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ABSTRACT

We present the results of particle-in-cell simulations of the whistler anisotropy instability that results in magnetospheric chorus wave
excitation. The simulations were carried out using, for the first time for this problem, the 2D TRISTAN-massively parallelized code, widely
used before in the modeling of astrophysical shocks. The code has been modified to allow for two populations of electrons: cold electrons
(which maintain the wave propagation) and hot electrons (which provide the wave growth). For the hot electrons, the anisotropic form of
the relativistic Maxwell–J€uttner distribution is implemented. We adopt the standard approximation of a parabolic magnetic field to simulate
the Earth’s magnetic field close to the equator. Simulations with different background magnetic field inhomogeneity strengths demonstrate
that higher inhomogeneity yields lower frequency chirping rates and, eventually, it suppresses chorus generation. The results are in agree-
ment with other numerical simulations and the theoretical predictions for the frequency chirping rates.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5096537

I. INTRODUCTION

Magnetospheric chorus waves are one of the most important and
interesting wave phenomena in the Earth’s radiation belts. They
belong to the whistler mode and have frequencies from hundreds of
hertz to several kilohertz. Chorus waves are often observed by satellites
as discrete series of wave packets with varying frequency, mostly ris-
ing,1 but falling-tone chorus are also found.2,3 Generally, chorus waves
are separated into two bands: lower-band chorus waves with frequen-
cies xLH � x < 0.5xce, wherexLH is the lower hybrid frequency and
xce stands for electron cyclotron frequency, and upperband chorus
waves 0.5 xce< x < xce.

4 There usually exists a gap in the wave spec-
trum at 0.5 xce, but there are also some observations of chorus wave
spectra without it.5

Chorus waves play a significant role in the radiation belt dynam-
ics: being one of the most intense wave phenomena, they lead to parti-
cle acceleration6 and precipitation7,8 via resonant wave-particle
interactions.9,10 Despite being investigated for the last 30 years, genera-
tion of rising and falling tone chorus waves is still not fully understood.
For the rising-tone chorus waves, different theories were proposed. A
theory developed by Omura et al.11 shows that the chorus frequency
chirping contributes to the total inhomogeneity parameter of the
dynamical system in such a way that it maximizes nonlinear current

and, consequently, the growth rate of the wave. The nonlinear current
is associated with the formation of an electromagnetic phase space
electron hole.11,12 This theory was developed for chorus waves which
propagate parallel to background magnetic field. These waves reso-
nantly interact with electrons via first cyclotron resonance. Satellite
observations13 show that this assumption is quite reasonable because
chorus wave normal angles in the equatorial regions are mostly small,
that is, the waves propagate along the field lines. Nevertheless, a signifi-
cant fraction of oblique chorus waves (with wave normal angles
� 50�) is also observed, specifically for upperband chorus waves.14

The small obliquity of chorus wave propagation has been taken into
account theoretically by Omura et al.,15 and it has been shown to be a
possible mechanism for the formation of the gap between lower- and
upper-band chorus waves.16 The obliquity of the wave gives rise to an
infinite set of cyclotron resonances at harmonics of electron cyclotron
frequency, and to Landau resonance, which could lead to strong wave
damping.17 This damping might account for the above-mentioned gap
(even in the case of small wave normal angles), but it might also lead
to decay of electromagnetic hole associated with the formation of non-
linear current and, eventually, with the chorus wave growth and fre-
quency chirping.16 Huang et al.18 attempted to explain the gap for
the parallel chorus waves by analyzing a specific type of electron
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distribution function which gives two maxima for the linear growth
rate, one in the lower band frequency range and another in the upper
band. The authors generated distinct upperband and lowerband chorus
waves with one dimensional (1D) particle in cell (PIC) code, but the
gap between the bands was defined by the initial distribution function,
and was not necessarily at 0.5 xce. Another interesting property of the
chorus wave generation that might contribute to the gap formation
was considered by Hosseini et al.19 The authors explain that the upper-
band chorus waves are sometimes triggered by the lightning-induced
whistlers. Their analysis suggests that there is a trade-off between the
linear growth rate and the lowest critical wave amplitude required for
the nonlinear effects to be present. This leads to the preferential trigger-
ing of the upperband chorus waves, while the lowerband chorus waves
are generated spontaneously via the whistler anisotropy instability.

