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ABSTRACT
The emission process of Fast Radio Bursts (FRBs) remains unknown. We investigate whether
the synchrotron maser emission from relativistic shocks in a magnetar wind can explain
the observed FRB properties. We perform particle-in-cell (PIC) simulations of perpendicular
shocks in cold pair plasmas, checking our results for consistency among three PIC codes. We
confirm that a linearly polarized X-mode wave is self-consistently generated by the shock and
propagates back upstream as a precursor wave. We find that at magnetizations σ � 1 (i.e. ratio
of Poynting flux to particle energy flux of the pre-shock flow) the shock converts a fraction
f ′

ξ ≈ 7 × 10−4/σ 2 of the total incoming energy into the precursor wave, as measured in the
shock frame. The wave spectrum is narrow-band (fractional width �1−3), with apparent
but not dominant line-like features as many resonances concurrently contribute. The peak
frequency in the pre-shock (observer) frame is ω′′

peak ≈ 3γs|uωp, where γ s|u is the shock Lorentz
factor in the upstream frame and ωp the plasma frequency. At σ � 1, where our estimated
ω′′

peak differs from previous works, the shock structure presents two solitons separated by a
cavity, and the peak frequency corresponds to an eigenmode of the cavity. Our results provide
physically grounded inputs for FRB emission models within the magnetar scenario.

Key words: magnetic fields – masers – radiation mechanisms: non-thermal – shock waves –
stars: neutron.

1 INTRODUCTION

Synchrotron masers are known to produce strong decametric radio
emission in the Jovian magnetosphere and kilometric emission in
the terrestrial magnetosphere (Auroral Kilometric Emission). They
are driven by a ‘population inversion’ of energetic electrons gyrating
in an intense magnetic field. The driver of the emission is either
a loss-cone or ring-like electron distribution function (Treumann
2006; Melrose 2017). Such a population inversion occurs also
in strongly magnetized relativistic perpendicular shocks, where
a coherent cold-ring distribution of particles is self-consistently
produced as part of the shock evolution (Gallant et al. 1992; Am-
ato & Arons 2006). This distribution is unstable to the synchrotron
maser instability (Hoshino & Arons 1991) that causes the emission
of a train of high amplitude semicoherent electromagnetic waves
propagating from the shock front into the unshocked (upstream)
medium (Gallant et al. 1992; Hoshino et al. 1992). The possible
importance of the synchrotron maser in astrophysical sources was
anticipated long ago (Sazonov 1973). Yet, to our present knowledge,
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there is no firm demonstration that shock-powered synchrotron
maser emission is dominant in any non-heliospheric astrophysical
environment, even though a few potential scenarios have been
proposed (e.g. Sagiv & Waxman 2002).

Recently, however, the discovery of Fast Radio Bursts (FRBs;
Lorimer et al. 2007; Keane et al. 2012; Thornton et al. 2013;
Spitler et al. 2014; Marcote et al. 2017) has revived the interest
in this mechanism. These events are bright (∼1 Jy) pulses of
millisecond duration detected in the ∼ GHz band. Their extremely
high brightness temperature, TB ∼ 1037K, requires a coherent
emission mechanism (Katz 2016; Popov, Postnov & Pshirkov
2018). Young magnetars have emerged as one of the most likely
progenitors of FRBs, at least for the repeating class (e.g. Popov &
Postnov 2013; Murase, Kashiyama & Mészáros 2016; Kashiyama &
Murase 2017; Lyutikov 2017; Metzger, Berger & Margalit 2017;
Long & Pe’er 2018; Margalit et al. 2018; Margalit & Metzger
2018). Magnetars can naturally explain the short FRB durations,
large energy requirements, and ordered magnetic fields needed for
coherent emission. Thus far, most works on the FRB emission
mechanism are based on mere considerations of energetics and time-
scales, in which it is assumed that a fraction of the free energy of
the system is radiated away at GHz frequencies by coherent charge
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‘bunches’ via, e.g. curvature or synchrotron maser processes. In
the case of curvature radiation, the emission is postulated to be
a product of magnetic reconnection close to the magnetar surface
(e.g. Lyutikov 2002; Kumar, Lu & Bhattacharya 2017; Ghisellini &
Locatelli 2018; Katz 2018; Lu & Kumar 2018). In the case of the
synchrotron maser, the emission is thought to occur at relativistic
shocks propagating in the magnetar wind or nebula (Lyubarsky
2014; Murase et al. 2016; Beloborodov 2017) or inside the ultra-
relativistic shell ejected from the central compact object (Waxman
2017). Yet, in either case the conditions for coherent emission and
the very existence of charge bunches with the required properties
are often postulated ad hoc, resulting in models with little predictive
power.

