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Abstract Modeled Reynolds stress is a major source of model-form uncertainties in Reynolds-averaged
Navier–Stokes (RANS) simulations. Recently, a physics-informed machine learning (PIML) approach has
been proposed for reconstructing the discrepancies in RANS-modeled Reynolds stresses. The merits of the
PIML framework have been demonstrated in several canonical incompressible flows. However, its performance
on high-Mach-number flows is still not clear. In this work, we use the PIML approach to predict the discrepan-
cies in RANS-modeled Reynolds stresses in high-Mach-number flat-plate turbulent boundary layers by using
an existing DNS database. Specifically, the discrepancy function is first constructed using a DNS training flow
and then used to correct RANS-predicted Reynolds stresses under flow conditions different from the DNS. The
machine learning technique is shown to significantly improve RANS-modeled turbulent normal stresses, the
turbulent kinetic energy, and the Reynolds stress anisotropy. Improvements are consistently observedwhen dif-
ferent training datasets are used. Moreover, a high-dimensional visualization technique and a distance metrics
are used to provide a priori assessment of prediction confidence based only on RANS simulations. This study
demonstrates that the PIML approach is a computationally affordable technique for improving the accuracy of
RANS-modeled Reynolds stresses for high-Mach-number turbulent flows when there is a lack of experiments
and high-fidelity simulations.

Keywords Data-driven · Reynolds-averaged Navier–Stokes ·High-speed flow ·Direct numerical simulation

1 Introduction

1.1 Significance of reducing modeling discrepancies of Reynolds stresses

The information of the full Reynolds stress tensors of high-speed turbulent flows is of theoretical and practical
importance. The physics of Reynolds stresses and their dependence on boundary layer parameters are critical
for the theoretical development of advanced compressibility corrections for Reynolds-averaged Navier–Stokes
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(RANS) models [35]. The information of Reynolds stresses is also useful for generating inflow turbulence
for unsteady simulations like direct numerical simulations (DNS) and large eddy simulations (LES) when a
synthetic turbulence generation technique such as the digital filtering method is used [55]. The information of
Reynolds stresses is commonly obtained from the data of high-fidelity simulations (e.g., DNS or resolved LES)
or experimental measurements. However, there are few experimental data at high speeds and most existing
DNS and LES are limited to low Reynolds numbers. As a result, the information of the full-field Reynolds
stress tensor in the high-Mach-number and high-Reynolds-number regimes is largely unknown.

RANS-based models have been widely used for simulating high-Mach-number compressible flows in both
academic study and industrial applications [17,36,38]. The information of the Reynolds stress tensor can
be obtained through RANS models with a relatively small computational cost since it is modeled by using
local mean flow variables. However, the potentially inaccurate modeling assumptions (e.g., Boussinesq eddy
viscosity hypothesis) lead to significant model-form errors in the RANS-modeled Reynolds stress tensor,
which also diminish the predictive capability and accuracy of RANS models, in particular for the flows
with curvature, swirl, and strong pressure gradients [4]. Recently, significant developments have been made
in the data science community, which facilitate the development of data-driven approaches to assist RANS
modeling by leveraging the use of existing high-fidelity datasets from both DNS and experiments. Previous
efforts in reducing model-form errors in the RANS Reynolds stress closure have mostly followed parametric
approaches, which are based on a generic Bayesian framework proposed by Kennedy and O’Hagan [22].
Specifically, the model coefficients (e.g., C1 and C2 in the k–ε model) are perturbed and calibrated within the
Bayesian framework by assimilating high-fidelity data of the quantities of interest (QoI), e.g., velocity, wall
shear stress, and lift coefficient [3,12,13,31,34]. Nonetheless, the parametric approaches are still constrained
by assumptions in turbulence models, and the structural model-form errors in the Reynolds stress cannot be
captured and corrected. Researchers in turbulence modeling communities have recognized the limitations of
parametric approaches and started to reduce the structural model errors locally in the Reynolds stress closure.
The past several years have witnessed a few efforts in developing nonparametric data-driven approaches for
assisting RANS turbulence modeling [10]. For example, Dow and Wang [5] used DNS data to infer the
full-field discrepancy in the turbulent eddy viscosity and applied it to a range of channel flows. Duraisamy
and co-workers [32,37] also improved the RANS model by adding a full-field discrepancy function into
the production term of the transport equation of turbulence quantities (e.g., ω) based on experimental data.
Although both of them demonstrated that the QoIs, such as velocities and lift coefficients, were improved over
the baseline RANS predictions after calibrating discrepancy terms, the Reynolds stress tensor itself was not
shown to be improved. This is because calibrations of discrepancies in the eddy viscosity field or production
terms of turbulent transport equations are not able to correct the potentially inaccurate functional relations,
e.g., linear eddy viscosity assumption.

1.2 Reducing Reynolds stress discrepancies: existing machine learning approaches

In order to improve the RANS-modeled Reynolds stresses, Xiao and co-workers [46,51,56] proposed a model-
form uncertainty reduction framework that infers the discrepancy of Reynolds stress tensor in its physical
projections by assimilating sparse observation data of velocities. They showed that significant improvement in
the predicted velocity field and other QoIs can be achieved by directly calibrating RANS-modeled Reynolds
stresses. Improvement is also shown in certain projections of the Reynolds stresses that are critical to velocity
propagation [56], while all tensor components of the corrected Reynolds stress were not notably improved.
This is due to sparseness of the data and the non-unique mapping between the velocity and the Reynolds
stress tensor. Another limitation of this framework lies in the dependence of the Reynolds stress discrepancy
function on the physical coordinates x. As a result, the calibrated discrepancy function was difficult to be
extrapolated to flows that use different physical coordinates. Ling et al. [24] alleviated the limitation by using
a rich set of invariant mean flow features instead of physical coordinates and predicted where the RANS
would provide inaccurate results. They also directly predicted the Reynolds stress anisotropy tensor solely
based on DNS database by using machine learning algorithms [25–27]. Recently, Wang et al. [48] proposed
a physics-informed machine learning (PIML) framework for improving RANS-modeled Reynolds stresses
based on a group of training flows with DNS data. Specifically, they employed random forest regression to
learn the functional form of the discrepancy in RANS-modeled Reynolds stress tensor with respect to a set
of invariant, non-dimensional mean flow features, which are constructed based on local mean flow variables.
Since the functional form of RANS-modeled Reynolds stress discrepancy is learned in the mean flow feature
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space, it can be extrapolated to different flows (at different Reynolds numbers or/and in different geometries)
to correct the Reynolds stress predictions where high-fidelity data are not available. They further demonstrated
that the ML-corrected Reynolds stresses could lead to an improved velocity field after propagation through
RANS equations [44,47,53].

1.3 Objective and novelty of the present work

The effectiveness of the PIML approach has been demonstrated in multiple low-speed incompressible flows.
This includes scenarios where the training flows have the same geometry as the prediction flow but are differ-
ent in Reynolds numbers and scenarios where training flows differ from the prediction flow in both Reynolds
numbers and geometry. So far, the performance of the PIML approach [48] for high-speed compressible flows
has not been fully assessed yet. Given the notable differences between the incompressible flows and high-speed
flows, the PIML methods and corresponding conclusions in incompressible flows cannot be extrapolated to
high-Mach-number flows without any further investigation. It is not unexpected that the same incompress-
ible mean flow features are not enough for compressible flows, and additional local flow variables such as
temperature and density should be considered. Therefore, the objective of the present work is to develop and
evaluate the PIML approach by Wang et al. [47,48] for predicting Reynolds stresses in the high-speed regime.
To fully explore the characteristics of high-speed flows, the mean flow feature space is constructed from the
raw mean flow variables by using a systematic approach proposed by Ling et al. [25]. As a first step to extend
the PIML framework [48] to high-speed compressible flows, high-speed flat-plate turbulent boundary layers
are studied in this work. An existing DNS database of turbulent boundary layer flows with different freestream
Mach numbers and wall-to-recovery temperature ratios is used to evaluate the learning prediction perfor-
mance [6,8,9,58]. The metric of prediction confidence proposed by Wu et al. [52] and a high-dimensional
visualization technique, t-Distributed Stochastic Neighbor Embedding (t-SNE), are employed to analyze the
prediction performance with different training flows and to assess the prediction confidence a priori based
on RANS-predicted mean flow features. It should be noted that the goal of the current study is to infer the
Reynolds stress tensor based on RANS, as the knowledge of Reynolds stresses by itself carries important
physical values for studying high-speed turbulent flows. The propagation of the predicted Reynolds stresses
to other quantities of interest (QoIs) such as the velocity is a separate issue that will be addressed in future
studies.

