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assumed to obey the Frenkel-Flory-Rehner hypothesis, i.e., the elastic and mixing contri-
butions are additive. The elastic strain energy is not assumed to have a particular form but
is assumed only to be a function of a set of strain-invariants. A linearization procedure is
used to obtain the general expression for the Young’s modulus and Poisson’s ratio under an
arbitrary base state. The derived expression includes a characteristic term, which has the
ability to describe a transient state between the extreme states prescribed by two distinct
conditions. The verification is performed by estimating the shear modulus and consider-
ing the original Flory-Rehner framework. In addition, to show the usefulness, an extended

Finite strain Gent model is examined to elucidate the interactions between limiting chain extensibility
and the second strain-invariant.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The Frenkel-Flory-Rehner (FFR) hypothesis (Frenkel, 1940; Flory and Rehner, 1943) provides a basis for interpreting
the mechanical and swelling behavior of swollen elastomers, including polymeric gels such as hydrogels (Flory, 1953;
Treloar, 1975; Doi, 2013). The FFR hypothesis assumes that the free energy function of swollen elastomers consists of the
sum of two terms associated with polymer stretching (i.e., the elastic strain energy) and the mixing of polymer and solvent
molecules (i.e., the mixing energy). In the Flory-Rehner (FR) framework (Flory and Rehner, 1943), the elastic and mix-
ing contributions are derived from the Gaussian network theory (i.e., a Neo-Hookean (NH) model) and the Flory-Huggins
solution theory, respectively. The NH model can be replaced by a more sophisticated strain-energy function for rubber elas-
ticity. Chester and Anand (2010, 2011) and Li et al. (2014) introduced the Arruda-Boyce and Gent models, respectively, to
the FR framework, to consider the non-Gaussian chain effect, i.e., the effect of limiting chain extensibility (Okumura and
Chester, 2018). Further, Okumura et al. (2016, 2018) extended the NH model using two scaling exponents to reproduce two
independent effects of swelling on the Young's modulus and the osmotic pressure of the swollen elastomers. There is no
doubt that the strain-energy function in the FR framework will become more complex with experimental observations and
model refinements (e.g., Davidson and Goulbourne, 2013; Drozdov and Christiansen, 2013; Mao and Anand, 2018).
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Hong et al. (2009) demonstrated that the FR framework is systematically implemented in commercially available finite
element software because the free energy function takes an explicit form as a function of the deformation gradient and
the chemical potential of the external solvent. The boundary value problem of swollen elastomers is equivalent to that of a
compressible hyperelastic material. The elasticity tensor is calculated from the first and second derivatives of the free energy
function with respect to the strain-invariants (Holzapfel, 2000). For example, the finite element package Abaqus provides the
user-defined material subroutine UHYPER (Abaqus, 2014) in which only the equations of the derivatives have to be defined
(cf. Kang and Huang, 2010a). This subroutine allows researchers to perform finite element analyses of various problems
focused on the mechanical and swelling behavior of swollen elastomers (Hong et al., 2009; Liu et al., 2015; Okumura et al.,
2014, 2015). Solvent migration in a transient state can also be analyzed by assuming a diffusion model (Hong et al., 2008;
Bouklas et al., 2015; Toh et al., 2015). In contrast, if researchers intend to develop and investigate an extended version of
the FR framework, they will need to solve the boundary value problem via finite element analysis. However, that is a time
consuming procedure that requires special skills. Accordingly, a simple analytical procedure is needed for estimating and
understanding the constitutive behavior predicted by such extended model.

The effects of swelling on the Young’'s modulus E and Poisson’s ratio v of swollen elastomers were analyzed by a lin-
earization procedure (Boyce and Arruda, 2001; Bouklas and Huang, 2012). The NH model predicts E = Eq J~ 1/3, where E4
is the Young’s modulus of the dry state and J is the volume swelling ratio. This simple relation is derived when ] is pre-
served so that v = 1/2. When the change in J is allowed and the chemical potential of the external solvent is preserved,
the FR framework with the NH model predicts v = 0.2-0.5, which depends on a set of material parameters including the
Flory-Huggins interaction parameter x. As x decreases from 1 to 0 (where good solvents have a low x), v decreases from
0.5 to 0.2 (Bouklas and Huang, 2012). This is caused by an increase, or decrease, of the volume swelling ratio under uniaxial
tension or compression when the chemical potential is fixed (Flory, 1953; Treloar, 1975), leading to Young’s modulus being
expressed as E = (2/3)(1 + v) Eq J ~ 3. If the NH model is extended by two scaling exponents, v can also take a negative
value (Okumura et al., 2016, 2018). These studies assumed the base state to be stress-free and isotropically swollen (i.e., free
swelling). However, other base states are also critical and important for swollen elastomers undergoing large deformations.
For instance, when a gel column and a gel film bonded on a rigid substrate or sandwiched between rigid plates are analyzed
using nonlinear buckling theories, various base states should be considered (Liu et al., 2011). It is thus worthwhile develop-
ing a general expression for the linearized properties of swollen elastomers without prior determination of the strain-energy
function and the base state.

In this study, a general expression for the linearized properties of swollen elastomers undergoing large deformations is
derived and analyzed. Section 2 presents the fundamental relations obtained from the FR framework. No particular form
is considered to be the strain-energy function, which is only assumed only to be a function of a set of strain-invariants.
Section 3 reports on a linearization procedure that yields a matrix form of the linearized properties in terms of principal
stretches. In Section 4, a general expression of Young’s modulus and Poisson’s ratio is derived considering various typical
base states. The derived expression includes a characteristic term, which has the ability to describe a transient state between
the extreme states prescribed by two distinct conditions. The verification is performed by estimating the shear modulus
and considering the original FR framework. Section 5 is devoted to showing the usefulness of the derived expression. An
extended Gent model is examined as the strain-energy function to elucidate the interactions of limiting chain extensibility
and the second strain-invariant. Finally, conclusions are presented in Section 6.

2. Fundamental relations of swollen elastomers

The FFR hypothesis and FR framework (Frenkel, 1940; Flory and Rehner, 1943) assume that to describe the mechanical
and swelling behavior of swollen elastomers, the free energy function W is expressed as the sum of the elastic strain energy
We and the mixing energy Wy, i.e.,

W:WE(I15127.])+WH1(C)7 (1)

where I, I; and J are strain-invariants and C is the nominal concentration of solvent molecules. The employment of the
principal stretches A; (i = =1, 2, 3) leads to I; = A2 + A3 + A2, I, = 2212 + 122 + 1222 and ] = A, A, A,. Although the original
FR framework was developed based on the specific forms of W. and Wy, derived from the Gaussian network theory (i.e.,
the NH model) and the Flory-Huggins solution theory, respectively, the present study considers a different version of We
and assumes that We is a function of a set of strain-invariants, namely Iy, I, and J.