Another theory, the backward wave oscillator (BWO) model, was
developed by Trakhtengerts.20 This model suggests that chorus waves
are excited due to a steplike deformation in the particle parallel
momentum distribution function. The height of the step on the veloc-
ity distribution function is a free parameter of the model.21

Falling-tone chorus waves show slightly different properties from
the rising-tone waves, such as large oblique propagation angles and
different peak amplitudes; therefore, different mechanisms have been
proposed. For example, Soto-Chavez et al.17 introduced the idea that
falling-tone chorus may be generated by simultaneously exciting two
competing resonances (Landau and cyclotron), whereby a marginal
stable falling-tone mode is formed. The marginally unstable mode will
perturb the electron distribution function such that a clump-hole pair
develops, further amplifying the wave. However, the dominant struc-
ture is the clump in the distribution function which generates the fall-
ing tone. In the framework of the Omura et al. theory,16 falling-tone
chorus waves might be explained as the result of formation of a hill on
the distribution function instead of the hole. While the hole leads to
rising-tone emission, the hill can produce falling-tone elements.16 This
idea is supported by a numerical simulation with a hybrid Vlasov
code,22 but this numerical model has certain limitations and assump-
tions. For example, it requires a triggering wave which leads to the
chorus wave excitation in the upstream region with respect to geomag-
netic equator, and also requires a reduction of the downstream region
to suppress dominant rising-tone wave generation. The BWO model
also reproduces falling-tone elements in simulations, e.g., Demekhov23

has shown that falling-tone chorus waves can be generated near the
boundaries of the BWO generation region if these boundaries are close
enough to magnetic mirror points for the particles.

The common feature of most of the chorus theoretical models is
that they are nonlinear. Nonlinearity of the corresponding processes
significantly reduces the opportunities to study them analytically.
Hence, numerical modeling is required. Vlasov codes, which yield low
statistical noise,24 are very expensive in terms of computational resour-
ces and, therefore, are rarely used for the problem under consideration.
Nevertheless, some simplified versions of this approach, with Eulerian
numerical schemes25,26 and with finite difference schemes,27 proved to
be very useful for chorus wave modeling. The most commonly used
approach is particle in cell (PIC) modeling, which provides the possi-
bility to account for self-consistent kinetic dynamics.28 For example, in
Refs. 12 and 29–32, the problem is studied with one dimensional (1D)
PIC codes, some hybrid (that is, treating cold electron population as
fluid and hot electrons, participating in resonant interactions, as

particles), and some fully kinetic. The majority of PIC simulations tend
to use rather large temperature anisotropies which exceed the anisotro-
pies typically observed in the chorus generation region33 due to the
limitations of numerical resources. On the other hand, numerical stud-
ies of the BWO model do not require large temperature anisotropy
because the model assumes sharp gradients in the parallel velocity
space.23 This modeling shows results consistent with some observa-
tions (see, e.g., Refs. 21, 34, and 35). However, to the best of our knowl-
edge, no fully kinetic simulations have been carried out in relation to
the BWO model. A review of numerical approaches to the nonlinear
cyclotron resonance can be found in Ref. 36.

This paper presents new results of numerical simulations of the
magnetospheric chorus wave generation with a full 2D particle-in-cell
(PIC) code. We have modified the TRISTAN-massively parallelized
(MP) code37–39 in such a way that it would be applicable to this prob-
lem, and we were able to successfully generate chorus waves with this
code. In particular, we developed a numerical scheme to inject two
electron populations in the TRISTAN-MP code. We implemented the
correct anisotropic relativistic distribution, according to which the hot
electrons are sampled in the code. We also implemented particle
reflection at the boundary of the simulation box to simulate magneti-
cally mirroring particles and absorption boundary conditions for the
waves to simulate the effect of wave propagation away from the box.
One of the purposes of the present study is to investigate chorus wave
generation in quasiparallel regime, but without one-dimensional
approximation that has been used in 1D PIC codes.

The paper is structured as follows. Section II contains detailed
information on the simulation model we use. In Sec. III, we discuss the
results of a linear theory of the whistler instability for the particle dis-
tribution, specified in Sec. II. Section IV contains the results of the
numerical modeling, which are summarized in Sec. V.

II. SIMULATION SETUP

We consider two electron populations: cold electrons, which
maintain the wave propagation, and hot electrons with anisotropic bi-
Maxwellian distribution. The hot population takes part in resonant
wave-particle interaction, providing energy exchange between particles
and waves. We consider relativistic hot electrons. Unlike in some pre-
vious studies,32 where direct extrapolation of the nonrelativistic
biMaxwellian to the relativistic energies was used, we implement the
distribution with the correct relativistic limit.

