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Abstract

The self-regulation of cosmic-ray (CR) transport in the interstellar and intracluster media has long been viewed
through the lenses of linear and quasi-linear kinetic plasma physics. Such theories are believed to capture the
essence of CR behavior in the presence of self-generated turbulence but cannot describe potentially critical details
arising from the nonlinearities of the problem. We utilize the particle-in-cell numerical method to study the time-
dependent nonlinear behavior of the gyroresonant streaming instabilities, self-consistently following the combined
evolution of particle distributions and self-generated wave spectra in one-dimensional periodic simulations. We
demonstrate that the early growth of instability conforms to the predictions from linear physics, but that the late-
time behavior can vary depending on the properties of the initial CR distribution. We emphasize that the nonlinear
stages of instability depend strongly on the initial anisotropy of CRs—highly anisotropic CR distributions do not
efficiently reduce to Alfvénic drift velocities, owing to reduced production of left-handed resonant modes. We
derive estimates for the wave amplitudes at saturation and the timescales for nonlinear relaxation of the CR
distribution and then demonstrate the applicability of these estimates to our simulations. Bulk flows of the
background plasma due to the presence of resonant waves are observed in our simulations, confirming the
microphysical basis of CR-driven winds.
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1. Introduction

Cosmic rays (CRs) are an energetically significant comp-
onent of the interstellar medium (ISM) and the intracluster
medium (ICM; see Zweibel 2013 for a review). For the Milky
Way (and similar galaxies), CRs are roughly in equipartition
with the magnetic, thermal, and turbulent components of the
galactic energy density (Draine 2011). Despite the relatively
small number densities of CRs, the plentiful kinetic energy
associated with their relativistic velocities implies the potential
to have outsized dynamical influence on their surroundings.

In the ISM this influence is thought to play a crucial role in
stellar feedback, the processes by which stars redistribute
momentum and energy and thus regulate galactic-scale
thermodynamics and subsequent star formation. The forces
that couple CRs to the interstellar plasma can drive bulk
motions in the latter—the so-called CR-driven galactic winds
(Ipavich 1975; Breitschwerdt et al. 1991; Everett et al. 2008;
Socrates et al. 2008). Much attention has been given to this
mechanism in recent years, both in large-scale fluid simulation
studies (Girichidis et al. 2016, 2018; Ruszkowski et al. 2017b;
Wiener et al. 2017; Jiang & Oh 2018; Thomas & Pfrommer
2019) and in analytical fluid studies (Recchia et al. 2016; Mao
& Ostriker 2018).

The streaming of CRs through ICM is also thought to be an
important component of the feedback processes by which
active galactic nuclei inject heat into their surrounding media,
thus preventing the “catastrophic” formation of massive
galaxies at the cluster core with star formation rates beyond
what is observed (Loewenstein et al. 1991; Guo & Oh 2008).
The recent fluid simulations of Ruszkowski et al. (2017a)
demonstrated the viability of CR streaming as a mechanism for
maintaining the thermal equilibrium of the ICM. Additionally,
CRs have been utilized in models to explain the observed
bimodality of galaxy-cluster radio halos (Wiener et al.
2013a, 2018).

The cross section for Coulomb collisions becomes suffi-
ciently small at energies above ∼1 GeV that CRs are not
effectively confined to the galactic disk by the interstellar gas.
Instead, the predominant mechanism for CR interactions is via
collisionless scattering on magnetic fluctuations. The present-
day canon is based on the self-confinement paradigm (Kulsrud
& Pearce 1969; Wentzel 1969; Skilling 1971; Kulsrud 2005),
whereby CRs generate the magnetic fluctuations that they
subsequently scatter on (n.b., turbulent confinement is an
increasingly viable alternative; Yan & Lazarian 2002). CRs are
believed to induce waves in the galactic magnetic field via the
gyroresonant streaming instability (Lerche 1967; Kulsrud &
Pearce 1969). These waves would allow CRs to indirectly
couple to the ISM plasma, thus facilitating the transfer of
momentum and energy.
The separation of scales between typical CR gyroradii (∼au)

and galactic structures (∼kpc) necessitates a two-pronged
approach to understanding the physical influence of CRs. One
approach utilizes fluid approximations to study the influence of
CRs on large scales. In this scheme, the physics of CRs is
parameterized within the conservation equations of the fluid
framework (e.g., Zweibel 2017; Jiang & Oh 2018). The other
approach, which we adopt here, analyzes the behavior of CRs
on kinetic scales by fully resolving the physics of wave–
particle interactions. We employ the particle-in-cell method
(PIC), which has previously been used to study the nonresonant
branch of the CR streaming instability (aka Bell or CR current-
driven instability) in the context of magnetic field amplification
around shock waves (Niemiec et al. 2008; Riquelme &
Spitkovsky 2009; Stroman et al. 2009) and the gyroresonant
instability of high-density ion beams (Weidl et al. 2019b).
Additionally, the MHD-PIC numerical scheme (Bai et al. 2015)
has been used to study the closely related pressure-anisotropy-
driven gyroresonance instability (Lebiga et al. 2018).
In this work we study the behavior of the gyroresonant

streaming instability using a range of CR distributions.
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Numerical simulation allows us to follow the instability
through the nonlinear stages of evolution and observe the
feedback between particle distributions and wave spectra.
The CR distributions are chosen to emphasize the role of initial
CR anisotropy in determining the qualitative evolution of
instability, particularly in the nonlinear instability phase. We
demonstrate that CR distributions with large degrees of
anisotropy excite right-handed Alfvénic waves, while those
with small anisotropy produce linearly polarized modes. The
properties of these waves then determine the temporal
evolution of CR streaming in the nonlinear phase. In
Section 2, we summarize the physics of the gyroresonant
streaming instability and derive scaling relations that quantita-
tively predict its behaviors. In Section 3, we describe our
numerical methods and simulation setups. We present the
results of our simulations in Section 4. In Section 5, we discuss
the implications and applications of our results. Finally, we
summarize in Section 6.

2. Physics of CR Streaming Instabilities

Energetic charged particles streaming along a large-scale
magnetic field embedded in a background plasma can interact
with transverse electromagnetic fluctuations, absorbing or
exciting waves that travel parallel (or antiparallel) to the bulk
particle motion. There are two well-known and distinct
mechanisms for streaming CRs to grow waves in the ISM/
ICM. The first is known as the (gyroresonant) CR streaming
instability (Lerche 1967; Kulsrud & Pearce 1969; Wentzel
1969), which occurs when CRs impart their momentum to
Alfvén waves by adjusting their pitch angle. The second is
the current-driven nonresonant instability (aka Bell instability;
Bell 2004, 2005), where a large CR current Jcr drives the growth
of slowly propagating waves via the ´J B force (however, see
Weidl et al. 2019a for an alternative interpretation).

Amato & Blasi (2009) demonstrated that these two behaviors
can be jointly derived in the framework of linearized kinetic
theory. The nonresonant branch is expected to be important
only near the sources of CRs, where the associated current is
large, e.g., supernova remnants (SNRs; Riquelme & Spit-
kovsky 2010). Here we focus on the resonant branch of the
instability, which is believed to be the predominant CR-driven
instability for the majority of the ISM/ICM. The kinetic
dispersion relation predicts that the current-driven instability is
subdominant so long as the relation U U c vBcr dr holds,
where vdr is the bulk drift velocity of CRs and Ucr and UB are
the energy densities of CRs and the background magnetic field,
respectively (Zweibel & Everett 2010).

2.1. Resonant Scattering

The foundation of the streaming instability, and of the
subsequent pitch-angle diffusion, is the mechanism by which
CRs scatter in electromagnetic fluctuations. Charged particles
propagating in a magnetized plasma execute gyromotion when
moving with perpendicular velocity to the background
magnetic field ( ˆ=B B x0 0 throughout this work). This behavior
allows particles to strongly interact with transverse waves, such
as Alfvén waves, under certain conditions. Wave–particle pairs
are said to be in resonance when they satisfy the gyroresonance
condition

( )w - = Wv k , 1x

where ω and k are the frequency and parallel wavenumber of
the wave, respectively, and vx and Ω are the velocity parallel to
the background magnetic field and the relativistic gyrofre-
quency, respectively. This is a special case of a more general
set of conditions (e.g., Zweibel 2013), where we have assumed
transverse electromagnetic waves propagating parallel or
antiparallel to the background magnetic field.
We can rearrange Equation (1) to produce the resonant pitch-

angle cosine, given particle total momentum p and wavenum-
ber k,

( )
( )

( ) ( ) ( )
( )m

g
= -

W
k p

v k

v p k p v p
, , 2res

ph 0

where ( ) ( )g = +p p mc1 2 is the particle Lorentz factor,
v(p)=p/(mγ(p)) is the total particle velocity, Ω0 is the
nonrelativistic gyrofrequency, μ=px/p, and vph=ω/k is the
wave phase velocity. In Figure 1 we show μres as a function of
the absolute value of the wavenumber with ions of fixed
particle momentum p=20mic (solid lines) and p=4mic
(dashed lines) and Alfvén waves of all four combinations of
polarization and propagation direction (the polarization con-
vention is described in Appendix A). The phase velocity of
waves is obtained by solving the kinetic plasma dispersion
relation for parallel/antiparallel-propagating waves in the cold
and low-frequency limits (including the ion-cyclotron and
whistler regimes around k100Ω/v). The spread of the
resonance curves around μ=vA/v is exaggerated by the
choice of the parameters mi/me=100 (the ion-to-electron
mass ratio) and vA=0.1c (the Alfvén speed), which we adopt
in our simulations for reasons described in Section 3. From this
representation of the resonance condition (Equation (2)) we
note two important features of this wave–particle interaction.
The first is that there exists a minimal wavenumber for a given
particle momentum kmin(p) such that μres=±1; therefore,
waves of longer wavelength cannot satisfy the resonance
condition. The second, and more important in the context of
this article, is that a given CR is capable of achieving
gyroresonance with waves of particular combinations of
polarization and propagation direction for limited ranges of
the pitch angle.
The transverse electric fields of Alfvén waves vanish in the

reference frame moving with the wave phase velocity vph.
Consequently, CRs elastically scatter on magnetostatic pertur-
bations in the wave frame, changing their propagation
directions without exchanging energy (pure pitch-angle
scattering). Thus, the action of a monochromatic wave packet
is to scatter resonant particles along the trajectory described by

( ( ) ) ( ) ( )g g- + =^p t mv p t constant, 3ph
2

ph
2 2

where ( )g = - -v c1ph ph
2 2 1 2 is the Lorentz factor associated

with a boost into the wave frame traveling with phase velocity
vph. This semiellipse in momentum space describes a constant
energy surface when viewed in the wave frame. As scattering
ensues in the laboratory frame, waves grow or damp
predominantly in exchange for the free momentum associated
with the streaming of CRs, while the particle energies remain
nearly constant as long as v?vph (Kulsrud 2005).
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2.2. Distribution Functions and Instability

To elicit the behavior of the CR streaming instabilities, we
utilize two classes of CR distribution functions. The first is the
gyrotropic ring distribution

( ) ( ) ( ) ( )m
p

d d m m= - -f p
n

p
p p,

2
, 4ring

cr
2 0 0

where the input parameters p0 and μ0 define the unique total
momentum and pitch-angle cosine that all CRs share. The ring
distribution has been used to study the growth of nonlinear
waves in the solar wind (Galinsky et al. 1997; Shevchenko
et al. 2002). Here we use it as a simple model to study the
effects of particle scattering in self-generated quasi-monochro-
matic spectra of small- and large-amplitude waves.

By the definition of the ring distribution, the perpendicular
momenta of all CRs are randomly oriented in gyrophase but
equal in magnitude. These properties ensure that all CRs are
initially distributed within the same resonant bands, determined
by Equation (1). In this work we study ring distributions with
super-Alfvénic drift μ0v(p0)>vA, which excite parallel right-
handed and antiparallel left-handed waves. We derive the
dispersion relation for waves in the presence of the ring
distribution in Appendix B.

The second distribution we will utilize is the more familiar
power-law distribution with an additional bulk drift along the
background magnetic field (x̂-axis). In the frame in which the
CRs appear isotropic, the distribution takes the form

( ) ( )
( ) ( )

( ) ( )m
p

a   =
- Q Q

 - 


a a
a

- -
-f p

n

p p
p,

4

3
, 5PL

cr min max

min
3

max
3

where doubly primed quantities refer to measurements made in the
isotropic CR frame, α is the power-law index, and pmin and pmax
are input parameters specifying the minimum and maximum CR

momenta, respectively. The latter are encoded by the Heaviside
step functions ( )Q º Q  - p pmin min and (Q º Q  -pmax max

)p . Since the distribution function is Lorentz invariant, the lab-
frame distribution is obtained using the Lorentz transformation of

momentum ( ) ( )g m g m = - + -p p mv c p1dr
2

dr
2 2 2 , where

vdr and γdr are the CR drift velocity and associated Lorentz factor.
The power-law distribution produces a substantially smaller

growth rate than the ring distribution with a comparable CR
flux ncrvdr. As long as the CR density is sufficiently small
(ncr=ni), the real part of the dispersion relation is
approximately unaffected and one can reduce the problem of
finding the linear growth rate to the solution of the resonant
integral

∬( ) ( ( ) ( ) ( ))

[ ] ( ) ( ) ( )

p d w m

m m

G = - W -

´ -

k q
v

c
k p k v p

A f v p p dpd1 , 6

A
cr

3 2
2

2

PL
2 2

[ ] ( ) ( )⎜ ⎟⎛
⎝

⎞
⎠w

m
m

º
¶
¶

+ -
¶
¶

A f
f

p

kv p

p

f1
, 7

where the Dirac delta function encodes the resonance condition
(Kulsrud & Pearce 1969; Zweibel 2017). The quantity
(1−μ2)vp2 in the integrand is strictly nonnegative; therefore,
the sign of A[fPL](k) determines whether waves grow or damp
via resonant interactions with a given power-law distribution
function.
If we assume that CRs form an isotropic power-law

distribution in a frame moving (also called “drifting” or
“streaming”) with positive velocity vdr along the background
magnetic field, then only the right- and left-handed parallel-
propagating modes will have positive growth rates. If one
makes the additional simplifying assumptions that ω=Ω(p),
vAvdr=c, and   ¥pmax , then the unstable growth rate
can be derived as1

( )
( )

( )

( )

( )
( )

( )

( )

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪⎪

⎩
⎪⎪

p a
a

G =
-
-

W -

´
>

a-



k
n

n

v

v

p k p

p k p

1

2 4

3

2
1

, 8

p k

p

p k

p

cr
lin cr

i
0

dr

A

3

k min

k min

k

min

k

min

where ∣ ∣= Wp m kk i 0 , Ω0 is the nonrelativistic ion gyrofre-
quency, and » p pmin min . Under these assumptions the growth
rates for parallel-propagating left/right-circularly polarized
waves become degenerate, G = G = Gcr

PR
cr
PL

cr
lin, and the resulting

combined wave is linearly polarized with total growth rate
G2 cr
lin. It was noted by Kulsrud & Cesarsky (1971) that

Equation (8) should be multiplied by γdr and k should be
replaced by γdrk to obtain a better approximation when vdr∼c.
However, this correction to the growth rate does not capture the
dissolution of the left/right-handed degeneracy that occurs
when large drift velocities are considered, which we now
discuss.

Figure 1. Resonant pitch-angle cosine μres as a function of wavenumber k for a
given particle momentum p. The resonance condition (Equation (2)) splits into
four separate conditions depending on the propagation direction (parallel/
antiparallel) and polarization handedness (right/left) of the wave. We show the
resonance conditions for positively charged CRs with momentum p=20mic
(solid lines) and p=4mic (dashed lines), and the wavenumber k, presented in
units of Ω(p)/v(p), is scaled separately for both values of momentum. The
momentum p and pitch-angle cosine μ determine which types of waves a
particle may resonate with. For most configurations, a single particle may
simultaneously resonate with more than one type of wave and at more than one
wavenumber—typically a parallel-propagating wave and an antiparallel-
propagating wave of opposite polarization.