Considering the incompressibility of a network of a polymer and liquid solvent, the volume of swollen elastomers is
expressed as the sum of the volume of the dry network and that of the solvent (Flory, 1953; Treloar, 1975; Hong et al.,
2009). The volume swelling ratio of the swollen elastomers is equal to J and is expressed as

J=1+0C )

where v is the volume per solvent molecule. When a Lagrange multiplier is used in Eq. (1) to impose the constraint of
Eq. (2), then

W =We(l1,L,]) + Wn(C) + IT(1 + vC —]), (3)

where IT is the Lagrange multiplier and is referred to as the osmotic pressure caused by mixing in the present study
(Kang and Huang, 2010a; Li et al., 2014).
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It is remarked here that in the present study, the principal components are used (i.e., Iy = A2 + 12 + 1%, L =2)3 +
xgxg +A§)ﬁ and J = A,A,A4) and there is no need to consider shear components using the deformation gradient because
the Young’s modulus and Poisson’s ratio are estimated in a linearization procedure (see Sections 3 and 4). It is also re-
marked that although the present study considers the molecular incompressibility for simplicity, if the compressibility of
the elastomer is introduced in Eqs. (2) and (3), J is separated into elastic and swelling components, Je and Js (i.e., J] = Je Js),
so that the contribution of J. should be added as a volumetric term in W, (Chester and Anand, 2011).

Eq. (3) gives the nominal stress in each direction of the principal stretches (i = =1, 2, 3),
ow W, WOWe ] [ OWe .
S’_TM_ZA’ L +2h(h — A2) oA +)Ti 5 —T1), nosumoni, (4)

where 011/0A; = 2A;, 0l /0A; = 2A; (14 —kiZ) and 9dJ/0A; =J/A;. The nominal stress is transformed into the true stress t; as
t; = A;si/J (no sum on i). When the chemical potential, w, of the solvent in the swollen elastomer, Egs. (2) and (3) lead to

aw OWn
Mzaczu( 3 +l'[>. (5)

When p is balanced with the chemical potential of the external solvent, u = 0 expresses the equilibrium swelling state in
practice (Kang and Huang, 2010b; Okumura et al,, 2015). In contrast, in the transient state, the gradient of w drives solvent
migration (i.e., causes the changes in J and C). A diffusion model provides an evolution equation for J and C (e.g., Hong et al.,
2008; Bouklas et al.,, 2015; Toh et al., 2015). The evolution equation is used to update the values of J and C so that the value
of u is also estimated from Eq. (5). Because ] = 1 and C = 0 at u = —oo, the transient state is prescribed in the range
between —oco < i < 0.

In addition, Eq. (5) shows that J depends on w and I1, while Eq. (4) shows that IT depends on the combination of s; and
A;. When s3 = 0 is explicitly considered, Eqs. (4) and (5) give a specific relation of IT as follows:

2
po W 2A3{ OWe ., whens; = 0. (6)

In==- =
ol

S OWe] W
v T ) }*

+(h =23 ETA 5

In this specific case, since IT is expressed using We instead of u and Wy, and various base states can be prescribed using
s3 = 0, Eq. (6) is convenient and will be used in Section 4.5 and Appendix B.

3. Matrix form of the linearized properties

This section is devoted to deriving a matrix form of the linearized properties of swollen elastomers. The matrix form is
obtained by linearizing Eqs. (4) and (5). Bouklas and Huang (2012) used this approach to derive the linear elastic proper-
ties of swollen elastomers from the original FR framework. They assumed the base state to be stress-free and isotropically
swollen (i.e., s; = 0 and A; = J 13) and no change of the chemical potential from the base state (i.e., Ay = 0). Here Ay is
the small perturbation of the chemical potential from the base state. Okumura et al. (2016) assumed the same base state
but the effect of AJ = 0 as well as A = 0 was investigated. Here AJ is the small perturbation of the volume swelling ratio
(i.e., the third strain-invariant) from the base state. In the present study, these assumptions are not imposed in advance so
that a matrix form of the linearized properties is derived from an arbitrary base state. To this end, A(*) is defined as a small
perturbation of a variable (*), e.g., As; for s; and AA; for A;.

The present study focuses on the physical meaning of the two specific conditions, AJ] = 0 and Au = 0, because the
two conditions have the ability to estimate the transient effects cause by solvent migration in the linearization proce-
dure, although a diffusion model describes the transient effects as the resulting value of it (—oo < w < 0) in the base state
(Section 2). First, when a very short time is given for the small perturbations, diffusion needs time so that solvent migration
is prohibited (i.e., A] = 0). The condition, AJ = 0, predicts the instantaneous response and maintains the volume swelling
ratio, J, of the base state. In contrast, when a very sufficient time is given for the small perturbations, solvent migration is
allowed to achieve equilibrium swelling (i.e., A = 0). The condition, Ay = 0, predicts the equilibrium response and main-
tains the chemical potential, , of the base state. In the linearization procedure (this section and Section 4), the transient
effects are simply established by considering a transient state between the extreme states prescribed by the two distinct
conditions, AJ] = 0 and A = 0, and the physical meaning is very clear.

To derive the matrix form, Eq. (4) is first linearized using small perturbations, i.e.,

e oW o
! 81] 311 812

AW, A JAN [ OWe ] AW,
=50 )+ (5457 (57 =)+ £ (%) -an} 2

As; = 2A\

+2A,-A< ) +2{Aki(h = 3)7) + AL |
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where

e\ W 92W, 92W,

A( o, ) - or Ah+ e A+ gn Y
W\ 9*We 92W, 92W,

A( dl ) = anapht 12 AL+ Snar ™ (8)
W\ 92We 92W, 92W,

A( 3] )‘ ajon, At gha At A

Al = 2(}\.1 A)\.] + )\.zA)\.z + )\.3A)\.3)

AIZ = 2{([1 — )\,%)A,lA)\,] + (1] — )\,%))\,zA)\,z + (11 — )\,%))\.3A)\,3} . (9)

A =J(Ar /A1 + Aka /Ay + AR3/A3)

Eq. (5) is also linearized and gives
Ap Wy
v
Egs. (8)-(10) allow As; in Eq. (7) to be expressed as a linear function of AA; and Au because A; and w are the known
values at an arbitrary base state that is prescribed using Eqs. (4) and (5) (not a specific base state). Eqs. (7) and (10) are the

linearized relations between As;, Au, AIT and AA;.
When the small perturbations of the strain and stress in the principal directions are defined as