In the relativistic case, the correct isotropic Maxwell distribution
is the Maxwell–J€uttner distribution, which can be written as

F ~p
� �

¼ Ne�
mc2
T c ~pð Þ; (1)

where N is a normalization constant, and c is the Lorentzfactor

c ~p
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

ðmcÞ2

s
: (2)

(Further, we will use the unitsm¼ c¼ 1.) One can see that, unlike the
nonrelativistic case, the distribution cannot be represented as a prod-
uct of one-dimensional distributions. This makes the generalization of
Eq. (1) to an anisotropic case less straightforward than the non-
relativistic Maxwell distribution.40 We will use the following form of
the distribution:
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F ~p
� �

¼ Ne�
1
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

p2
k

sin2d
þ

p2?
cos2d

q
; (3)

where d is a parameter governing the anisotropy. This distribution has
the correct isotropic limit, corresponding to Maxwell–J€uttner distribu-
tion, and the correct nonrelativistic limit, where it corresponds to the
ordinary nonrelativistic biMaxwellian distribution.

Note that the distribution functions of the type

F ~p
� �

¼ Ne
�

p2k
2Tk

�
p2?
2T? (4)

used in some previous studies of the chorus wave generation31,32 are
not relativistic biMaxwellian distributions in the above sense. That is,
they do not become the Maxwell–J€uttner (1) distribution in the limit
of zero anisotropy. In particular, for ultrarelativistic particles p� 1,

(4) behaves as exp � p2

T

� �
, while the Maxwell–J€uttner distribution (1)

behaves as exp � p
T

� �
.

In our case, however, the biMaxwellian (3) defines particle
momentum distribution at the equator only because of the back-
ground magnetic field inhomogeneity. So, in order to set the initial
particle distribution in the whole region of space, we use the adiabatic
approximation. That is, we assume that in the absence of the waves,
the particle energy and the particle first adiabatic invariant (magnetic
moment) are conserved. Hence, we can restore the particle phase space
density at any point, using the Liouville’s theorem

F ~p;~r
� �

¼ Feq ~peq;~r eq
� �

: (5)

Here, equatorial variables are related to variables in a given position
through the conservation laws

p2k þ p2? ¼ p2eqk þ p2eq?;

p2?
B ~rð Þ ¼

p2eq?
Beq

:
(6)

Solving these equations and taking into account expression (3) for the
distribution at the equator, one gets for the distribution function at a
given point

F ~p;~r
� �

¼ Ne�
1
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

p2
k

sin2d
þ

p2?
cos2d

h ~rð Þ
q

;

h ~rð Þ ¼ 1þ A 1� Beq

B ~rð Þ

� �
;

(7)

where A ¼ cos2d=sin2d� 1 is the anisotropy parameter.
We consider a 2D system with parabolic background magnetic

field

Bx ¼ B0 1þ ax2ð Þ;
By ¼ �2B0ax y � y0ð Þ:

(8)

Here the x coordinate represents the length along the field line, x¼ 0
corresponds to the magnetic equator, and the inhomogeneity parame-
ter a governs the variation of the magnetic field along the field line.
The transverse component of the magnetic field, By, is added in order
to satisfy Maxwell’s equation div~B ¼ 0. The distribution of the mag-
netic field is shown in Fig. 1.

For the simulations presented in this study, we use the following
dimensions of the simulation box: Lx � 432½ c

xce
� and Ly � 4½ c

xce
�. All

quantities depend (vary) only on these coordinates and time. Particles
have 3-dimensional momentum and coordinate. We use two electron
populations with two different temperatures, Thot � 100keV and Tcold
¼ 0. We should mention that here we refer to Thot as to the parameter
T ¼ T? þ Tk in Eq. (7). The actual temperature is ðTk þ 2T?Þ=3. The
anisotropy angle, defined in Eq. (3), is d ¼ 0.4, yielding for the hot par-
ticles T?� 85keV and Tk � 15 keV. This gives an anisotropy parameter
A ¼ T?=Tk � 1 � 4:6. Such a value of A is rather large as compared to
values observed in the outer radiation belt, but reducing the anisotropy
significantly lowers the linear wave growth rate, which makes numerical
simulation in 2D (and even in 1D32) too consuming with respect to
computational resources. The hot-to-cold electron density ratio is taken
to be nh/nc ¼ 0.01. Note that this ratio decreases further away from the
equator since the particles are distributed adiabatically, which for hot
anisotropic particles means an inhomogeneous distribution. Meanwhile,
the cold particles are distributed homogeneously. The ratio of plasma
and cyclotron frequency is r ¼ xpe

xce
¼ 5. We consider different inhomo-

geneity parameters a 2 ð0:125; 1:0Þ � 10�5 ½x
2
ce
c2 �. The intermediate

value, a ¼ 0:5� 10�5 ½x
2
ce
c2 �, of the inhomogeneity parameter for a given

length of the box gives about a 10% increase in magnetic field at the
boundaries with respect to the equator, which corresponds to 	5� of
magnetic latitudes for the Earth’s dipole magnetic field. The full list of
the simulation parameters is shown in Table I. In this Table, Dx,y stands
for spatial grid size in the x and y dimension, respectively, Dt is time
step, and Nppc defines the number of particles in one spatial cell. This
number includes ions, cold electrons, and hot electrons. In total, the
dynamics of approximately 387 million particles was simulated. The
number of particles used in the present simulation is more than the
number of particles used in typical one dimensional PIC simulations of
chorus waves (see, e.g., Refs. 31, 32, and 41).

