for our run Fid.

6.1. Dependence on Drift Speeds

With vD increased to 4vA and 8vA, we find that we recover
the linear growth rates very well (not shown), with the left- and
right-handed modes growing at comparable rates (as expected).
Figure 4 includes the time evolution of wave energy for runs
vD4 and vD8 (dashed–dotted lines). They initially follow very
similar evolutionary paths as our run Fid, except that every-
thing (linear growth and QLD) proceeds faster. More notably,
the later evolution of these two runs is more similar to run M3,
where the wave energy eventually plateaus, indicating that
saturation is close to completion.

In Figure 17, we show results related to the quasi-linear
evolution of runs vD4 and vD8. The overall outcomes are in
between those of run Fid and run M3. Crossing 90° becomes
easier as vD increases. By the end of the simulations, particles

with 4p0p20p0 are roughly fully isotropized in run vD4.
For run vD8, the range enlarges to p0p40p0.

11 Lower-
energy particles are in the process of (but have not yet
completed) isotropization. Isotropization is limited by the rate
of 90° crossing, which is much slower for these lower-energy
particles (see discussion in Section 5.4).

6.1.1. The Saturation Level

At this point, we can gather all simulation runs discussed so
far to address the saturation level of the CRSI as a function of
vD. The saturation level is measured in terms of wave energy
density. With equipartition of magnetic and kinetic energies, it
can be simply represented by dá ñB B2

0
2 in dimensionless form.

Theoretically, the predicted wave energy saturation level is
obtained by equating Equations (22) and (24) and is
proportional to (nCR/ni)Δv. Integrating the derivative of the
distribution function numerically, the result is shown as the
dashed line in Figure 18.
The final wave energy density obtained from our runs Fid,

vD4, vD8, M3, and Fid-hires (discussed in the next subsection)
are also shown in Figure 18. Even though runs M3 and vD8 are
close to complete saturation, their final wave energy densities
appear to be far from the expected level. This is because
numerical dissipation, while very low in the Athena MHD
code, is still nonnegligible for the extremely long simulation

Figure 17. Distribution function and drift velocities for runs vD4 (left) and vD8 (right). Top panels: 2D distribution function δfw/f0 in the wave frame at three
snapshots. Dashed lines are contours in momentum space with the same resonance condition. Bottom panels: time evolution of particle drift velocity in the wave frame
for different momentum bins, as well as the full drift velocity (see legend).

11 Two numerical artifacts can be identified in Figure 17. The banded
horizontal feature in the top panels is due to the division into eight particle
momentum bins. Within each bin, there is more noise toward higher energies
because there are fewer particles. One may also find that particle mean drift
velocities at various energies do not reach zero, even they are theoretically
expected to be fully isotropized (bottom panels). This is related to coarse
particle binning during outputs (mentioned earlier in Section 5.3.2).
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time necessary to reach saturation.12 With an adiabatic equation
of state, we can capture the change in gas internal energy over
time (thanks to the excellent energy conservation properties in the
gas component). We find that it increases steadily as result of
numerical dissipation and reaches a level that is comparable to the
overall wave energy density by the end of the runs. When we add
this energy lost to dissipation to the direct wave energy, we find
much more reasonable saturation levels, as shown with large/
thick symbols in Figure 18. In particular, run Fid remains at a
level below the full saturation prediction because particles become
“stuck” at 90°, whereas runs vD4 and vD8 are closer to the
expected saturation level as more particles are fully isotropized.
Run M3, which, based on its distribution function, is clearly
isotropized, is in excellent agreement with theoretical expectations
for the wave amplitude.

6.2. Numerical Parameters

Here we examine our runs Fid-hires, Fid-short, Fid-Np64,
and Fid-Np1024, in which we keep the physical parameters the
same and vary only the numerical parameters (note that for run
Fid-hires, we have slightly reduced the box size to save
computational cost). In Figure 19, we show the time evolution
of the wave energy density of these runs. Overall, these three
runs proceed very similarly to run Fid.13 Here QLD proceeds
slightly slower in run Fid-short, but it catches up to the other
runs shortly after. Run Fid-hires eventually grows to reach
larger wave amplitudes, which we will show later is due to
more efficient crossing of the 90° pitch angles.

In Figure 20, we show the wave spectrum from these runs at
time = ´ W-t 2 10 c

5 1. The overall shapes of the spectra are
comparable to each other. The high-resolution run has less
numerical dissipation, allowing the wave spectra to extend to

larger k. Run Fid-short has a box size that is only one-third of
the fiducial box (but still long enough to fit ∼17 of the most
unstable modes); hence, the modes are a lot more sparsely
sampled, especially at low-k. This is likely related to its initially

Figure 20. Wave spectrum at time t=2× W-10 c
5 1 from runs Fid-hires, Fid-short,

Fid-Np64, and Fid-Np1024. The vertical dotted lines are identical to those in
Figure 8 (the location of the thick line indicates the most unstable wavenumber).