ATl = AJ. (10)

Ag; = % no sum oni, (11)
i
Ao; = )LiAsi, nosumoni, (12)

a matrix form of the linearized properties is consequently given as

Aoy S11 +Dq S12 531 Aégq AM 1
Aoyt = S22 + Dy So3 Agyp ———11%. (13)
Aos sym. S33+ D3 | | Ags v 1

The components of S; and D; are derived and shown in Appendix A. The 3 x 3 matrix of S;; also has a different expression
decomposed into 6 components, namely

6
Sij = Z k(")Si(F), (14)

n=1

where k(") (n =1, 2, 3,..., 6) are scalar values that consist of derivatives of W, and Wy, with respect to I;, I, and J, i.e.,

oW,  9*W,
kD = £ £ 15
]<812+81%>, (15)
4 32w,
@ _ = €
= JaraL,’ (16)
4 9%W,
k® = = e 17
J B (17)
92W,
4) _ €
k _28118], (18)
92w,
5) — €
k _231281’ (19)
0°We %W, oW,
(6) _ e m e _
k —1( e . 0 >+ e om 20)
while S.(f” (n=1,2,3,.., 6) are the 3 x 3 matrices that are formed as combinations of 4;, i.e.,
1 1
S =213 =S, (21)
s<2> A (L =22 + (h = AD)) = sj,”, (22)
s.<.3) = AN - A (h - A3 = sf% (23)
5<4> A2+ 22 =5 (24)

ji
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U =—0 u=0 0 s =5, 5=5=0 s =8,=5, 5,=0
b = = -7 -
/11 =J" i 12 4-1/2 i t/
5,=0 P AH=A4=J"4 A=JA
A =1
X3
L
%1
(a) Initial state (b) Free swelling (c) Uniaxial loading (d) Equibiaxial loading

(State 0) (State I) (State II)

Fig. 1. Schematic illustrations of typical base states; (a) the initial, undeformed dry state, (b) equilibrium free swelling (State 0), (c) equilibrium swelling
under uniaxial loading (State I) and (d) equilibrium swelling under equibiaxial loading (State II). For the individual base states, the relations for s, A and J
are obtained from Eqs. (4) and (5). The present study just considers ; = 0 for simplicity, but a specific negative value of i (1 < 0) can also be used for
the base states.

s,.(j5> = A2 (h = AD) + 221 — A2) :s;.f% (25)
SO =1=5P. (26)
In addition, D; is rewritten as (Appendix A)
202 [ oW, N AEEA
DiZT{a—I]+(I1—3)Vi)a_IZ —8—]+H- (27)

Eqgs. (21)-(26) indicate that Sl.(;) are symmetric matrices so that S; is also symmetric because of Eq. (14). It is noted that
if the small perturbation of the nominal or true stress, As; or At;, is used instead of Ao; to assemble Eq. (13), the resulting
matrix of S; can be asymmetric depending on the base state. The employment of Eq. (12) maintains the symmetry of S; at
an arbitrary base state. In addition, Egs. (9) and (11) give

A] =J(Ae1 + Agy + Ags), (28)

which can be used to rewrite the second term of the right hand side of Eq. (13), leading to

Ao Sn+D1 - ]vA—A’j Si2 — ]vA—A’j S31 — JUA—A’; Agq
Aoyt = So2 +Dy — ]vA_Ak; So3 — ]UAA% Agyt. (29)
Aos sym. S33+ D3 — ]UA_AI; Agy

Egs. (13) and (29) show that the matrix connecting Ao; and Ag; is symmetric regardless of the existence of AJ and Au.
This ensures that the Young's moduli and Poisson’s ratios, which will be derived in Section 4, obey the reciprocal relations
(e.g., Vannucci, 2018).

It is incidentally noted that AJ = 0 and Ax = 0 may be regarded as undrained and drained conditions in the poroe-
lasticity literature, but they are not identically the same because of the fundamental relations (see Section 2). Thus, those
expressions are not used in the present study.

4. General expression for Young’s modulus and Poisson’s ratio

Although Eq. (13) provides the three Young’'s moduli for loading in the three principal directions and the three distinct
Poisson’s ratios (owing to the reciprocal relations), the present study does not focus on deriving the whole set of them
(Vannucci, 2018) but focuses on considering the effects of solvent migration and base states.

Section 4.1 is devoted to the definition of the Young's modulus and Poisson’s ratio, which are derived from Eq. (13) and
depend on the two distinct conditions (AJ = 0 and A = 0). Sections 4.2 and 4.4 show the explicit expressions by con-
sidering three typical base states (Fig. 1), which are referred to as State 0 (equilibrium free swelling), State I (equilibrium
swelling under uniaxial loading) and State II (equilibrium swelling under equibiaxial loading). Here, a specific negative value
of i (1 < 0) can also be used for the base states. However, to avoid confusion, the value of w is just fixed as 4 = 0 and the
effects caused by AJ = 0 and Au = 0 are in particular investigated here. In Section 4.3, the shear modulus for State 0 is
also estimated using Eq. (13). In Section 4.5, the derived expressions are verified by considering the original FR framework.
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4.1. Definition of Young’s modulus and Poisson’s ratio

For uniaxial loading by the principal stress Ao, the Young’s modulus, E;, and Poisson’s ratios, v,; and vs;, are defined
as

. ey (30)

AO’z:AO’g:O
_ Aoy _ _Ag _
Ey =33t v = -3, Vs = — 52

Eq. (30) indicates that uniaxial loading is given to the small perturbations, Ao; and Ag; (not s; and A;). It is thus noted
that vy; and v3; should be distinct from the Poisson function calculated from A; (see the definition in Beatty and Stal-
naker (1986)). Eq. (30) transforms Eq. (13) into

1 NP S31 E, Si1 + Dy Ap 1
0 S»n+D; Sa3 Vo1 ¢ = S1i2 ~ UAe (31)
0 S23 S334+ D3| | v S31 H

Since the base state is prescribed by s;, A; and u, S; and D; are known so that Eq. (31) can be solved with an unknown term
of Au/(vAegq).