The purpose of this work is to demonstrate from first principles
that the synchrotron maser at relativistic shocks in the magnetar
wind can naturally explain the observed FRB properties. By
means of particle-in-cell (PIC) simulations, we investigate how the
efficiency and spectrum of the electromagnetic wave emitted by the
shock into the pre-shock medium (which we shall call ‘precursor
wave’) depend on the physical conditions in the magnetar wind. In
this work, the first of a series, we present results from 1D simulations
(more precisely, 1D3V, i.e. we employ one spatial dimension, but
all three components of velocities and electromagnetic fields are
retained), while multidimensional runs will be presented in a future
work (Sironi et al., in preparation; see also Appendix B for the
precursor energetics in 2D and 3D). We focus on the case of a cold
pair-dominated plasma.

There exists extensive literature on PIC modelling of the electro-
magnetic precursor wave in relativistic perpendicular shocks (e.g.
Langdon, Arons & Max 1988; Gallant et al. 1992; Hoshino et al.
1992; Amato & Arons 2006; Hoshino 2008; Sironi & Spitkovsky
2009; Iwamoto et al. 2017, 2018). Our work is motivated by
the poor exploration of the extreme regime where the energy
content of the plasma is dominated by magnetic fields, as it is
supposedly the case in magnetar winds. In other words, we focus
on magnetizations σ � 1, where σ is the ratio of upstream Poynting
flux to kinetic energy flux. For σ � 1, 1D simulations are adequate,
since we find that they agree well with multidimensional results (see
Appendix B, for the precursor energetics in 2D and 3D; also Sironi
et al., in preparation). We provide an extensive investigation of the
dependence on the flow magnetization, from σ = 0.1 to σ = 30,
with much longer simulations than previously reported, especially
in the σ � 1 regime relevant for FRB sources. Previous works
arguably never reached a steady state in simulations with σ � 1. We
employ several PIC codes (TRISTAN-MP, SMILEI and SHOCKAPIC)
to check for consistency, and thus confirm the robustness of our
results.

At σ � 1 the shock converts a fraction fξ ≈ 2 × 10−3/σ of
the total incoming energy into the precursor wave, as measured
in the post-shock (downstream) frame. In the shock rest frame
(SRF), the efficiency is f ′

ξ ≈ 7 × 10−4/σ 2. The spectrum of the
precursor wave is narrow-band, �ω/ωpeak � 1 − 3, with apparent
but not dominant line-like features as many resonances concurrently
contribute. The peak frequency scales in the post-shock frame as
ωpeak � 3 ωp max[1,

√
σ ], where ωp is the plasma frequency. In the

pre-shock frame (which coincides with the observer frame, if the
magnetar wind is non-relativistic), this can be recast in a simpler
form as ω′′

peak ≈ 3γs|uωp, where γ s|u is the shock Lorentz factor in
the upstream frame. At σ � 1, where our estimated ωpeak differs
from earlier works [that quoted ωpeak ∝ σωp, see Gallant et al.
(1992), rather than ωpeak ∝ √

σωp as we find] we see that the shock
structure displays two solitons separated by a cavity, and the peak

frequency of the spectrum corresponds to an eigenmode of the
cavity. The efficiency and spectrum of the precursor wave do not
depend on the bulk Lorentz factor of the pre-shock flow.

The paper is organized as follows. In Section 2 we present the
methods and the numerical set-up. In Section 3 we discuss the
main results, in the post-shock (downstream) rest frame. Section 4
discusses the energy content of precursor waves in the frame
of the shock front. In Section 5 we present the implications
of our results for FRB emission models, and we conclude in
Section 6.

2 SIMULATION METHODS AND SET-UP

We use the PIC codes TRISTAN-MP (Spitkovsky 2005; Sironi &
Spitkovsky 2009), SMILEI (Derouillat et al. 2018), and SHOCKAPIC

(Plotnikov, Grassi & Grech 2018) to perform 1D3V simulations,
where we retain one spatial direction, but all three components
of velocities and electromagnetic fields. Mainly TRISTAN-MP and
SMILEI are employed for large simulations. The pseudo-spectral
code SHOCKAPIC is used to check for consistency in shorter
simulations. In the main body of the paper, we present only
results obtained with TRISTAN-MP, unless stated otherwise. In the
Appendix A, we demonstrate the agreement between different codes
across the whole range of σ explored in this work.