1 The factor of 1/2 arises because we consider the growth of right- and left-
handed modes separately, whereas typically the combined growth rate is
quoted in the literature.
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Numerical integration must be used to solve Equation (6)
under less stringent assumptions. In Figure 2 we show the
growth rate as a function of wavenumber k using Equations (6)
and (8), selecting parameters suitable for the PIC simulations of
this study. We use a large CR drift velocity to illustrate the
degree to which the full integral Equation (6) can diverge from
the approximate formula Equation (8). As the initial anisotropy
is increased, a greater number of CRs resonate with right-
handed waves (orange line) and fewer with left-handed waves
(green line). A larger ratio of right-hand resonant to left-hand
resonant particles enhances the growth rates of the right-handed
modes at the expense of the left-handed mode rates, while the
deformation of the CR distribution function shifts the fastest-
growing modes of the right- and left-handed polarizations to
smaller and larger wavenumbers, respectively. These effects
break the growth rate degeneracy between the right- and left-
handed modes, permitting the growth of circularly polarized
waves, rather than linearly polarized waves.

2.3. The Quasi-linear Theory (QLT) and The 90 Degree
Problem

The QLT (Jokipii 1966) predicts that the pitch-angle
diffusion coefficient m m¢ ¢D vanishes as m¢  0, where μ′ is
the particle pitch-angle cosine measured in the wave frame,
owing to the increasingly small amplitude of waves as  ¥k .
These resonance gaps are the basis of the so-called “90 degree
problem” that threatens to prevent CRs from reaching isotropy
(vdr≈vA). Theoretical efforts to alleviate the 90 degree
problem typically either seek to append nonresonant scattering
effects to the QLT or attempt to capture the essence of
nonlinear effects (i.e., the deviations of particles away from
their unperturbed gyromotions) in some way.

The adiabatic mirroring mechanism (Jones et al. 1978;
Achterberg 1981) is an example of a nonresonant effect. A
gradient in the total magnetic field produces a “mirror force” on
particles = - F M BM , where gº ^M mv B22 2 is the relati-
vistic magnetic moment of the particle. Particles become
trapped in the magnetic mirror if the wave-frame pitch-angle

cosine becomes smaller than

( )
⎛
⎝⎜

⎞
⎠⎟m

d¢ »
B

B

1

2
, 9M

M0

where (δB/B0)M is the peak amplitude of the transverse
fluctuation that forms the magnetic mirror (Felice & Kulsrud
2001). If resonant scattering can reduce the pitch-angle cosine
of a particle to m m¢ ¢ M , then said particle can reverse direction
with respect to the wave, assuming that the magnetic moment
M is approximately conserved. Such a process would allow
CRs to bypass m¢ ~ 0 (μ∼vph/v in the laboratory frame)
without the need for quasi-linear scattering, thereby solving the
90 degree problem.
If we assume that the mirroring fluctuation is sinusoidal (as

was done by Felice & Kulsrud 2001 to obtain Equation (9)),
then we can derive a timescale for the mirroring process. The
effective potential due to the mirror force FM causes quasi-
harmonic motion for trapped particles with oscillation
frequency

( )
⎛
⎝⎜

⎞
⎠⎟

g d
W ~

v̂ k B

B2
, 10M

M

M

2 2

0

2

where kM is the wavenumber of the mirroring fluctuation. We
take kM≈kmax because the interaction of the fastest-growing
unstable mode kmax with the randomly phased adjacent modes
will typically produce the largest fluctuations in the field

envelope, = + +B B B By z0
2 2 2 , and thus dominate the mirror

force FM .
Nonlinear theories attempt to modify the resonance function

away from the sharp delta function form taken by Equation (1).
Accounting for the drift of particles away from simple
gyromotion about the background magnetic field results in
resonance broadening (Dupree 1966; Achterberg 1981; Shalchi
2009). These effects become increasingly strong as the wave
amplitude δB becomes larger, allowing particles to interact with
a band of modes of finite width or, equivalently, allowing waves
to interact with a range of pitch-angle cosines. Extending the
influence of wave–particle interactions can facilitate diffusion
acrossm¢ = 0, since particles can essentially skip over the region
of the wave spectrum where the power vanishes.
Finally, although the aforementioned solutions are relevant,

the 90 degree problem can be ameliorated within QLT itself
by merely relaxing the magnetostatic approximation that is
typically employed (ω/k∼0). In particular, Schlickeiser
(1989) demonstrated that the resonance gaps associated with
the vanishing of mmD are replaced by nonzero values when both
parallel and antiparallel waves are present with adequate
power. This is apparent from Figure 1—if a broad spectrum of
all four propagation−polarization combinations are present,
then particles can access the entire range of −1�μ�1 by
quasi-linear pitch-angle scattering alone.

2.4. Saturation Amplitudes and Relaxation Timescales

The expression for the linear growth rate (Equation (6))
dictates that the magnetic field perturbations will stabilize
under the condition that the resonant integral over A[f]
vanishes. The excitation of waves is fueled by the momentum
extracted from the CR distribution as gradients in momentum

Figure 2. Linear growth rates of the gyroresonant instability for a power-law
CR distribution with large drift velocity. We compare the growth rate of
Equation (6) (orange and green) against the simplified growth rate of
Equation (8) (blue) for the highly anisotropic parameters of simulation Hi1
(see Table 3). For large CR anisotropy, growth of right-handed modes (Gcr

PR)
dominates over growth of left-handed modes (Gcr

PL). The fastest-growing
wavenumber for Gcr

lin is W vcr,min cr,min, where “min” refers to the lowest-energy
CRs in the distribution. We show the real part of the Alfvén dispersion relation
ω=kvA for comparison (red).
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and pitch angle are flattened, reducing A[f] to zero everywhere
along the path of the resonant integral. Saturation of a given
wave mode occurs locally in the Fourier k space—an unstable
wave will cease to grow when particles are scattered into local
isotropy around the associated resonant band. It follows that we
can distinguish between saturation of the linear growth phase
and the total saturation of instability. The former occurs when
the fastest-growing mode can no longer grow at the predicted
linear rate, while the latter corresponds to the total depletion of
free momentum in the CR distribution (vdr=vph).
The preceding discussion suggests that we can estimate the

amplitude of the fastest-growing mode at any point in the
lifetime of instability by equating the change in the CR
momentum density ( ( ))gD = -p m n v v tcr i cr cr dr,0 dr to the
change in the wave momentum density δB2/4πvph (neglecting
the contributions of initial seed waves):

( ) ( ( )) ( )
⎛
⎝⎜

⎞
⎠⎟

d
g»

-B t

B

n

n

v

v

v v t

v
, 11

0

2

cr
cr

i

ph

A

dr,0 dr

A

where γcr is a characteristic Lorentz factor of the CR (e.g., the
mean value along the resonant contour), vdr,0 is the initial CR
drift velocity, and vdr(t) is the drift velocity at time t. If the
linear phase is allowed to progress for a duration of several
inverse growth rates G-

cr
1, then the fastest-growing mode kmax

will dominate the power spectrum of waves and the resulting
dynamical evolution of the particles. Under such conditions,
Equation (11) will approximately describe the time dependence
of the fastest-growing mode amplitude if vdr(t) is known (or
vice versa). The nonlinearities of the coupled evolution
equations for the CR distribution function and wave spectrum
resist analytical time-dependent solutions. However, reasonable
estimates of the linear phase saturation amplitudes and the
associated drift velocities can be made if the predominant
physics of wave–particle interactions is known. The appro-
priate physical mechanisms differ between the CR distributions
considered here.

The essence of CR dynamics in the spectrum excited by a
ring distribution (Equation (4)) is captured by the interaction of
particles with a single transverse wave. The forces generated by
the periodic electromagnetic fields of a circularly polarized
wave form an effective potential well in which resonant
particles can become trapped, oscillating with frequency

( )d
W = W^

B

B
kv , 12trap

0

where v⊥ is the particle velocity in the direction perpendicular
to the background magnetic field (Sudan & Ott 1971). The
trapping frequency sets a limiting timescale over which the
instability can grow waves because after ~ W-t trap

1 particles will
isotropize with respect to the effective potential well. Thus, we
can derive the approximate saturation amplitude of the fastest-
growing mode by setting the trapping frequency equal to the
instability growth rate Ωtrap≈Γring. This procedure predicts
the linear phase saturated wave amplitude for trapping to be

( )
( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

»
-^B

B

n

n

v v v

v
, 13

0 trap

cr

i

2 3
dr,0 ph

ph
2

1 3

where we have used the growth rate formula for the ring
distribution derived by Shevchenko et al. (2002) and have
neglected constants of order unity.
Pitch-angle diffusion sets in only when resonant particles

are able to stochastically interact with many wave modes
of relevant amplitudes (Schreiner et al. 2017). The deflection
of particle motion caused by one mode has the effect of
untrapping it from the others. For this reason W-

trap
1 is no longer

the relevant saturation timescale for instabilities arising from
power-law CR distributions. Instead, the physical mechanism
that drives saturation is the transfer of CRs from one resonance
band into another via resonant scattering. For simplicity, we
adopt the resonant scattering rate of QLT, given by

( ) ( )
⎛
⎝⎜

⎞
⎠⎟n

p d
= Wk

B

B2
, 14k

QLT
0

2

where δBk is the amplitude of the fluctuations with wavenum-
ber k (Jokipii 1966; Kulsrud & Pearce 1969; Skilling 1975).
Making the assumption that d d»B Bkmax , we set the growth
rate (Equation (8) with relativistic correction) equal to the
appropriate frequency, n » GQLT cr

lin, to arrive at

( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

d
g g» -

B

B

n

n

v

v

1

8
1 , 15

0 diff
dr cr

cr

i

dr

A

assuming the power-law index α=4. Here we used the
relativistic correction to the growth rate suggested by Kulsrud
& Cesarsky (1971) because it is appropriate for the simulations
in this work (as demonstrated in Appendix B). In general, care
should be taken in selecting the appropriate form of the
growth rate.
The conservation of total momentum (Equation (11)) links

the growth of the wave amplitude to the decline of the CR drift
velocity. The CR drift velocity that corresponds to a wave
amplitude of (δB/B0)diff can be estimated by inserting
Equation (15) into Equation (11). If we define tsat

lin as the time
at which (δB/B0)=(δB/B0)diff, then the linear saturation
velocity of the power-law distribution instability, ºvdiff

( )v tdr sat
lin , reduces to

( ) ( )g g
»

+ -
v

v v 8

8
, 16diff

dr A dr,0 dr

where we have used vph=vA. An analogous velocity
( )ºv v ttrap dr sat

lin can be obtained for ring-distributed CRs. A
precise determination (to within the approximations made
herein) of the saturation time tsat

lin requires knowledge of the
initial wave amplitude. These seed waves can arise from, for
example, thermal fluctuations of the background plasma (Yoon
et al. 2014; Schlickeiser & Yoon 2015) or the turbulent
cascade. In general, a reasonable expectation is that tsat

lin is a few
times the inverse growth rate G-

cr
1.

Disruption of the CR pitch-angle distribution by the fastest-
growing mode precipitates the end of the linear growth phase.
Unstable growth will continue in other modes at slower rates as
the CR distribution function adjusts to the presence of resonant
waves. The remaining particle momentum will ultimately be
absorbed by the magnetic field, as parallel-propagating CRs
preferentially scatter toward the μ=−1 direction, resulting in
the total saturation of the instability across a spectrum of
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waves. An approximate upper bound on the transverse
magnetic field energy (δB/B0)tot corresponds to realizing
complete wave-frame isotropy of CRs, i.e., setting vdr=vA in
Equation (11).

We have stated that the relevant physics that give rise to the
evolution of the CR distribution are the resonant scattering
interaction at m m> + ¢v v MA , the nonresonant mirror interac-
tion at m m m- ¢ + ¢ v v v vM MA A , and then the resonant
scattering interaction again at m m< - ¢v v MA . If we assume a
power-law CR distribution with small initial anisotropy, then
the excited wave spectrum will consist of parallel-propagating
waves with nearly equal power in the right- and left-hand
circularly polarized components. In such a spectrum, the
timescale for the relaxation of the CR distribution and total
saturation of instability is set by the longer of the resonant
scattering and mirroring timescales, (~ mt t tmax , Msat

tot ). We
now estimate the resonant scattering timescale tμ and the
mirroring timescale tM.

The stochastic process of pitch-angle scattering suggests the
construction of a mean free time that describes the typical
timescale for CRs to resonantly scatter from some fiducial pitch
angle down to the mirroring region (Appendix C)

( ) ( )ò m
m

=
-

m
m

m

mm
t d

D

3

8

1
17
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1

where ( )m n= -mmD 1 22
QLT is the quasi-linear diffusion

coefficient for pitch-angle scattering, ( )m mº k p,0 res max cr is the
resonant pitch-angle cosine (Equation (2)) of the fastest-
growing mode kmax for a CR with typical momentum pcr, μM is
the pitch-angle cosine at which magnetic mirroring becomes
the dominant process (Equation (9) represented in the
laboratory frame), and the factor Cμ (Equation (42)) depends
on the shape of the wave spectrum. For the simulations
presented in this work, we have Cμ∼10.

The timescale for magnetic mirroring is simply p= W-tM M
1,

where ΩM is given by Equation (10). It is the duration over
which a trapped particle reverses its direction in the magnetic
mirror. Taking the ratio of tM and tμ, we have
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where we have included only the dominant term of Cμ

(Appendix C) and assumed that μ0vcr?vA and γcr=2 in the
second line. This ratio suggests that the CR distribution
relaxation process will be dominated by the resonant scattering
timescale unless the wave amplitude becomes sufficiently large
that the pitch angle required for mirroring becomes comparable
to the typical pitch angle of resonant particles, μM≈μ0.
Assuming that μ0=0.5 and vA=10−4c, the timescales
become equal around δB/B0≈0.2 for γcr=2, while larger

mirror amplitudes are required for CRs with greater energy
content (γcr>2).
If we now change focus to CR distributions with large

anisotropy, then the relaxation process is complicated further
by the lack of left-handed modes in the wave spectrum. Under
conditions of extreme anisotropy, mirroring alone is not
sufficient for providing efficient passage of CRs beyond the
μ∼vA/v resonance gap. Although the right-handed part of the
wave spectrum will be able to scatter CRs down to small μ and
mirroring in the gradient of the total magnetic field will bring
CRs down to m m» - ¢v v MA , there will be little, if any, power
in the left-handed waves needed to scatter CRs to μ∼−1. The
result is a flat CR distribution in the μ0 region of
momentum space, with a bulk drift velocity vdr≈0.5c.
Eventually the buildup of CRs at small μ should generate the
waves required to achieve total isotropy, but it is not clear
a priori what the associated timescale would be.