In Eq. (31), the effects caused by the base state are included in S;; and D; (see Sections 4.2 and 4.4), while Au/(vAegy) is
considered to take a specific value related with an transient state between the extreme states described by the two distinct
conditions for the small perturbations (see Section 3), i.e.,

Apu=0
{AJZO <~ 1—1)2]—\)31:0’ (32)

where A = 0 (i.e, Au/(vAgq) = 0) is the condition that solvent migration is allowed (AJ # 0) to maintain the chemical
potential, i, of the base state, while AJ] = 0 is the condition that solvent migration is prohibited to maintain the volume
swelling ratio, J, of the base state. Here, 1 — vy; — v3;= 0 is obtained from Egs. (28) and (30). Egs. (7) and (10) imply that
when AJ = 0, Au can take on a specific non-zero value (Au # 0). This indicates that the value of Au (ie., Apu/(vAgq)) de-
scribes a transient state and can take on a value in a range between 0 and the specific value related to AJ = 0 (Sections 4.2
and 4.4). The swelling effects are established by considering the two distinct conditions of Eq. (32).

In fact, swollen elastomers need sufficient time to reach Au = 0 because the change in A can also be assumed to obey
a diffusion model (Hong et al., 2008; Bouklas et al., 2015; Toh et al., 2015). Thus, Au is estimated as a result of the time-
dependent behavior of solvent migration in swollen elastomers, while Ae; can also be time-dependent if the elastomers
are assumed to be viscoelastic. The variation in the term of Au/(vAgq) is found to be determined by the ratio of the two
different time-dependent behaviors. However, the present study does not directly consider these time-dependent behaviors
and just evaluates the swelling effects using the two distinct conditions given in Eq. (32).

4.2. Explicit expressions for State 0

For State O (Fig. 1b), the base state of equilibrium free swelling is expressed as
5125225320, )\,]:)\,2:)\3 =_]1/3, M:O, State 0, (33)

which falls into the base state proposed by Bouklas and Huang (2012); they assumed the base state to be stress-free (s; = 0)

and isotropically swollen (A; = J 1/3), i.e., free swelling with a non-zero value of y. Eq. (33) is regarded as the most standard

base state since this state is commonly adopted in experimental measurements (McKenna et al., 1989; Bitoh et al., 2011).
Substituting Eq. (33) into Eqs. (21)-(27), it is found that all the components in S; and D; take identical values, i.e.,

Si=S (i=123,j=12,3)
Di=Dy (i=1,2.3)

From Egs. (31) and (34), the Young’s modulus, Ey (= E; for State 0) and the Poisson’s ratio, v (=vy; = v3; for State 0), are

derived as follows
Ap
So— vAg;

Vo = —p,is, , for State 0. (35)
EO = Do(l + 1)0)

The two conditions of Eq. (32), Au = 0 and AJ = 0, which estimate the effects caused by solvent migration, provide

, for State 0. (34)

570_1(1_A) with Au=0

Do+25 — 2 Dot25, )

Vo = { Dot25 0+250 A - , for State 0. (36)
{; with AJ=0 — & ==

It is thus found that Ey and vy have very simple expressions consisting of Sy and Dy (Dg > 0), and that Au in a transient
state caused by solvent migration can take on a value in the range from —(Dg/2)vAeg; to 0 under tension (Ae; > 0) or from
0 to —(Dg/2)vAgq under compression (Ae; < 0). It is further found that the transient effects on Eg are introduced only via
vo (Eq. (35)).
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4.3. Estimation of shear modulus

In this subsection, pure shear is considered to estimate the shear modulus of swollen elastomers. When Ao = —Ao, =
Aops and Agy = —Aeg; = Agps are considered as pure shear, Eq. (13) is rewritten as

AO‘DS So + Do So So Agps A/»L 1
—Aoys b = So+Do  So |{-Agt-=EI1E (37)
0 sym. So+ Do Aegs LA B

It is noted here that to simplify discussion, State 0 (equilibrium free swelling) is just used as the base state (i.e., Eq. (34)).
Eq. (37) gives

1 Ap 1 Ap
_50+D0 v _So v’
where Sy and D,y are commonly non-zero values so that this identical equation (Eq. (38)) results in A = 0. Further. AJ =0
is derived from Eq. (28) because of Aez = 0. It is thus found that pure shear needs both of Ax = 0 and AJ = 0 (not
Ap = 0 or AJ] = 0 as the two distinct states). Consequently, when the shear modulus is defined as Gy =Ao ps/(2A¢gps),
Eq. (37) gives

Aaps DO
= = —. 39

2Aeps 2 (39)
This means that the shear modulus does not depend on the swelling process because AJ = 0 needs no solvent migration
and the combination of Aoy = —Aoy = Aops leads to no change in Au in total (ie., Ap = 0).

When Dy is eliminated using Ey and vg (i.e., using Eq. (35)), a very popular relation is obtained as

- 2(1 + l)()) ’
Eq. (40) is identical with the relation for isotropic linear elasticity. Eq. (40) was first confirmed by Bouklas and Huang (2012).
However, their verification was restricted to using both of the original FR framework and a specific condition of Ay = 0. In

contrast, the present study demonstrated that Eq. (40) is always established for State 0 regardless of considering Ay = 0 or
AJ = 0 as well as regardless of the particular form of the strain-energy function.

Ags (38)

Go

Go (40)

4.4. Explicit expressions for States I and II

In the same way with State O (Section 4.2), the different base states (States I and II) are used to derive the correspond-
ing Young’s moduli and Poisson’s ratios. State I (Fig. 1c), the base state of equilibrium swelling under uniaxial loading, is
expressed as

$1=S, S =83 = 0, )\,1 =A, )\,2 = )\.3 =]1/2)\,71/2, M= 0, Statel, (41)

where the directions of Aoy and s; are identical. By substituting Eq. (41) into Eqs. (21)~(27), S; and D; are found to have
the following relations for State I:

St =35

Sz2 =S33 =523 =Sy

512 = 531 = S]c s for State . (42)
D1 =Dy,

Dy =D; =Dy,

The Young’s modulus, E; (= E; for State I), and the Poisson’s ratio, v; (=v,; = v3; for State I), are derived from Egs. (31) and
(42), and are expressed in terms of Sy, Sy, Sic, Dia and Dy, as follows:

A
D= Sic — UAIé]
'~ Dy + 25 , for State 1. (43)

Ei = Dia + Dip Vi + Sia = Sip + (Sip — Sic) (1 + 2vy)
The two conditions of Eq. (32), Au = 0 and AJ = 0, provide

%:%O_W), with A =0
v =1 Dw + 251 b K/,LS"J b . for Statel. (44)
g Withaj=0 — 70— 5+~ Sib +Sic

It is worthwhile to show that when A = J13 and s = 0 in Eq. (41), the base state for State I is reduced to that for State 0
Eq. (33)). This reduction gives S;; = Sy, = Sic = Sp and Dy, = Dy, = Dy, so that E; and v, for State 1 (Egs. (43) and ((44)) are
properly reduced to Ey and vg for State 0 Egs. (35) and (36), respectively. This implies that when A is in a transient state,
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it can take a value in the range from (—Dy,/2 — Sy, + Sic)uAeq to 0 if Ae; > 0 or from O to (—Dyp/2 — Sy + Sic)vAeq if
Ae; < 0. Additionally, State I can also express a different base state as well as equilibrium swelling under uniaxial loading.
For instance, when the value of A in Eq. (41) is fixed as a constant, the reduced base state expresses equilibrium swelling of
an elastomer film sandwiched between rigid plates. Eqs. (43) and (44) are available if the base state to be considered falls
into State I.