The use of a reduced 1D spatial geometry is justified in the
limit of magnetically dominated plasmas, as we will demonstrate
with 2D and 3D simulations in a forthcoming study (Sironi et
al., in preparation). For lower magnetizations than explored here,
i.e. σ � 0.5, Iwamoto et al. (2017) found that the precursor
wave energy is reduced by at most an order of magnitude in
2D simulations as compared to 1D. This difference is smaller or
even negligible in the high magnetization limit explored here (see
Appendix B).

The shock is initialized using the common set-up described in,
e.g. Spitkovsky (2008), which we summarize here for completeness.
The upstream flow, composed of electrons and positrons, drifts
along the −x̂ direction with a speed −β0cx̂. The corresponding
bulk Lorentz factor is γ0 = (1 − β2

0 )−1/2 = 10, but we have also
explored higher values of γ 0, up to 105. The upstream pair plasma
is cold, with thermal spread kBT0/(mec2) = 10−4. The pre-shock
plasma carries a frozen-in magnetic field B0 oriented along z (so,
Bz, 0 =B0), i.e. perpendicular to the flow propagation, and a motional
electric field Ey, 0 = −β0Bz, 0. The flow is reflected at a wall located
at x = 0. After some time (at least several cyclotron periods ω−1

c ),
the shock front forms by magnetic reflection and steadily propagates
along the +x̂ direction with a speed that is in good agreement with
the Rankine–Hugoniot conditions. The resulting simulation frame
coincides with the frame where the downstream plasma is at rest
(downstream rest frame; DRF).

The shock physics is sensitive to the upstream magnetization σ ,
which we define as the ratio of Poynting to kinetic energy flux

σ = B2
z,0

8πγ0N0mec2
=

(
ωc

ωp

)2

, (1)

and we vary from σ = 0.1 up to σ = 30. Here N0 is the
number density of upstream electrons (the overall particle number
density is then 2N0), me is the electron (or positron) mass, and
c is the speed of light in vacuum. We also define the typical
gyrofrequency as ωc = |q|B0/(γ 0mec) and the plasma frequency as
ωp = [8	N0q2/(γ 0me)]1/2, where q is the elementary electric charge.
Both quantities are based on the upstream values of magnetic field
and plasma density measured in the simulation frame.
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Typical numerical parameters used with TRISTAN-MP are

(i) The skin depth is well resolved with c/ωp = 100 �, where
� is the grid size. This ensures that the typical particle gyroradius
�σ−1/2 c/ωp is well resolved even for the largest magnetization σ =
30 explored in this study. A good spatial resolution is also essential
to capture the high-frequency part of the spectrum of precursor
waves (see also Iwamoto et al. 2017 for a discussion on the required
spatial resolution).

(ii) The simulation time-step is defined as c�t = 0.5 � corre-
sponding to a time resolution of 5 × 10−3ω−1

p .
(iii) The number of particles per cell initialized in the upstream

plasma is Nppc = 64 per species (values between 20 and 200 were
tested with no appreciable differences).

(iv) The simulation is evolved up to Tsim � 1.5 × 103ω−1
p for σ

< 1 and for longer times (up to 2 × 104ω−1
p ) for σ 	 1. This is

required in order to reach a steady state in which the precursor
emission maintains a constant amplitude (see Section 3.2).

In the Appendix A we also report the typical simulation param-
eters for the other two PIC codes used in this study. They are not
presented here since in the following sections, we mainly discuss
the results obtained with TRISTAN-MP.

3 RESULTS

In this section we explore the physics of relativistic highly mag-
netized electron–positron shocks focusing on the properties of the
electromagnetic precursor. In Section 3.1 we discuss the typical
shock structure and show the presence of electromagnetic precursor
waves. In Sections 3.2 and 3.3 we show the dependence on σ of
the precursor wave intensity and spectrum, respectively. The wave
strength parameter is discussed in Section 3.4.