3. Numerical Methods

We utilize the relativistic electromagnetic PIC code Tristan-MP
(Spitkovsky 2005). This code has been extensively used to
simulate particle acceleration in collisionless shocks (Spitkovsky
2008; Sironi & Spitkovsky 2009a, 2009b; Park et al. 2015), the
CR current-driven instabilities in SNRs (Riquelme & Spitkovsky
2009, 2010), the generation of pulsar magnetospheres (Philippov
et al. 2015), and more. The PIC method allows us to resolve the
plasma physics down to electron-kinetic scales.
We perform one-dimensional (1D3V) simulations with

periodic boundary conditions to explore the linear and
nonlinear phases of the CR streaming instability in the initial
rest frame of the background plasma. The plasma consists of
equal-temperature Maxwellian-distributed ions and electrons
with reduced mass ratio mi/me=100 and ion thermal velocity

º = -v k T m c10th,i B i
2 . The electric and magnetic fields are

initialized with zero amplitude with the exception of a uniform
background magnetic field ˆ=B B x0 0 , such that the Alfvén
speed is vA=0.1c. The speed of light c is set to 0.45 cells per
time step, and the electron skin depth w =-c 10pe

1 cells, where
ωpe is the electron plasma frequency.
Reduction of the ion-to-electron mass ratio affects both the

timescales and the length scales of the problem at hand. Each of
the relevant timescales (i.e., G-

cr
1, n-

QLT
1 , tμ, and tM) and the

length scale -kmax
1 grow in inverse proportion to the ion

gyrofrequency. Therefore, a reduced ion mass allows for
shorter computation times and smaller simulation domains
when me is fixed. In systems with order-unity mass ratios, CRs
of positive and negative charge will grow waves at comparable
wavelengths. This would potentially have a nontrivial effect on
the evolution of the system, since individual CRs would scatter
on waves generated by both species. Our order-of-magnitude
reduction of the mass ratio (mi/me=100) grants us an order-
of-magnitude reduction of the computation time of our
simulations without qualitatively impacting the CR dynamics,
since we maintain a sufficiently large separation between
electron and ion length scales.
CRs are initialized depending on the chosen distribution

function. In the case of the ring distribution, CRs are assigned
momenta according to Equation (4). An additional population
of CR electrons (CRe) with zero perpendicular momentum is
created to neutralize the charge and current of the CR ions. In
the case of the power-law distribution, we initialize CR ions
and electrons with a p−4 power law in the background plasma
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rest frame with Lorentz factors in the range γ=[2,10]. We
then Lorentz boost each individual CR and CRe by γdr in
the x̂-direction. Note that this procedure does not maintain the
Lorentz invariance of the distribution function, i.e., g ¹dr

( )- -v c1 dr
2 2 1 2, and thus does not produce an accurate

representation of Equation (5) in general (Melzani et al.
2013; Zenitani 2015). The linear growth rates are modified,
owing to a factor of γ″/γ that is appended to the rest-frame CR
distribution function fPL (Equation (5)) by the momentum
transformation of individual particles. The anisotropy of our
power-law distributions is reduced compared to Lorentz-
invariant distributions of the same parameters, and it follows
that the right/left-handed unstable modes grow at slower/faster
rates than would be expected (see Appendix B). This effect
does not qualitatively change the results of the simulations
presented here, and the modification to the growth rate is
accounted for in all subsequent calculations.

The number densities of CR ions and electrons are equal to their
background plasma counterparts, ncr=ncre=ni=ne=n/4,
where n is the total number of particles per cell in the simulation.
In order to achieve a low effective value of the relative density
(ncr/ni)eff, we reduce the mass mcr of CR ions while holding the
charge-to-mass ratio qcr/mcr fixed so that (ncr/ni)eff=mcr/mi (and
similarly for CR electrons). This procedure preserves the
electromagnetic dynamics of CRs and the evolution of instability
while enhancing the statistical quality of the CR distribution.

In Table 1 we list the CR distribution, computational domain
size, and particle density n chosen for each simulation. The
simulation size is chosen to capture roughly 10 wavelengths of
the fastest-growing mode at minimum. We choose a variety of
particle densities with the goal of minimizing noise while
maintaining feasible limits on computational expenses. In
Table 2 we show the CR properties for the gyrotropic ring
distribution simulations. These five simulations are numbered
by increasing CR density from Gy1 to Gy5, with the other
parameters fixed. Table 3 summarizes the properties of the
power-law-distributed CR simulations. The prefixes Lo, Med,
and Hi signify the relative overall CR anisotropy in relation to
each other, from low anisotropy to high anisotropy, respec-
tively. Here “anisotropy” is controlled by the parameter γdr
(and the corresponding vdr), with larger γdr corresponding to
greater numbers of CRs with μ>vA/v (we discuss the notion
of anisotropy further in Section 5). Finally, the Hi1-3
simulations are numbered by increasing CR density (increasing
growth rate), while the CR densities in simulations Lo and Med

are chosen such that their maximal growth rates roughly match
that of Hi3.

4. Results

We observe that the evolution of the transverse magnetic
energy δB2/8π generally progresses through four (semi)distinct
phases (as embodied by power-law simulation Hi3 in Figure 3):
(1) initial equilibration phase, (2) linear instability phase,
(3) nonlinear instability phase, and (4) total saturation phase.
The early stage of the simulation is characterized by a period of
thermalization as electromagnetic fluctuations equilibrate with
particles, setting the “noise floor” of the electromagnetic
spectrum. The initial production of fluctuations is the physical
result of thermal currents produced by the random initialization
of the simulated particles (Yoon et al. 2014; Schlickeiser &
Yoon 2015). The amplitude of the early-time noise floor is
determined by the input parameters (e.g., particles per Debye
volume). On longer timescales, the particle and electromagnetic
energies grow from numerical heating because of interpolation
effects of the PIC simulation grid (Birdsall & Langdon 1991;
Melzani et al. 2013). The input parameters for our simulations
are chosen such that unstable waves reach significant
amplitudes compared to the noise floor.
The thermal perturbations serve as seed waves for the

subsequent linear phase of streaming instability. Exponential
growth becomes evident at around ~ W-t 500 0

1 in Figure 3.
After a duration of a few G-

cr
1, the fastest-growing mode

saturates ( ~ W-t 1000 0
1 in Figure 3). The fastest-growing

mode reaches an amplitude such that the CR distribution is
significantly disrupted from its initial state. CRs are scattered
into resonance with other modes, particularly those with
k>kmax, allowing growth to continue outside of the kmax

band at slower rates compared to Γcr. Ultimately, these slower-
growing modes cease to extract bulk momentum from the CRs,
leading to the total saturation of the streaming instability
( ~ W-t 5000 0

1 in Figure 3).
In the following subsections we study the evolution of the

simulations beyond the initial equilibration phase by examining
the growth rates of the transverse magnetic energy in the linear
instability phase, following the change in the wave spectra and
CR distribution functions into the nonlinear instability phase,
and looking into the final state of the system at total saturation.
We highlight the differing behaviors of systems with ring and
power-law CRs.

4.1. Growth Rates

If the linear growth phase is able to persist for more than a
few G-

cr
1, then the fastest-growing mode will dominate the wave

power spectrum. Simple linear regression on the logarithm of
the total transverse magnetic field energy can then be used to
measure the growth rate of the fastest-growing mode (e.g., the
dashed line in Figure 3). However, this method can be
inaccurate because nearby modes with slower growth rates are
mixed into the regression. A more direct measurement comes
from the spectral representation of the transverse magnetic
energy in each mode.
In Table 2 we compare the spectrally measured growth rates

Γmeas for ring-distributed CRs against the predicted maximal
growth rates Gcr

PR, where the superscript PR refers to the parallel
right-handed branch (as opposed to the antiparallel left-handed
branch; Appendix B). These measured values come from the

Table 1
Simulation-specific Properties of the Domain and Plasma

Simulation CR Distribution Lx (cell) n (cell−1)

Gy1 Gyrotropic ring 196036 1000
Gy2 Gyrotropic ring 98018 500
Gy3 Gyrotropic ring 98018 50
Gy4 Gyrotropic ring 98018 50
Gy5 Gyrotropic ring 98018 50

Lo Power law 1450000 200

Med Power law 1450000 200

Hi1 Power law 328340 250
Hi2 Power law 1450000 100
Hi3 Power law 1450000 100
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temporal profiles of the Fourier-transformed transverse magn-
etic field. The theoretical maximal growth rates are drawn from
the numerical solution to the ring distribution dispersion
relation (Equation (32)). All growth rates observed here are in
accordance with the predicted values.

In Table 3 we compare the spectrally measured maximal
growth rates Γmeas against the predicted fastest-growing modes
Γcr (equation (6)) for the simulations with power-law-
distributed CRs. The high-anisotropy simulations (Hi1-3) and
intermediate anisotropy simulation Med are dominated by
right-handed modes, while the low-anisotropy simulation Lo
has significant power in both left- and right-handed modes. As
a result, the overall growth rates for the Hi1-3 runs follow

G = Gcr cr
PR, while the expected growth rate for the Med and Lo

runs is G = G + Gcr cr
PR

cr
PL, where the superscripts PR and PL

refer to parallel-propagating right- and left-hand polarized
modes, respectively. Here the results are generally within a
factor of a few of the predicted rates but are less satisfactory
compared to the ring distribution simulations. The relatively
slower growth rates make the power-law simulations more
susceptible to the deficiencies of PIC, such as numerical
heating. A larger number of simulated particles per cell may
improve the quality of the growth rate measurements by

Table 2
CR Parameters and Results for the Ring Distribution Simulations

Simulation ( )n ncr i eff vdr [vA] γ0 Γmeas [Ω0] Gcr
PR [Ω0] kmeas [ ]w -cpi

1 kmax
PR [ ]w -cpi

1

Gy1 10−4 5 1.5 4.2×10−2 4.2×10−2 −1.8×10−1 −1.7×10−1

Gy2 10−3 5 1.5 9.5×10−2 9.5×10−2 −1.8×10−1 −1.7×10−1

Gy3 10−2 5 1.5 2.1×10−1 2.1×10−1 −2.0×10−1 −2.0×10−1

Gy4 2×10−2 5 1.5 2.6×10−1 2.6×10−1 −2.5×10−1 −2.2×10−1

Gy5 5×10−2 5 1.5 3.6×10−1 3.6×10−1 −2.5×10−1 −2.8×10−1

Table 3
CR Parameters and Results for the Power-law Distribution Simulations

Simulation (ncr/ni)eff vdr [vA] γdr Γmeas [Ω0] Γcr [Ω0] kmeas [ωpic
−1] kmax

PR [ωpic
−1]

Lo 2×10−2 1.4 1.021 9.6×10−3 4.8×10−3 −5.3×10−2 −5.2×10−2

Med 7×10−3 2.9 1.091 8.7×10−3 5.8×10−3 −4.3×10−2 −4.1×10−2

Hi1 2×10−4 7.9 2.25 1.5×10−3 6.8×10−4 −1.4×10−2 −1.4×10−2

Hi2 7×10−4 7.9 2.25 3.8×10−3 2.4×10−3 −1.4×10−2 −1.4×10−2

Hi3 2×10−3 7.9 2.25 8.2×10−3 6.8×10−3 −1.4×10−2 −1.4×10−2

Figure 3. Phases of instability, as demonstrated by the growth of the transverse
magnetic field energy in high-density, high-anisotropy power-law simulation
Hi3. After an initial phase of equilibration, exponential growth begins
( ~ W-t 500 0

1), demarcating the onset of the linear phase of instability. The
dotted line shows the exponential development of waves with the growth rate
G = ´ W-7.55 10 3

0 (measured on the total transverse field evolution). By
~ W-t 1000 0

1 the system transitions to the nonlinear phase of instability as the
fastest-growing mode saturates. Growth continues at slower rates in other wave
bands, but ultimately these modes cease to grow and the total saturation of
instability is obtained ( ~ W-t 5000 0

1).
Figure 4. Propagation/polarization-decomposed wave spectra for the low CR
density simulation Gy1. Near the saturation of the linear phase (top panel,
= W-t 180 0

1), the peaks roughly correspond to the predicted unstable
wavenumbers kres

PR AL (dashed lines). The spectrum extends to shorter
wavelengths in the later nonlinear stage of instability (bottom panel, =t

W-684 0
1).
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increasing the signal-to-noise ratio for a fixed unstable
growth rate.

4.2. Wave Spectra

For ion rings with super-Alfvénic drift velocities, the parallel
right-handed and antiparallel left-handed waves (both negative
helicity) have the greatest growth rates in the wavenumber
range of interest (Appendix B). Rearranging Equation (1) and
inserting the ring distribution input parameters p0 and μ0, we
have

( )
( )

( )
( )m

m
=

-W
-

k p
p

v p v
, . 21res 0 0

0

0 0 ph

For the parameters of simulation Gy1, this results in
w= - -k c0.17res

PR
pi

1 for vph>0 and w= - -k c0.11res
AL

pi
1 for

vph<0, where the superscripts PR and AL refer to parallel-
propagating right-handed and antiparallel-propagating left-
handed modes, respectively, and vph is determined by the
appropriate dispersion relation. The frequencies and wavenum-
bers corresponding to parallel-propagating left-handed and
antiparallel-propagating right-handed waves do not satisfy the
gyroresonance condition under the constraint of super-Alfvénic
drift velocity.

For this application it is useful to decompose the spectrum
into parallel/antiparallel-propagating right/left-hand polarized
components. Following our conventions in Appendix A, we
Fourier-transform the quantities ( ) ( )+ +v iv v B iB By z y zA 0,
where the upper sign gives parallel left-handed modes (k>0)
and parallel right-handed modes (k<0), and the lower sign
gives antiparallel right-handed modes (k>0) and antiparallel
left-handed modes (k<0). We show the spectra of the low CR
density simulation Gy1 decomposed in this way in Figure 4.
The strongest wave growth in the linear phase coincides with
the predicted wavenumbers, =k kres

PR
max
PR and =k kres

AL
max
AL . In

Table 2, we record the observed largest-amplitude mode in the
linear phase kmeas of the simulations with ring-distributed CRs.
These measurements are in good agreement with the predicted
values, with some small discrepancies owing to the noisy
amplitudes of seed waves and the shallow decline of the growth
rates around kmax

PR when the CR density becomes large.
While a cold CR distribution (e.g., the ring distribution)

excites a relatively narrow spectrum of waves, a hotter
distribution such as an extended power law will produce a
broader spectrum by virtue of having a range of CR momenta
and pitch angles. In the top panel of Figure 5 we show the wave
amplitude spectrum of power-law distribution simulation Hi3
at three epochs. The spectrum grows most strongly at the
predicted wavenumber w= - -k c0.014max

PR
pi

1 throughout the
linear instability phase. The surrounding modes continue to
grow after the saturation of the kmax

PR mode, resulting in an
increasingly shallow spectrum with a rapid drop at small k
owing to the high momentum cutoff in the CR distribution
function. The spectrum scales roughly in accordance with
Equation (15), ( ) ∣ ∣d µ G µ -B k kk cr

1 2 1 2, at very late times near
the total saturation of instability.

The middle panel of Figure 5 shows the helicity angle χ,
where χ=±45° corresponds to positive/negative-helicity
waves. The angle χ is typically defined in terms of the Stokes
parameters; we obtain it as a function of the wavenumber k
using the y and z components of the Fourier-transformed

magnetic fields

( ˆ ˆ )
∣ ˆ ∣ ∣ ˆ ∣

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟c º

+

B B

B B

1

2
arcsin

2 Im
,

y z

y z
2 2

*

where the circumflex indicates Fourier transformation and the
asterisk indicates complex conjugation. We have smoothed
each k bin with a seven-bin moving-average filter. The large

Figure 5.Wave amplitude spectra (top), helicity spectra (middle), and temporal
evolution of the rms transverse field (bottom) in the high-density, high-
anisotropy power-law simulation Hi3. Three different epochs are shown, as
indicated by vertical dashed lines in the bottom panel. Near the end of the linear
growth phase ( = W-t 900 0

1, green), the spectrum peaks at kmax
PR with an

exponential falloff on either side. The linear phase spectrum is predominantly
right-hand polarized, with left-hand polarization coming in weakly around kmax

PL

and more substantially around the wavenumber at which left- and right-handed
growth rates are expected to become equal, keq. In the early nonlinear stage
( = W-t 1800 0

1, orange) the spectrum flattens out as slower-growing modes
begin to saturate, and the faster-growing right-handed modes continue to drown
out the left-handed modes near kmax

PL . In the late nonlinear stage near total
saturation ( = W-t 5400 0

1, blue), the spectrum flattens further to a ∼k−1/2

scaling. Left-handed modes become significant throughout the majority of the
spectrum as CRs are scattered into μ<0 resonances, resulting in elliptically
polarized waves that isotropize the CR distribution.