Finally, for State II (Fig. 1d), the following base state is considered,

S1=5=5,53=0, A=Ay =A, A3 =JA7%, u =0, Statell,
0, A=Ay =A, A3 =JA72 0, Statell (45)

which expresses equilibrium swelling under equibiaxial loading. Further, if A is fixed as a constant, the reduced base state
expresses equilibrium swelling of an elastomer film bonded onto a rigid substrate. Eq. (45) gives the relations of S;; and D;
as

St =52=52=5n

S33 = S

So3 = S31 = Sii¢ s for StateIl. (46)
D1 =D; =Dya

D3 = Dy

If Eq. (46) is substituted into Eq. (31), the explicit relations can be obtained for the Young’s modulus, Ej; (=E; for State II),
and the two distinct Poisson’s ratios, vy, and vz (= vy and = vs3; for State II, respectively). The derived relations become
more complex than those for States 0 and I Eqs. (35) and ((36) for State 0 and Eqs. (43) and (44) for State I). In fact, as the
most general state, Eq. (31) can be directly estimated without reductions such as States 0, I and II (ref. anisotropic elasticity,
see Vannucci (2018)). The equations are not explicitly shown here although they can be calculated in a similar way as for
the analysis of States 0 and 1. From now on, we use States 0 and I to focus on demonstrating the usefulness of the derived
general expression and to study the effects of solvent migration and the base state on the Young’s modulus and Poisson’s
ratio of swollen elastomers (see Section 5).

4.5. Verification using the original FR framework
It is shown here that if the free energy function consists of simple forms of W. and Wy, explicit relations for the Young’s

modulus and Poisson’s ratio are obtained from the general expressions derived in Sections 4.2-4.4. The original FR frame-
work (Flory and Rehner, 1943) is employed to determine the forms of We and Wy, i.e.,

We = ‘ef =ref (I, — 3 — 2logJ), the NH model, (47)
kT 1 X
Wo =~ {vciog (14 5 ) + 775 | (48)

which are derived from the Gaussian network theory and the Flory-Huggins solution theory, respectively. Here, E,f is the
reference Young’s modulus of the elastomers and x is the Flory-Huggins interaction parameter. For the NH model, E o is
simply regarded as the Young’s modulus of the undeformed, unswollen state at A = A, = A3 = 1.

Eq. (47) shows that the NH model includes terms that are independent with respect to I; and J. Most of the derivatives
of We become zero, leading to kM = ki2) = k&) = k4 = k(> = 0 and k® # 0 for Eqs. (15)-(20). It is found that S; and D;
Egs. (14) and (27) have remarkably simple relations, i.e.,

{S,J = ;;f{1 -+ 2 (A - )} (=1,2,3)= 1.2.3)

SEO2423) (i=1,2.3) (49)

To derive Egs. (49), (6) can be used to replace IT with terms based on W, because Eq. (6) is available in the case of s3 = 0,
i.e,, for States O, I and IL
When equilibrium free swelling is considered to be State 0, Eqs. (35), (36) and (40) give the explicit expressions using

Eq. (49), i.e

1L KT (1 2x)) 7! i -
vo = | 2 {1+ 25 (5 IA} ’ ‘:‘”th AU=0 1 State 0, (50)
1, w1th AJ=0 - 3 =-3Eq]"
2 ~1/3
= 3 (1+vo)Err] ', for StateO, (51)
1 -1/3
Go = gErer) ', for State0. (52)

Eq. (50) with A = 0 is identical to the one derived by Bouklas and Huang (2012) while when vy = 1/2 with AJ = 0,
Eg = Eef = '3 of Eq. (51) is the well-known relation (Boyce and Arruda, 2001). Further, Eq. (50) shows that vg in a transient
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state caused by solvent migration can be estimated by taking the value of Au/(vAeg;) between —(1/3) E,g ~ 1 and 0 in
Eqg. (35). In addition, as discussed in Section 4.3, Gq is independent of Ax = 0 and AJ = 0.

For State I (i.e., equilibrium swelling under uniaxial loading), the explicit expressions of Eqs. (43) and (44) are also simply
derived using Eq. (49), i.e.,

1_pt 3k (1 2x )17 - -

w={i " {1+ 25 (4 ]A/t} - W AR=0 for State |, (53)
5. with AJI=0 — TAE = —3ErerA

B = gt 32 4 (1420027}, for State I (54)

where A is the stretch in the loading direction Fig. 1c). It may be convenient to replace A with J'3 o« (ie, A = J13 «)
because A is separated into two different contributions, namely J'/3 owing to swelling and & owing to uniaxial loading. It is
obvious that E; and v; (Eqs. (53) and (54)) reduce to E and vg Egs. (50) and (51) when o = 1 (i.e., A = J 1),

The general expressions developed in Sections 4.2-4.4 were verified here using the original FR framework. Eqs. (50)-(54)
indicate that the explicit expressions are remarkably simple because in the original FR framework, most of the derivatives
of We become zero. This implies that when a more complex form of W, is defined as a nonlinear function of Iy, I and J,
it is not realistic to show the explicit expressions. It is, however, without a doubt that the general expressions play a key
role in calculating and estimating the linearized properties of swollen elastomers that depend on solvent migration and
the base state. For instance, Horgan (2015) reviewed numerous developments of the Gent model, which was extended by
introducing the I, term to well reproduce the responses of soft biomaterials (Puglisi and Saccomandi, 2016; Destrade et al.,
2017). In Section 5, as analytical examples, an extended Gent model is examined to elucidate the interactions of limiting
chain extensibility and the I, term.