An example of the initial hot electron distribution sampled from

Eq. (7) with inhomogeneity a ¼ 0:5� 10�5 ½x
2
ce
c2 � is presented in Fig. 2.

To restore the distribution function from particle data, which contains
particle phase space coordinates, we used area-weighted interpolation of
the particle density to grid in the momentum and spatial coordinate
domain. The left column of Fig. 2 shows the hot electron distribution at
the equator, while the distribution far from the equator is shown in the
right column. The upper panels show the momentum distribution
Fðpk; p?Þ. The distributions presented in this figure are normalized onÐ
Feðpk; p?; x ¼ 0Þ dpkdp?. We should note that the distribution

shown includes the Jacobian of transformation to polar coordinates in
transverse momentum space (py, pz) ! (p?, /). The relation between
this distribution and the actual phase space density of the particles is

Fðpk; p?;~rÞ ¼
ð
F pk; pz p?;/ð Þ; py p?;/ð Þ;~r
� �

p?d/: (9)

The 1D distributions shown in the lower panels are obtained by inte-
grating Fðpk; p?Þ over one of the momenta. Red lines correspond to
the numerical particle sample, while analytical distributions obtained
from Eq. (7) are presented by green lines.

III. LINEAR THEORY

The waves are generated from the statistical noise due to whistler
anisotropy instability.42 The relativistic generalization of the linear
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theory of this instability can be found in the work of Xiao et al.43 In
this section, we discuss the results of the linear theory for the distribu-
tion function (7) that we have chosen for the simulations.

The frequencies of the upper and lower-band chorus waves usu-
ally belong to the range [0.05xce, 0.9xce], when the electron cyclotron
frequencyxce is less than electron plasma frequencyxpe. In such cases,
the ion contribution to the dispersion equation for the wave can be
neglected because the wave frequency is much larger than the proton
cyclotron frequency, x � xcp. The linear dispersion relation for the
waves propagating parallel to the Earth’s magnetic field lines would
then be

k2 ¼ x2 þ
xx2

pe

xce � x
; (10)

where k is the wave number, i.e., the absolute value of the wave vector.
The resonant wave-particle interaction takes place for the par-

ticles satisfying the following resonance condition:

pk ¼
cx� xce

k
: (11)

In contrast to the nonrelativistic case (see, e.g., the in-depth review10),
the resonance condition does not simply define the resonant parallel
momentum pr as a function of spatial coordinates (through the spatial
dependency of xce), but it represents a relation between both particle
momenta, parallel and perpendicular, through the Lorentz factor c, and
the spatial coordinate. Solving for pk, one gets from this equation the fol-
lowing expression for the resonant parallel momentum and resonant c:

pr ¼
xcr �xce

k
;

(12)

cr ¼ �xce

x
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

ce

x2
þ k2

x2
�1

� �
x2

ce

x2
þ k2

x2
p2?þ1
� �� �s2

4
3
5,

k2

x2
�1

	 

:

FIG. 1. Parabolic background magnetic field for inhomogeneity a ¼ 0:5�10�5 ½x
2
ce
c2 �. The upper panel shows the dominant Bx component of the field as a function of x. The

middle panel shows the (x, y) distribution of this component. The lower panel shows the By(x, y) component of the background magnetic field. The background magnetic field
satisfies zero divergence condition.

TABLE I. List of simulation parameters for all runs.

Lx;
c
xce

	 

Ly;

c
xce

	 

Dx ¼ Dy;

c
xce

	 

Dt ;

1
xce

	 

Nppc T hð Þ

e ; keV d
r ¼ xpe

xce
dn ¼ nh

nc

432 4 0.4 0.18 4 � 104 100 0.4 5 0.01
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Xiao et al.43 have shown the linear growth rate of the waves to be

Clin ¼
px2

peg

2xþ x2
pexce= x� xceð Þ2

A F½ � � Athrð Þ: (13)

Here, A[F] represents a measure of the anisotropy of the given distribu-
tion function F. It should be mentioned that, for the nonrelativistic
biMaxwellian distribution, A[F] is equal to the anisotropy parameter A
defined above, right after Eq. (7). For an arbitrary distribution function

A F½ � ¼

k
x� xce

ð1
0

dp?
D

p2?
cr

p?
@F
@pk

� pk
@F
@p?