Figure 6. Propagation/polarization-decomposed wave spectra for low-anisotropy
simulation Lo in the linear phase ( = W-t 540 0

1). The relatively small initial drift
velocity (vdr=1.4vA) results in comparable amplitudes of parallel-propagating
left- and right-handed modes. These modes combine into a predominantly linearly
polarized total spectrum.
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anisotropy of the CR distribution results in right-handed
(negative-helicity) waves that emerge around kmax

PR . The fastest-
growing left-handed mode kmax

PL is dominated by the growth of
the right-handed mode at the same wavenumber. At larger values
of k, the right-handed growth rates decrease and become
subdominant compared to the left-handed growth rates, resulting
in a reversal of wave helicity around keq≈0.5ωpic

−1. In the post-
linear phases of instability, additional power is injected in the left-
handed modes by the CRs as they scatter toward μ∼−1.
Larger proportions of CRs resonate with the parallel-

propagating left-handed waves as the initial drift velocity of
power-law-distributed CRs is reduced. When vdrvA, the
growth rates of the parallel-propagating left- and right-handed
modes become degenerate, and Equation (8) becomes a good
approximation for both. Left- and right-handed modes super-
imposed on one another combine to produce linear polarization if
the component amplitudes are equal. In Figure 6 we show the
propagation/polarization-decomposed wave spectrum in the
linear instability phase of simulation Lo. The marginally super-
Alfvénic drift velocity of this simulation, vdr=1.4vA, allows
CRs to excite parallel-propagating left- and right-handed modes
in nearly equal measure. The combined spectrum is approxi-
mately linearly polarized around the largest-amplitude modes.

4.3. Particle Distributions

The spread of the CR distribution function offers a
complementary view of the phases of instability. Figure 7
depicts snapshots of the CR and background ion momentum
phase space (px(x), top row; py(x), middle row) and transverse
magnetic field amplitude (bottom row) at various stages of the
high CR density simulation Gy4. Initially CRs are scattered by
small angles as they resonate with small-amplitude waves
( = W-t 36 0

1, left column), and gyroresonant structure can be
observed in the transverse motion on the scale of p k2 max

PR .
This structure becomes increasingly apparent as waves saturate
at large amplitude ( = W-t 72 0

1, middle column) and the
parallel motion of CRs is substantially disrupted. Eventually

the scattering on large-amplitude waves causes the CR
distribution to approach isotropy ( = W-t 108 0

1, right column),
and the waves decay to somewhat smaller amplitudes.
The wave spectra produced by the ring distribution are quasi-

monochromatic—a small number of narrow spectral peaks
dominate the dynamics of particles in these simulations.
Figure 8 shows the change over time of the CR distribution
functions in the px−p⊥ plane for the simulations Gy2 (lower CR
density, left column) and Gy4 (higher CR density, right column),
along with the associated time dependence of the rms transverse
magnetic field amplitudes. The primary difference between the
displayed simulations lies in the amplitudes to which the
fluctuations grow. The CR density of Gy4 is a factor of 20 larger
than that of Gy2, and the peak wave amplitudes are correspond-
ingly larger in the former. This discrepancy manifests itself in the
motions of CRs. The distribution functions are elongated roughly
along the trajectories predicted by Equation (3) for a parallel-
propagating right-handed wave kmax

PR (solid semicircular lines) as
the simulations progress through the phases of instability.
Diffusion in total momentum p occurs owing to the deviation
of the wave spectra from pure monochromaticity caused by the
antiparallel left-handed mode kmax

AL (Miller et al. 1991).
Other than the difference in peak wave amplitudes, the most

notable divergence between the evolution of Gy2 and Gy4 is
that the CRs of the former are not fully isotropized, and the
unstable growth stalls prior to total saturation as we have
defined it. The wave modes generated in the linear and
nonlinear instability phases of Gy2 scatter the CRs within their
respective resonant bands, allowing CRs to cascade to smaller
μ. The CRs approach the μ=vph/v (vertical black dashed
lines, top row of Figure 8) but are unable to efficiently cross it.
CRs instead remain trapped by the effective potential wells of
the largest-amplitude waves. The CRs of simulation Gy4
(Figure 8, right column) are not constrained to the μvph/v
region. The large-amplitude waves generated in the linear
instability phase are able to impart forces of sufficient
magnitude on CRs such that they are able to cross
μ=vph/v. Positive-helicity waves that facilitate the isotropiza-
tion process are subsequently generated in the nonlinear phase

Figure 7. Instability development in simulation Gy4. The CR and background ion momentum densities px (top row) and py (middle row) are shown along with the
transverse magnetic field components δBy, z (bottom row) at early ( = W-t 36 0

1, left column), intermediate ( = W-t 72 0
1, middle column), and late ( = W-t 108 0

1, right
column) stages of development. During the linear growth phase, a resonant mode quickly emerges from thermal noise (left column). The CR distribution is not
substantially disturbed until the wave amplitude reaches δB/B0.1, after which large angle scatters occur, rapidly reducing the average parallel CR momentum and
establishing visible oscillations in the transverse momenta (middle column). Disruption of the CR distribution brings linear growth to a halt, while CRs continue to
excite the modes that ultimately lead to isotropy (right column).
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of instability. Ultimately, CRs populate the entire length of the
semicircular momentum space scattering trajectory.

The time-dependent pitch-angle cosine distributions f (μ) of
power-law simulations for high CR density (Hi3, top panel)
and low CR density (Hi1, bottom panel) are displayed in
Figure 9. In the initial and linear phases of instability the CRs
remain unperturbed. At t∼1200Ω0

−1 for Hi3 (top) and
~ W-t 5000 0

1 for Hi1 (bottom), waves of substantial amplitude
are generated and the CRs are moved out of their initial
resonant bands, transitioning from the linear to the nonlinear
phase of instability. The behaviors of these simulations
subsequently diverge.

The higher CR density of simulation Hi3 enhances the
isotropization process in two ways. The first is that the large-
amplitude waves produced in the linear phase of Hi3 allow CRs
to efficiently scatter beyond μ=vph/v. The spatial fluctuations
of the transverse magnetic field reach peak amplitudes of up to
δB/B0∼0.5, and the magnetic mirroring mechanism has a
correspondingly broad reach m m» ¢ + ~v v 0.45M M A , which
allows CRs to easily move deep into the μ<0 region. The
second way is that the large influx of CRs into the μ<0 region
rapidly excites the parallel-propagating left-handed modes that
are required to continue scattering toward μ∼−1. The
combined effect of these behaviors leads to the rapid
isotropization of CRs with respect to the parallel-propagating
Alfvén waves in the nonlinear phase of instability. By
~ W-t 4000 0

1 the system approaches total saturation of
instability with a nearly constant CR pitch-angle distribu-
tion f (μ).

In the less energetic wave spectrum of Hi1, CRs are unable
to efficiently cross the pitch-angle gap into negative μ. A
buildup of CRs forms around μ∼0 as they cascade down the
predominantly parallel-propagating right-handed wave spec-
trum. There they are met with the parallel-propagating left-
handed modes of the spectral noise floor, with amplitudes
roughly three orders of magnitude smaller than kmax

(d ~B B0.01k 0max ). The density associated with these μ∼0

CRs does not translate to rapid growth in the left-handed
modes, and the instability stalls for some protracted (but likely
finite) period of time beyond the duration of the simulation.
Figure 9 also features the pitch-angle trajectories μ(t) of

example CRs (blue and orange lines), allowing us to examine
the scattering behaviors of individual particles in regions with
and without power in the corresponding resonant waves. For
both simulations shown, the CRs experience only small-angle
deflections prior to the nonlinear phase of instability, while
violent scattering events take place following the transition to
the nonlinear phase. In the later stages of instability, CRs are

Figure 8. Resonant scattering surfaces (top row) and the associated rms transverse magnetic field amplitudes (bottom row) in simulations Gy2 (lower CR density; left
column) and Gy4 (higher CR density; right column). Vertical dashed lines in the bottom row correspond in color to the times at which the CR momenta are displayed
in the top row. Solid and dotted semicircles correspond to constant energy surfaces in the wave and laboratory frames, respectively. The vertical black dashed lines in
the top row denote the location of μ=vph/v for the initial value of the CR velocity v. The large-amplitude waves of Gy4 easily isotropize CRs, while those of Gy2
struggle to scatter CRs into μ<vph/v.

Figure 9. Evolution of marginal CR distributions f (μ) over time in simulations
Hi3 (top) and Hi1 (bottom). The large density of CRs in simulation Hi3 rapidly
produces large-amplitude right-handed modes that saturate linear growth
( ~ W-t 1200 0

1) and, subsequently, left-handed modes that lead to CR isotropy
( > W-t 2000 0

1). In the lower CR density simulation Hi1, a buildup of CRs
forms in the μ∼0 region. The right-handed modes generated by linear growth
efficiently scatter CRs, but the small-amplitude left-handed waves are unable to
continue scattering them into negative μ on the timescales of the simulation.
The pitch-angle cosines μ(t) are shown for two example CRs in each panel.
These trajectories demonstrate the strong scattering of CRs within the range
encompassed by moderate- to large-amplitude resonant modes.
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free to stochastically explore the entirety of the μ-space regions
corresponding to resonance with the dominant wave modes.
For simulation Hi3, the region available to CRs extends to the
full range of μ as positive-helicity waves are generated in the
nonlinear phase of instability that accommodate resonant
interactions at μ∼−1 (see Figure 5). The majority of CRs
display comparable behavior, i.e., the chosen CR trajectories
are not special in this respect.

As may be expected from the preceding discussion, the
region available to the majority of CRs via resonant scattering
in simulation Hi1 (low CR density) is restricted to μ0.1.
However, a nonzero fraction of CRs are ostensibly able to
rotate from μ∼0.2 to μ∼0 by the mirroring mechanism,
including the particle represented by the blue line in the bottom
panel of Figure 9. This particle is again displayed in Figure 10,
where we show its pitch-angle cosine μ(t) (top) and magnetic
moment M(t) (middle), as well as the transverse magnetic
field δB(t) that it experiences as it travels. In the period from
t∼5000 to ~ W-9500 0

1 the CR undergoes severe scattering as
it resonates with waves of amplitude up to δB/B0∼0.1, where
the magnetic moment M fluctuates by up to hundreds of
percent. Around ~ W-t 10,500 0

1, it undergoes a smooth
transition from μ∼0.2 to μ∼0.05 as it reverses direction
relative to a δB/B0∼0.1 fluctuation (as indicated by the
symmetry of the bottom right panel). During this mirroring
event, the magnetic moment M increases by only a few percent,
which can be accounted for by the secular growth of M that
occurs in the final quarter of the simulation. The duration of
this interaction is ~ ´ W-2 102 0

1, in good agreement with the
predicted value tM (Section 2.4). Again, the lack of power in

left-handed waves prevents the particle from continuing into
negative μ. Instead, it undergoes another mirror reversal before
the end of the simulation, apparently trapped between peaks
in δB.

4.4. Drift Velocities and Saturation

In Section 2.4 we discussed the saturation of the linear
growth phase via the diffusive depletion of free momentum
carried by CRs and, alternatively, by the trapping of particles in
the effective potential well of a resonant wave. Additionally,
progress toward total saturation of instability can be measured
via momentum conservation arguments. However, the momen-
tum balance procedure depends on the CR drift velocity as a
function of time, which is not known a priori. In the quasi-
monochromatic spectra of the simulations with ring CR
distributions, particle dynamics in the saturation stage are
dominated by the largest-amplitude mode. Thus, we expect the
condition for saturation due to particle trapping (Equation (13))
to be of particular relevance to the ring distribution.
In the top panel of Figure 11 we show the growth of the rms

transverse magnetic field amplitudes for the ring distribution
runs Gy1–Gy5. In all cases, saturation is driven by the resonant
trapping mechanism. Oscillations in the wave amplitudes are
seen to occur at the end of the exponential growth phase. The
wave amplitudes overshoot their equilibrium levels, resulting in
inverted CR gradients and subsequent reabsorption of wave
energy by the trapped particles. These oscillations occur on
the trapping timescale ∼2π/Ωtr, where Ωtr is defined in
Equation (12).

Figure 10. Temporal dependence of the pitch-angle cosine μ (top), magnetic momentM (middle), and transverse magnetic field (bottom) for a particular CR in the low
CR density simulation Hi1. The left column shows the trajectory of the particle over the entire simulation. Only small-angle scatterings occur until ~ W-t 5000 0

1, and
the particle motion is relatively quiescent. Scattering becomes more severe as the instability progresses to wave amplitudes δB0.01, producing large jumps in μ and
M. At ~ W-t 10,100 0

1 the CR reaches μ≈0.18, allowing it to undergo a mirror interaction with the δB≈0.1 peak that it subsequently encounters. The right column
shows an expanded view of the mirror process (indicated by inset black boxes in the left column). The magnetic moment increases by ∼5% as the CR reverses its
direction of propagation with respect to parallel-traveling Alfvén waves. This particle is unable to continue into the negative μ half-plane and remains trapped within
the confines of two adjacent δB peaks for the remainder of the simulation.
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In Figure 12 we record the linear phase saturation amplitudes
(“O” symbols) and compare them against the (normalized)
scaling relation presented in Section 2.4 (Equation (13), blue
dashed line). Only in the simulations with the densest CR
distributions (ncr0.02ni) does Equation (13) begin to fail to
predict the scaling of the saturated wave amplitude, as
evidenced by the measurement of Gy5 falling below the blue
dashed line. The derivation of Equation (13) utilized the
approximation of Shevchenko et al. (2002) for the growth rate
of the fastest-growing mode. A detailed numerical solution to
the dispersion relation (Appendix B) shows that, in the high CR
density regime, the fastest-growing mode shifts away from the
gyroresonance prediction of kres

PR. The shift of the wavenumber
causes the trapping frequency to increase, thereby reducing the
saturation magnetic field amplitude—the formula for the
approximate growth rate does not include this effect.
Figure 12 also includes predictions for the saturation amplitude
by comparing numerically derived growth rates (Equation (32))
to the trapping frequency (orange dashed line). The latter
predictions are seemingly able to capture the high CR density
reduction away from Equation (13) in the saturated amplitude.
Note that there is some ambiguity in the measurement of the
saturation amplitude.

The phases of instability are again reflected in the change in
bulk drift velocity of CRs associated with the growth of
transverse waves (bottom panel of Figure 11). A period of
quiescence occurs in the initially noisy background fields, with
duration dependent on the growth rate of instability. A sharp
decline in the drift velocity indicates the cessation of the linear
growth phase. The transverse magnetic fields reach an initial
peak in coincidence with the abrupt disruption of the CR
distribution and simultaneous decrease in the growth rates. As

discussed above, oscillations occur around this peak at the
trapping frequency (Equation (12)).
In the nonlinear stages of instability the behavior of CR drift

velocity varies—the low CR density simulations are not able to
efficiently reach isotropy. The ability of the unstable system
to isotropize the CR distribution depends on its propensity to
generate an appropriate spectrum of waves. The effective
potential of a resonant wave has an associated velocity width
that trapped particles oscillate around, given by
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where primed quantities refer to quantities in the wave
reference frame (Sudan & Ott 1971). Dividing through by v′
gives a range of pitch angles Δμ′ in which a trapped particle
can oscillate about the initial pitch-angle cosine m¢0. Resonant
trapping effects in monochromatic wave packets are unable to
isotropize the CR distribution unless the amplitude is
exceptionally large (δB/B0∼1), so the generation of addi-
tional waves is generally required to progress toward total
saturation. Unstable systems that produce large-amplitude
waves such that the trapping width ΔvP allows CRs to cross
μ≈vph/v are advantaged because they can quickly gain access
to the positive-helicity modes required to obtain isotropy.
The simulations that are dominated by resonant trapping

retain super-Alfvénic drifts indefinitely (Gy1 and Gy2;
Figure 11, bottom panel). In contrast, the CR drift velocity is
reduced to the local Alfvén speed for the unstable systems that
are able to isotropize the CRs with respect to the excited waves
(Gy3–Gy5; Figure 11, bottom panel). While the effect of

Figure 11. The rms transverse magnetic field amplitude δBrms(top) and CR
bulk drift velocity vdr (bottom) over time for ring-distributed CRs. Differences
in the initial fluctuation amplitudes arise from the variation in the number of
simulated particles per cell (Table 1). The high-density simulations Gy4 and
Gy5 quickly form large-amplitude waves that reduce the bulk drift velocity to
∼vA. The low CR density simulations Gy1, Gy2, and Gy3 enter a state of
quasi-stability prior to total saturation, as resonant trapping prevents CRs from
scattering to smaller μ.