Figure 19. Time evolution of total wave intensity for runs with different
numerical parameters.Figure 18. Saturation level measured from our simulations, in terms of wave

energy density normalized by CR fraction. Black circles are from runs Fid, vD4,
and vD8; red diamonds are from run Fid-hires; and blue squares are from run M3.
Small/thin symbols are measured based on the total wave energy density, while
large/thick symbols are measured from the same runs but corrected for numerical
dissipation. The dashed line indicates the expected saturation level assuming all
CRs are fully isotropized, obtained by setting Equations (22) and (24) equal.

12 Dissipation of low-amplitude waves imposed in the initial conditions is also
evident at early times in Figure 4.
13 All of these runs have the same initial wave amplitude A=10−4 (see
Equation (42)). Run Fid-hires thus has more initial wave energy because of the
larger spectral range it covers.
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slower quasi-linear evolution. We have also tried simulations
with one-eighth of the fiducial box size (not shown); while
evolution is smooth, the lack of power at larger scales starts to
adversely affect the evolution of higher-energy particles.

Figure 20 shows that there are backward-propagating modes
excited in all of these runs. The amplitude of these modes
reflects the level of noise. Clearly, inserting more particles
helps reduce the noise. The bottom line for properly choosing
the particle number is that the amplitude of such backward-
propagating modes should always be much smaller than the

forward-propagating modes driven by the CRSI. In this regard,
our run Fid-Np64 is acceptable, but more caution should be
exercised if one were to use even fewer particles.
In Figure 21, we show the particle distribution functions in

the wave frame at time t=105. These may be compared
with Figure 7. Overall, runs Fid-short and Fid-Np64 are
more noisy, whereas run Fid-Np1024 appears exceptionally
smooth. Our run Fid lies in between. Despite these
differences in noise levels, subsequent QLD does not appear
to be affected.

Figure 22. Results from run Fid-hires. Left three panels: snapshots of particle distribution function in the wave frame ( fw − f0)/f0 for four representative momenta as a
function of pitch angle cosine μw≈μ. Solid lines are measured from the simulations, dashed lines indicate the initial distribution, and dotted lines are reconstructed
distribution functions obtained by solving the QLD Equation (14) in time. Right panel: time evolution of particle drift velocity in the same four momentum bins in the
wave frame (solid lines). The thick dashed line represents the mean drift velocity averaged over the entire particle population.

Figure 21. The 2D distribution function δf/f0 in the lab (simulation) frame at time t= W-10 c
5 1 for runs Fid-hires, Fid-short, Fid-Np64, and Fid-Np1024. The dashed

lines are contours in momentum space that are resonant with the same wave (pμ=const), with the thick line marking pμ=p0. The color limits are identical among
the four panels.
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Of particular interest is the high-resolution run Fid-hires,
where waves grow to substantially higher amplitudes. In
Figure 22, we show three snapshots of the particle
distribution function in the wave frame for four representa-
tive momentum bins. These frames are to be contrasted with
Figure 9 for the same snapshots. Clearly, in this run, a
substantial fraction of particles with p3p0 has managed to
cross the 90° barrier. This fraction steadily increases with
time and, were we to run the simulation longer (e.g., to
t=2×106), the particles in these momentum bins would
essentially be fully isotropized. This trend can also be seen
from the last panel, which shows the time evolution of the
mean CR drift velocity: vd for particles with p3p0 are
steadily decreasing toward zero. Clearly, crossing the 90°
barrier is easier compared to run Fid. This is natural because
higher resolution allows more small-scale modes to be better
preserved, thus enhancing the chance for nonlinear wave–
particle interaction to reflect the particles (see Section 5.4.2).
In Figure 18, we see that the wave energy density in our run
Fid-hires is also a factor of several closer to the expected
saturation level. We expect that increasing the resolution
further (which would be much more computationally costly)
would eventually lead to full isotropization of the bulk CR
populations.

In sum, our exploration of numerical parameters suggests
that full saturation of the CRSI (ideal case, no damping) can
be achieved as long as there is sufficient numerical
resolution. The required resolution is mainly limited by the
demands imposed by crossing the 90° pitch angle, which is
sensitive to wave amplitudes at small scales. Similar results
to our fiducial model can be achieved when one reduces the
number of particles and/or the box size at some modest level
(∼a factor of 3).

7. Discussion

7.1. CR Feedback to Background Gas

Through the CRSI and QLD, CRs transfer momentum to
background gas, which serves as an important dynamical
feedback mechanism in a broad range of astrophysical
environments. In the following, we take run vD8 as an
example and discuss CR feedback in terms of momentum and
energy.