3.1 Shock layer structure

As shown in several works using 1D simulations (Langdon et al.
1988; Gallant et al. 1992; Amato & Arons 2006; Lyubarsky 2006;
Hoshino 2008), 2D simulations (Sironi & Spitkovsky 2009, 2011;
Iwamoto et al. 2017, 2018; Plotnikov et al. 2018), and 3D simula-
tions (Spitkovsky 2005; Sironi, Spitkovsky & Arons 2013), highly
magnetized perpendicular relativistic shocks form by magnetic
reflection and generate a strong electromagnetic wave propagating
from the shock into the upstream region. For high magnetizations
(typically, σ � 0.01), the transverse Weibel filamentation instability,
which dominates for σ � 10−3, plays no significant role in shaping
the shock structure. This partly justifies the 1D approach adopted
here.

In Fig. 1 we present the structure of the shock transition region for
two representative magnetizations. The left-hand column (panels a–
e) presents a shock with σ = 0.3 and the right-hand column (panels
f–j) corresponds to σ = 3. The timespan of the simulations is long
enough to reach a stationary state: we show results at ωpt = 540 for
σ = 0.3 and at ωpt = 1800 for σ = 3. From top to bottom we show
the electron number density Ne/N0 (panels a and f), the transverse
magnetic field Bz/B0 (b and g), the transverse electric field Ey/B0

(c and h), the longitudinal positron phase space x − ux (d and i),
and the transverse positron phase space x − uy (e and j). Here,
we define uα = γβα as the dimensionless four velocity. The phase
space of electrons is identical to the one of positrons in virtue of
mass symmetry, except for the opposite sign in variations of uy. The
electrostatic field Ex is not plotted since it is completely negligible
in pair plasmas (we have systematically checked this conclusion).

The vertical dashed lines in panels (b) and (g) delimit the region
where we have extracted the wave properties, such as amplitude and
spectrum, that will be discussed in the sections below. Small insets
in the upper right-hand side of panels (d) and (i) show the particle
distribution in momentum space ux − uy at the location of the shock
front.

The shock front is located at x− xfront = 0 in Fig. 1. The upstream
flow is on the positive side (x − xfront > 0) and the downstream
plasma is on the negative side (x − xfront < 0). The existence of
a well developed shock is confirmed by the jump in the electron
number density and in the Bz field at the front location. The shock
front itself exhibits a soliton-like structure (see e.g. Alsop & Arons
1988), where the particle distribution forms a semicoherent cold
ring in momentum space (see insets in panels d and i). The presence
of a large amplitude electromagnetic precursor wave is evidenced
in the upstream region of the Bz/B0 and Ey/B0 panels for both
magnetizations (see the ripples in the x − xfront > 0 region). The
precursor wave amplitude is larger for σ = 0.3 than for σ = 3.
This wave is steadily emitted from the shock front and is linearly
polarized. The wave vector k lies along the shock direction of
propagation (i.e. along x), the fluctuating magnetic field is along z

(i.e. along the same direction as the upstream field B0 = B0ẑ), and
the fluctuating electric field is perpendicular to both k and B0. The
wave is then identified with the extraordinary mode (X-mode). The
phase velocity of the wave is slightly superluminal, as expected for
X-mode propagation in a plasma, while its electromagnetic nature
is confirmed by the fact that the space-averaged 〈δB2

z 〉 = 〈δBzδEy〉.
We note that the field-aligned component of the particle momen-

tum uz is not affected by the shock. The incoming particles are
efficiently isotropized in the xy plane perpendicular to the field,
but the post-shock particle distribution remains largely confined to
this plane. It follows that the downstream effective adiabatic index
corresponds to a 2D relativistically hot gas, �ad = 3/2, instead
of 4/3 if the downstream plasma was isotropic in all momentum
directions. The lack of isotropization is due to the fact that in a
σ 	 1 flow (with downstream plasma magnetically dominated) it
will be harder for the plasma to exceed the threshold for velocity–
space instabilities that feed off the particle temperature anisotropy.
For example, the plasma will go unstable via the mirror mode
if the temperature anisotropy is above a threshold that scales
as ∝ σ , which is harder to exceed at higher magnetizations.
In addition, the 1D spatial geometry employed here will further
suppress the growth of field-aligned modes leading to momentum
isotropization.

The downstream particle energy spectrum (not shown) resembles
a 2D Maxwell–Jüttner distribution whose temperature is slightly
lower than the one expected from the Rankine–Hugoniot jump
conditions (the difference is due to the energy transferred to the
precusor waves). No non-thermal tail is observed for the runs
presented in this work. This is in agreement with the inefficiency of
particle acceleration expected at relativistic strongly magnetized
perpendicular shocks (Sironi & Spitkovsky 2009; Lemoine &
Pelletier 2010; Sironi et al. 2013; Sironi, Keshet & Lemoine 2015;
Iwamoto et al. 2017; Pelletier et al. 2017; Plotnikov et al. 2018).