 !
pk¼prð1

0

dp?
D

p2?
@F
@p?

� �
pk¼pr

; (14)

where D ¼ 1� xpr=crk. Athr gives the anisotropy threshold

Athr ¼
x

xce � x
: (15)

The quantity g is related to the fraction of resonant particles

g ¼ p
nh
nc

x� xce

k

ð1
0

dp?
D

p2?
@F
@p?

� �
pk¼pr

; (16)

where nh=nc stands for the hot to cold electrons density ratio. As fol-
lows from Eq. (13), the sign of Clin is defined by the balance of A[F]
and Athr since, in our case, g is non-negative. The waves can be excited
in the linear regime only in the case when Clin > 0. Figure 3 gives an
example of frequency dependency of these parameters for the distribu-
tion under consideration.

The left panel of Fig. 3 shows linear increment as a function of
wave frequency for 3 different types of distribution: the relativistic
biMaxwellian distribution, corresponding to the Maxwell–J€uttner dis-
tribution, Eq. (3); the distribution (4) used in previous studies;32 and
the nonrelativistic biMaxwellian with nonrelativistic form of Clin. One
can see that the difference between linear increments is rather notice-
able. First of all, in spite of the fact that the resonance velocity is only
slightly relativistic, the relativistic effects are important, providing a
difference of about 40% in maximum increment. The reason for this is
that the relativistic resonance condition involves perpendicular energy,
which is higher than the parallel. Secondly, the increment for the
anisotropic Maxwell–J€uttner distribution (3) is shifted toward lower
frequencies with respect to the one obtained from distribution (4) for
the same parameters. The right panel of Fig. 3 shows the linear incre-
ment for different positions along the field line as the distribution of
hot electrons changes adiabatically as per Eq. (7). One can see that
along the field line in our simulation box, the growth rate does not
become much smaller than the maximum growth rate at the equator.

FIG. 2. Initial normalized distribution for inhomogeneity parameter a ¼ 0:5�10�5 ½x
2
ce
c2 � in two different positions along the field line: at the equator (left panels) and away from

the equator, near the boundary of the simulation box (right panel). All the distributions are normalized to the momentum integral of the distribution at the equator. The upper
panels show 2D momentum distributions, and the lower panels demonstrate the distributions, integrated over one of the momenta. Green lines represent analytical distribu-
tions, while red lines correspond to the distributions recovered from numerical particle sample.
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IV. SIMULATION RESULTS

In this section, we present the results of chorus wave simulation
with the TRISTAN-MP code for the parameters shown in Table I.
Figure 4 demonstrates the case of a moderate inhomogeneity value, a

¼ 0.5 � 10�5 ½x
2
ce
c2 �. In the upper panel, the evolution of the transverse

field Bwðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
y þ B2

z

q
is shown. One can see that the waves are

generated in a small region near the equator, despite the fact that the area
with high Clin is rather large (see Fig. 3), which is consistent with observa-
tions.44 As the waves propagate away from the equator, they are ampli-
fied. White dashed lines mark the position, where the time variation of
the wave-field is analyzed. The corresponding time dependencies of the
By component are presented in the middle panels, and their wavelet spec-
trograms are shown in the bottom panels. To perform time-frequency

FIG. 3. (Left) Linear increment as a function of wave frequency. All the distributions have the following parameters: pkT ¼ 0:17mc ðTk � 15 keVÞ; p?T

¼ 0:41mc ðT? � 85 keVÞ, which correspond to temperature T¼ 100 (keV) and anisotropy angle d ¼ 0.4 (rad). MJ stands for the anisotropic Maxwell–J€uttner distribution as
per Eq. (3), dRM stands for direct extension of the biMaxwellian distribution to relativistic energies as per Eq. (4), and the “nonrelativistic” curve corresponds to the nonrelativis-
tic form of expression for Clin. (Right) Linear increment for the distribution (7) as a function of frequency and position along the field line with magnetic field inhomogeneity

a ¼ 0:5�10�5 ½x
2
ce
c2 �.

FIG. 4. Simulation results for an inhomogeneity parameter a ¼ 0:5�10�5 ½x
2
ce
c2 �. Upper panel presents the (x, t) distribution of the transverse field Bw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2y þ B2z

q
, and white

dashed lines indicate the positions along the field line where the field dependency on time is analyzed. These temporal forms are shown in the middle panels, and the bottom
panels demonstrate their wavelet spectrograms. White lines in the spectrograms mark the cone of influence which indicates the area, where boundary effects might affect the
spectrum. Chirping choruslike rising tone elements can be seen after the equator (x¼ 144 [c/xce]).
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analysis, we use the generalizedMorse wavelets45 with symmetry parame-
ter S¼ 3 and time-bandwidth product P2¼ 100.