Momentum feedback is manifested in the top panel of
Figure 23, which shows changes in the mean gas and CR
momentum density ( D g and D CR). In our simulation frame,
the initial CR momentum is zero, and the initial gas momentum
is negative. Over time, the CR momentum density decreases,
accompanied by an increase in gas momentum density of
exactly the same amount. Physically, the back-reaction from
the CR isotropization process effectively gives rise to a
“parallel force” FP. This parallel force is mediated by forward-
propagating Alfvén waves and transfers CR momentum to the
gas (e.g., Thomas & Pfrommer 2019). The amount of
momentum transferred to the gas is in fact the same as the
“effective” wave momentum defined in Equation (24), which is
the momentum needed to excite such forward-propagating
waves (Kulsrud 2005). By the end of our run vD8, although the
evolution of gas and CR momenta are not yet fully saturated,
both are approaching the expected saturation level indicated by
the dashed lines, obtained from integrating Equation (22). In
the case of run M3 (not shown here), we observe that saturation

of gas and CR momenta is achieved. That is, the mean CR
streaming velocity relative to the gas is reduced from 2vA to vA
(Figure 13 shows that the final mean CR velocity is zero in the
wave frame), and the gas momentum density is increased to
balance the loss from CRs.14

Energy feedback can be discussed by decomposing the
energy budget into various components. These include gas bulk
kinetic energy r= á ñE v 2k x,bulk

2 , representing gas motion
parallel to the background field; wave energy Ewave; CR
kinetic energy ECR; and internal energy of the gas
Einternal=Pg/(Γ−1). The time evolution of these quantities

Figure 23. Time evolution of changes in momentum density (top) and energy
density (bottom) in various components (labeled in the legends) in run vD8.
The horizontal dashed lines mark the expected saturation levels (top: momenta;
bottom: wave energy). See Section 7.1 for more details.

14 As mentioned in Section 3.2, exact momentum conservation is not achieved
using the δf method. For run vD8, we have found that the error in total
momentum at the end of the run is at the level of 3×10−6, about a fraction
10−3 of the momentum change in the CR and gas components. The total error
in energy at the end state is 10−3, which is much less than the changes in bulk
gas/CR energies, though it might start to affect the accuracy in estimating
wave dissipation. The fractional error in momentum/energy is typically
comparable or smaller in other runs.
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is shown in the bottom panel of Figure 23, where we only plot
their changes relative to the initial condition. The overall
energy conservation is expressed as

+ + + = ( )E E E E const. 47k,bulk CR wave internal

Note that Ek,bulk and ECR are frame-dependent. Here it suffices
to report the results in our simulation frame.

In the simulation frame, the gas bulk energy density
decreases over time (as the bulk gas velocity becomes less
negative). This is associated by the work done by the same
parallel force FP that changes the gas momentum. In fact, we
can exactly reproduce the black solid line in the bottom panel
of Figure 23 using FP inferred from acceleration in the gas
(from the top panel), with D » DE vk g g,bulk . (Since vg only
changes by a tiny fraction over the process, it is approximately
taken to be constant here.) This same force also does opposite
work on the CRs, increasing their total kinetic energy. Some of
this energy is used to excite and amplify the waves, leading to
their continued growth. In the meantime, the waves are slowly
dissipated numerically, increasing the internal energy of the
gas.15

We emphasize that the CRSI itself does not lead to heating
of background gas. Heating only occurs through internal
dissipation in the gas, which is generally accompanied by wave
damping. This fact is reflected in the more recent formulation
of the CR-(magneto)hydrodynamics of Thomas & Pfrommer
(2019), though not necessarily correctly modeled in some
earlier studies. If wave growth is balanced by wave damping in
a quasi-steady state (not achieved in our present simulations),
then the heating rate is simply determined by the rate of wave
growth/damping.

7.2. Toward More Realistic Simulations

There are several directions to further improve the realism of
our simulations. In particular, there are several wave-damping
mechanisms to be incorporated, including ion-neutral damping,
nonlinear Landau damping, and turbulent damping of waves.

Ion-neutral damping, or ambipolar damping, is well known
(e.g., Kulsrud & Pearce 1969; Soler et al. 2016). It is present
when background gas is partially ionized. The ions are directly
coupled and respond to magnetic fields, but the neutrals hardly
feel the magnetic fields and can possess a different bulk
velocity from the ions. Ion-neutral collisions give friction and
lead to damping of Alfvén waves in the ion fluid, especially at
small scales. Given that crossing the μ=0 barrier is sensitive
to the spectrum of waves at small scales, ambipolar damping
may cause severe challenge to the isotropization of the CRs.
This effect will be incorporated and studied in greater detail in
a follow-up paper.