3.2 Precursor wave energy

We now focus on the dependence of the precursor properties, and
specifically of its amplitude, on the upstream magnetization σ .
The dependence on the upstream bulk Lorentz factor γ 0 will be
discussed in the last part of this subsection.
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Synchrotron maser from shocks in FRBs 3819

Figure 1. Structure of the shock layer from 1D PIC simulations of σ = 0.3 (left-hand column) and σ = 3 (right-hand column) shocks. From top to bottom
it is shown: the electron number density Ne/N0 (panels a and f), the transverse magnetic field Bz/B0 (panels b and g), the motional transverse electric field
Ey/B0 (panels c and h), the longitudinal phase space of positrons x − ux (panels d and i), and the transverse phase space of positrons x − uy (panels e and j),
respectively. Here, ux = γ βx and uy = γ βx are the components of the dimensionless four velocity. Small insets in the upper right-hand side of panels (d) and
(i) show the particle distribution in momentum space ux − uy at the location of the shock front, as indicated by the arrows. The shock front is located at x −
xfront = 0; it propagates in the +x̂ direction. The upstream flow is on the positive x − xfront > 0 side and the downstream plasma is on the negative x − xfront <

0 side.

3.2.1 Temporal evolution of the precursor wave

After an initial transient—whose duration depends on the up-
stream magnetization, as we show below—the intensity of the
precursor wave settles to its asymptotic value. We measure the
wave intensity in a region between 5 and 25 c/ωp ahead of the
shock front:1 5 c/ωp < x − xfront < 25 c/ωp. This region is far
enough from the shock not to be affected by the front structure
itself, and it contains a large number of precursor wavelengths
so that we can obtain a solid measure of the precursor average
properties.

The wave intensity is then calculated as the spatial average

〈δB2
z 〉 = 〈(Bz − B0)2〉 . (2)

1This region is delimited by vertical black dashed lines in panels (b) and (g)
of Fig. 1.

In Fig. 2 we show for different magnetizations the time evolution
of the normalized wave intensity defined as

ξB = 〈δB2
z 〉

B2
0

= 〈δBzδEy〉
B2

0

, (3)

where δEy = Ey − Ey, 0 = Ey + β0B0. Different solid lines
correspond to different values of the magnetization, from σ = 0.1
(blue line) to σ = 10 (black line), as indicated in the legend. By
computing the temporal variation of the wave intensity, we can
assess when the precursor wave has reached a steady state. Fig. 2
shows that:

(i) With increasing σ , a longer time is required for the precursor
to settle at its time-asymptotic state. This is due to the combination
of two effects. First, the shock velocity increases from βs|d = 0.476
for σ = 0.1 to βs|d = 0.963 for σ = 10, so at higher magnetizations
it takes more time for the precursor wave, propagating at βwave �
1, to detach from the shock front. Second, there is some interaction
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3820 I. Plotnikov and L. Sironi

Figure 2. Time evolution of the normalized precursor wave energy, ξB =
〈δB2

z 〉/B2
0 , for different values of the upstream magnetization σ . Lines of

different colour correspond to a given σ going from 0.1 (blue line) to 10
(black line). The precursor wave energy was extracted from a 20 c/ωp wide
slab located at 5 c/ωp < x − xfront < 25 c/ωp.

occurring between the wave and the upstream plasma, which
initially causes a drop in wave efficiency (e.g. at ωpt ∼ 1100 in
the black line of Fig. 2). The time required for the wave to self-
regulate and settle to a steady state, following this drop, is longer
for higher σ (e.g. compare green and black lines in Fig. 2).

(ii) The steady-state value of the normalized wave energy ξB

decreases with increasing magnetization and for σ 	 1 (cyan,
brown, and black lines) it approaches a constant value ξB � 0.01.

(iii) For σ = 0.3 (orange) and σ = 0.4 (yellow), which will be
called ‘transition cases’ in the following, the wave intensity varies
between periods of high efficiency and phases of low efficiency.

(iv) All the simulations have been evolved for long enough to
reach a quasi-stationary state. For the largest explored magnetiza-
tion σ = 30, the simulation was advanced beyond 2 × 104 ω−1

p (this
case is not shown in the figure but reported in subsequent figures).

Once the wave intensity has settled to a steady state, we
have extracted a number of wave properties, such as the energy,
the spectrum (peak frequency, low-frequency cutoff, and spectral
width), and the wave strength parameter, as we now describe.