The paper is structured as follows. Section 2 outlines the methodology of PIML approach and the con-
struction of mean flow features for compressible flows, including a brief description of the DNS database
to be used, the simulation details of the baseline RANS, and the detailed procedures of the PIML approach.
Prediction results and discussion of different training sets are given in Sects. 3 and 4, respectively. Summaries
are given in Sect. 5.

2 Methodology

2.1 Physics-informed machine learning approach

The PIML approach [47,48] is that given a set of training flows with data, the functional form of discrepancy
ΔR in the RANS-modeled Reynolds stress with respect to the RANS-modeled mean flow features q can
be extracted by learning from the training flows. Based on the learned discrepancy function ΔR, accurate
Reynolds stresses of a new flow with a different configuration or a different flow condition can be obtained by
performing only RANS simulations. The objective of the PIML approach is to build the mapping between the
mean flow to the discrepancy function,

f : q → ΔR. (1)

There are three essential components in the PIML framework: (1) identification of themean flow features as the
predictors, (2) parameterization of the Reynolds stress discrepancy as the learning target, and (3) construction
of the mapping f based on machine learning algorithm and training data.

Identifying mean flow features is crucial in the PIML approach. The features should be rich enough to
reflect the characteristics of each flow. Moreover, to be able to extrapolate among different flows independent
of reference frames, the features are required to be dimensionless and invariant. A systematic methodology
to construct a complete invariant basis for a given tensorial variables [25,47] is employed to identify the flow
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Table 1 Raw mean flow feature variables used to construct the integrity invariant basis

Normalized raw input α̂i Description Raw input αi Normalization factor α∗
i

̂S Strain rate tensor S
ε

k
̂Ω Rotation rate tensor Ω ‖�‖
̂∇k Gradient of TKE ∇k

ε√
k

̂∇T Temperature gradient ∇T ‖U · ∇U‖/Cp

The normalized feature α̂i is obtained by normalizing each element of the corresponding raw input αi with a normalization factor
α∗
i according to α̂i = αi/(|αi | + |α∗

i |). ‖ · ‖ indicates matrix norm

features. Specifically, a group of raw mean flow tensors that are critical to the high-speed turbulent flows is
chosen first, and a finite integrity basis of invariants for the chosen raw tensors can be constructed by Hilbert
basis theorem [21]. Since any scalar invariant function of the raw mean flow variables can be expressed
as a function of the invariant basis, the features are rich enough to build the Reynolds stress discrepancy
by considering high-order and interaction effects. The raw tensorial mean flow variables and normalization
scheme chosen in this work are listed in Table 1. The rate of strain tensor S, rate of rotation tensor �, and
gradient of turbulent kinetic energy (TKE) ∇k are considered to represent major mean flow physics and to be
important to the turbulent constitutive relation. Therefore, these tensorial variables are widely used as building
blocks in nonlinear eddy viscosity models [16,30,39]. The temperature gradient ∇T is also incorporated
as the raw features to account for variations in thermodynamic quantities in compressible flows. Based on
these raw mean flow variables, a basis of 47 invariants can be built (see “Appendix 1”). Note that the major
difference between features for high-speed flows and those for incompressible flows lies in the inclusion of
temperature gradient ̂∇T as a raw feature. As a result, the high-order effects of ̂∇T and its interactions with
other mean flow quantities are considered. The construction of input features is a post-processing step, and
thus, its computational cost is negligible compared to that of the RANS simulation.

The learning target is the discrepancy in the RANS-modeled Reynolds stresses. Since all input features are
dimensionless and invariant, the discrepancy terms also need to be non-dimensional and invariant. Therefore,
the parameterization of Reynolds stress discrepancy is based on the physical decomposition scheme first
proposed by Iaccarino and co-workers [14] in the context of estimating RANS model-form uncertainties. That
is, the Reynolds stress tensor R is decomposed to its physical projections,

R = 2k

(

1

3
I + A

)

= 2k

(

1

3
I + VΛVT

)

, (2)

where k is the turbulent kinetic energy; I is the second-order identitymatrix;A is the deviatoric part ofR;Λ and
V are the orthonormal eigenvalues and eigenvectors ofA, respectively. The discrepancy functionΔR is defined
based on its six physical projections, which are magnitude k, shapeΛ, and orientationV of the Reynolds stress
tensor. Specifically, to impose realizability constraint, the eigenvalues Λ = diag[λ1, λ2, λ3] are mapped to the
barycentric coordinates [C1, C2, C3], indicating the portion of areas of the three sub-triangles in a Cartesian
coordinate [xb, yb] [2]. As a result, the shape of Reynolds stress anisotropy can be uniquely represented with
coordinates [xb, yb]. To represent the orientation (eigenvectors) of the Reynolds stress, Euler angle system is
used, which follows the z–x ′–z′′ convention in rigid body dynamics [45]. That is, if a local coordinate system
x–y–z spanned by the three eigenvectors is initially aligned with the global coordinate system (X–Y–Z ), the
current configuration could be obtained by the following three consecutive intrinsic rotations about the axes
of the local coordinate system: (1) a rotation about the z axis by angle φ1, (2) a rotation about the x axis by
φ2, and (3) another rotation about its z axis by φ3. Now the RANS Reynolds stress discrepancy ΔR can be
defined on its physical projections as ΔR = [Δxb, Δyb, ΔLogk, Δφ],

Δ log k = log2 k − log2 k̃
rans (3a)

Δxb = xb − x̃b
rans (3b)

Δyb = yb − ỹb
rans (3c)

Δφ = φ − φ̃rans, (3d)

where the superscript ·rans indicatesRANS-computed quantities and discrepancy of themagnitudeΔ log k is the
the logarithmof the ratio of the true k to theRANS-computed krans. TheRANSReynolds stress discrepancyΔR
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is the target to be predicted and the corrected Reynolds stress appears in the RANS equation in its divergence
form. Please see Ref. [48] for more details.

With identified mean flow features q and parameterized Reynolds stress discrepancy variables ΔR, a
machine learning technique is needed to build the functional relation between q and ΔR. Following the works
of Wang et al. [47,48], random forest (RF) regression is employed to learn this functional from the training
data. The RFmodel is an ensemble learning technique which aggregates predictions from a number of decision
trees. Each decision tree partitions the input feature space to a set of rectangles in a tree-like manner. Namely,
the optimization of the tree-based algorithm is to decide which feature variable to split on and what splitting
points would be. Assuming that the mean flow feature space is partitioned into M regions Ωm(m = 1 · · · M),
the prediction of a single tree at the input point q is the averaged value ΔR of the region where the input point
is located,

ΔRtree =
M

∑

m=1

ΔRm I (q ∈ Ωm), (4)

where I (·) is the indicator function. To determine a (sub)optimal splitting strategy of the feature space in a
computationally feasible manner, a greedy algorithm is used to minimize the sum of square errors.We consider
to split the i th component of feature vector q at splitting point s, and the splitting component q[i] and splitting
point s are determined by solving

min
q[i],s

⎛

⎝

N
∑

q j∈Ω1(q[i],s)

(

ΔR j
d − ΔR1;q j

)2 +
N

∑

q j∈Ω2(q[i],s)

(

ΔR j
d − ΔR2;q j

)2

⎞

⎠ , (5)

where Ω1 and Ω2 are two portions of the feature space partitioned by the splitting feature component q[i]
at the splitting point s; ΔR j

d is the j th training data point obtained from DNS; N is the size of the training
dataset. This optimization step is repeated on all of the resulting regions. Amajor issue of a single decision tree
is that it tends to have high variance and less prediction accuracy. This issue can be addressed by aggregating
a large number of decision trees, which is the essence of the random forest model [19]. In the RF model, the
ensemble of trees is built with bootstrap aggregation samples (i.e., sampling with replacement) drawn from
the training data. Moreover, only a subset of randomly selected feature components is utilized for constructing
each single tree. This strategy reduces the correlation among trees in the ensemble and thus decreases the bias
of the ensemble prediction. The computational cost for training the RF model is negligible compared to that
of the single RANS simulation.