Nonlinear Landau damping is a result of wave–particle
interaction at the Landau resonance between background
thermal particles and a beat wave formed by two propagating
waves (Lee & Völk 1973) and is more effective in high-β
plasmas. Our MHD-PIC formulation does not capture the
kinetic physics of the background plasma and hence
cannot capture nonlinear Landau damping. However, this is
not necessarily a limitation: we would lose the advantage of

MHD-PIC by resolving the kinetic physics, and, in principle,
this damping mechanism can be incorporated in the form of
subgrid physics.
Turbulent damping is due to the distortion of CR-generated

Alfvén waves when they collide with oppositely directed wave
packets originating from background turbulence. As a result,
the wave energy cascades into smaller scales and is ultimately
dissipated (Farmer & Goldreich 2004). This damping rate has
only been calculated approximately (e.g., see the more recent
work of Lazarian 2016). Incorporating this effect is fully
compatible with our MHD-PIC framework and can be studied
in future multidimensional simulations.
For this first study, we focused on the classical theory with

1D simulations with a uniform background density and
magnetic field, which enable us to confirm resolution and
box size requirements. Multidimensional extensions are
straightforward and underway, although they are much more
computationally expensive. Such extensions will allow modes
propagating obliquely with respect to the background field to
be investigated and open up more parameter space, as the
relative importance of thermal, magnetic, and CR pressures and
background turbulence can play certain roles.
Closely related to the CRSI is another type of gyro-

resonance instability, which is driven by CR pressure
anisotropy (e.g., Lazarian & Beresnyak 2006) and can be
easily triggered in compressible MHD flows (when CR
pressure anisotropy exceeds ∼vA/c). It excites circularly
polarized Alfvén waves propagating in opposite directions,
which then isotropize the CRs via QLD. Recently, Lebiga et al.
(2018) studied this instability numerically based on the MHD-
PIC framework in the full-f approach (with relatively strong
anisotropy) and found good agreement with quasi-linear
theory. In the absence of CR streaming, the CR distribution
function is always symmetric about μ=0; hence, crossing the
90° pitch angle is not required for CR isotropization. In reality,
CR streaming and pressure anisotropy likely coexist. This
would excite a wide range of waves propagating in both
directions, calling for further investigation.
Finally, in any simulation with periodic boundary conditions

(even with arbitrarily high resolution such that crossing the 90°
pitch angle is not a limitation), there is a finite free energy of
the system based on the initial energy and momentum densities
of gas and CRs. In the absence of damping (numerical or
physical), growth of Alfvén waves would halt when QLD has
reduced the mean velocity difference between the gas and the
CRs to vA. In reality, at a given location, the CRSI is typically
driven by a large-scale CR pressure gradient. For instance, CRs
are continuously generated from the galactic midplane region
and diffusively propagate downhill through the gradient to
escape from the galaxy. Energy and momentum are continually
added to the system. This configuration likely yields continued
wave growth balanced by damping to reach a steady state, a
situation that has yet to be addressed with more realistic
boundary conditions.

7.3. Comparison with Conventional PIC Simulations

Our MHD-PIC approach to studying the CRSI strongly
contrasts with conventional full- or hybrid-PIC approaches that
are widely used in modeling highly nonlinear plasma problems.
The full-PIC approach treats charged particles of all kinds as
particles. It resolves all scales down to the electron skin depth
(eventually the Debye length); hence, all plasma wave modes

15 While damping in our simulations is purely numerical, we can see that it is
negligible in the early phases of linear and quasi-linear evolution. Only toward
later stages, where saturation is largely achieved (and hence there is little wave
growth), does numerical dissipation become more noticeable. Thus, our results
are largely unaffected by numerical dissipation.
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are self-consistently captured along with relevant wave–particle
interactions. The hybrid-PIC approach treats electrons as a
massless conducting fluid. By compromising the electron-scale
physics, it alleviates the stringent resolution requirement of the
full-PIC method, while it can still capture the ion-scale physics
well. For the CRSI problem, employing full- or hybrid-PIC
methods means that background ISM fluid must be represented
by particles, hence resolving the corresponding microscopic
scales. This causes two major drawbacks: substantially
enhanced numerical cost and PIC noise due to the finite
number of particles representing the background plasma.

As discussed in Section 3, there is substantial scale
separation in the CRSI problem between the CR gyro-radii
and the ion skin depth (and below). Conducting a hybrid-PIC
simulation using the same parameter settings as our fiducial
simulations would require more than an order of magnitude
more cells, and another order of magnitude more cells would be
needed in the full-PIC case. The numerical cost in the full-PIC
case is further exaggerated by the ion-to-electron mass ratio,
requiring a factor of mi/me more time steps per CR gyro-
period. Moreover, the number of background particles per cell
needs to be sufficiently high in order to reduce the noise floor
as compared to the signal level of growing waves and avoid
artificial QLD of the CRs by such noise.

Despite these difficulties, Holcomb & Spitkovsky (2018)
recently presented a 1D study of the CRSI using full-PIC
simulations. The typical parameters of their simulations are
mi/me=100, υA/c=0.1 (note in full-PIC, =c in our
notation), 10/100 cells per electron/ion skin depth,
Nppc=50−1000 (all plasma particles equally divided among
background and CR species), nCR/niä[2×10−4, 2×10−2],
and υD/υA from 1.4 (low anisotropy) to 7.9 (high aniso-
tropy).16 They considered two different CR distribution
functions, ring and power law, with the former representing a
monoenergetic CR distribution in the drift frame. They have
successfully reproduced the peak growth rate in runs with the
ring distribution and, similar to our results, achieved full
isotropization in runs with relatively large nCR/ni and/or CR
drift velocity.