At the right position, two coherent rising-tone structures are
formed with a chirping rate @x

@t � 5�10�4 ½ 1
x2

ce
�. This rate is consistent

with other simulations.31 Two elements overlap in time domain;
hence, in order to analyze each element, we apply a mask to the spec-
trum to single out the corresponding elements. Figure 5 presents the
results of singling out the first rising-tone element taken from the right
column in Fig. 4. In Fig. 5, the By and Bz components of the wave field
are shown in the panels with labels “1” and “2,” respectively. Panels
“a” (“1a” and “2a”) show the total spectrogram for a given component
of the wave field, while the corresponding temporal wave form is
shown in panels “c” (time interval is limited to, approximately, ele-
ment’s duration). The singled-out rising-tone element is presented in
panels “b” (By component of the element is shown in “1b” panel, and
“2b” panel presents Bz component of the element), and panels “d”
show element’s temporal wave form, reconstructed via inverse wavelet
transform. One can see that the amplitude’s envelope of the rising
tone element oscillates, revealing a subpacket structure of the element,
consistent with observations.1,46 By and Bz field components are
shifted with respect to each other by a quarter of a wave period, as
expected for right-hand polarized whistler-mode wave.

We performed three additional simulations, each with a different
inhomogeneity parameter a to study its influence on wave generation.
The results of all simulations are shown in Fig. 6 and are summarized
in Table II. In Fig. 6, panels “a,” we present the evolution of the trans-
verse magnetic field in the whole simulation box along the field line.
Panels “b” and “c” show the spectrograms of the By component at the
given positions. The spectrogram of the selected singled-out element
with its temporal behavior is shown in panels “d” and “e,” respectively.
We do not show here the Bz component of the field, only By, because
the results are similar. For small inhomogeneity (left column of Fig. 6),
chirping elements are rather short impulses with evidently large chirp-

ing rates. The longer wave packet, generated for a ¼ 3:75�10�6 ½x
2
ce
c2 �,

has a well-formed subpacket structure with a lower chirping rate than
the elements in the left column. Run 4 presented in the last column of
Fig. 6 corresponds to the largest inhomogeneity and shows that no
clear chirping structures are formed, in agreement with the theory of
Omura et al.11

To calculate the frequency chirping rates, we fit the elements
with curves xi(t) (shown in black in Fig. 6) and evaluate the corre-
sponding derivatives @xi(t)/@t. The chirping rate’s numerical value,
presented in Table II, is an average of @xi(t)/@t over ith element’s
duration. From Table II, one can see that as the inhomogeneity

FIG. 5. Simulation results for an inhomogeneity parameter a ¼ 0:5�10�5 ½x
2
ce
c2 �. Panels, labeled “1” and “2,” correspond to By and Bz components of the wave field. Full spec-

trograms for each component are indicated by label “a,” and spectrograms with the given singled-out element are labeled by “b.” Panels “c” present the temporal form of the
total wave field in the time interval of the selected rising-tone element. Lower panels “d” show the temporal form of the selected rising-tone element, obtained by inverse wave-
let transform from the spectrograms “b.”
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parameter increases, the chirping rate decreases. We should note that
a similar behavior was demonstrated in the recent PIC simulations
with the dipole magnetic field.47

The theory11 shows that the resonant wave-particle interaction
resulting in the chorus wave generation is controlled by the following
parameter, the total inhomogeneity ratio:

S ¼ � 1

X2
t n

2 c 1� vr
vg

� �2 @x
@t

(

þ kcv2?
2xce

� 1þ n2

2
xce � cx
xce � x

 !
vr

" #
@xce

@x

)

 � 1

X2
t n

2 S1 þ S2ð Þ:

(17)

Here, Xt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kv?eBw=mec

p
is the trapping frequency, vr and vg are the

resonance and group velocities, and n2 ¼ 1 – x2/k2c2. Theoretical esti-
mations11 demonstrate that the optimal value of the total inhomoge-
neity ratio is S ¼ –0.4. It allows us to calculate the chirping rate at
the equator, where @xce/@x¼ 0 (i.e., S2 ¼ 0 in Ref. 17). As the wave
propagates away from the equator, the second term, which explicitly
contains the spatial inhomogeneity, begins to contribute to S.
Nevertheless, its contribution might be neglected at small distances
from the equator. The fourth column of Table II contains the estima-
tions of S2 at the distances where the elements are analyzed. In these
calculations, we took the average value at the equator for v?. The esti-
mates show that we can marginally neglect the S2 term in Eq. (17).
However, the chirping rate is different for the different inhomogeneity
parameters a. This is due to the fact that the wave amplitudes are dif-
ferent in each simulation. We should emphasize that the spatial inho-
mogeneity manifests not only in the explicit term @xce/@x of Eq. (17)
but also in the adiabatic initial distribution, Eq. (7), where the density