2.2 DNS database of high-speed turbulent boundary layers

The current study focuses on applying the aforementioned physics-informed ML technique to high-speed
turbulent boundary layer flows. For this purpose, a DNS database of high-speed turbulent boundary layers is
used to train the functional form of discrepancy in RANS-simulated Reynolds stress. Relevant flow conditions
of the DNS database are summarized in Table 2, which provides the boundary layer parameters at selected
locations where turbulence statistics are gathered. The database includes DNS of spatially developing turbulent
boundary layers over a wide range of freestream Mach numbers (M∞ = 2.5–7.8). All the DNS cases have a
similar Reynolds number of Reτ ≈ 400. For eachDNS, the full three-dimensional compressibleNavier–Stokes
equations in conservation form are solved numerically, describing the evolution of the density, momentum,
and total energy of the flow. An optimized seventh-order finite difference WENO (weighted essentially non-
oscillatory) scheme is used to compute the convective flux. Comparedwith the original finite differenceWENO,
introduced by Jiang and Shu [20], the present scheme is optimized by means of limiters [40,54] to reduce the
numerical dissipation. For viscous flux terms, a fourth-order central difference scheme is used. A 3rd-order
low storage Runge–Kutta scheme [49] is employed for time integration. This significantly relieves the memory
requirement and is well suited for time-accurate simulations like DNS. All the DNS cases fall within the perfect
gas regime, and the usual constitutive relations for a Newtonian fluid are used: The viscous stress tensor is
linearly related to the rate of strain tensor, and the heat flux vector is linearly related to the temperature gradient
through Fourier’s law. The working fluid is air with viscosity calculated by using Sutherland’s law, except for
Case M8Tw053 where the working fluid is nitrogen and its viscosity is calculated by using Keyes law [23].
Compared to the large differences in boundary layer properties caused by varying the freestreamMach number
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Table 2 Boundary layer properties at the center of the domain selected for the analysis for various DNS cases

Case M∞ Tw/Tr Reθ Reτ Reδ2 θ (mm) H δ (mm) zτ (μm) uτ (m/s)

M2p5Tw1 2.50 1.0 2187 392 1280 0.45 4.0 5.7 14.5 42.0
M6Tw025 5.84 0.25 2028 438 1086 0.19 8.4 3.5 7.8 34.6
M6Tw076 5.86 0.76 9818 444 1910 0.95 13.5 23.2 52.3 45.1
M8Tw053 7.75 0.53 8263 372 1572 0.85 19.1 25.6 69.3 53.5

Fig. 1 Computational domain and simulation setup for DNS of Mach 6 and Mach 8 turbulent boundary layers. The reference
length δi is the thickness of the boundary layer (based on 99% of the freestream velocity) at the inlet plane. An instantaneous
flow is shown in the domain, visualized by iso-surface of the magnitude of density gradient, |Δρ|δi/ρ∞ = 0.98, colored by the
streamwise velocity component (with levels from 0 to U∞, blue to red). a M6Tw076. bM8Tw053 (colour figure online)

and the wall temperature, the differences caused by using a different working fluid in DNS are small, if not
negligible. A constant molecular Prandtl number of 0.71 is used for all of the DNS cases. Additional details
of the DNS including the numerical methodology and boundary conditions are described in multiple previous
publications [6,8,9,58].

Figure 1a, b shows the general computational setup for Cases M6Tw076 and M8Tw053, respectively.
Inflow boundary condition is prescribed by means of either a recycling–rescaling method adapted from Xu
and Martin [57] or a digital filtering method introduced by Touber and Sandham [42]. The computational
setup of the other two cases (M2p5Tw1, M6Tw025) parallels that of Case M6Tw076 in which the rescaling–
recycling procedure is used for inflow turbulence generation. For all cases, a long streamwise domain length
is used to minimize any artificial effects of the inflow turbulence generation procedures and to increase the
streamwise extent and the Reynolds number range of the DNS. On the wall, no-slip conditions are applied
for the three velocity components and an isothermal condition is used for the temperature. At the outlet
and upper freestream boundaries, unsteady non-reflecting boundary conditions based on Thompson [41] are
imposed to avoid acoustic reflections at the boundaries. Periodic boundary conditions are used in the spanwise
direction. Table 3 summarizes the domain sizes and grid resolutions for various DNS cases. Additional details
of the DNS, including the numerical methodology and boundary conditions, are described in multiple previous
publications [6,8,9,58].

DNS database covers simulations of turbulent boundary layers in the high-Mach-number, cold-wall regime.
The features for such flows can be significantly different from the incompressible counterpart. The different
flow features can be caused by changes in mean fluid properties across the layer or due to direct compressibility
effects such as the existence of “eddy shocklets” [38]. As Mach number increases, the direct compressibility
effects become increasingly significant. For instance, Fig. 2a shows that the fluctuating Mach number at Mach
7.75 develops a strong peak with a peak value greater than one toward the edge of the boundary layer. As a
result, the turbulent fluctuations become locally supersonic relative to the surrounding flow, likely creating
local shocklets (see Fig. 2b). Several existing studies have considered compressibility corrections for turbulence
models in high-Mach-number boundary layer applications (see a recent study of Rumsey [35] and references
therein). However, significant challenges remain for RANS modeling of such highly compressible, shocklet-
containing flows, largely due to a lack of Reynolds stress information in such a flow regime. In this paper, the
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Table 3 Grid resolutions and domain sizes for direct numerical simulations

Case Nx × Ny × Nz Lx/δi L y/δi Lz/δi Δx+ Δz+ Δy+
min Δy+

max

M2p5Tw1 1760 × 400 × 800 57.0 40.8 15.6 9.0 5.4 0.6 9.3
M6Tw025 2400 × 560 × 400 81.5 51.1 7.9 6.5 3.8 0.5 4.8
M6Tw076 1920 × 500 × 320 74.4 41.9 6.6 9.6 5.1 0.5 5.3
M8Tw053 3000 × 500 × 320 64.2 32.5 5.6 4.9 3.9 0.4 3.8

Lx , Ly , and Lz are the domain size in the streamwise, wall-normal, and spanwise directions, respectively. Δx+ and Δz+ are the
uniform grid spacing in the streamwise and spanwise directions, respectively; Δy+

min and Δy+
max are the minimum and maximum

wall-normal grid spacing. The grid resolutions are normalized by the viscous length at the center of the domain selected for the
analysis

Fig. 2 aWall-normal distribution of fluctuatingMach number for variousMach number cases, with the wall-normal distance non-
dimensionalized by wall units, and b visualization of a typical instantaneous flow field for DNS Case M8Tw053 in a streamwise
wall-normal (x–y) plane, and spanwise wall-normal (z–y) plane. The contours are shown in numerical schlieren, with density
gradient contour levels selected to emphasize large-scale motions of the boundary layer. The streamwise location of the z–y plane
is indicated by the red vertical dashed line

Fig. 3 Computation domain and boundary conditions for RANS of a Mach 6 turbulent boundary layer (Case M6Tw076). δr is
approximately the boundary layer thickness at the center of the domain

PIML approach of Wang et al. [48] is used to predict the Reynolds stresses for Case M8Tw053 using one of
the other three cases as training flows.

2.3 Baseline RANS simulations of high-speed turbulent boundary layers

Baseline RANS simulations of high-speed turbulent boundary layers are conducted to obtain the mean flow
features q for both the training and prediction flows, with the flow conditions and thermodynamic equation
of state in RANS matching those of the DNS cases as listed in Table 2. The compressible Favre-averaged
Navier–Stokes equations are solved using ANSYS Fluent (V15.0) [1] with the shear stress transport (SST)
k − ω model of Menter [29]. The SST-based k − ω model differs from the standard k − ω models in that it
undergoes a gradual transition to the k − ε model in the outer part of the boundary layer. No low-Reynolds-
number correction is used as the k − ω-based model can be directly integrated from the wall. Details of the
Favre-averaged Reynolds stress equation, boundary conditions, and compressible-flow closure approximations
are given in Ref. [1].

Figure 3 shows a schematic of the RANS computational domain for Case M6Tw076 along with the
boundary conditions used in the Fluent solver. A mesh of 561 × 150 grid points is used, respectively, in
the streamwise and wall-normal directions. The streamwise and wall-normal domain sizes are approximately
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Fig. 4 ML-predicted turbulent normal stress Rxx = ρu′u′ of the test flow (M8Tw053) learned from the training flow (M2p5Tw1) at
a lowMach number. The profiles are shown at five streamwise locations x/δ = 28.32, 28.81, 29.31, 29.78, 30.26. Corresponding
baseline RANS predictions and DNS results are also plotted for comparison. A zoomed-in view of the profiles at x/δ = 28.81 is
presented as an inset to show the detailed comparison

Lx/δr × Ly/δr = 120×60, respectively, where δr is the approximate boundary layer thickness at the center of
the domain. Uniform grids are used in the streamwise direction with a resolution of Δx/δr ≈ 0.3. Geometric
grids with a stretching ratio of less than 1.05 are used in the wall-normal direction. The wall-normal grid
resolution is Δy+ ≈ 0.8 at the wall and Δy+ ≈ 16 near the boundary layer edge. Systematic grid refinement
in each direction has been conducted to verify the grid convergence of the RANS results. The computational
setup for RANS of other cases parallels that of the Case M6Tw076.