We note that the large ratio of vA/c adopted in Holcomb &
Spitkovsky (2018) makes the resonant condition (Equation (2))
asymmetric with respect to forward- and backward-traveling
particles, thus modifying the standard CRSI dispersion relation
for left-/right-handed modes in different ways. Together with
the choices of large nCR/ni ratio, drift velocity being mildly
relativistic, and use of a ring distribution, these parameters
represent substantial compromises to alleviate the issue of scale
separation and particle noise. As a result, reasonable agreement
with linear theory was found mainly in the special case of the
ring distribution and power-law distribution with exaggerated
high anisotropy and high nCR/ni values. These more extreme
run parameters (approaching the Bell regime), together with the
asymmetry in the left-/right-handed modes caused by large
vA/c, make the left-handed modes in these simulations grow at
much reduced rates compared with the right-handed modes,
leading to asymmetric scattering for forward-/backward-
traveling CRs. While this situation might apply near strong
shocks where the Bell instability operates, the parameter
regime is not representative of typical conditions in the ISM.

Additionally, they have suggested mirror reflection as being
responsible for crossing the 90° pitch angle. However, the
reflection event shown in their Figure 10 in fact appears more
consistent with nonlinear wave–particle interaction, as we have
demonstrated in this work.
Perhaps the chief advantage of full- and hybrid-PIC methods

over the MHD-PIC approach is the ability to capture nonlinear
Landau damping, as the background plasma is treated
kinetically. However, the physics of nonlinear Landau damping
is highly subtle, and damping relies on second-order long-
itudinal electric fields resulting from a beat wave formed from
two circularly polarized Alfvén waves (Lee & Völk 1973). It is
conceivable that capturing such effects must require an
extremely low level of background noise, and hence an
exceedingly large number of background plasma particles:
another major challenge yet to be resolved.
Finally, we comment that several of the difficulties in

simulating the CRSI outlined in Section 3 are common for all
variations of PIC methods. The δf approach coupled with a κ
distribution that we have adopted could also be incorporated in
full- and hybrid-PIC simulations, likely leading to substantial
improvements in future studies of the CRSI.

8. Summary and Conclusions

In this paper, we have presented the first numerical studies of
the CRSI using the MHD-PIC method. We use 1D simulations
in a periodic box and an idealized setup (no damping, a reduced
speed of light ) for a range of model and numerical
parameters. We have been able to accurately reproduce the
theoretically predicted linear growth rate, follow quasi-linear
evolution as CR particles interact with CSRI-driven Alfvén
waves, and identify the mechanism responsible for CR particles
crossing the 90° pitch angle. In the course of this study, we
have developed techniques to investigate CRSI and QLD with
substantial precision, paving the way for future studies with
more realistic setups and incorporating more physics.
Unlike conventional PIC methods, the MHD-PIC method

has unique advantages in bypassing the microscopic scales of
the background thermal plasma, allowing one to focus on the
interaction between the CRs and background gas around the
gyro-resonant scale. However, the CRSI still involves sub-
stantial scale separation, ranging from scales much smaller than
to scales much larger than the CR gyro-resonant scale.
Covering this large range of scales is necessary to properly
capture the crossing of the 90° pitch angle and QLD. Moreover,
the extremely weak level of anisotropy (∼vA/c) in the CR
distribution function over a wide energy range makes it
challenging to properly represent with a sufficiently large
number of particles.
To address these challenges, we have extended the MHD-

PIC formulation to use a δf (instead of full-f ) representation of
the CR particles on top of a known initial equilibrium
distribution function f0, which dramatically reduces the Poisson
noise. While our fiducial simulations employ as many as 2048
particles per cell to achieve better precision, similar results can
be achieved with fewer particles, and we recommend testing
the level of Poisson noise in a non-CR-streaming simulation to
determine the optimal number of particles. Using the conven-
tional full-f representation, while the signature of the CRSI can
be identified, the high noise level precludes any quantitative
measurement of its overall properties.

16 Let us recall that in the present study (Fid run), the parameters are
 ¥m mi e , u = ´ -3.3 10A

3, 10 ion skin depths per cell, Nppc=2048
(CRs only), nCR/ni=10−4, and υD/υA=2.
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The δf method requires the background distribution function
f0 to be continuous, which is incompatible with f0 being a
truncated power law. We have therefore chosen f0 to be a κ
distribution, and the corresponding dispersion relation of the
CRSI is analytically derived. We note that under realistic large-
scale ISM conditions (nCR/ni extremely small and moderate
vD/vA), the left- and right-handed Alfvén waves grow at equal
rates. The Bell-type modes, in which the right-handed modes
grow faster, emerge when nCR/ni and/or vD/vA become large.
We have carefully chosen the parameters to ensure sufficient
scale separation  =v 1 300A and that the left- and right-
handed modes growth at about the same rates (except for run
M3, where there is a small difference), so that the conditions
are as close to the ISM as possible. Our particle population also
covers a wide range of CR momenta from 0.01p0 to 100p0,
with =p0 being the characteristic momentum of the κ
distribution.