5. Analytical examples
5.1. An extended Gent model with the I, term

To demonstrate the usefulness of the general expression for the linearized properties of swollen elastomers (Section 4),
instead of the NH model, we employ the Gent model extended by the I, term, which is expressed as (Horgan, 2015;
Puglisi and Saccomandi, 2016; Destrade et al., 2017)

W = L= OFrer {—]m log (1 _he 3) -2 log]} 4 Erer log (Il) (55)
6 Jm 2 3

Here, J; is a material constant to describe the limiting chain extensibility (Horgan and Saccomandi, 2002; Okumura and
Chester, 2018), and ¢ = 0-1 is the ratio of the contributions of the original Gent model and the added I, term. If ¢ = 0,
Eq. (55) is reduced to the original Gent model, while as c increases the contribution of the I, term increases. The necessity
of the I, term in the elastic strain energy has been historically discussed and is not discussed here (e.g., Treloar, 1975). It
is noted that Eq. (55) has the ability to well reproduce the responses of soft biomaterials (Puglisi and Saccomandi, 2016;
Destrade et al.,, 2017). The present study investigates the effect of a simple logarithmic version as the I, term.

The extended Gent model (Eq. (55)) is a nonlinear function that includes all the independent terms with respect to the
three strain-invariants. Eqs. (15)-(20) indicate k@) = k4 = k(5) = 0 but k(1)  k3) » k(6) - 0. The specific forms of k(") and
D; (Eq. (27)) are shown in Appendix B. The calculations using k™) and D; allow us to estimate the Young’s modulus and
Poisson’s ratio including the effects of solvent migration and the base state (Section 4). The interactions of limiting chain
extensibility and the I, term (i.e., Jm and I, via c) are also investigated.

In Sections 5.2 and 5.3, States 0 and I are analyzed as analytical examples. For simplicity, the non-dimensional Young’s
modulus, E.s v [(3kT) (Bouklas and Huang, 2012; Okumura et al., 2016), is fixed as E.s v [(3kT) = 0.0001, whereas Jm, ¢
and y are parameterized as J;m = 10, 100 and oo, ¢ = 0, 1/3, 2/3 and 0.95, and x = 0-1.2. In the case of J;, = oo, the
original Gent model is reduced to the NH model. In that case Eq. (55) is reduced to the NH model extended by the I, term.
Moreover, if ¢ = 0 is additionally imposed, Eq. (55) is just the NH model (Eq. (47)).

5.2. Case of State 0 (equilibrium free swelling)

When the base state is prescribed by State 0, the volume swelling ratio, J, for equilibrium free swelling (s; = 0 and @ = 0)
is calculated from Eqs. (4) and (5). Fig. 2 plots J as a function of the interaction parameter, x. Fig. 2 shows the responses for
the different values of J;, = 10, 100 and oo, while in the individual panels the effect of the I, term is parameterized by ¢ = 0,
1/3, 2/3 and 0.95. According to Okumura and Chester (2018), the ultimate value of ] is predicted to be J; = (Jm/3 + 1)3/2;
the values of ] are also plotted in the figure’s panels.

Fig. 2 shows that if x > 0.5 (i.e,, for a poor solvent), the effects of limiting chain extensibility and the I, term are
negligible. This tendency is characteristic of the FR framework and the relatively small value of E..s v [(3kT) (Okumura et al.,
2016). Remarkably, the effect appears for x < 0.5 (i.e., for a good solvent). Fig. 2a shows that as the contribution of the I,
term increases (i.e., ¢ increases), J increases. The I, term is found to decrease the repulsive force against swelling. Next,
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Fig. 2. Volume swelling ratio J at equilibrium free swelling (State 0) as a function of the interaction parameter x for E.; v /(3kT)=0.0001 with (a) Jm = oo,
(b) Jm =100 and (c) Jm =10, which are obtained from the fundamental equations of Eqs. (4) and (5). To investigate the effects of limiting chain extensibility
and the I, term in the extended Gent model, Ji, ¢ and x are parameterized as J, =10, 100 and oo, ¢ = 0, 1/3, 2/3 and 0.95, and x = 0-1.2. The ultimate
value of J is given as Jy; = (Jm | 3 + 1)*/2, which depends only on J,, and is independent of the additive I, term (Okumura and Chester, 2018).
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Fig. 3. Poisson’s ratio v, at equilibrium free swelling (State 0) as a function of the interaction parameter y for E. v [(3kT)=0.0001 with (a) Jm = oo, (b)
Jm =100 and (c) Jm =10, which are predicted from the general expression of Eq. (36). The swelling effects caused by solvent migration gradually vanish as
Jm decreases from oo to 10, i.e., as J approaches ;. The increase of ¢ accelerates this tendency by causing J to increase.

Figs. 2b,c show that the decrease of Ji, results in the decrease of J,;. As a result, the effect of the I, term is gradually
reduced as J, decreases. Fig. 2c shows that the effect of the I, term is essentially negligible because the small value of |,
does not allow a value of J that is larger than J; for x < 0.5.

Figs. 3 and 4 show the Poisson’s ratio, v, and the Young’s modulus, Ey, for equilibrium free swelling, respectively, that
are predicted from the general expressions developed in Section 4 (Egs. (35) and (36)). As described below, these figures
successfully elucidate the characteristic behaviors of swollen elastomers that cannot be discerned from Fig. 2.

First, Fig. 3a shows that the contribution of the I, term is negligible for vy in the case of |, = oo, i.e, vy = 0.5 for
AJ = 0 and vy ~ 0.25 for A = 0, regardless of the change in c. This result indicates that under a transient state of solvent
migration, vy can take on a value from 0.25 to 0.5. It is interesting to compare Fig. 3a-c because the effect of limiting chain
extensibility, which appears for x < 0.5 in Fig. 3b,c, increases vy with A = 0 from 0.25 to 0.5. The remarkable increases
occur as J approaches the ultimate value of J; (see Fig. 2). Consequently, the range of vy in a transient state of solvent



D. Okumura, H. Kawabata and S.A. Chester/Journal of the Mechanics and Physics of Solids 135 (2020) 103805 1

4 # 4 4
§ State 0, J, = - State 0, J,,= 100 i i State 0, J_=10
® LF 5 L s LR
SRS S RGN E e AJ=0
> T X C
o o b N — Mu=0
ERN| 2 0l N\ 2 [e0
3 s = =1/3
=t L S L 1) =} | =
g 0L g 0lp =173 | g 0L F =2
o of w  of =213 wn  of 095
I o L =095 oL
5 t g5 1 g
o 2F o 2F O 2F P
. - . —Ju =9
...... AJ=0 e AJ=0
- o1 F 0.01 F
0.01F — i 0.0LF — =0 \:
6F 6F 6F
AL L 1 4L | L i L L
1 10 100 1000 1 10 100 1000 1 10 100 1000
(a) Volume swelling ratio J (b)  Volume swelling ratio J (c) Volume swelling ratio J

Fig. 4. Young's modulus E, at equilibrium free swelling (State 0) as a function of the volume swelling ratio J for Ef v [(3kT)=0.0001 with (a) Jm = oo, (b)
Jm =100 and (c) Jm =10, which are predicted from the general expression of Eqs. (35) and (36). As x decreases from 1.2 to 0, J increases monotonically.
The I, term contributes to the additional decrease of Ey; meanwhile, limiting chain extensibility causes this dramatic increase of E, as J approaches Jy. In
contrast, the swelling effects caused by solvent migration are comparatively small.

migration becomes smaller as the contribution of the I, term becomes larger (i.e., ¢ increases from 0 to 1). Fig. 3c shows
that when J comes sufficiently close to J, vo ~ 0.5 regardless of the values of A and AJ. This surprising behavior can
be understood by considering that the extreme situation of | ~ ], does not allow an additional increase of J even with
Ap = 0. It is found that the swelling effects caused by solvent migration gradually vanish as J approaches J ;.