FIG. 6. Simulation results for different inhomogeneity parameters a; ½x2
ce=c

2�. Different runs are presented in different columns. Panels are labeled with numbers “1”–“4,” enu-
merating the columns, and letters “a”–“d,” indicating the rows. Panels “a” show transverse magnetic field Bw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2y þ B2z

q
. Panels “b” and “c” show the spectrograms of By(t)

at given positions x (x ¼ –137 and x¼ 144, respectively) along the field line. Roman numbers denote the rising-tone elements. White lines in the spectrograms mark the cone
of influence which indicates the area, where the edge effects become important and affect the spectrum. Lower panels show the spectrogram of the selected rising-tone ele-
ment (one for each run) and its temporal form. For the case a ¼ 5� 10�6½x2

ce=c
2�, we show the second element, as the first one is shown in Fig. 5. For the largest inhomo-

geneity, a ¼ 10� 10�6½x2
ce=c

2�, no clear chirping is observed.

TABLE II. Simulation results for different inhomogeneity parameters a. The third col-
umn indicates the chirping rate obtained from the simulations. The fourth column
shows the ratio of S2 and S1 from Eq. (17). The last column presents the theoretical
estimates for the frequency chirping rate, Eq. (18). The averages are calculated over
the duration of each element.

a;
x2

ce

c2

	 
 @x
@t

� �
; x2

ce


 �
hS2i
hS1i

; %

@x
@t

� �
; x2

ce


 �
Run Simulation Theory11

#1 1.25 � 10–6 Element I: 0.9 � 10–3 3% 0.8 � 10–3

Element II: 1.4 � 10–3 2% 0.9 � 10–3

Element III: 1.0 � 10–3 3% 1.2 � 10–3

#2 3.75 � 10–6 Element I: 0.6 � 10–3 15% 0.6 � 10–3

#3 5 � 10–6 Element I: 0.4 � 10–3 25% 0.5 � 10–3

Element II: 0.5 � 10–3 22% 0.5 � 10–3

#4 10 � 10–6 No chirping elements
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and the effective temperature anisotropy of the hot electron population
vary along the field line (see, e.g., Fig. 3).

Having said this, we estimate the theoretical chirping rates for
each element as follows:

@x
@t

¼ W f ðv?Þ½ �KðxÞBwðtÞ
B0

; (18)

that is, neglecting the second term in Eq. (17). The results are pre-
sented in the last column of Table II. Here, K(x) depends on local
wave frequency andW[f(v?)] depends on properties of the perpendic-
ular velocity distribution function, f. Omura et al.11 chose a simplified
singular distribution function f(v?) 	 d(v? – v?0) and demonstrated
that K 	 v?0 near the magnetic equator. However, this is not the case
for our simulations, and it is difficult to generalize this formula for an
arbitrary distribution function and to extrapolate it to the region away
from the equator (see, e.g., Ref. 48 where an attempt to extend Omura
et al. theory is proposed). Hence, to make an estimation, we assume
that K depends on wave frequency as in Ref. 11, but for W[f(v?)]
instead of v?0, we choose a constant value, such that the average theo-
retical and simulated chirping rates for Run 2 are equal. Comparison
between numerical and theoretical rates shows a rather good agree-
ment, except, perhaps, for the Element II in Run 1. The larger discrep-
ancy in this case might be due to the fact that it is very short (in time)
element, so an error in fitting could be large.

V. SUMMARY

In this paper, we have presented the results of numerical simula-
tions of magnetospheric chorus wave generation with a 2D full parti-
cle-in-cell code called TRISTAN-MP. The waves are triggered by the
whistler-mode instability of the anisotropic distribution function.
While previous studies used extrapolation (4) of nonrelativistic
biMaxwellian to the relativistic energies (with or without the loss-
cone), we implemented the anisotropic version of the correct relativis-
tic Maxwell–J€uttner distribution (1). The difference in the linear
growth is perceptible (see Fig. 3) when compared to other distribu-
tions, despite the fact that the parallel energy is only slightly relativistic.
This arises from the fact that perpendicular energy is relativistic, and
the high-energy tail of the Maxwell–J€uttner distribution is essentially
different from the simplified distribution (4).