Figure 12. Linear phase saturation amplitudes of ring distribution simulations.
Measurements from the simulations are denoted by “O” symbols. For
comparison, we show two theoretical predictions, both of which derive from
the estimate W = ´ G1.95trap cr

PR, where the factor 1.95 was chosen to give
rough alignment with the simulation data. The blue dashed line corresponds to
the approximate growth rate presented in Shevchenko et al. (2002), with the
saturation amplitude proportional to ( )n ncr i

2 3 (Equation (13)). The orange
dashed line corresponds to a numerical computation of the maximal growth rate
using the full dispersion relation (Equation (32)). Note that these measurements
are no more accurate than about the 10% level, since the determination of the
saturation amplitude is not well defined.
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linear-amplitude Alfvén modes (δB2∼0) on the background
medium is negligible, the fields of nonlinear-amplitude modes
can drive nontrivial drifts of the background plasma along the
axis of wave propagation (Weidl et al. 2019b). The latter effect
can be clearly observed in simulation Gy5 in the bottom panel
of Figure 11—the CR drift velocity ultimately reduces to vA +
vi, where vA is the (fixed) Alfvén speed given in the laboratory
frame and vi is the drift imparted to the ions of the background
plasma.

We have seen previously that the range of particle momenta
and pitch angles of the power-law distribution produces a
broad spectrum of negative-helicity waves and, if the initial
anisotropy is sufficiently small, a similarly broad positive-
helicity component as well. These features are the basis for the
qualitative divergence between the behaviors of the power-law-
and ring-distributed CR systems. In Figure 13 we show the rms
transverse magnetic field amplitude (top), the bulk CR drift
velocity (middle), and the bulk velocity of the background ions
(bottom) over time for the power-law simulations. Exponential
growth of the fastest-growing mode transitions into an
extended nonlinear instability phase where the initial distribu-
tion has been disrupted but substantial unstable growth
continues on longer timescales.

What we have called the “nonlinear phase of instability,” as
embodied by the evolution of the transverse magnetic fields,
consists of two sequential behaviors of the initially anisotropic
CR distributions. First, following the cessation of exponential
growth at the linear rate, continued growth of other modes
flattens the CR distribution function within the region
μvph/v. The inefficiency of crossing the 90 degree barrier

(due to the absence of left-handed modes) results in a reduced
slow-down of the drift velocity during this phase. Unlike the
ring-distribution-driven instability, the majority of the total
wave energy comes from growth in the nonlinear phase of
instability, leading to the second behavior. As waves grow,
diffusion across the 90 degree barrier and into μ<0 becomes
more efficient, resulting in a second and steeper decline in the
drift velocity until isotropy is nearly achieved.
The growth rate of simulation Lo (low anisotropy) is

comparable to simulations Hi2 and Hi3 (high anisotropy), but
the progression of the instability is qualitatively different.
Systems with less severe CR anisotropy have smoother
transitions between the linear phase disruption, μvph/v
gradient flattening, and finally diffusion across the 90 degree
barrier. Beyond the trivial explanation that systems with less
anisotropy are closer to vdr=vph by definition, the content of
the excited wave spectra plays a role here. In particular, less
isotropy translates to a larger fraction of the free momentum
going into parallel-propagating left-handed modes. These
positive-helicity modes are required to scatter CRs in the
post-mirroring region m m- ¢ v v Mph . The existence of these
modes allows simulation Lo to reach total saturation of
instability before simulation Hi3, despite the latter having
more energy in the transverse magnetic field.
In the bottom panel of Figure 13 we show the response of the

background ions vi to the presence of the relatively large-
amplitude Alfvén waves, where vi is the mean velocity of
background ions in the x̂-direction. The momentum given up
by CRs flows to the background plasma via the ´E B drifts of
individual particles. Conservation of momentum implies a bulk
flow of the background plasma. Since the Alfvén wave frame

Figure 13. The rms transverse magnetic field amplitude δBrms (top), CR bulk
drift velocity vdr (middle), and background ion bulk drift velocity vi (bottom)
over time for power-law-distributed CRs. The drift of the background plasma
causes CRs to reach total saturation at vdr=vA+vi when measured in the
stationary laboratory frame.

Figure 14. Same as Figure 12, but for power-law-distributed CRs. The orange
dashed lines correspond to saturation estimates, Equation (15), when using the
approximate growth rate (Equation (8) with relativistic correction). The blue
dashed lines utilize the numerical computation of the growth rate integral,
Equation (6), instead. Both theoretical predictions come from the estimate
n = ´ GQLT

1

4 cr, where the factor 1/4 was chosen to give rough alignment with
the simulation data. For the strongly right-hand-polarized simulations (Hi1-3)
we used G = Gcr cr

PR, while for the lower-anisotropy simulations (Lo and Med)
we used G = G + Gcr cr

PR
cr
PL. Note that both growth rates utilized here have the

same scaling with the CR density; thus, the saturation amplitudes scale with
(ncr/ni)

1/2 as suggested by Equation (15).
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increases in velocity by an equal amount, total isotropy is
obtained when CRs reach a drift velocity vdr=vA+vi
(Figure 13, middle panel), typically with vi=vA. This is the
microphysical basis for CR-driven winds. However, the lack of
wave damping, combined with the finite CR momentum
reservoir in our simulations, leads to substantially weaker
acceleration of the background plasma compared to the
standard CR wind setup (e.g., Everett et al. 2008).

Resonant trapping is not the relevant saturation mechanism
for growth driven by power-law CRs. The influence of a
spectrum of waves provides additional scattering that alleviates
trapping effects by preventing a single mode from dominating
the dynamics of resonant CRs. Accordingly, the trapping
frequency criterion used for the ring distribution underestimates
the saturation amplitudes of the power-law simulations by
orders of magnitude, in addition to incorrectly predicting the
scaling with ncr/ni. In Figure 14 we compare the observed
saturated (rms) field amplitudes against the scaling predicted by
Equation (15). The estimates provided by νQLT≈Γcr are in
moderate agreement with the simulations. Discrepancies likely
arise on account of the deviation of measured growth rates from
the theoretical values (Table 3), the uncertainties in measuring
the saturation amplitudes, and the assumptions made in
deriving these estimates (including the validity of QLT for
large-amplitude waves).

In Figure 15 we show the full CR distribution function f (p,
μ) for simulation Hi1 (low CR density) at initialization (top
panel, = W-t 0 0

1) and the end of the linear growth phase
(bottom panel, = W-t 7020 0

1). Dashed lines depict the
resonance conditions of four modes with particular properties
(see the following paragraph for details). The flow of CRs
along the resonant scattering trajectories given by Equation (3)
is apparent. Saturation of the fastest-growing modes is
observed to occur in coincidence with the flattening of the
distribution function in the densest regions of p–μ space, while
relatively sparse regions evolve on longer timescales.

Once again we observe that the resonant cascade is unable to
efficiently scatter particles through μ∼vph/v∼0.15 in
Figure 15. Steep gradients build up as CRs are funneled into
this region of momentum space, but the CRs are too sparse to
quickly excite high-k waves to scatter on, resulting in the
stalled decline of bulk drift velocity observed in Figure 13.
Dashed lines in Figure 15 depict the resonance conditions
for the following modes at the time displayed in the bottom
panel: the parallel-propagating right-handed waves corresp-
onding to the longest-wavelength mode with amplitude greater
than δB/B0∼0.01 (blue, k=5×10−3 ωpic

−1), the fastest-
growing mode (orange, k=1.4×10−2 ωpic

−1), roughly the
shortest-wavelength mode with amplitude greater than the
noise floor (green, k=2×10−1 ωpic

−1), and the parallel-
propagating left-handed mode of largest amplitude (purple,
k=8×10−1 ωpic

−1). While the negative-helicity waves (e.g.,
the green, orange, and blue dashed lines) are of sufficient
amplitude to eventually bridge the μ gap, the dearth of positive-
helicity waves (e.g., the purple dashed line) results in a
bottleneck in the isotropization process. The requisite waves
are slowly generated, allowing the drift velocity to ultimately
decline (e.g., simulation Hi2).

Equation (18) of Section 2.4 provides a rough estimate for
the timescale of the nonlinear phase of instability. Caution
should be exercised in the application of this calculation. As
demonstrated in Appendix C, the time scales as tμ∝δB−3. It is

therefore highly sensitive to δB, which is itself an estimate. In
Table 4 we compare the observed duration of the nonlinear
phase tmeas, the time elapsed between the end of the linear
phase and the time at which vdr≈vA, against predicted values
tμ (Equation (18)). We use the observed saturation values
(Figure 14) to obtain more accuracy in the relaxation time tμ.
Despite the large uncertainty of this comparison, a notable
trend is visible. The low-anisotropy simulation Lo relaxes more
quickly than tμ would suggest, while the high-anisotropy

Figure 15. Evolution of the CR distribution function in simulation Hi1.
Momentum space density contours for CR distribution functions f (p, μ) are
shown at initialization (top) and at the early nonlinear phase (bottom).
Saturation of linear growth occurs when the CR distribution is flattened along
the μ coordinate in the densest regions of the initial distribution. Dashed lines
depict the resonance conditions (Equation (1)) for particular values of k
(see text).
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simulations Hi2 and Hi3 relax on longer timescales than
predicted. Simulation Hi1 does not approach saturation within
the duration of the calculation but appears consistent in
behavior relative to Hi2 and Hi3. The effects of large-amplitude
waves likely reduce the time for relaxation, since QLT
estimates are not valid in this regime. The lack of left-handed
waves in the Hi1–Hi3 runs has the opposite effect, lengthening
the relaxation time. These effects appear to roughly balance in
the intermediate simulation Med, where the observed relaxation
time is closer to the predicted value.

5. Discussion

In Section 4 we observed that the evolution of the unstable
system depends on the form of the CR distribution. Assuming
super-Alfvénic drift, the simple ring distribution (Equation (4))
generates a narrow spectrum of parallel-propagating right-
handed and antiparallel-propagating left-handed modes (negative
helicity only), while the power-law distribution (Equation (5))
produces a broader spectrum of parallel right-handed and left-
handed modes (negative and positive helicity). The ensuing
changes in the initial CR distribution depend on these differing
spectral properties. In a broad sense, the distribution functions
presented here span a continuum of CR anisotropy, with low
drift velocity power law, high drift velocity power law, and ring
distribution simulations from low to high anisotropy, respec-
tively. The linear dispersion relations for highly anisotropic CR
distributions predict the emergence of wave spectra that would
be unable to fully isotropize the CRs at quasi-linear wave
amplitudes. The missing modes must therefore be generated in
the nonlinear phase of instability if isotropy is to be obtained.
The quasi-monochromatic spectra evoked by the ring distribu-
tion resulted in inefficiencies in scattering due to resonant
trapping, which in turn led to an indefinite period of super-
Alfvénic drift. The spectra from the power-law CR distributions
are less susceptible to this effect, particularly in the low drift
velocity case, where left-handed modes are plentiful.

Thus far we have not provided a quantitative measure of CR
anisotropy and instead have simply delineated low and high
anisotropy as producing predominantly linear and right-hand-
polarized resonant modes, respectively. For the application at
hand, the most desirable measure of anisotropy would be the
ratio of maximal right-handed growth rate to the left-handed
counterpart DG º G Gcr

PR
cr
PL. Unfortunately, this ratio does not

have an analytical form in the general case (Equation (6)), and
the assumptions used in deriving Equation (8) give ΔΓ=1 for
all values of the CR drift velocity vdr. One alternative measure
of anisotropy is the relative fraction of CRs on either side of the
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with characteristic CR velocity vcr∼c , represents the pitch
angle at which a typical CR travels with the Alfvén velocity in
the CR frame (including the relativistic velocity correction).
In Figure 16 we plot the anisotropy parameter a as a function

of drift velocity vdr. In the top panel we use parameters
motivated by our power-law CR simulations (vA=0.1c),
while the parameters of the bottom panel are motivated by the
conditions around SNR shocks (vA=20 km s−1). The aniso-
tropy parameter is only useful in the range a>1, since a value
of 1 (or less) would imply stability with the canonical
streaming instability setup. It is also only valid up to the pole at

Table 4
Nonlinear Relaxation Times for Power-law Distribution

Simulation tmeas [Ω0
−1] tμ [ ]W-

0
1

Lo ∼1500 ∼3400

Med ∼1500 ∼1800

Hi1 ?12000 ∼30000
Hi2 9000 ∼6700
Hi3 4000 ∼1200

Note.The predicted duration of the nonlinear phase tμ (the mean free time,
Equation (18) and Appendix C) is listed for each simulation. These are
compared to tmeas, the observed duration of the nonlinear phase.

Figure 16. Anisotropy parameter a (Equation (23)) as a function of CR drift
velocity vdr, where vA=0.1c (top panel) and vA=20 km s−1 (bottom panel).
The numerically obtained growth rate ratiosDG º G Gcr, max

PR
cr, max
PL are shown

for comparison (orange crosses), where we used Equation (6) and the power-
law CR distribution Equation (5). For a, we use vcr=0.87c, corresponding
to γcr=2.
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μA=−1, after which there are no CRs of the given vcr with
vx<vA. The instability growth rate depends on both the CR
density and the slope of the CR distribution around kres, so a is
an imperfect proxy forΔΓ. However, we have that a�ΔΓ for
all valid values of a, with a≈ΔΓ to within ∼10% for
a1.5. For comparison, we mark numerically calculated
values of ΔΓ in Figure 16 (orange crosses).

In the bottom panel of Figure 16 we use vA=20 km s−1,
which is a typical value for the ISM surrounding an SNR
shock. Near the shock we have vdr≈vsh, where vsh is the
velocity of the shock along the background magnetic field.
If we take as a characteristic shock velocity vsh=6×
103 km s−1=300 vA, then we have a≈1.05 and ΔΓ=
1.08. These conditions imply a modest predominance of right-
handed waves over their left-handed counterparts. Far from the
SNR shock, CRs will expand anistropically into the ISM,
suggesting that vdr≈0.5c=7500vA. This higher value of vdr
gives a=3.7 and ΔΓ=7.4, indicating the production of
strongly right-handed wave spectra.

The contrivances of periodic simulations do not provide a
wholly accurate representation of CR transport in general.
Nevertheless, the qualitative transition to the predominance of
right-handed resonant modes is applicable to the physical
systems that these models are intended to represent. Indeed, the
suppression of left-handed modes in an aperiodic CR outflow is
likely to be more severe than indicated here, due to the
complete absence of CRs with μ<vA/v∼0. In this case we
have a, DG  ¥, so that these systems will suffer the
inefficiencies in obtaining CR isotropy detailed above.