Fig. 4 shows the Young’s modulus, Ey, as a function of the volume swelling ratio, J. In these figures, J increases from
about 1 to a larger value because the value of x is parameterized from 1.2 to 0. Fig. 4a demonstrates that the combination
of Jm = oo, ¢ = 0 and AJ = =0 results in Ey = E, ~ '3 (Eqs. (50) and (51)). The increase of the contribution of the I,
term is found to accelerate the decrease of Ey as J increases. In contrast, the comparison of the responses with Ay = 0
and AJ = 0 shows that the swelling effects caused by solvent migration are comparatively smaller. The data in Fig. 4b,c are
focused on understanding the interactions between J,, and c. The approach of ] to J; causes an increase of E, to infinity
because of the effect of limiting chain extensibility (Okumura and Chester, 2018). It is found that although the I, term
contributes to the additional decrease of Ey as J increases, limiting chain extensibility is what causes the dramatic increase
of Ey as J approaches the ultimate value. The individual profiles depicted in Fig. 4 are caused by a combination of the two
effects owing to J,, and c.

5.3. Case of State I (equilibrium swelling under uniaxial loading)

Fig. 5 shows the stress, s, and volume swelling ratio, J, as a function of the stretch, A, at equilibrium swelling under
uniaxial loading (State I), which are calculated from Eqs. (4) and (5). Okumura and Chester (2018) reported that limit-
ing chain extensibility contributes to providing the limit values of the stretch and volume swelling ratio under uniaxial
loading, which are plotted as A, and Jj;,,, respectively (Fig. 5b,d). These values are given as Ay, = (Jm + 3)'/2 and Jji,
=(A [2)m + 3 — A2), which depend only on Ji, and are independent of the additive I, term because of the form of Eq. (55).
Additionally, in Fig. 5a,b, the responses with J = 1 (i.e.,, u = —o0o) are also plotted for comparison.

Fig. 5a,c shows that for J; = oo, the stress and volume swelling ratio increase monotonically as A increases. The increase
of ¢ has the tendency to decrease s and increase J. The decrease in s is the reason that the I, term is used to well reproduce
the experimentally measured stress-stretch curves of elastomers (Puglisi and Saccomandi, 2016; Destrade et al., 2017), while
the increase in J latter is the swelling contribution resulting from the I, term (see Fig. 2 for State 0). Fig. 5b,d shows the
interactions between c and J, i.e., the I term and limiting chain extensibility. It is found that the increase of ¢ allows J
to approach J;;;, (Fig. 5d) and that regardless of the value of c, s increases steeply with an infinitely large gradient as A
approaches to Ay, (Fig. 5¢). In this singular situation, J decreases again to 1 (Fig. 5d), i.e., deswelling occurs even under
tension (Okumura and Chester, 2018). If further discussions are to be provided via the analysis of the Young’s modulus and
Poisson’s ratio, it is worthwhile understanding the characteristic behavior of swollen elastomers predicted by the extended
Gent model.

Fig. 6a,b shows the Poisson ratio, vj, as a function of the stretch, A, as predicted from the general expressions (Eqs. (43)
and (44)). For J;, = oo, Fig. 6a indicates that v; with Au = 0 is not sensitive to changes of A under tension and compression
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Fig. 5. Stress s and volume swelling ratio J as a function of stretch A at equilibrium swelling under uniaxial loading (State I) for E.. v [(3kT) = 0.0001 and
x =0.3, which are obtained from the fundamental equations of Eqgs. (4) and (5). (a) s—A for Jm = oo, (b) s—A for J; = 100, (c) J-A for Jm = oo, and (d)
J— for J;, =100. According to Okumura and Chester (2018), the limit values are given as Ajm = (Jm + 3)? and Jiim = (A /2)UJm + 3 — A2), which depend
only on J, and are independent of the additive I, term. When A approaches A;;,,, deswelling can occur even under tension. In Fig. 5a,b, the response with
the constant ] = 1 (i.e.,, 4 = — o00) is also plotted for comparison.

and that the effect of solvent migration has a monotonic effect on the change of v; in the range from 0.25-0.5. In contrast,
a finite value of Jp, i.e., the effect of limiting chain extensibility, causes an unbelievable change in Poisson’s ratio (Fig. 6b).
Although at s = 0, v; has a finite value between 0.25 and 0.5 (also see Fig. 3b), the value of v; with Ay = 0 increases
dramatically beyond 1 when A approaches Aj;;, under tension. Further, under compression, the value of v; decreases to 0 as
A decreases to a limit value under compression (the value is almost 0). Fig. 6a,b demonstrates that when the value of Jy, is
finite, the value of v; characteristically varies significantly as a result of the interactions of solvent migration and limiting
chain extensibility. In this case, the contribution of the I, term is found to be qualitative in a secondary manner.

By focusing on the variations in the value of v; (Fig. 6b), the mechanism can be explained as a specific contribu-
tion caused by deswelling, as described below. First, when A approaches the limit values under tension and compression,
deswelling occurs with A = 0 (Fig. 5d). The volume swelling ratio J attempts to decrease to 1, i.e., approaches the per-
fectly dry state (Okumura and Chester, 2018). In an extreme state under tension, a further tensile stretch induces additional
deswelling, i.e., ] gradually approaches 1 (but not below 1) so that the value of v; is above 0.5 and steadily increases with
an infinite gradient. Conversely, deswelling induces v; to gradually decrease to 0 under compression.