We have found that when employing a standard periodic
boundary condition, properly capturing the linear growth rate
requires an excessively long simulation box, corresponding to
the box crossing time of a typical particle approaching the wave
growth time. We attribute this to the fact that the growth of the
CRSI is driven by QLD, which requires particles to encounter a
sufficient number of independent wave packets, and is related
to the random phase approximation commonly employed in
describing QLD. To address this issue, we implemented a
phase randomization technique for particles that cross the
periodic boundaries, which allows us to achieve even better
results using much smaller simulation boxes (box size 50
instead of 1000 of the most unstable wavelength).

Equipped with these techniques, we are able not only to
accurately reproduce predicted CRSI linear growth rates over a
broad range of wave spectra but also to accurately follow the
quasi-linear evolution of the system. We observe that QLD
proceeds to isotropize the CR distribution function fw in the
frame of forward-propagating Alfvén waves, so that ¶fw/¶μw
approaches zero on either side of the pitch angle cosine
μw≈μ=0. With an increasingly flat distribution of particle
pitch angles, wave growth slows down and eventually stops.
As longer-wavelength modes that resonate with higher-energy
CRs grow more slowly, wave growth proceeds from the most
unstable to longer wavelengths (and, in principle, also to
shorter wavelengths, though we lack resolution for these). In
parallel, quasi-linear evolution proceeds from low- to higher-
energy CRs as waves become available.

Whether full isotropization of CRs in the wave frame is
achieved depends on whether the particles manage to overcome
the μ=0 barrier (crossing the 90° pitch angle). The
mechanisms involved go beyond quasi-linear theory. While
mirror reflection is commonly invoked as the main mechanism
enabling crossing μ=0, we have found that reflection
generally occurs via nonlinear wave–particle interaction, with
particles encountering abrupt changes in field orientation.
Reflection is more easily achieved for higher-energy particles
and facilitated by the presence of waves at wavelengths much
smaller than the gyro-resonance scale (see Section 5.4 for
details).

In our study, efficient crossing of the μ=0 barrier is
achieved in simulation runs with strong wave growth (runs M3
and vD8). For these runs, full saturation is reached, with the
mean CR drift velocity reduced to the Alfvén speed. The final
particle distribution functions, as well as saturation amplitudes

of the waves, are in excellent agreement with theoretical
expectations. Our fiducial run, with a relatively low
nCR/ni=10−4 and small initial drift speed vD=2vA, becomes
stuck in a state of premature saturation: while the distribution is
flat on each side of μ=0 within most momentum bins, the
bulk of the CR population fails to overcome the μ=0 barrier.
The inability of particles to breach the μ=0 barrier is
primarily due to numerical dissipation of low-amplitude waves
at small scales, together with the absence of even shorter-
wavelength waves due to limited resolution. We have further
found that enhancing numerical resolution can substantially
alleviate the situation. Thus, the proper choice of numerical
resolution for the given physical parameters is also crucial for
saturation.
The CRs provide direct momentum feedback to the back-

ground gas, which accelerates in accordance with momentum
conservation of the gas–CR system. Wave power is directly
proportional to the momentum transferred from the CRs to the
gas. In terms of energy feedback, the work done by the CRs
leads to gas acceleration and wave growth, but no direct
heating. Gas heating is only achieved through wave damping,
which is purely numerical in our simulations.
As a first study, we have restricted ourselves to 1D

simulations in a periodic box in the ideal MHD limit. Our
explorations have identified and clarified the numerical
methods necessary to properly capture the essential mechan-
isms of the CRSI and paved the way for future investigations to
incorporate more realistic physics. These may include imple-
menting various damping mechanisms, extensions to multiple
dimensions, and employing more realistic boundary conditions.
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Appendix A
Decomposition of Alfvén Waves

Given that modifications from the CRs to the Alfvén waves
are tiny in this context, it suffices to consider pure linear Alfvén
waves. At a fixed wavelength, there are four independent
Alfvén modes, depending on left-/right-handed polarization
and the direction of propagation relative to the fluid rest frame.
Here we take the perspective that the left-/right-handedness is
defined from the receiver’s point of view. That is, for a wave
propagating toward an observer (relative to the fluid rest
frame), the perturbed electric (and magnetic) field vector rotates
in a counterclockwise (clockwise) sense for a left- (right-)
handed wave.
Let δv and δB be perturbed transverse velocities and

magnetic fields and take the perturbations in the form of exp
[i(kx−ωt)]. Note that k can have both signs indicating the
direction of propagation, whereas ω always has a positive real
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part. The eigenvectors for Alfvén waves satisfy

d d
= - ( ) ( )v B

v
k
B

sgn . 48
A 0

The sign of B0 is implicitly contained in the above, whereas vA
is considered to be positive. In the following, we always take
B0>0 without a loss of generality (for B0<0, sign changes
must be employed in many of the subsequent descriptions) and
consider forward propagation to be along the direction of B0

(positive x̂). Under this convention, the ± sign of k corresponds
to forward/backward propagation. The left-/right-handed
modes have δBy=miδBz and δvy=miδvz for forward-
propagating waves. The opposite sign should be adopted in
the above for backward-propagating waves.