3 Learning prediction results

We focus on demonstrating the physics-informed ML framework on cases where training and prediction flows
have the same geometry of a flat plate (with different spatial domain sizes) but are different in flow conditions,
including the freestream Mach number M∞ and the wall-to-recovery temperature ratio Tw/Tr . Here, we
demonstrate the effectiveness of the method by presenting a scenario where the Reynolds stresses for Case
M8Tw053 are predicted using Case M2p5Tw1 as the training flow. Note that the prediction and training flows
have the largest discrepancy in freestream Mach number among all cases considered. Therefore, this scenario
is expected to be the most challenging and can best demonstrate the effectiveness of the PIML approach.
The Reynolds stress discrepancy of the lower-Mach-number training flow (Case M2p5Tw1) is first obtained
by comparing the predictions of DNS and RANS for this case. The data are then used to train the random
forest as the discrepancy function, which is in turn used to correct the RANS-predicted Reynolds stresses
for the higher-Mach-number prediction flow (Case M8Tw053). The ML-assisted RANS results are tested and
validated against those of DNS at the condition of the prediction flow. The random forest (RF) regressor is
constructed of decision trees, which is built to its maximum depth by the successive splitting of nodes until
each leaf is left with one training data point. Two free parameters are required for building the RF model,
i.e., number of trees and number of randomly selected feature components, on which the split is determined.
Generally, a larger ensemble size leads to a better performance. Based on our testing, an ensemble of 200 trees
is large enough to have a robust prediction. The size of the randomly selected subset of features is commonly
chosen as the square root of the total number of input features [15]. In all test cases, the prediction results
were shown to be insensitive to this number. The RF model is implemented by using scikit-learn package [33],
which is an open-source python library for machine learning tools. In the training process of the RF model,
it is not necessary to perform k-fold cross-validation (CV). This is because the bootstrap sampling used in
building the RF model enables a simpler way to estimate the test error from training data. Specifically, each
tree is trained by using around two-thirds of the data, and the remaining one-third can be used to estimate the
test error during training. The estimated error is referred to as the out-of-bag (OOB) error, which has been
demonstrated to be equivalent to the leave-one-out CV error [19].

Figure 4 shows the profiles of ML-predicted turbulent normal stress Rxx at x/δ = 28–31, where the
turbulent boundary layer is fully developed. The baseline RANS (i.e., RANS without correction) and the
corresponding DNS are also plotted for comparison. It can be seen that the baseline RANS underpredicts
the turbulent normal stresses, and there are notable discrepancies in regions close to the wall due to errors



Prediction of Reynolds stresses in high-Mach-number

Fig. 5 ML-predicted turbulent shear stress Rxy = ρu′v′ of the test flow (M8Tw053) learned from the training flow (M2p5Tw1) at
a lowMach number. The profiles are shown at five streamwise locations x/δ = 28.32, 28.81, 29.31, 29.78, 30.26. Corresponding
baseline RANS predictions and DNS results are also plotted for comparison. A zoomed-in view of the profiles at x/δ = 28.81 is
presented as an inset to show the detailed comparison
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Fig. 6 Barycentricmap of theML-correctedReynolds stress of the test flow (M8Tw053) learned from the trainingflow (M2p5Tw1)
at a low Mach number. The corrected results (red circle) on two streamwise locations (i.e., x/δ = 28.81 and 29.78) are plotted
in panels a and b, respectively. Corresponding RANS baseline results (triangle) and DNS results (square) are also plotted for
comparison. a x/δ = 28.81. b x/δ = 29.78 (colour figure online)

in RANS modeling. In contrast, the results corrected by the PIML approach are significantly improved and
better agreement with the DNS data is achieved. In particular, the ML predictions capture the sharp peaks
near the wall at y/δ = 0.05 for boundary layer profiles at all the five streamwise locations. For y/δ < 0.05
where turbulence productions are the most significant, the ML-predicted Rxx almost overlaps with the DNS
data. For y/δ > 0.5, the improvement of ML prediction becomes less notable due to smaller discrepancies
in the Reynolds stress between the baseline RANS and the DNS. Overall, the ML-predicted turbulent normal
stress captures the corresponding DNS data well and significantly improves over the baseline, demonstrating
an excellent performance of the physics-informed ML approach. Similarly good agreement is achieved for the
other two normal components Ryy and Rzz .

Figure 5 shows a comparison of profiles of turbulent shear stress Rxy between ML-corrected RANS and
the DNS. There is no obvious improvement for the ML-predicted shear stress Rxy . The limited improvement
in Rxy by PIML is not unexpected, given that Menter’s SST k–ω model used in the baseline RANS has already
been well tuned to provide good predictions of the Reynolds shear stress for canonical flows like attached
flat-plate turbulent boundary layers. The minor non-smoothness in some regions of the ML-predicted profile is
caused by pointwise estimation of Reynolds stresses in the employed random forest algorithm. Such a finding
suggests that the PIML methodology needs only to be applied if necessary and a priori understanding of the
pro and cons of the employed RANS model would be beneficial.

In addition to the tensor components of Reynolds stresses, it is also of interest to investigate the performance
of the ML-predicted Reynolds stress in its physical projections, i.e., Reynolds stress anisotropy and turbulence
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Fig. 7 Turbulence kinetic energy (k) of the ML-predicted Reynolds stress tensor normalized by the friction velocity uτ . The
flow used for training is the one at the Mach number M = 2.5 (M2p5Tw1). The profiles are shown at five streamwise locations
x/δ = 28.32, 28.81, 29.31, 29.78, 30.26. Corresponding baseline RANS and DNS profiles are also plotted for comparison. A
zoomed-in view of the profiles at x/δ = 28.81 is presented as an inset to show the detailed comparison

kinetic energy (TKE). The shape of the anisotropy tensor can be plotted in the barycentric triangle by using
barycentric coordinates [2], which provides a non-distorted visual representation of anisotropy due to its linear
treatment. Figure 6 shows the ML-predicted anisotropy in barycentric triangle compared with the baseline
and DNS results. The comparisons are made on two representative lines at x/δ = 28.81 and 29.78 and are
presented in Fig. 6a, b, respectively. The arrows denote the order of sample points plotted in the triangle, which
is from the bottom wall to the outer layer. It shows that the baseline RANS-modeled anisotropy is markedly
different from the DNS result since the linear eddy viscosity model (used as the baseline) cannot capture the
Reynolds stress anisotropy at all. For both lines, the RANS-modeled Reynolds stresses fall on the plane strain
line in the Barycentric triangle, whereas the DNS turbulence states have a significantly different trend. The
DNS Reynolds stresses near the wall are close to the one-component limiting state (1-comp, right bottom
vertex of the triangle) since the turbulence in the other two directions are dominated by streamwise velocities.
In stark contrast, the baseline RANS predicts nearly three-component isotropic state (3-comp, top vertex of
the triangle) at the wall. The trend of spatial variations of RANS-predicted anisotropy is opposite to the DNS
data. By correcting the baseline RANS results with the trained discrepancy function, the predicted anisotropy
of Reynolds stress is significantly improved. For both lines, the predicted anisotropy (circles) agrees well with
the DNS result (squares). Moreover, the spatial variations of anisotropy show the same trend as the DNS. It
should be noted that the ML-predicted turbulence states enclosed by a dashed ellipse do not well agree with
the DNS data though they are significantly improved over the baselines. This is because these turbulence states
are located in the regions near or outside the edge of the boundary layer (y/δ > 1.0), where the turbulence
almost vanishes (see Fig. 7, and thus the anisotropies are difficult to capture.

Figure 6 shows the comparison in TKE. The TKE predicted by the baseline RANS model has a large
discrepancy compared to the DNS, especially in the near-wall region. Although it is well known that the k-ω
RANS model alters the physical TKE equation and introduces an extra dissipation near the wall [11] that
results a much reduced near-wall peak, such a large deviation can be adequately corrected by PIML, indicating
the robustness of the employed machine learning algorithm.