Moreover, Fig. 6¢,d show the Young’s modulus, Ej, as a function of the stretch, A. The value of E; decreases as c increases,
which is caused by the contribution of the I, term. In contrast, the contribution caused by limiting chain extensibility shows
that the degree of the increase of Ej is accelerated as A increases under tension, or decreases under compression. This is due
to the finite value of Ji,, which yields the limit values of A under tension and compression. When the linearized properties of
swollen elastomers are predicted for the extended FR framework, the general expression developed in Section 4 successfully
provides the individual values that include the interactions of solvent migration and the nonlinearity of the elastic free
energy.
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Fig. 6. Poisson’s ratio v; and Young's modulus E; as a function of stretch A at equilibrium swelling under uniaxial loading (State I) for E..f v [(3kT) = 0.0001
and x = 0.3, as predicted from the general expression of Eqgs. (43) and (44). (a) vi—A for J, = oo, (b) vi—A for J;m = 100, (c) E;—A for Jm = oo, and (d)
E;—A for Jm = 100. The predicted values are highly variable and are a result of the interactions of solvent migration, limiting chain extensibility and the I,
term effect, i.e., the combination of AJ, Au, Jm and c.

6. Conclusions

In the present study, we developed the general expression for the linearized properties of swollen elastomers undergoing
large deformations. The FFR hypothesis and FR framework were assumed to describe the free energy function of swollen
elastomers. However, no particular form was assumed to be the strain-energy function, which was instead assumed only to
be a function of a set of strain-invariants. A linearization procedure was used to obtain the general expression of the Young’s
modulus and Poisson’s ratio from an arbitrary base state. A characteristic term in the derived expression has the ability to
describe a transient state between the extreme conditions prescribed by the two distinct conditions, A = 0 and Au = 0.
The verification was performed by estimating the shear modulus and considering the original Flory-Rehner framework. In
addition, to show the usefulness, an extended Gent model was examined to elucidate the interactions between limiting
chain extensibility and the second strain-invariant with the swelling effects caused by solvent migration.

The developed analytical procedure should provide a simple but comprehensive understanding of the response of swollen
elastomers. Although the present study focused on one of the extended Gent models as an example, the general expression
developed here allows more advanced strain-energy functions to be systematically analyzed. Recently, Horgan (2015) re-
viewed the numerous developments, extensions and widespread applications not only in rubber elasticity but also in the
area of biomechanics of soft biomaterials. As reported by Destrade et al. (2009), soft biomaterials, such as soft tissues, arter-
ies, dura matters, and muscles, need an extremely small value of J,. The range for soft biomaterials is about 0.1 < J;, < 10,
while the range for rubbers is 20 < J;, < 200 (Destrade et al., 2009). This discrepancy may be resolved as a characteristic
response of swollen elastomers because soft biomaterials are often modeled as swollen elastomers. The effects and interac-
tions discussed in the present study and in Okumura and Chester (2018) are expected to play a key role in demonstrating
the mechanics of soft biomaterials.
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Finally, readers are reminded that the linearized properties derived here are only valid for small perturbations applied to
a given base state and not for large deformations from the dry state. We envision this would be useful for experimentalists
as well as those interested in instabilities in swollen elastomers where the linearized properties are essential (e.g., Liu et al.,
2011). It must be very important to compare the predictions with experiments. The comparison is not simple because the
swelling process depends on many external stimuli (e.g., Zheng et al., 2018). Although the present study has just focused on
developing a simple analytical procedure to estimate and understand the constitutive behavior based on the FFR hypothesis,
there is no doubt that developments of the experimental procedures for measurements are also needed to quantitatively
compare and validate the developed theories, such as the extended Gent model.
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Appendix A. Derivation of Eq. (13)
When the small perturbations of the strain and stress are defined in Eqs. (11) and (12), i.e.,, Ag; = AA; [A; and Ao = (X

() As; (no sum on i), the matrix form between Ac; and Ag; is derived as Eq. (13). In Eq. (13), the components of S; and
D; are expressed as

Sij = NigHy Ly + Mj;
) Al
{Di = Nighy (A1)
where
(A4 A2 1
Nj= |22 22 1] (A2)
A% A3 1
B -2 *We -2 9*We -2 9*We
J L9k ] ae J 9hL9]
2( W | PWe W, 2(1 PWe |, W 21 W | W
Hij = 7( e+ ap Th 311312> 7(11 e+ 311312) 7(11 ana T W) , (A3)
2W, 2We W, 1 (oW,
i a7, aL,) G+ 7 (% - 1)
[ 2A2 212 222
Lj=| 2023 —22) 222 —A2) 2223, —A2) |. (A4)
L J J J
1 1 1
2w,
M;; =13872m 1 1 1], (A.5)
P11 o1
_6 W,
7oL,
2 (oW W
hi=1q7 o +har ) : (A.6)
W
Although Eq. (A.1) does not clearly show the symmetry of S; = Sj;, a different expression for S; is shown in Eq. (14) using
kM and S (n = =1, 2, 3,..., 6) (Eqs. (15)-(26)). Since the individual matrices of S;(") are symmetric, Sj; is also symmetric.

This symmetry yields the reciprocal relations, which reduce the number of distinct Poisson’s ratios from six to only three
(e.g., Vannucci, 2018). Thus, Egs. (13) and (29) have the ability to provide the three Young’s moduli and three Poisson’s ratios
depending on an arbitrary base state.

Appendix B. Derivation of k(™ and D; for Eq. (55)

When the extended Gent model Eq. (55) is used as the elastic strain energy in the FR framework, then
k2 = k4 = k5 = 0; however, k(1) £ kB3) = k6) £ 0 in Eqgs. (15)-(20). The non-zero variables are given as

2| ¢ (1= O)Jm
KO — et o o oem B.1
I {'z+30m—11+3)2} (&1
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2cE,
3) _ _ ref
k) = _Igj , (B.2)
E JmA2 3cA(h —A3)  3kT /1 2x
k©® = Zref )1 - 1- T3 - . ? ( - ) ' B3
3] {( C)( ]m—l1+3> L +Erer J-1 J ( )

where k(®) is obtained using Eq. (6) to replace IT with terms based on W, because Eq. (6) can be used in the case of s3 = 0,
i.e., in States O, I and II.
Egs. (B.1)-(B.3) give the specific form of S; (Eq. (14)) as

Sij = kDS + kDSD + KOs, (B.4)

where S;(1), 5;3) and $;(6) are shown in Egs. (21), (23) and (26), respectively. Further, Eq. (27) gives the specific form of D;,
and is expressed as

Eer| (1 O+ A N 3c
3/ Jn—1+3 L
which is derived using Eq. (6) in the same way as Eq. (B.3). It is obvious that if J; = oo and ¢ = 0, Egs. (B.1)-(B.5) are
reduced to the equations for the original FR framework, i.e., k1) = k&) = 0 and S; = k® (i = =1, 2, 3, j = =1, 2, 3) (cf.
Eq. (49)).

D; = (A2 =308 + A3(L _,\g)}] (B.5)
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