Based on the above description, the natural way to
decompose circularly polarized Alfvén modes is to consider
the following combination:
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For instance, for forward-propagating (k>0), right-handed
(δBy=iδBz) waves, we choose the plus sign. A discrete
Fourier transform of C±(x),
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gives the wave amplitude and phase (which is what is being
plotted in the figures). The wave intensity is then given by

p
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To initialize a wave spectrum with I±(k)=A2/k, we can
simply choose = D∣ ( )∣ ∣ ∣W k A k k , where Δk≡2π/Lx.

Appendix B
Level of Noise in the δf and Full-f Methods

In this appendix, we study the noise properties in our
simulations. We do so by conducting simulations with an

almost identical setup to our fiducial runs, except that we
change the CR drift velocity to vD=0 and start from an initial
amplitude that is much smaller with A=10−12. We also use a
shorter simulation box, L=24,000 (which we verify has no
influence on the result). In this case, we only expect wave
damping to occur, but Poisson noise from particle sampling
will stand out and causes fluctuations that overwhelm the
initially low-amplitude waves.
In Figure 24, we show the time evolution of the mean

fluctuation energy density in the system, which is given by
r +^ ^( )v B 22 2 . This is done for both the δf method (left) and the
full-f method (right). Note that we have chosen nCR/ni=10−3

in tests using the δf method (a smaller value would take a
longer time to reach steady state), whereas we use
nCR/ni=10−4 in the full-f case (a larger value would make
the noise somewhat too large). Clearly, we see that even with a
higher nCR/ni, the noise with the δf method is dramatically
smaller than that in the full-f method by more than 5 orders of
magnitude (this would be more than 6 orders of magnitude if
they had the same nCR/ni).
The energy density of the waves in this test results from the

Poisson noise in the particles. We can see that in both cases,
reducing the number of particles by a factor of 4 leads to a
factor of ∼4 increase in wave energy density (or a factor 4 in
wave amplitude). The wave spectrum (not shown) is consistent
with white noise (with I(k) being flat) for all modes with a
cutoff at high k due to numerical damping. The spectrum at
intermediate k grows and saturates faster, whereas modes at the
low-k end grow slower, explaining the secular trend at late
times.
Interestingly, the noise level also depends on resolution, but

the dependence is different for the full-f and δf methods. For the
δf method, we find a sensitive dependence, which scales
roughly asΔx4, and higher spatial resolution can greatly reduce
Poisson noise. On the other hand, for the full-f method, the
dependence is much weaker and sublinear. In addition, we find
that using a larger p0 while keeping other parameters fixed also
gives very different noise levels. Enlarging p0 by a factor of 10,
noise is dramatically reduced by a factor of ∼300 when using
the δf method. Noise is enhanced by a factor of ∼3–4 when

Figure 24. Time evolution of system noise (in terms of total wave energy density) in the zero-drift simulations described in Appendix B. The left and right panels
show the results from the δf method and the full-f method, respectively. Thick black lines in both plots correspond to simulations with identical setup to the fiducial
simulation, except that vD=0, and nCR/ni=10−3 in the δf case while nCR/ni=10−4 in the full-f case. Other lines marked in the legend indicate runs where one of
the parameters is varied while all others are unchanged.
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using the full-f method. We do not aim to further study and
explain these trends but simply report them here for reference.

Appendix C
Random Phase Approximation and Simulation Box Size

In this appendix, we show that simulations without
implementing phase randomization across periodic boundaries
fail to properly capture the linear grow rate of the CRSI unless
the simulation box size is extremely long. This failure reflects

the fact that the random phase approximation must be satisfied
for particles to properly follow QLD, which drives the CRSI.
We first show in Figure 25 a comparison between our

fiducial run with and without phase randomization. At some
early time (less than one e-folding time), we plot the growth
factors across the wave spectrum. Despite some slight
deviation, our fiducial run with phase randomization nicely
matches the theoretical expectation (except for numerical
damping at large k). Without phase randomization, we see that
while the fastest growth rate is not different from the theoretical

Figure 25. Comparison between fiducial simulations with (left) and without (right) implementing phase randomization across periodic boundaries. The top plots show
the growth factor of wave intensity I(k) between t=0 and 2.5× W-10 c

4 1, with red/black lines marking left-/right-handed modes. The dashed line shows the growth
factor expected from linear theory. The bottom plots show the time history of the growth factor for individual modes with different wavenumbers kx (indicated in the
legend). The dashed lines of the same color indicate the expected growth factor evolution.