The simulations performed in this study are limited by the
numerical constraints and computational costs incurred by the
use of the PIC method. The electromagnetic noise floor
established by small-scale variations in the number of particles
per numerical cell necessitates the use of high-current CR
distributions to produce satisfactory signal-to-noise ratios.
Pushing to smaller growth rates becomes prohibitively
expensive owing to the slow scaling of the noise floor
amplitude with particles per cell. Reducing the temperature of
the background plasma can similarly reduce the noise floor
amplitude. However, the PIC method cannot sustain plasma
temperatures such that the Debye length is shorter than a few
cells, thus requiring additional spatial resolution as an overhead
cost. To suppress the growth of nonresonant (Bell) modes
while maintaining a cold plasma ( b º v v2 1i th,i

2
A
2 ), we set

the Alfvén speed to the unnaturally high value of vA=0.1c,
significantly departing from the standard magnetostatic approx-
imation. These large wave velocities have the effect of
expanding the resonance gaps between modes with differing
propagation-polarization types. Sufficient signal-to-noise ratios
were obtained by pushing waves to large amplitudes δB∼0.1,
invalidating the QLT approximation. Additionally, the finite
amplitude wave electric fields δE∼vAδB/c cause diffusion in
momentum on top of the basic pitch-angle scattering (e.g.,
Figure 8). Finally, the temporal and spatial scales over which
instability is realized in our power-law CR simulations begin to
exceed the limits of what could be considered acceptable
usage of the PIC method. In our worst case, for example, the
total energy of simulation Hi1 has increased by 29% from its
initial value by = W-t 12,000 0

1 (∼107 time steps) owing to
interpolation errors in calculating the the Lorentz force on
particles from the discrete electromagnetic fields (Birdsall &
Langdon 1991; Melzani et al. 2013). While the short timescales

of the ring distribution simulations do not noticeably suffer in
this respect, the nonconservation of energy in our power-law
distribution simulations begins to cast doubt on the long-term
results beyond W-t 104 0

1, preventing the execution of
simulations on longer timescales.
The primary advantage of employing the PIC method is the

resolution of physics down to electron-kinetic scales. When the
wave spectrum is in the quasi-linear regime, pitch-angle
scattering occurs via small deflections. The resolution of
high-k modes becomes very important for the cascade of CRs
to sufficiently small μ such that magnetic mirroring (or other
post-quasi-linear effects) can bridge the resonance gap.
Numerical methods invoking magnetohydrodynamical approx-
imations may fail to sustain the short-wavelength modes
necessary to achieve Alfvénic CR drift. Although we did not
discuss the behavior of the CR electrons (CRe) in detail in this
work, this fine spatial resolution permitted us to observe the
gyroresonant streaming instability for electrons under certain
conditions. The higher frequency of electron gyration results in
shorter wavelengths of resonant waves, while their negative
charge reverses the polarization relationship compared to CR
ions. These high-k, left-handed CRe resonant waves are quickly
damped away by ion-cyclotron resonance in the background
plasma.
One goal of this study was to observe the mechanisms of

saturation that are intrinsic to the gyroresonant streaming
instability, i.e., the cessation of unstable growth owing only to
wave–CR interactions, such as gradient flattening and resonant
trapping. However, wave damping can contribute to saturation
in general. The most commonly discussed types include ion-
neutral friction (Kulsrud & Pearce 1969; Kulsrud & Cesarsky
1971; Zweibel & Shull 1982), nonlinear Landau resonance
(Hollweg 1971; Lee & Völk 1973; Völk & Cesarsky 1982),
and turbulent cascade (Yan & Lazarian 2002, 2004; Farmer &
Goldreich 2004). These extrinsic wave damping channels are
expected to regulate unstable growth and make important
contributions to the steady-state transport of CRs in the ISM
and ICM (e.g., Felice & Kulsrud 2001; Wiener et al. 2013a).
Therefore, no study on the streaming instability can be widely
applicable to CR transport in nature without taking the latter
mechanisms into consideration. The simulations herein repre-
sent the undamped limit of unstable CR behavior. They provide
an upper bound on the strength of CR scattering in the presence
of self-generated turbulence, since the wave spectra will
generally be smaller in amplitude when damping is present.
In principle, nonlinear Landau damping (NLLD) could be
captured by PIC simulations without any additional physical
modeling; however, this mechanism does not enter into the
cold simulations presented here because it becomes significant
only at moderate plasma beta βi1.
The use of periodic simulations simplifies the interpretation

of the physics, but the finite reservoir of free momentum
available in the initial CR distribution artificially limits the
amplitude that unstable waves can reach (Equation (11)). In
this sense, the periodicity of the computational domain imitates
the effects of extrinsic damping. In a scenario where CR current
is continuously injected, as in the outskirts of SNRs or galactic
halos, waves should easily reach δB/B0∼1 in the absence of
extrinsic damping owing to the effectively unlimited supply of
free momentum. CRs that subsequently propagate in this large-
amplitude turbulent field would have their anisotropy rapidly
reduced, establishing self-confinement. On the other hand,
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strongly damped media would permit CRs to propagate
unhindered by wave interactions (Felice & Kulsrud 2001).

The ISM is not a monolithic substrate throughout the extent
of a galaxy—the propagation of CRs within the various phases
of the ISM adds an additional layer of complexity to the
problem. The behavior of instability and subsequent CR
transport can vary drastically depending on the properties of
the local medium. For present purposes, the most important
phases of ISM are the warm neutral medium (WNM), warm
ionized medium (WIM), and hot ionized medium/coronal gas
(HIM), which together take up the vast majority of the volume
in the Milky Way galactic disk, as well as the CR halo that
surrounds the latter out to a few kiloparsecs.

The WNM and WIM are characterized by βi∼0.1 plasmas
with small and large ionization fractions, respectively. In these
phases, neutral atoms couple to the ionized component via
collisions, allowing the transfer of wave energy in the electro-
magnetic fields to thermal energy in the neutrals. The ion-neutral
damping rate ΓIN is a nearly constant function of wavenumber k
for sufficiently high frequency waves ω(k)>νIN, where νIN is the
ion-neutral scattering rate (Zweibel & Shull 1982; Nava et al.
2016). Resonant waves in the WNM are expected to be completely
damped, allowing CRs to freely stream through these regions
(Felice & Kulsrud 2001).

Even in the WIM, where streaming instability growth rates
can plausibly exceed the ion-neutral damping rates if CR
densities are large (Wiener et al. 2013b), the spectra of waves
will be significantly impacted. Obtaining isotropy in streaming
CRs requires efficiently mirroring particles across the μ∼0
resonance gap, which in turn depends on the existence of short-
wavelength modes to resonantly scatter CRs into the mirroring
region ∣ ∣m m¢ ¢ M . These high-k modes are particularly
susceptible to damping because of the G µ a-kcr

3 scaling of
Equation (8), and the effective resonance gap will widen should
damping dominate over growth for these modes. Assuming
typical WIM parameters along with a nearly isotropic power-
law CR distribution with drift vdr=2vA, we can calculate the
wavenumber kIN at which ion-neutral damping overtakes
gyroresonant growth using Equation (8) and Equation (A4)
of Zweibel & Shull (1982). We illustrate this behavior in
Figure 17, which shows gyroresonance curves (Equation (2))
for parallel right-handed (blue) and parallel left-handed
(orange) modes interacting with CRs of Lorentz factors
γ=2 (dashed) and γ=20 (solid). Here we have adopted
the parameters T=8×103 K, vA=10−4c, ni=0.315 cm−3,
and nn=0.035 cm−3, where nn is the density of neutral
hydrogen atoms, giving an ion-neutral scattering rate of
νIN≈5.4×10−10 s−1 (Kulsrud & Cesarsky 1971). We
choose a power-law index α=4 and CR densities across the
range ncr/ni=10−10, 5×10−9, and 10−7 to capture reason-
able lower and upper bounds on the instability growth rates.

The severity of resonance gap broadening depends on both
the growth rates of instability and the energies of CRs under
consideration. CRs with higher energy are less impacted by this
effect because their reduced gyrofrequencies push the corresp-
onding gyroresonance to longer wavelengths (Achterberg 1981
reached a similar conclusion for the influence of ion-cyclotron
damping in high-β plasmas). Examining the kIN line corresp-
onding to ncr/ni=10−10 in Figure 17, we see that the entire
range of k that γ=2 CRs are capable of interacting with will
be damped away, allowing them to ballistically stream through
the WIM. Even for faster growth rates, self-confinement for

low-energy CRs can still fail. With ncr/ni=10−7, the
resonance gap for the γ=2 CRs is still of the order
δμ∼0.1, requiring ∣ ∣dB B0 fluctuations of comparable ampl-
itude for mirroring to operate. Highly anisotropic CR
distributions are even more vulnerable to ion-neutral damping,
owing to the suppressed growth rates for left-handed modes
that would be easily dominated by damping.
Anisotropy may also play an important role for CRs in the

HIM, galactic halo, and ICM, where plasma temperatures are
too high to facilitate ion-neutral damping. In these moderate to
high-β environments (βi1), the NLLD and turbulent
damping mechanisms are considered the largest threats to CR
self-confinement. A commonly overlooked property of NLLD
is that the flow of energy is qualitatively different in linearly
and circularly polarized spectra. In the linearly polarized case,
waves are purely damped while heating background particles.
The dependence of the damping rate on the wave amplitude
ΓNLLD∝(δB/B0)

2 allows the derivation of simple estimates
for critical wave amplitudes such that unstable growth balances
damping (Kulsrud 2005; Wiener et al. 2013a). However, in the
case of NLLD of a circularly polarized spectrum, high-
frequency waves damp while low-frequency waves grow,
resulting in an inverse cascade of wave energy (Lee &
Völk 1973). As the low-frequency waves grow, the high
frequencies are damped at increasing rates, invalidating the
assumption of balance between growth and damping. For this
reason, we cannot offer simple estimates of steady-state
damping rates and wave amplitudes.
To fully understand the behavior of the CR instability under

the influence of NLLD would require numerical simulations of
the nonlinear physics. However, self-consistently simulating
CR-driven growth and NLLD with the PIC method is
prohibitively difficult because of the computational cost of
reducing the electromagnetic noise floor, particularly if wave
amplitudes of δB/B0∼10−3 (as estimated by, e.g., Wiener
et al. 2013a) are desired. Such simulations might be achieved

Figure 17. Expansion of resonance gaps via ion-neutral damping. Gyroreso-
nance curves (Equation (2)) are shown for parallel right-handed (blue) and
parallel left-handed (orange) modes interacting with CRs of Lorentz factors
γ=2 (dashed) and γ=20 (solid). Vertical black dotted lines denote the
critical wavenumber kIN at which ion-neutral damping overtakes unstable
growth from CR streaming instability at CR densities of ncr/ni=10−10,
5×10−9, and 10−7 and typical parameters for the warm ionized medium (see
text). At a given CR density, modes with k�kIN, where kIN=3.6×10−5,
1.8×10−4, and w´ - -c6.9 10 4

pi
1, are unable to grow, resulting in

substantially expanded resonance gaps. Low-energy CRs are particularly
susceptible to this effect.
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with hybrid-kinetic codes that treat the background ions as
individual particles, assuming that the noise floor is substan-
tially reduced compared to PIC simulation at comparable
computational expense. An additional difficulty arises owing to
the possibility for the NLLD to saturate via resonant trapping of
background ions (Völk & Cesarsky 1982) by a comparable
mechanism to the saturation of the ring-distribution-driven
instability for CRs discussed above. Should the NLLD
mechanism reach saturation, unstable growth would continue
unhindered and the long-term evolution of the system would be
only trivially altered from the undamped case. Felice &
Kulsrud (2001) have argued that collisions in the background
plasma would prevent saturation of NLLD, at least in the ISM.
Thus, a full study of the growth and damping problem would
require the inclusion of a model for ion-collision physics. An
adequately detailed quantitative treatment of the CR-NLLD
growth and damping problem is beyond the scope of this
article; we therefore defer further to forthcoming publications
for further discussion.

Although there is ample evidence that CRs are strongly
isotropized by scattering in the ISM, the origin of CRs from
point sources (e.g., SNRs) suggests that their initial distribu-
tions are anisotropic. While the large Lorentz boosts of our
high-anisotropy power-law simulations are unrealistic for the
most likely CR sources, these distributions qualitatively capture
the realistic behavior of anisotropic CR distributions as they
propagate away from their sources. The time-dependent
evolution of this natal anisotropy has long been ignored in
favor of the simple analytical properties of steady-state
solutions using nearly isotropic CR distribution functions.
Such approximations have yet to receive validation from
nonlinear numerical computations.

The simulations presented herein are intended to provide an
initial step toward the time-dependent solution of CR evolution
in natural environments. With the caveats addressed above,
these results suggest that there are previously underappreciated
difficulties in obtaining self-confinement when the CRs are
strongly skewed toward a single propagation direction. If this is
indeed the case for a more realistic physical setup, then the self-
confinement paradigm may be insufficient to explain the
observed CR properties. The most likely mechanism for CR
confinement would then be scattering on the turbulent field of
compressible MHD modes, which Yan & Lazarian (2008) have
demonstrated can account for most, if not all, CR scattering in
the ISM. Scattering on the fast wave cascade is particularly
appealing as a confinement mechanism because it is, in
principle, insensitive to the initial CR anisotropy—the full
range of waves needed to isotropize CRs exists independently
of the streaming instability.

6. Conclusions

We have demonstrated the excitation of CR self-generated
turbulence via the gyroresonant streaming instability. Using the
PIC numerical method in one spatial dimension, we showed
that the instability growth rates are in satisfactory agreement
with the predictions of the linear dispersion relation from
plasma kinetic theory. Diverging from the standard assump-
tions of small CR drifts with vdrvA, we gave special
attention to the behavior of instability when CRs are highly
anisotropic. This anisotropic setup idealizes the case where
CRs flow outward from a relatively small injection region. In
this regime, with power-law CR distributions, the growth rates

of parallel-propagating right-handed modes become enhanced
and shift to longer wavelength compared to the standard
approximate growth rate formula (Equation (8)). Parallel-
propagating left-handed modes are suppressed owing to the
reduction in CRs that satisfy the relevant resonance conditions.
The properties of the emergent wave spectra played an

important role in the subsequent back-reaction on the CR
distribution, particularly during the nonlinear phase of
instability. We saw that CRs were not able to efficiently go
beyond the small-μ barrier when positive-helicity waves (i.e.,
parallel-propagating left-handed modes) did not contain
substantial energy density, even with relatively large amplitude
waves (δB/B0∼0.1). While large-amplitude effects (e.g.,
magnetic mirroring) did occur as anticipated, these mechanisms
are only important around μ∼vph/v. In order to reach full
isotropy, it was necessary to excite additional positive-helicity
modes in the nonlinear phase of instability that allow CRs to
span the entirety of −1�μ�1. These additional waves
necessarily grow at slower rates than the fastest-growing mode
predicted by linear theory, owing to the reduced number
densities of CRs that achieve resonance with these waves, and
therefore are more susceptible to domination by extrinsic
damping. In the latter case, it is conceivable that highly
anisotropic CR distributions can retain large drift velocities
vdr∼c even in lightly damped media.
As the initial CR anisotropy is reduced, the canonical

behavior of the streaming instability emerges. When vdrvA,
the growth rates of left- and right-handed modes become
degenerate, resulting in linearly polarized Alfvén waves. Here
the generation of additional modes is not necessary to achieve
isotropy so long as magnetic mirroring is effective in moving
CRs through the resonance gaps.
Ultimately, the saturation of resonant instability occurs via

the flattening of CR distribution gradients. The action of
stochastic wave–particle interactions compounds into nonli-
nearities that make the prediction of exact amplitudes of
individual modes intractable, except in highly simplified
scenarios. The saturation of instability in a periodic setting is
constrained by the finite quantity of free momentum contained
by the initial CR anisotropy. This allowed us to predict an
upper bound on the amplitude of the self-generated turbulence
excited by an arbitrary CR distribution (Equation (11)). This
upper bound is achieved when CRs are able to reduce their drift
velocity to that of the resonant waves, vdr=vA, via pitch-angle
scattering. The resonant trapping effect provided a method for
explicitly calculating the saturated wave amplitude of quasi-
monochromatic waves produced by the ring distribution
(Equation (13)), while the quasi-linear resonant scattering rate
facilitated the same for the broad spectra of power-law-
distributed CRs (Equation (15)). Finally, the mean free time for
quasi-linear scattering (Equation (18)) allowed us to predict the
duration over which a CR distribution with small initial
anisotropy would relax. We emphasize that caution should be
maintained when applying these estimates to aperiodic
domains.
Although the model systems studied in this work are

contrived to simplify the complexities of wave–particle
interactions, we have distilled the problem of the gyroresonant
streaming instability down to a foundation of physics from
which future studies can proceed. In the “undamped” limit we
have considered here, sufficiently dense CR distributions can
always produce large-amplitude waves that in turn strongly
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scatter the CRs. Conversely, CR distributions of small density
and/or initially large anisotropy may have difficulty in
reaching Alfvénic drift velocities. The inclusion of extrinsic
wave damping channels would exacerbate any of the
inefficiencies in developing isotropy observed in this work.
Given the expected importance of the compressible MHD
cascade in scattering CRs, in addition to its role in dissipating
the energy of resonant modes, particular attention in future
studies should be given to the behavior of instability in the
presence of an empirically motivated turbulent spectrum.
Finally, galactic winds are expected to manifest via instability
driven by large-scale spatial inhomogeneities of CRs. A more
realistic simulation setup would remove the constraints of
periodicity to examine the formation of spatially dependent
quasi-steady-state structures in an expanding bubble of CRs.