4 Prediction performance of different training databases

The DNS database plays the most pivotal role in the PIML approach. It is expected that the relevance of the
training flows to prediction flow significantly affects the prediction performance. It is of interest to study the
ML performances of different training flow databases and to assess the confidence of ML prediction a priori.
To investigate this issue, the Reynolds stresses for the higher-Mach-number case M8Tw053 are predicted
using three different training databases of flows with lower Mach numbers, and corresponding performances
are compared. The DNS data of the flowM8Tw053 are only used for comparing against. Such an arrangement
is relevant to the scenario of real-world applications, since most existing data of either DNS or experiments are
limited to low-Reynolds-number and low-Mach-number regimes. Moreover, to better examine the robustness
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Fig. 8 Scatter plots of the four cases in the two-dimensional space of flow conditions, freestream Mach number M∞, and
wall-to-recovery temperature ratio Tw/Tr

of the PIML approach, the training is also conducted on the combined training datasets of all three lower-
Mach-number flows. Specifically, the discrepancy model is trained by three training flows (Case M2p5Tw1,
Case M6Tw025, and Case M6Tw076) separately for the first three tests and is trained on the combined flow
datasets for the fourth test. These training flows are different in free-streamMach numbers andwall-to-recovery
temperature ratios. The scatter points of the four flows in the space of the two flow parameters are plotted in
Fig. 8.

To quantitatively evaluate the training and test performance, we use L2 norm of the difference between the
data zd and ML-predicted value z p over the entire mesh as the error metric δerr , which is expressed as,

δerr = 1

N

N
∑

i=1

⎛

⎝

zid − zip
max
1≤i≤N

|zid |

⎞

⎠

2

, (6)

where N is the number of data points. The training performance of different training databases is evaluated
by calculating the training errors and out-of-bag (OOB) errors, and all the details are reported in Tables 6 and
7 in “Appendix 2.” Overall, the training errors of each discrepancy component are very small for all training
datasets, indicating that the trained RF models can perfectly capture ΔR for every training flow. This also can
be clearly seen by examining training errors on reconstructed turbulent stress components, most of which are
less than 0.01%. The OOB error, which estimates the test error, is different for each discrepancy component
and also varying in different training cases. In general, the estimated test errors of trained RF models by
different databases are all satisfactory. The flow databases with higher Mach number have lower OOB errors,
and the estimated generalization performance of the anisotropy discrepancy is better than that of turbulent
kinetic energy. Next, the prediction performance of each trained model is examined by comparing with the
test flow datasets M8Tw053.

Figure 9 shows the comparison of the ML prediction performances on turbulent normal component Rxx
with the three aforementioned training flows and the combined datasets. The ML-predicted Rxx profiles at
x/δ = 28.81 based on training flows M6Tw025, M2p5Tw1, M6Tw076, and combined flows are shown in
Fig. 9a–d, respectively. It can be seen that the ML-predicted Rxx profiles in all training scenarios are corrected
toward the DNS data. In the near-wall region, the peaks at y/δ = 0.1, which are underestimated by the
baseline RANS, are captured in all the four scenarios to different extents. Overall, the discrepancy (misfit)
between RANS prediction and DNS data is reduced with ML corrections. However, the performance of the
correction is notably different by using different training sets. When the flow M6Tw076 is used for training,
the ML prediction is almost identical to the DNS data (Fig. 9c), since both the Mach number and the wall-
to-recovery temperature of the flow M6Tw076 are the closest to those of the prediction flow M8Tw053 in the
three training flows. As the Mach number of the training flow is reduced to 2.5 (Fig. 9b), notable discrepancies
can be found in the upper part of the boundary layer (0.4 < y/δ < 1.0). The wall temperature condition
is also an important factor that affects closeness between training and prediction flows. Although the Mach
number of flow M6Tw025 is close to the prediction flow, large bumps and non-smoothness are found in the
near-wall region (Fig. 9a), since the training flow has a colder wall (Tw/Tr = 0.25). This is different from
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Fig. 9 Comparison of ML-predicted turbulent normal stress Rxx = ρu′u′ learned from the training cases a M6Tw025, b
M2p5Tw1, cM6Tw076, and d combined databases of M6Tw025, M2p5Tw1, and M6Tw076. Corresponding baseline RANS and
DNS results are also plotted.Note that only the zoomed-in viewof the profiles at x/δ = 28.81 is shown. aM = 6.0, Tw/Tr = 0.25.
b M = 2.5, Tw/Tr = 1.0. c M = 6.0, Tw/Tr = 0.76. d Combined
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Fig. 10 Comparison ofML-predicted turbulent shear stress Rxy = ρu′v′ learned from the training cases aM6Tw025,bM2p5Tw1,
cM6Tw076, and d combined databases ofM6Tw025,M2p5Tw1, andM6Tw076. Corresponding baseline RANS andDNS results
are also plotted. Note that only the zoomed-in view of the profiles at x/δ = 28.81 is shown. a M = 6.0, Tw/Tr = 0.25. b
M = 2.5, Tw/Tr = 1.0. c M = 6.0, Tw/Tr = 0.76. d Combined

the other training flows and the prediction flow, whose wall-to-recovery temperature ratios are all larger than
0.5. However, when training on the aggregated datasets of all three flows, the prediction performance of Rxx
significantly improved compared to the training cases M2p5Tw1 and M6Tw025 and is comparable to the case
M6Tw076. It can be seen that the predicted �xx with combined training datasets agrees best with the DNS in
the near-wall region.

The predictions of turbulent shear component Rxy show the similar trend, and the comparisons are presented
in Fig. 10. As mentioned in Sect. 3, the baseline RANS has been well calibrated for turbulent shear stress, and
thus, different degrees of deterioration are observed inML predictions in all the three training scenarios. For the
training cases with a low Mach number (M2p5Tw1) or a cold-wall condition (M6Tw025), the ML-predicted
Rxy profiles deviate from the baseline and DNS results in the upper region of the boundary layer, and there
are marked bumps near the wall. For the training case M6Tw076, the ML prediction shows a better agreement
with the DNS data. However, slight non-smoothness still can be observed, which is due to the pointwise
estimation of the currently used machine learning algorithm as mentioned above. The non-smoothness is
improved to a certain extent by using combined databases. In the near-wall region, the ML prediction is nearly
identical to the DNS, showing more robustness. In the PIML framework, the discrepancy of RANS-predicted
Reynolds stress is learned and predicted by the ML model. When the discrepancy is already small (i.e., RANS
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Table 4 Test errors of flow M8Tw053 using different training datasets

Training database Test error (L2) in

Δxb Δyb ΔLog(k) Δφ Totala

M6Tw076 7.40e−3 4.30e−3 7.94e−3 2.94e−2 1.58e−2
M6Tw025 1.66e−2 5.41e−3 2.15e−1 4.41e−2 1.10e−1
M2p5Tw1 3.18e−2 1.48e−2 2.34e−2 5.47e−2 3.38e−2
M6Tw076, M6Tw025, M2p5Tw1 4.10e−3 1.58e−3 1.39e−2 1.97e−2 1.23e−2

Training database Test error (L2) in

Rxx Ryy Rzz Rxy Totala

M6Tw076 1.66e−3 3.74e−3 4.14e−3 3.97e−3 3.52e−3
M6Tw025 1.11e−2 1.50e−2 1.90e−2 1.54e−2 1.54e−2
M2p5Tw1 6.35e−3 2.66e−2 2.73e−2 2.45e−2 2.28e−2
M6Tw076, M6Tw025, M2p5Tw1 1.66e−3 2.44e−3 2.51e−3 2.79e−3 2.38e−3
Baseline RANS error 1.08e−1 2.89e−1 2.97e−1 1.09e−3 2.14e−1
aTotal error is defined as the mean square root of the errors of the first four columns

prediction is accurate enough), errors associated with training data and ML learning process become more
visible and thus the ML-corrected Reynolds stress may even deteriorate. It is wise to put less weight on the
ML correction for regions where the RANS prediction performance is satisfactory. The RANS performance
evaluation framework proposed by Ling et al. [24] can be potentially employed to identify those regions and
assign correction weights. This issue will be explored separately in the future work.

To quantitatively evaluate the training–prediction performance of each case, we calculated the test errors
for all predicted ΔR components and reconstructed Reynolds stress components based on the L2 error metric
defined by Eq. 6. The results are reported in Table 4. Overall, the test errors are significantly less than the
baseline RANS error, especially for the turbulent normal stresses (Rxx , Ryy, Rzz). The accuracy of ML-
corrected turbulent normal stresses has been improved by orders of magnitude. However, the error of the
RANS-predicted turbulent shear stress (Rxy) is already very small, which is about two orders of magnitude
smaller than those of the other normal stress components. As expected, the ML-corrected Rxy deteriorates to
a certain extent and the ML test errors are larger than that of the RANS-predicted shear stress component.
Nonetheless, the accuracy of ML-corrected Rxy by using either datasets M6Tw076 or combined datasets is
comparable to that of the RANS prediction. By comparing the prediction performance of the three different
training flows, we can see that the training with database M6Tw076 provides the most accurate prediction,
the error of which is approximately two orders of magnitude smaller than that of the baseline RANS. It is
worth to highlight that training on the combination of all three datasets produces the most accurate and robust
prediction, where the test error is smaller than that of any cases with each individual training flow.