We have successfully generated choruslike emissions. The results
agree qualitatively with other numerical simulations.12,31,49 Waves are
generated near the equator, where the resonance condition is satisfied
for a larger number of particles. Waves then propagate away from the
equator, interacting with resonant particles and being amplified. For
small background magnetic field inhomogeneities, coherent choruslike
structures with chirping frequency are formed. To study each chirping
element separately, we singled out the elements from the spectrograms,
using a masking function. The excited rising-tone choruslike waves
belong to the lower band (x < 0.5 xce). Figures 5 and 6 (column 2)
demonstrate the amplitude variation of the wave-packets, thus reveal-
ing the subpacket structure of the choruslike elements. For each chirp-
ing element, we calculated the chirping rate and demonstrated that this
rate tends to decrease as the inhomogeneity of the background mag-
netic field increases. These results are summarized in Table II.

Theoretical estimations of the chirping rate made from Ref. 11
are in rather good agreement with our results. Our study shows that
higher magnetic field inhomogeneity suppresses chorus wave

generation. This is also consistent with Omura et al. theory,15 which
predicts the existence of threshold amplitude related to inhomogene-
ity, below which there is no non-linear interaction between particles
and a wave. The threshold amplitude is related to the fact that particles
cannot be trapped if the total inhomogeneity ratio jSj � 1. We should
mention that both the frequency variation and the spatial inhomoge-
neity contribute to the total inhomogeneity ratio, Eq. (17).

In this paper, we specifically studied quasi-parallel wave genera-
tion. Thus, we were able to compare the results of our 2D simulations
with previous 1D PIC simulations and theoretical predictions.
Modeling magnetospheric chorus wave generation in a regime when
the oblique waves are predominantly generated is an important and
challenging problem, which is left for a future study.
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APPENDIX: TRISTAN-MP PIC CODE

The simulations were performed with the 2D TRISTAN-MP
PIC code. This code is a development37 of the TRISTAN code cre-
ated by Buneman.50 This massively parallelized (MP) code was suc-
cessfully used to model relativistic38 and nonrelativistic39 shocks.
The Maxwell’s equations are solved in the code with the standard
second-order Yee algorithm.51 The TRISTAN-MP code provides
the possibility to choose between the Vay scheme52 and the Boris
scheme53 for the solver of the particle equations of motion. Vay52

demonstrated that the Boris scheme might lead to appearance of a
spurious force and suggested a scheme which would be free of this
problem. This spurious force appears to be small enough for most
cases, but there are known examples when it leads to significant
errors.

One of the main changes introduced into the code is a numeri-
cal scheme that allows to inject two electron populations. This is
crucial for simulation of the magnetospheric chorus waves genera-
tion. Also, particle sampling according to the anisotropic relativistic
Maxwell distribution is implemented. This distribution is discussed
in details in Sec. II. Reflecting boundary conditions were imple-
mented in the code for the hot particles in order to simulate particle
reflection due to the magnetic mirror force.

For the electromagnetic field, the code uses a cubic polynomial
mask to damp the fields at the boundary. For the nonmodified
finite-difference scheme, one has, for example, for the Bz and Ey
components

Bzðx; y; tnþ1Þ ¼ Bzðx; y; tnÞ þ C DyEx � DxEy
� �

;

Eyðx; y; tnþ1Þ ¼ Eyðx; y; tnÞ þ CDxBz;
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where C is a constant and D is the difference operator in the corre-
sponding dimension. The masking changes these equations to the
following ones:

Bzðx; y; tnþ1Þ ¼ Bzðx; y; tnÞ 1þ kð Þ þ C DyEx � DxEy
� �h i

= 1� kð Þ;

Eyðx; y; tnþ1Þ ¼ Eyðx; y; tnÞ 1þ kð Þ þ CDxBz

 �

= 1� kð Þ;

with

k ¼

0; if x 2 � Lx
2
þ Labs;

Lx
2
� Labs

	 

;

C
6 L3abs

x þ Lx
2
� Labs

� �3

; if x < � Lx
2
þ Labs;

C
6 L3abs

Lx
2
� x � Labs

� �3

; if x >
Lx
2
� Labs:

8>>>>>>>>><
>>>>>>>>>:

Here, Labs is the absorption length, i.e., the width of the absorption
boundary. It is worth mentioning that this quantity cannot be taken as
arbitrary small because it would lead to fast variation of the parameters
of the Maxwell’s equations and, consequently, lead to the strong reflec-
tion of the waves. Similar changes are introduced to other field equa-
tions. Figure 7 shows two simulations with different absorption
lengths, with other parameters being fixed. The right panel demon-
strates the case of very short absorption length, and strong reflection
of the field from the boundary is observed. In the simulation with
larger absorption length, shown in the left panel, there is no visible
field reflection at the boundaries. It can be seen that, for the damping
mask we use, it is possible to find an absorption length which would
efficiently suppress the reflection, and simultaneously remaining small
with respect to the total length of the system.
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