We appreciate the enlightening discussions held with X. Bai,
D. Caprioli, R. Kumar, S. A. Mao, S.P. Oh, E. Ostriker,
I. Plotnikov, and E. Zweibel on the topics presented herein.
We also acknowledge the comments and suggestions of
S. Komarov, M. Shalaby, and the anonymous referee in revising
the pre-print version of this article. C.H. gratefully recognizes
support from the Department of Energy National Nuclear
Security Administration Stewardship Science Graduate Fellow-
ship under grant DE-NA0002135 and from the Krell Institute.
A.S. acknowledges the support of NSF grant AST-1814708
and the Simons Foundation (grant 267233). The simulations
presented in this article used computational resources supported
by the PICSciE-OIT High Performance Computing Center and
Visualization Laboratory at Princeton University.

Appendix A
On Polarization, Helicity, and Gyroresonance

The canonical Alfvén wave is a periodic transverse
fluctuation with circular polarization. Although there are many
conventions for defining the wave quantities, we adopt the one
that allows us to self-consistently treat waves with all
combinations of parallel/antiparallel propagation (with respect
to ˆ=B B x0 0 ) and right/left-handed circular polarization. The
transverse magnetic field amplitude is of the form

∣ ∣ ( )d d w= -B B ikx i texp , where By=Re δB and Bz=Im
δB, and similarly for other wave quantities.

We distinguish between the polarization and the helicity of a
transverse wave. The polarization is defined by the sense in
which a wave field vector rotates as a function of time when
viewed at fixed position (e.g., x= 0) and is generally a frame-
dependent property. When using the plasma rest frame as a
basis for the definition of polarization, left-handed waves are
capable of resonating with stationary (vx=0) ions, while right-
handed waves can resonate with stationary electrons. The
helicity is defined by the sense in which a wave field vector
rotates as a function of position at fixed time (e.g., t= 0) and is
not a frame-dependent property. We have adopted a sign
convention that allows the wave frequency ω and wavenumber
k to take on both positive and negative values. Thus, we can
describe the parallel left-handed and antiparallel right-handed
waves as having positive helicity (k>0) and the parallel right-
handed and antiparallel left-handed waves waves as having
negative helicity (k<0), where parallel and antiparallel refer
to positive and negative phase velocity vph=ω/k. To avoid
further confusion, we will refer to left/right-handedness in

reference to polarization only and to positive/negative in
reference to helicity only.
According to Equation (1), gyroresonance occurs for wave–

particle pairs that rotate together. The gyroresonance condition
is thus interpreted as a Doppler shift due to the relative velocity
between wave and particle—the wave frequency is equal to the
gyrofrequency in the reference frame traveling with the particle
parallel velocity vx. The resonant particle then exchanges
energy and momentum with a constant amplitude electro-
magnetic field. The same interaction can be considered in the
frame traveling with the wave phase velocity, vph=ω/k,
where the wave electric field goes to zero. In the frame of a
wave with amplitude δB, resonant particles experience a
constant d´v̂ B Lorentz force that perturbs the gyromotion
about the background magnetic field, resulting in pure pitch-
angle scattering (Kulsrud 2005).
A particle of given charge (and associated gyromotion

handedness) can resonate with right- and/or left-handed waves,
depending on the relative velocity between particle and wave,
because of the frame dependence of polarization. For example,
a positively charged ion (a “left-handed” particle) with
μ>vph/v resonates with parallel right-handed (the so-called
anomalous gyroresonance) and antiparallel left-handed waves
because these waves both appear to rotate in the left-handed
sense in the particle frame traveling with vx. Similarly, a
positively charged ion with −vph/v<μ<vph/v resonates
with parallel- and antiparallel-propagating left-handed waves.
The relation between particle pitch-angle cosine and gyroreso-
nance with wavenumber k is exemplified in Figure 1.

Appendix B
Dispersion Relations

In this appendix we examine the dispersion relations that are
relevant to the simulations performed, looking at both the
branches of waves that appear and their respective growth rates.
One can derive the (linear) dispersion relation for parallel-
propagating transverse waves in the presence of arbitrary
particle species (denoted with index s) by linearizing the
Vlasov equation (Stix 1992):
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where qs, Ωs, and fs are, respectively, the charge, relativistic
gyrofrequency, and distribution function of species s. Although
our simulations will utilize small, but finite, temperatures for
the background plasma, we will assume here a cold isotropic
background for analytical simplicity. The background consists
of ions and electrons with the distributions
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where ni is the number density of background ions (and
electrons, for charge neutrality). We now specify the CR
distributions and discuss their properties separately.

B.1. Ring Distribution

Here we discuss ring-distributed CRs (Equation (4)). Charge
and current neutrality is enforced by making use of a cold beam
of “CR electrons”

( ) ( ) ( ) ( )
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d d m= - -f p
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where ncr is the density of CRs (and CR electrons), pe satisfies
v(pe)=vdr, and vdr is the bulk velocity of the CR distribution.
For these distributions the integrals in Equation (26) are readily
computed analytically to yield
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where ωpe and ωpi are the electron and ion plasma frequencies;
Ω0, Ωe, Ωcr, and Ωcre are the gyrofrequencies of background
ions, background electrons, CRs, and CR electrons, respec-
tively; and γcr and ( )g = - -v c1cre dr

2 2 1 2 are the CR and CR
electron Lorentz factors, respectively (Wu & Davidson 1972).
The solution to the dispersion relation is reduced to finding the
roots ω(k). Fixing k to real values, instability is obtained when
ω(k) becomes complex valued.

In Figure 18 we show the low-frequency dispersion relation
for the parameters of simulation Gy1 (left) and Gy4 (right). A
numerical solution of the real part of the full dispersion relation
is shown with black lines, while solid colored lines indicate the
standard cold dispersion relations for the left-handed ion-
cyclotron branch (IC, orange), the right-handed whistler/
electron-cyclotron branch (EC, green), and a CR mode obeying
the dispersion relation ω=kvdr+Ωcr (CR, blue). The numerical
solution of the imaginary part of the dispersion relation Γ is
shown with a blue dashed line, corresponding to growth in the
resonant mode. For the low CR density of Gy1, the peaks of the
growth rate occur where the CR branch couples to the standard
EC and IC branches, producing quasi-Alfvénic modes. Both
parallel right-handed (lower left quadrant) and antiparallel left-
handed (upper left quadrant) quasi-Alfvén modes are predicted
to grow, with the former dominating the wave spectra during
the linear phase. At the higher CR density of Gy4, the normal
modes of the background plasma are significantly disrupted,
while the maximum growth rate of the CR mode shifts to a
shorter wavelength.

B.2. Power-law Distribution

In Section 3 we noted that the procedure of Lorentz boosting
individual particles does not respect the Lorentz invariance of
the distribution function. The reason is that the relativistic
contraction of the position-space part of the phase-space
volume (i.e., d x3 ) is neglected by this transformation. As a
result, a factor of γ″/γ is appended to the CR frame distribution
function

( )g
g

   
f f , 33PL PL

with the latter function entering into Equation (6) to calculate
the growth rate in our simulations. In Figure 19 we examine the
effect this transformation has on the growth rates by comparing
against the rates obtained with the Lorentz-invariant

Figure 18. Dispersion relations for simulations Gy1 (low CR density, left panel) and Gy4 (high CR density, right panel). We show the real (black lines) and imaginary
(dashed blue lines) parts of the dispersion relation Equation (32). For comparison, we use thick solid lines to highlight the standard branches of the cold dispersion
relation for the left-handed ion-cyclotron branch (IC, orange), the right-handed whistler/electron-cyclotron branch (EC, green), and a CR resonant mode obeying the
dispersion relation ω=kvdr+Ωcr (CR, blue). For simulation Gy1, parallel right-handed (lower left quadrant) and antiparallel left-handed (upper left quadrant) modes
dominate the linear growth spectra. As the CR density increases (Gy4), the normal modes of the background plasma are significantly disrupted and the fastest-growing
mode shifts to shorter wavelengths.
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distribution. Boosting individual particles reduces the peak
growth rate while creating a shallower decline at k>kmax. This
decline is comparable to the ∝ k−1 scaling of the approximate
formula Equation (8), whereas the invariant distribution
produces a steeper decrease with k. The left-handed modes’
growth rates are enhanced but maintain a similar shape. The
decrease/increase of the right/left-handed growth rates in our
simulations means that the effects of anisotropy are suppressed
relative to an invariant power-law distribution with the same
parameters. Consequently, the difficulties of achieving CR
isotropy are somewhat understated by our simulations.

We also show in Figure 19 the approximate growth rate
(solid blue; Equation (8)) alongside the relativistic correction
(dashed blue) suggested by Kulsrud & Cesarsky (1971),

( ) ( ) ( )g gG = Gk k . 34cr,rel
lin

dr cr
lin

dr

The relativistic correction increases the maximum growth rate
but, as discussed in the main text, fails to account for the
disparity between right- and left-handed modes. The increased
maximum growth rate is not comparable to the true growth rate
with the invariant distribution. Instead, it (coincidentally)
brings it to the level of the particle-boosted distribution, which
explains why our saturated amplitude predictions (Equation (15))
fit the simulation data so closely (Figure 14).

Appendix C
Estimating the Resonant Relaxation Time

Following chapters 2 and 3 of Shalchi (2009), we derive the
mean free time for scattering in the saturated self-generated
turbulence. This will be the timescale for a typical CR to scatter
from a characteristic pitch angle μ>vph/v down to the
mirroring pitch angle μM. We must first obtain the QLT
diffusion coefficient (Jokipii 1966, 1968; Kulsrud & Pearce
1969) in slab geometry

( ) ( ) ( ) ( )m
p=

-
WmmD k
kg k

B

1

2
4 , 35

2
2

0
2

where g(k) is the differential wave power spectrum, normalized
to the total transverse field energy density

( ) ( )ò
d
p

=
¥B
g k dk

8
, 36

k

2

0

and k0 is a reference wavenumber that we take to be the fastest-
growing wavenumber kmax. Motivated by our simulations, we
model the spectrum as a power law that extends to infinity from
the fastest-growing mode kmax with spectral index ν,
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where n ¹ 0, 1. For simplicity, we have assumed that the
power law is unbroken. The pitch-angle diffusion coefficient is
then
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To estimate the relaxation time of the anisotropic CR
distribution, we calculate the typical timescale for a CR of
average energy γ0 and pitch angle μ0 within the resonant band
of the fastest-growing mode kmax to scatter down to the
mirroring range μM. This timescale is the mean free time
(Jokipii 1966; Kulsrud & Pearce 1969; Shalchi 2009)
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where we have used the resonant condition (Equation (1)) and
g= - -v c 1 0

2 . Motivated by the spectra observed in
Section 4, we take ν=2, which is a rough estimate of the
power spectrum slope in the early nonlinear phase of
instability. We then obtain
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The scaling of Cμ with δB/B0 is predominantly controlled by
the (xM−1) term, leading to ( ) ( )m dµ ¢ µm

- -C B BM
1

0
1 until

δB/B00.1. At larger wave amplitude, the mirroring pitch
angle μM approaches the typical pitch angle of resonant
particles μ0 and the formalism developed here begins to break
down. Under typical quasi-linear conditions, and with the
spectral shape adopted here, we have tμ∝(δB/B0)

−3.

Figure 19. Comparison between growth rates from varying distributions using
the parameters of simulation Hi1. The orange and green lines depict right- and
left-handed modes, respectively, with g g fPL (solid, particle boosted) and fPL
(dashed, invariant). For these growth rates we have used the real part of the
Hall-MHD Alfvén dispersion relation. The blue lines show the approximate
growth rate (solid, Equation (8)) and the relativistic correction (dashed).
The real part of the low-frequency Alfvén dispersion relation is marked by
the red line.