The results shown above demonstrate that the performance of the ML prediction largely depends on the
dataset used for training. Intuitively, the trainingflowsM2p5Tw1andM6Tw025 are less similar to the prediction
flowM8Tw053 than the training flowM6Tw076 is, since they either have a much lower Mach number or have
a colder wall. Therefore, their prediction performances deteriorate compared to that of the case M6Tw076,
which is closer to the prediction flow in both Mach number and wall temperature condition. A legitimate
question is how to assess the prediction performance a priori with the given database. This assessment is of
great importance since it can provide guidelines to decide if the database is sufficient or not for training and
which flow data should be added to improve prediction performance. Moreover, the assessment can identify
the flow regions where the features are not well-supported by the training set, and so the ML correction can
be masked in these areas. To quantitatively assess the “closeness” and “difference” between the training and
predicted flow sets, Wu et al. [52] proposed to use the RANS-simulated mean flow features. Specifically,
RANS simulations can be performed for both the training and prediction flows to obtain the invariant mean
flow features. The “closeness” of training and prediction flows can be assessed by visualizing the mean flow
feature space of each flow and measuring the “distance” between training and prediction flows in the feature
space.

First, it is of interest to visualize training and prediction flows in mean feature space. However, this is not
trivial since each point in the feature space has 47 dimensions. Dimension reduction techniques are needed
to interpret the high-dimensional feature points visually. The t-Distributed Stochastic Neighbor Embedding
(t-SNE) technique [28] is specifically designed to enable the visualization of high-dimensional datasets by
mapping the high-dimensional data into a two- or three-dimensional space. To identify a low-dimensional
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Fig. 11 Two-dimensional t-SNE visualization of the local mean flow features of four flow casesM2p5Tw1,M6Tw025,M6Tw076,
and M8Tw053. The two t-SNE coordinates are denoted by tSNECood1 and tSNECood2, respectively

manifold with the pairwise similarity of the high-dimensional space, the conditional probabilities converted
from Euclidean distances between data points in both high- and low-dimensional spaces are calculated. The
cost function based on Kullback–Leibler divergence of the two probabilities is minimized to find the best
representation of high-dimensional data in a low-dimensional manifold. Refer to Maaten et al. [28] for more
details of t-SNE. Wu et al. [50] proposed using t-SNE to visualize high-dimensional turbulence simulation
data. Here, we employ t-SNE dimension reduction technique to visually analyze the closeness of different
training flows to the prediction flow. Figure 11 shows the mean flow feature points of the cases, M2p5Tw1,
M6Tw025, M6Tw076, and M8Tw053, in two-dimensional t-SNE coordinates. It can be clearly seen that the
points of flow M6Tw076 (stars) align well with those of the prediction flow M8Tw053 (circles). The points of
both flowsM2p5Tw1 (squares) andM6Tw025 (triangles) deviate from those of the prediction flow. Particularly
for the cold-wall case (M6Tw025), most t-SNE points are located far away from those of the prediction flow,
indicating that the prediction case is not supported by the cold-wall case in most regions. After mapping back
the t-SNE points that are not supported by the training case of M6Tw025 to the physical coordinates, we found
that these unsupported points are located near the wall (y/δ < 0.15) in the physical domain. This region is the
one where large unphysical bumps exist in theML predictions with training flowM6Tw025 (see Figs. 9a, 10a).
The t-SNE visualization for the training and prediction flows is consistent with the prediction performance of
each training flow.

In additional to tSNE that provides a qualitative visualization of the regions unsupported by training flows,
the Mahalanobis distance (M-distance) Dm is employed to quantitatively measure the closeness between
training and prediction flows and explain the different prediction performances shown above according to Wu
et al. [52]. The M-distance is defined as the distance between a feature point q of the prediction flow and the
mean value μ of the feature points of the training flow, scaled by the covariance matrix Σ of all the training
points,

Dm =
√

(q − μ)TΣ−1(q − μ). (7)

TheM-distance Dm is normalized to the range between 0 to 1 based on percentiles from the training set. Larger
M-distance means higher degree of extrapolation from training to prediction flows.

Figure 12 shows distributions of M-distances from the prediction flow to the three training sets, where the
mean value of the M-distance of each training case is also plotted. As expected, most points of prediction flow
have small M-distances to the training flow M6Tw076, and the mean M-distance is 0.38. This is consistent
with the intuition since the Mach number and wall temperature ratio are close to the prediction flow in this
training scenario. TheM-distances to training flowsM6Tw025 andM2p5Tw1 become larger, and the distances
are greater than 0.45 for most points. The mean M-distances for M6Tw025 and M2p5Tw1 are significantly
larger than that of case M6Tw076. It can be seen that the averaged M-distances of the cold-wall case are
slightly larger than that of low-Mach-number case. The observations in Fig. 12 can be well correlated with
the prediction performances shown in Figs. 4 and 5. Moreover, the M-distance of each point in the prediction
flow can be used to evaluate the prediction confidence and to mask the prediction quantitatively.
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5 Summary

In this paper, a physics-informed machine learning (PIML) approach is applied to improve the accuracy of the
RANS-modeled Reynolds stresses for high-speed flat-plate turbulent boundary layers using an existing DNS
database. The effectiveness of the PIML technique for improving Reynolds stresses is demonstrated in several
training scenarios where the training and prediction datasets differ both in the freestream Mach number and
in the wall-to-recovery temperature ratio. The study shows that the RANS-modeled turbulent normal stresses,
the turbulent kinetic energy, and the Reynolds stress anisotropy can be significantly improved using the PIML
technique. Moreover, the learning prediction performances of different training scenarios are also evaluated
qualitatively by using a high-dimensional visualization technique t-SNE and quantitatively by using a distance
metric, M-distance. Both techniques provide a priori assessment of the prediction confidence with a given
training dataset. The PIML methodology consists of an economical technique for improving the accuracy
of RANS-modeled Reynolds stresses for high-speed turbulent flows when there is a lack of experiments or
high-fidelity simulations.

Although the main aim in this work is to reduce the model-form error of the RANS-predicted Reynolds
stress, ultimate goal of the PIML framework is to improve the RANS-predicted mean flow field by solving
the PDE with the ML-corrected Reynolds stress. Success has been achieved in a number of incompressible
flows [44,47,53], but the significant challenge still remains. The primary limitation is due to the non-smoothness
observed in certain ML predictions, since the divergence of the Reynolds stress appears in the RANS equation.
Namely, despite the fact that the ML predictions are closer to the truth, the non-smooth Reynolds stress field
(i.e., slight wiggling around the truth) might pollute the propagated velocity field. There are two main reasons
for this issue. First, the machine learning is conducted pointwisely without consideration of spatial correlation
information. Therefore, smooth predictions and improved spatial derivatives of Reynolds stresses may not
necessarily be guaranteed. Possible solutions could include imposing the spatial correlation constraint on the
learning process or developing other learning prediction strategies which do not depend on pointwise training.
Second, it is known that the prediction performance is highly related to the quality and quantity of the training
data. For the cases where features of the test flow cannot be well supported by those in the training flows
(e.g., cold-wall training set M6Tw025), non-smoothness is more likely to happen. The prediction performance
assessment methods presented in this work can potentially be utilized to identify the flow regions where the
test errors might be large a priori, and the ML corrections in such regions can be less weighted accordingly.
On the other hand, including more relevant datasets for training will also lend robustness and obtain a more
smooth and accurate prediction.