Figure 26. Growth factor of wave intensity I(k) at time t=2.5×10−4 for three runs without phase randomization. Red/black colors mark left-/right-handed modes.
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expectation by much, the wave spectrum has a significant
offset, with the most unstable wavelength being about a factor
of 3 shorter.

Further looking at the time history of the wave intensity of
three representative modes (with the fastest-growing mode
k=(1/3)×10−2 shown in black) in the bottom panels, we
see that with phase randomization, wave growth is clearly
exponential. Without randomizing the phases, the exponential
growth is only maintained for up to t∼5000 W-

c
1, after which

the wave amplitudes wildly vary.
We then conducted a serious of simulations using fiducial

parameters but in different box sizes and without phase
randomization. The box sizes are Lx=2.88×105, 7.68×105,
and 1.92×106. They are 3, 8, and 20 times the length of the
fiducial box that we use (0.96×105), while they are run for a
shorter amount of time (about (2.5−4)× W-10 c

4 1) just within the
expected linear growth phase. Note that even for the longest box
that we have attempted, the box crossing time for a relativistic
particle is 1.92×106/300=6.4× W-10 c

3 1, which is about a
factor of ∼4–5 smaller than the growth time of the CRSI.

In Figure 26, we again show the spectrum of growth factors
for these runs. Clearly, the offset in the fastest-growing
wavelength from the theoretical expectation gets smaller with
increasing box size and eventually vanishes in the run with the
longest box size. There is still some deviation in the absolute
growth rate, though only by a small factor (the numerical
growth rate is accurate within ∼10%). We thus consider this
longest box size run to be marginally appropriate to study
the CRSI.

Appendix D
Comparison with the Full-f Method

To demonstrate the advantage of the δfmethod, we show in this
appendix results obtained from the full-f approach. The simulation
setup is identical to our run Fid, except that the δf weighting
scheme is turned off and the box size is halved. Phase

randomization is also included. To further reduce Poisson noise,
we use Np=2048 particles per bin per cell (in total, 16,384 per
cell). According to the study in Appendix B, the level of noise is
reduced by a factor of 8 in wave intensity, with wave energy
density ∼10−4, or d ´ -B B 5 102

0
2 5, in the form of Alfvén

waves propagating in both directions. This level of noise would
yield a rate of QLD, according to Equation (15), that is comparable
to the maximum wave growth rate of ∼3×10−5Ωc. The
simulation is run to time t=2.25× W-10 c

5 1.
In Figure 27, we show the two snapshots of the wave pattern

and spectrum. We see that the noise level indeed quickly reaches
the level of δB/B10−2, causing appreciable QLD of particles.
Note that since Alfvén waves in both directions are present due to
noise, CR energy would no longer be conserved in the (forward-
propagating) wave frame, compromising the physics of the CRSI.
As a result, we can only barely identify the signature of the CRSI
in the wave spectrum at an early time of t=2×104. At a later
time, forward-propagating waves are more easily seen to be
amplified. However, these waves are at longer wavelengths (with
k∼10−3 instead of Ωc/p0=3.3×10

−3) where intrinsic num-
erical noise is smaller, allowing the CRSI to better stand out. The
growth rates at these longer wavelengths are somewhat too noisy
to measure with sufficient precision to compare with theoretical
values, and through our analysis, the particles responsible for wave
growth must have already undergone some QLD from pure noise.
We have further inspected the evolution of the distribution

function, and we show in Figure 28 this distribution function for
the last snapshot of the run. Note that because the binning is based
on the full-f prescription (i.e., direct particle counting in each bin),
it is much noisier than what we had before under the δf
prescription. On the other hand, we can find signatures of
isotropization. In fact, particles at p∼3p0 are already nearly
isotropized, and particles with p10p0 are still in the early stages
of isotropization. For particles with pp0, accumulation near
μ∼0 is also clearly visible, as they are stuck and cannot cross the
90° pitch angle. While these features are qualitatively consistent
with expectations, QLD proceeds much faster than that obtained

Figure 27. Wave patterns and their Fourier power spectra [kI(k)] at two snapshots of the fiducial simulation using the full-f method: left for t=2× W-10 c
4 1 and right

for t=2× W-10 c
5 1.
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using the δfmethod owing to substantial enhancement of scattering
through noise. In particular, recall from discussions in Section 5.2
that isotropization is never achieved when using the δf method.

Overall, we conclude that while the full-f method can capture
some basic properties of the CRSI, numerical noise adversely
affects its evolution at all stages, leading to severe discrepan-
cies at a quantitative (and sometimes even qualitative) level,
which precludes making any accurate/reliable measurement.
The situation can only get worse under more realistic
conditions (low nCR/ni and small vD).
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