22

The Astrophysical Journal, 882:3 (23pp), 2019 September 1 Holcomb & Spitkovsky



ORCID iDs

Cole Holcomb https://orcid.org/0000-0002-2467-8962

References

Achterberg, A. 1981, A&A, 98, 161
Amato, E., & Blasi, P. 2009, MNRAS, 392, 1591
Bai, X.-N., Caprioli, D., Sironi, L., & Spitkovsky, A. 2015, ApJ, 809, 55
Bell, A. R. 2004, MNRAS, 353, 550
Bell, A. R. 2005, MNRAS, 358, 181
Birdsall, C. K., & Langdon, A. B. 1991, Plasma Physics via Computer

Simulation (Bristol, UK: Adam Hilger, Ltd.)
Breitschwerdt, D., McKenzie, J. F., & Voelk, H. J. 1991, A&A, 245, 79
Draine, B. T. 2011, Physics of the Interstellar and Intergalactic Medium

(Princeton, NJ: Princeton Univ. Press)
Dupree, T. H. 1966, PhFl, 9, 1773
Everett, J. E., Zweibel, E. G., Benjamin, R. A., et al. 2008, ApJ, 674, 258
Farmer, A. J., & Goldreich, P. 2004, ApJ, 604, 671
Felice, G. M., & Kulsrud, R. M. 2001, ApJ, 553, 198
Galinsky, V. L., Shevchenko, V. I., Ride, S. K., & Baine, M. 1997, JGR, 102,

22365
Girichidis, P., Naab, T., Hanasz, M., & Walch, S. 2018, MNRAS, 479, 3042
Girichidis, P., Naab, T., Walch, S., et al. 2016, ApJL, 816, L19
Guo, F., & Oh, S. P. 2008, MNRAS, 384, 251
Hollweg, J. V. 1971, PhRvL, 27, 1349
Ipavich, F. M. 1975, ApJ, 196, 107
Jiang, Y.-F., & Oh, S. P. 2018, ApJ, 854, 5
Jokipii, J. R. 1966, ApJ, 146, 480
Jokipii, J. R. 1968, ApJ, 152, 997
Jones, F. C., Birmingham, T. J., & Kaiser, T. B. 1978, PhFl, 21, 347
Kulsrud, R., & Pearce, W. P. 1969, ApJ, 156, 445
Kulsrud, R. M. 2005, Plasma Physics for Astrophysics (Princeton, NJ:

Princeton Univ. Press)
Kulsrud, R. M., & Cesarsky, C. J. 1971, ApL, 8, 189
Lebiga, O., Santos-Lima, R., & Yan, H. 2018, MNRAS, 476, 2779
Lee, M. A., & Völk, H. J. 1973, Ap&SS, 24, 31
Lerche, I. 1967, ApJ, 147, 689
Loewenstein, M., Zweibel, E. G., & Begelman, M. C. 1991, ApJ, 377, 392
Mao, S. A., & Ostriker, E. C. 2018, ApJ, 854, 89
Melzani, M., Winisdoerffer, C., Walder, R., et al. 2013, A&A, 558, A133
Miller, R. H., Gary, S. P., Winske, D., & Gombosi, T. I. 1991, GeoRL,

18, 1063
Nava, L., Gabici, S., Marcowith, A., Morlino, G., & Ptuskin, V. S. 2016,

MNRAS, 461, 3552

Niemiec, J., Pohl, M., Stroman, T., & Nishikawa, K.-I. 2008, ApJ, 684,
1174

Park, J., Caprioli, D., & Spitkovsky, A. 2015, PhRvL, 114, 085003
Philippov, A. A., Spitkovsky, A., & Cerutti, B. 2015, ApJL, 801, L19
Recchia, S., Blasi, P., & Morlino, G. 2016, MNRAS, 462, 4227
Riquelme, M. A., & Spitkovsky, A. 2009, ApJ, 694, 626
Riquelme, M. A., & Spitkovsky, A. 2010, ApJ, 717, 1054
Ruszkowski, M., Yang, H. Y. K., & Reynolds, C. S. 2017a, ApJ, 844, 13
Ruszkowski, M., Yang, H. Y. K., & Zweibel, E. 2017b, ApJ, 834, 208
Schlickeiser, R. 1989, ApJ, 336, 243
Schlickeiser, R., & Yoon, P. H. 2015, PhPl, 22, 072108
Schreiner, C., Kilian, P., & Spanier, F. 2017, ApJ, 834, 161
Shalchi, A. 2009, Nonlinear Cosmic Ray Diffusion Theories (Berlin: Springer-

Verlag)
Shevchenko, V. I., Galinsky, V. L., & Ride, S. K. 2002, JGRA, 107, 1367
Sironi, L., & Spitkovsky, A. 2009a, ApJ, 698, 1523
Sironi, L., & Spitkovsky, A. 2009b, ApJL, 707, L92
Skilling, J. 1971, ApJ, 170, 265
Skilling, J. 1975, MNRAS, 172, 557
Socrates, A., Davis, S. W., & Ramirez-Ruiz, E. 2008, ApJ, 687, 202
Spitkovsky, A. 2005, in AIP Conf. Proc., Astrophysical Sources of High

Energy Particles and Radiation, ed. T. Bulik & G. Madejski (Melville, NY:
AIP), 345

Spitkovsky, A. 2008, ApJL, 673, L39
Stix, T. H. 1992, Waves in Plasmas (New York: AIP)
Stroman, T., Pohl, M., & Niemiec, J. 2009, ApJ, 706, 38
Sudan, R. N., & Ott, E. 1971, JGR, 76, 4463
Thomas, T., & Pfrommer, C. 2019, MNRAS, 485, 2977
Völk, H. J., & Cesarsky, C. J. 1982, ZNatA, 37, 809
Weidl, M. S., Winske, D., & Niemann, C. 2019a, ApJ, 872, 48
Weidl, M. S., Winske, D., & Niemann, C. 2019b, ApJ, 873, 57
Wentzel, D. G. 1969, ApJ, 156, 303
Wiener, J., Oh, S. P., & Guo, F. 2013a, MNRAS, 434, 2209
Wiener, J., Pfrommer, C., & Peng, O. S. 2017, MNRAS, 467, 906
Wiener, J., Zweibel, E. G., & Oh, S. P. 2013b, ApJ, 767, 87
Wiener, J., Zweibel, E. G., & Oh, S. P. 2018, MNRAS, 473, 3095
Wu, C. S., & Davidson, R. C. 1972, JGR, 77, 5399
Yan, H., & Lazarian, A. 2002, PhRvL, 89, 281102
Yan, H., & Lazarian, A. 2004, ApJ, 614, 757
Yan, H., & Lazarian, A. 2008, ApJ, 673, 942
Yoon, P. H., Schlickeiser, R., & Kolberg, U. 2014, PhPl, 21, 032109
Zenitani, S. 2015, PhPl, 22, 042116
Zweibel, E. G. 2013, PhPl, 20, 5501
Zweibel, E. G. 2017, PhPl, 24, 055402
Zweibel, E. G., & Everett, J. E. 2010, ApJ, 709, 1412
Zweibel, E. G., & Shull, J. M. 1982, ApJ, 259, 859

23

The Astrophysical Journal, 882:3 (23pp), 2019 September 1 Holcomb & Spitkovsky

https://orcid.org/0000-0002-2467-8962
https://orcid.org/0000-0002-2467-8962
https://orcid.org/0000-0002-2467-8962
https://orcid.org/0000-0002-2467-8962
https://orcid.org/0000-0002-2467-8962
https://orcid.org/0000-0002-2467-8962
https://orcid.org/0000-0002-2467-8962
https://orcid.org/0000-0002-2467-8962
https://ui.adsabs.harvard.edu/abs/1981A&A....98..161A/abstract
https://doi.org/10.1111/j.1365-2966.2008.14200.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.392.1591A/abstract
https://doi.org/10.1088/0004-637X/809/1/55
https://ui.adsabs.harvard.edu/abs/2015ApJ...809...55B/abstract
https://doi.org/10.1111/j.1365-2966.2004.08097.x
https://ui.adsabs.harvard.edu/abs/2004MNRAS.353..550B/abstract
https://doi.org/10.1111/j.1365-2966.2005.08774.x
https://ui.adsabs.harvard.edu/abs/2005MNRAS.358..181B/abstract
https://ui.adsabs.harvard.edu/abs/1991A&A...245...79B/abstract
https://doi.org/10.1063/1.1761932
https://ui.adsabs.harvard.edu/abs/1966PhFl....9.1773D/abstract
https://doi.org/10.1086/524766
https://ui.adsabs.harvard.edu/abs/2008ApJ...674..258E/abstract
https://doi.org/10.1086/382040
https://ui.adsabs.harvard.edu/abs/2004ApJ...604..671F/abstract
https://doi.org/10.1086/320651
https://ui.adsabs.harvard.edu/abs/2001ApJ...553..198F/abstract
https://doi.org/10.1029/97JA01920
https://ui.adsabs.harvard.edu/abs/1997JGR...10222365G/abstract
https://ui.adsabs.harvard.edu/abs/1997JGR...10222365G/abstract
https://doi.org/10.1093/mnras/sty1653
https://ui.adsabs.harvard.edu/abs/2018MNRAS.479.3042G/abstract
https://doi.org/10.3847/2041-8205/816/2/L19
https://ui.adsabs.harvard.edu/abs/2016ApJ...816L..19G/abstract
https://doi.org/10.1111/j.1365-2966.2007.12692.x
https://ui.adsabs.harvard.edu/abs/2008MNRAS.384..251G/abstract
https://doi.org/10.1103/PhysRevLett.27.1349
https://ui.adsabs.harvard.edu/abs/1971PhRvL..27.1349H/abstract
https://doi.org/10.1086/153397
https://ui.adsabs.harvard.edu/abs/1975ApJ...196..107I/abstract
https://doi.org/10.3847/1538-4357/aaa6ce
https://ui.adsabs.harvard.edu/abs/2018ApJ...854....5J/abstract
https://doi.org/10.1086/148912
https://ui.adsabs.harvard.edu/abs/1966ApJ...146..480J/abstract
https://doi.org/10.1086/149612
https://ui.adsabs.harvard.edu/abs/1968ApJ...152..997J/abstract
https://doi.org/10.1063/1.862233
https://ui.adsabs.harvard.edu/abs/1978PhFl...21..347J/abstract
https://doi.org/10.1086/149981
https://ui.adsabs.harvard.edu/abs/1969ApJ...156..445K/abstract
https://ui.adsabs.harvard.edu/abs/1971ApL.....8..189K/abstract
https://doi.org/10.1093/mnras/sty309
https://ui.adsabs.harvard.edu/abs/2018MNRAS.476.2779L/abstract
https://doi.org/10.1007/BF00648673
https://ui.adsabs.harvard.edu/abs/1973Ap&SS..24...31L/abstract
https://doi.org/10.1086/149045
https://ui.adsabs.harvard.edu/abs/1967ApJ...147..689L/abstract
https://doi.org/10.1086/170369
https://ui.adsabs.harvard.edu/abs/1991ApJ...377..392L/abstract
https://doi.org/10.3847/1538-4357/aaa88e
https://ui.adsabs.harvard.edu/abs/2018ApJ...854...89M/abstract
https://doi.org/10.1051/0004-6361/201321557
https://ui.adsabs.harvard.edu/abs/2013A&A...558A.133M/abstract
https://doi.org/10.1029/91GL01047
https://ui.adsabs.harvard.edu/abs/1991GeoRL..18.1063M/abstract
https://ui.adsabs.harvard.edu/abs/1991GeoRL..18.1063M/abstract
https://doi.org/10.1093/mnras/stw1592
https://ui.adsabs.harvard.edu/abs/2016MNRAS.461.3552N/abstract
https://doi.org/10.1086/590054
https://ui.adsabs.harvard.edu/abs/2008ApJ...684.1174N/abstract
https://ui.adsabs.harvard.edu/abs/2008ApJ...684.1174N/abstract
https://doi.org/10.1103/PhysRevLett.114.085003
https://ui.adsabs.harvard.edu/abs/2015PhRvL.114h5003P/abstract
https://doi.org/10.1088/2041-8205/801/1/L19
https://ui.adsabs.harvard.edu/abs/2015ApJ...801L..19P/abstract
https://doi.org/10.1093/mnras/stw1966
https://ui.adsabs.harvard.edu/abs/2016MNRAS.462.4227R/abstract
https://doi.org/10.1088/0004-637X/694/1/626
https://ui.adsabs.harvard.edu/abs/2009ApJ...694..626R/abstract
https://doi.org/10.1088/0004-637X/717/2/1054
https://ui.adsabs.harvard.edu/abs/2010ApJ...717.1054R/abstract
https://doi.org/10.3847/1538-4357/aa79f8
https://ui.adsabs.harvard.edu/abs/2017ApJ...844...13R/abstract
https://doi.org/10.3847/1538-4357/834/2/208
https://ui.adsabs.harvard.edu/abs/2017ApJ...834..208R/abstract
https://doi.org/10.1086/167009
https://ui.adsabs.harvard.edu/abs/1989ApJ...336..243S/abstract
https://doi.org/10.1063/1.4926828
https://ui.adsabs.harvard.edu/abs/2015PhPl...22g2108S/abstract
https://doi.org/10.3847/1538-4357/834/2/161
https://ui.adsabs.harvard.edu/abs/2017ApJ...834..161S/abstract
https://doi.org/10.1029/2001JA009208
https://ui.adsabs.harvard.edu/abs/2002JGRA..107.1367S/abstract
https://doi.org/10.1088/0004-637X/698/2/1523
https://ui.adsabs.harvard.edu/abs/2009ApJ...698.1523S/abstract
https://doi.org/10.1088/0004-637X/707/1/L92
https://ui.adsabs.harvard.edu/abs/2009ApJ...707L..92S/abstract
https://doi.org/10.1086/151210
https://ui.adsabs.harvard.edu/abs/1971ApJ...170..265S/abstract
https://doi.org/10.1093/mnras/172.3.557
https://ui.adsabs.harvard.edu/abs/1975MNRAS.172..557S/abstract
https://doi.org/10.1086/590046
https://ui.adsabs.harvard.edu/abs/2008ApJ...687..202S/abstract
https://ui.adsabs.harvard.edu/abs/2005AIPC..801..345S/abstract
https://doi.org/10.1086/527374
https://ui.adsabs.harvard.edu/abs/2008ApJ...673L..39S/abstract
https://doi.org/10.1088/0004-637X/706/1/38
https://ui.adsabs.harvard.edu/abs/2009ApJ...706...38S/abstract
https://doi.org/10.1029/JA076i019p04463
https://ui.adsabs.harvard.edu/abs/1971JGR....76.4463S/abstract
https://doi.org/10.1093/mnras/stz263
https://ui.adsabs.harvard.edu/abs/2019MNRAS.485.2977T/abstract
https://doi.org/10.1515/zna-1982-0814
https://ui.adsabs.harvard.edu/abs/1982ZNatA..37..809V/abstract
https://doi.org/10.3847/1538-4357/aafad0
https://ui.adsabs.harvard.edu/abs/2019ApJ...872...48W/abstract
https://doi.org/10.3847/1538-4357/ab0462
https://ui.adsabs.harvard.edu/abs/2019ApJ...873...57W/abstract
https://doi.org/10.1086/149965
https://ui.adsabs.harvard.edu/abs/1969ApJ...156..303W/abstract
https://doi.org/10.1093/mnras/stt1163
https://ui.adsabs.harvard.edu/abs/2013MNRAS.434.2209W/abstract
https://doi.org/10.1093/mnras/stx127
https://ui.adsabs.harvard.edu/abs/2017MNRAS.467..906W/abstract
https://doi.org/10.1088/0004-637X/767/1/87
https://ui.adsabs.harvard.edu/abs/2013ApJ...767...87W/abstract
https://doi.org/10.1093/mnras/stx2603
https://ui.adsabs.harvard.edu/abs/2018MNRAS.473.3095W/abstract
https://doi.org/10.1029/JA077i028p05399
https://ui.adsabs.harvard.edu/abs/1972JGR....77.5399W/abstract
https://doi.org/10.1103/PhysRevLett.89.281102
https://ui.adsabs.harvard.edu/abs/2002PhRvL..89B1102Y/abstract
https://doi.org/10.1086/423733
https://ui.adsabs.harvard.edu/abs/2004ApJ...614..757Y/abstract
https://doi.org/10.1086/524771
https://ui.adsabs.harvard.edu/abs/2008ApJ...673..942Y/abstract
https://doi.org/10.1063/1.4868232
https://ui.adsabs.harvard.edu/abs/2014PhPl...21c2109Y/abstract
https://doi.org/10.1063/1.4919383
https://ui.adsabs.harvard.edu/abs/2015PhPl...22d2116Z/abstract
https://doi.org/10.1063/1.4807033
https://ui.adsabs.harvard.edu/abs/2013PhPl...20E5501Z/abstract
https://doi.org/10.1063/1.4984017
https://ui.adsabs.harvard.edu/abs/2017PhPl...24e5402Z/abstract
https://doi.org/10.1088/0004-637X/709/2/1412
https://ui.adsabs.harvard.edu/abs/2010ApJ...709.1412Z/abstract
https://doi.org/10.1086/160220
https://ui.adsabs.harvard.edu/abs/1982ApJ...259..859Z/abstract

	1. Introduction
	2. Physics of CR Streaming Instabilities
	2.1. Resonant Scattering
	2.2. Distribution Functions and Instability
	2.3. The Quasi-linear Theory (QLT) and The 90 Degree Problem
	2.4. Saturation Amplitudes and Relaxation Timescales

	3. Numerical Methods
	4. Results
	4.1. Growth Rates
	4.2. Wave Spectra
	4.3. Particle Distributions
	4.4. Drift Velocities and Saturation

	5. Discussion
	6. Conclusions
	Appendix AOn Polarization, Helicity, and Gyroresonance
	Appendix BDispersion Relations
	B.1. Ring Distribution
	B.2. Power-law Distribution

	Appendix CEstimating the Resonant Relaxation Time
	References