In this work, a basis of 47 input invariants is constructed in the current PIML framework, but a considerably
smaller number of input invariants might be sufficient to model high-speed flat-plate turbulent boundary layers,
given that the direct compressibility effects remain small even for Mach numbers up to 12 [7] and, based on the
Morkovin’s hypothesis, there are simple physics-based incompressible–compressible transformations such
as those derived by Huang et al. [18] and Trettel and Larsson [43]. Therefore, the current study should be
seen as a first step to extend the PIML framework by Wang et al. [48] to high-speed compressible flows.
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Further study is required for deriving machine learning approaches that are better informed by physics in the
high-speed regime and for reducing the dimensional space of the machine learning algorithm. The modeling
and scaling of turbulent statistics as given in Huang et al. [18] and Trettel and Larsson [43] should provide
a good starting point for deriving optimized “physics-informed” approaches. Moreover, the dimension of the
feature space can be further reduced by analyzing the importance of each feature a posteriori. For example, the
feature importance measure in the random forest can be studied to identify the critical features most relevant
to construct the Reynolds stress discrepancy [48].
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Appendix 1: Integrity basis of mean flow features of high-speed flows

The minimal integrity invariance bases for mean flow vectors and tensors of high-speed flows are given in
Table 5. Note that the vectors ∇T and ∇k should be first mapped to antisymmetric tensors as follows,

̂AT = −I × ̂∇T , (8a)
̂Ak = −I × ̂∇k, (8b)

where I is the second-order identity tensor, and × denotes tensor cross product. The asterisk (∗) on a term

means to include all terms formed by cyclic permutation of antisymmetric tensor labels (e.g., ̂Ω
2
̂AT̂S* is short

for ̂Ω
2
̂AT̂S and ̂A2

T
̂Ω̂S).

Table 5 Minimal integrity bases for symmetric tensor̂S and antisymmetric tensors ̂Ω , ̂AT , and ̂Ak

(nS, nA) Feature index Invariant basesa

(1, 0) 1–2 ̂S2,̂S3

(0, 1) 3–5 ̂Ω
2
, ̂A2

T , ̂A
2
k

(1, 1) 6–14 ̂Ω
2
̂S, ̂Ω

2
̂S2, ̂Ω

2
̂ŜΩ̂S2;

̂A2
T
̂S, ̂A2

T
̂S2, ̂A2

T
̂ŜAT̂S2;

̂A2
k
̂S, ̂A2

k
̂S2, ̂A2

k
̂ŜAk̂S2;

(0, 2) 15–17 ̂Ω̂AT , ̂AT̂Ak , ̂Ω̂Ak

(1, 2) 18–41 ̂Ω̂AT̂S, ̂Ω̂AT̂S2, ̂Ω
2
̂AT̂S*, ̂Ω

2
̂AT̂S2*, ̂Ω

2
̂ŜAT̂S2*;

̂Ω̂Ak̂S, ̂Ω̂Ak̂S2, ̂Ω
2
̂Ak̂S*, ̂Ω

2
̂Ak̂S2*, ̂Ω

2
̂ŜAk̂S2*;

̂AT̂Ak̂S, ̂AT̂Ak̂S2, ̂A2
T
̂Ak̂S*, ̂A2

T
̂Ak̂S2*, ̂A2

T
̂ŜAk̂S2*;

(0, 3) 42 ̂Ω̂AT̂Ak

(1, 3) 43–47 ̂Ω̂AT̂Ak̂S, ̂Ω̂Ak̂AT̂S, ̂Ω̂AT̂Ak̂S2, ̂Ω̂Ak̂AT̂S2, ̂Ω̂AT̂SA3S2

aThe invariance basis is the trace of each tensor
In the implementation,̂S is the rate of strain tensor, ̂Ω is the rate of rotation tensor; ̂AT and ̂Ak are the antisymmetric tensors
associated with temperature gradient ̂∇T and the gradient of turbulent kinetic energy ̂∇k. nS and nA denote the numbers of
symmetric and antisymmetric raw tensors for the bases; an asterisk (∗) on a term means to include all terms formed by cyclic
permutation of labels of antisymmetric tensors. Note the invariant bases are traces of the tensors in the third column
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Appendix 2: Training performance of different training databases

The training errors and out-of-bag (OOB) errors are calculated on both Reynolds stress discrepancy
components (i.e., ΔR = [Δxb, Δyb, Δ log(k), Δφ]) and reconstructed turbulent stress components (i.e.,
Rxx , Ryy, Rzz, Rxy). Note that turbulent shear stresses Rxz and Ryz are negligible in boundary layer flows.
The calculated training errors and OOB are listed in Tables 6 and 7, respectively.

Table 6 Training errors of different training datasets

Training database Training error (L2) in

Δxb Δyb ΔLog(k) Δφ Totala

M8Tw053 6.76e−5 4.31e−5 1.07e−5 1.44e−4 8.26e−5
M6Tw076 9.39e−5 8.32e−5 1.46e−5 1.73e−4 1.07e−4
M6Tw025 9.29e−5 5.35e−5 1.03e−3 5.07e−4 5.77e−4
M2p5Tw1 7.83e−5 3.72e−5 6.54e−5 1.82e−3 9.12e−4

Training database Training error (L2) in

Rxx Ryy Rzz Rxy Totala

M8Tw053 1.05e−5 2.37e−5 2.20e−5 8.64e−5 4.64e−5
M6Tw076 4.48e−6 1.97e−5 2.16e−5 6.22e−5 3.44e−5
M6Tw025 8.37e−4 7.04e−4 6.42e−4 1.86e−3 1.12e−3
M2p5Tw1 7.95e−6 2.24e−5 2.03e−5 4.09e−5 2.57e−5

aTotal error is defined as the mean square root of the errors in the first four columns

Table 7 Out-of-bag (OOB) errors of different training datasets

Training database OOB errors in

Δxb Δyb ΔLog(k) Δφ Averageda

M8Tw053 3.05e−3 4.46e−3 8.74e−3 8.93e−2 2.64e−2
M6Tw076 4.79e−3 1.03e−2 1.46e−3 1.41e−2 7.66e−3
M6Tw025 7.60e−2 4.82e−2 6.51e−2 2.34e−2 5.32e−2
M2p5Tw1 4.66e−2 9.78e−2 2.74e−2 2.57e−2 4.94e−2

aAveraged OOB errors of the first four columns

References

1. Ansys fluent user guide, release 15.0. ANSYS Inc (2013)
2. Banerjee, S., Krahl, R., Durst, F., Zenger, C.: Presentation of anisotropy properties of turbulence, invariants versus eigenvalue

approaches. J. Turbul. 8, N32 (2007)
3. Cheung, S.H., Oliver, T.A., Prudencio, E.E., Prudhomme, S., Moser, R.D.: Bayesian uncertainty analysis with applications

to turbulence modeling. Reliab. Eng. Syst. Saf. 96(9), 1137–1149 (2011)
4. Craft, T., Launder, B., Suga, K.: Development and application of a cubic eddy-viscosity model of turbulence. Int. J. Heat

Fluid Flow 17(2), 108–115 (1996)
5. Dow, E., Wang, Q.: Quantification of structural uncertainties in the k–ω turbulence model. In: 52nd

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA, Denver, Colorado, pp.
2011–1762 (2011)

6. Duan, L., Choudhari, M.M.: Analysis of numerical simulation database for pressure fluctuations induced by high-speed
turbulent boundary layers. AIAA Paper 2014-2912 (2014)

7. Duan, L., Beekman, I., Martin, M.: Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of
mach number. J. Fluid Mech. 672, 245–267 (2011)

8. Duan, L., Choudhari, M.M., Wu, M.: Numerical study of acoustic radiation due to a supersonic turbulent boundary layer. J.
Fluid Mech. 746, 165–192 (2014)

9. Duan, L., Choudhari, M.M., Zhang, C.: Pressure fluctuations induced by a hypersonic turbulent boundary layer. J. Fluid
Mech. 804, 578–607 (2016)

10. Duraisamy, K., Iaccarino, G., Xiao, H.: Turbulence modeling in the age of data. (2018). arXiv preprint arXiV:1804.00183
11. Durbin, P.A., Reif, B.P.: Statistical Theory and Modeling for Turbulent Flows. Wiley, Hoboken (2011)
12. Edeling, W., Cinnella, P., Dwight, R.P.: Predictive RANS simulations via Bayesian model-scenario averaging. J. Comput.

Phys. 275, 65–91 (2014a)

http://arxiv.org/abs/1804.00183


J.-X. Wang et al.

13. Edeling, W., Cinnella, P., Dwight, R.P., Bijl, H.: Bayesian estimates of parameter variability in the k-ε turbulence model. J.
Comput. Phys. 258, 73–94 (2014b)

14. Emory, M., Larsson, J., Iaccarino, G.: Modeling of structural uncertainties in Reynolds-averaged Navier–Stokes closures.
Phys. Fluids 25(11), 110,822 (2013)

15. Friedman, J., Hastie, T., Tibshirani, R.: The elements of statistical learning, vol 1. Springer series in statistics New York, NY,
USA (2001)

16. Gatski, T., Jongen, T.: Nonlinear eddy viscosity and algebraic stress models for solving complex turbulent flows. Prog.
Aerospace Sci. 36(8), 655–682 (2000)

17. Goldberg, U., Batten, P., Palaniswamy, S., Chakravarthy, S., Peroomian, O.: Hypersonic flow predictions using linear and
nonlinear turbulence closures. J. Aircr. 37(4), 671–675 (2000)

18. Huang, P., Coleman, G., Bradshaw, P.: Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech.
305, 185–218 (1995)

19. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning, vol. 112. Springer, Berlin (2013)
20. Jiang, G., Shu, C.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)
21. Johnson, R.W.: Handbook of Fluid Dynamics. CRC Press, Boca Raton (2016)
22. Kennedy, M.C., O’Hagan, A.: Bayesian calibration of computer models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 63(3),

425–464 (2001)
23. Keyes, F.G.: A summary of viscosity and heat-conduction data for He, A, H2, O2, CO , CO2, H2O , and air. Trans. Am. Soc.

Mech. Eng. 73, 589–596 (1951)
24. Ling, J., Templeton, J.: Evaluation ofmachine learning algorithms for prediction of regions of high Reynolds averagedNavier

Stokes uncertainty. Phys. Fluids (1994-present) 27(8), 085,103 (2015)
25. Ling, J., Jones, R., Templeton, J.: Machine learning strategies for systems with invariance properties. J. Comput. Phys. 318,

22–35 (2016a)
26. Ling, J., Kurzawski, A., Templeton, J.: Reynolds averaged turbulence modelling using deep neural networks with embedded

invariance. J. Fluid Mech. 807, 155–166 (2016b)
27. Ling, J., Ruiz, A., Lacaze, G., Oefelein, J.: Uncertainty analysis and data-driven model advances for a jet-in-crossflow. J.

Turbomach. 139(2), 021,008 (2017)
28. Lvd, Maaten, Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)
29. Menter, F.R.: Two-equation eddy-viscosity turbulencemodels for engineering applications.AIAAJ.32(8), 1598–1605 (1994)
30. Nieckele, A., Thompson, R., Mompean, G.: Anisotropic Reynolds stress tensor representation in shear flows using DNS and

experimental data. J. Turbul. 17(6), 602–632 (2016)
31. Oliver, T.A., Moser, R.D.: Bayesian uncertainty quantification applied to RANS turbulence models. In: Journal of Physics:

Conference Series, IOP Publishing vol 318, p. 042032 (2011)
32. Parish, E.J., Duraisamy, K.: A paradigm for data-driven predictive modeling using field inversion and machine learning. J.

Comput. Phys. 305, 758–774 (2016)
33. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R.,

Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine
learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

34. Ray, J., Lefantzi, S., Arunajatesan, S., Dechant, L.: Bayesian parameter estimation of a k-εmodel for accurate jet-in-crossflow
simulations. AIAA J. 54(8), 1–17 (2016)

35. Rumsey, C.L.: Compressibility considerations for k-ω turbulence models in hypersonic boundary-layer applications. J.
Spacecr. Rockets 47(1), 11–20 (2010)

36. Sebastian, J.J., James, S.E., Suryan, A.: Computational study of hypersonic flow past spiked blunt body using RANS and
DSMC method. Procedia Technol. 25, 892–899 (2016)

37. Singh, A.P., Duraisamy, K.: Using field inversion to quantify functional errors in turbulence closures. Phys. Fluids 28(045),
110 (2016)

38. Smits, A.J., Dussauge, J.P.: Turbulent Shear Layers in Supersonic Flow, 2nd edn. American Institute of Physics, College
Park (2006)

39. So, R., Jin, L., Gatski, T.: An explicit algebraic reynolds stress and heat flux model for incompressible turbulence: part i
non-isothermal flow. Theor. Comput. Fluid Dyn. 17(5), 351–376 (2004)

40. Taylor, E.M., Wu, M., Martín, M.P.: Optimization of nonlinear error sources for weighted non-oscillatory methods in direct
numerical simulations of compressible turbulence. J. Comput. Phys. 223, 384–397 (2006)

41. Thompson, K.W.: Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 68(1), 1–24 (1987)
42. Touber, E., Sandham, N.D.: Oblique shock impinging on a turbulent boundary layer: low-frequency mechanisms. AIAA

Paper 2008-4170 (2008)
43. Trettel, A., Larsson, J.:Mean velocity scaling for compressible wall turbulencewith heat transfer. Phys. Fluids 28(2), 026,102

(2016)
44. Wang, J., Wu, J., Ling, J., Iaccarino, G., Xiao, H.: Physics-informed machine learning for predictive turbulence modeling:

toward a complete framework. In: 2016 Proceedings of the CTR Summer Program, Stanford University, CA, p. 1 (2016a)
45. Wang, J.X., Sun, R., Xiao, H.: Quantification of uncertainties in turbulence modeling: a comparison of physics-based and

random matrix theoretic approaches. Int. J. Heat Fluid Flow 62(B), 577–592 (2016b)
46. Wang, J.X., Wu, J.L., Xiao, H.: Incorporating prior knowledge for quantifying and reducing model-form uncertainty in

RANS simulations. Int. J. Uncertain. Quantif. 6(2), 109–126 (2016c)
47. Wang, J.X., Wu, J., Ling, J., Iaccarino, G., Xiao, H.: A comprehensive physics-informed machine learning framework for

predictive turbulence modeling, submitted, (2017a). arXiv:1701.07102
48. Wang, J.X., Wu, J., Xiao, H.: Physics informed machine learning approach for reconstructing Reynolds stress modeling

discrepancies based on DNS data. Phys. Rev. Fluids 2(3), 1–22 (2017b)
49. Williamson, J.: Low-storage Runge–Kutta schemes. J. Comput. Phys. 35(1), 48–56 (1980)

http://arxiv.org/abs/1701.07102


Prediction of Reynolds stresses in high-Mach-number

50. Wu, J., Wang, J., Xiao, H., Ling, J.: Visualization of high dimensional turbulence simulation data using t-SNE. In: 19th
AIAA Non-Deterministic Approaches Conference, p. 1770 (2017a)

51. Wu, J.L., Wang, J.X., Xiao, H.: A Bayesian calibration–prediction method for reducing model-form uncertainties with
application in RANS simulations. Flow, Turbulence and Combustion, pp. 1–26 (2015)

52. Wu, J.L., Wang, J.X., Xiao, H., Ling, J.: A priori assessment of prediction confidence for data-driven turbulence modeling.
Flow, Turbulence and Combustion, pp. 1–22 (2017b)

53. Wu, J.L., Xiao, H., Paterson, E.: Physics-informed machine learning approach for augmenting turbulence models: a com-
prehensive framework. Phys. Rev. Fluids 3(074), 602 (2018). https://doi.org/10.1103/PhysRevFluids.3.074602

54. Wu, M., Martín, M.P.: Direct numerical simulation of supersonic boundary layer over a compression ramp. AIAA J. 45(4),
879–889 (2007)

55. Wu, X.: Inflow turbulence generation methods. Annu. Rev. Fluid Mech. 49, 23–49 (2017)
56. Xiao, H., Wu, J.L., Wang, J.X., Sun, R., Roy, C.: Quantifying and reducing model-form uncertainties in Reynolds-averaged

Navier–Stokes simulations: a data-driven, physics-informed Bayesian approach. J. Comput. Phys. 324, 115–136 (2016)
57. Xu, S., Martín, M.P.: Assessment of inflow boundary conditions for compressible turbulent boundary layers. Phys. Fluids

16(7), 2623–2639 (2004)
58. Zhang, C., Duan, L., Choudhari, M.M.: Effect of wall cooling on boundary-layer-induced pressure fluctuations at Mach 6.

J. Fluid Mech. 822, 5–30 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

https://doi.org/10.1103/PhysRevFluids.3.074602

	Prediction of Reynolds stresses in high-Mach-number turbulent boundary layers using physics-informed machine learning
	Abstract
	1 Introduction
	1.1 Significance of reducing modeling discrepancies of Reynolds stresses
	1.2 Reducing Reynolds stress discrepancies: existing machine learning approaches
	1.3 Objective and novelty of the present work

	2 Methodology
	2.1 Physics-informed machine learning approach
	2.2 DNS database of high-speed turbulent boundary layers
	2.3 Baseline RANS simulations of high-speed turbulent boundary layers

	3 Learning prediction results
	4 Prediction performance of different training databases
	5 Summary
	Acknowledgements
	Appendix 1: Integrity basis of mean flow features of high-speed flows
	Appendix 2: Training performance of different training databases
	References