3.2.2 Dependence on the upstream magnetization

In the previous section we have defined the energy fraction in
upstream field fluctuations ξB (see equation 3), as the ratio of the
precursor wave magnetic energy to the background field energy.
In order to get a global idea of the energetics, we also need to
complement it with a parameter that quantifies the energy fraction
of the incoming plasma (including both kinetic and electromagnetic
content) that is radiated from the shock front in the form of precursor
waves. When the electromagnetic field fluctuations induced by the
precursor are taken into account in the jump conditions across the
shock, the energy conservation equation expressed in the simulation
frame is (Gallant et al. 1992; Plotnikov et al. 2018):

γ 2
0

(
β0 + βs|d

)(
wu + b2

0,u

4π

)
− (

1 − βs|d
) δB2

u

4π

= βs|d

(
wd − pd + b2

0,d

8π
+ δB2

d

4π

)
, (4)

where the subscripts ‘u’ and ‘d’ refer to the upstream and down-
stream regions, respectively. Here, wi and b0, i are, respectively, the
fluid enthalpy density and mean magnetic field, both measured in
the fluid rest frame. As above, βs|d is the velocity of the shock
front as measured in the downstream frame of the simulations. The
fluctuating components δBu and δBd are measured in the simulation
frame. We have made the approximation of negligible thermal
pressure upstream (strong shock limit) and we have assumed that
electrostatic effects are negligible both upstream and downstream
(δEx ≈ 0). The latter approximation is fully supported by the
simulations and, more fundamentally, by the fact that space–
charge effects are expected to be negligible in pair plasmas. The
strong shock limit means that the upstream plasma pressure can be
neglected and the upstream fluid enthalpy density (in the fluid rest
frame) is then wu = numec2, where nu is the upstream plasma proper
density. The mean upstream magnetic field b0, u in the upstream
frame is related to the pre-shock magnetic fieldBz, 0 in the simulation
frame via a Lorentz boost: Bz, 0 = γ 0b0, u. Hence, the magnetization
parameter can be rewritten as σ = b2

0,u/(4πwu) and we note that
δB2

u/b
2
0,u = γ 2

0 δB2
u/B

2
z,0 = γ 2

0 ξB , because the fluctuating part is
measured directly in the simulation frame.

As we focus on the precursor wave propagating upstream, here
we only consider the left-hand side of equation (4).2 We find that
the fraction of total incoming energy (including both particle and
electromagnetic contributions) that is channelled into the precursor
wave can be expressed as

fξ = ξB

(
σ

1 + σ

)(
1 − βs|d
β0 + βs|d

)
, (5)

as seen from the DRF. In the following, fξ will be identified as
the ‘energy fraction parameter’. It is also convenient to define the
fraction of incoming particle kinetic energy that is converted into
precursor emission

gξ = fξ (1 + σ ). (6)

The time-asymptotic values of ξB, βs|d, and fξ measured in our
simulations are presented in panels (a), (b), and (d) of Fig. 3, as a
function of magnetization. Error bars indicate the standard deviation
of our time measurements. As regard to ξB, we observe a rapid
decrease from ξB � 3.53 at σ = 0.1 down to ξB � 0.04 at σ =
1. The inflection point of the transition occurs at σ � 0.35. This
decrease accompanies a change in the shock front structure that for
σ > 1 presents a coherent soliton-like shape (compare left-hand and
right-hand columns in Fig. 1 at the shock). For σ > 1, ξB slowly
decreases and eventually approaches a constant value ξB � 10−2.

Concerning the shock front speed and its corresponding bulk
Lorentz factor, βs|d and γ s|d, panels (b) and (c) demonstrate an
excellent agreement between our measured values, plotted with blue
symbols, and the predictions of ideal MHD jump conditions (e.g.
Appendix B of Plotnikov et al. 2018), as indicated by the red solid
line. The front speed increases from βs|d = 0.476c for σ = 0.1 up to
βs|d = 0.987c for σ = 30. The Lorentz factor of the shock front tends
asymptotically to γs|d = √

σ , for σ 	 1. We remark that the MHD
equations used here to derive the jump conditions do not incorporate
modifications due to the precursor wave. The accurate agreement
of our results with ideal MHD jump conditions for σ 	 0.1 is
then due to the fact that at high magnetizations the precursor wave

2Since we forego the discussion of the downstream part of the energy conser-
vation equation, an interested reader will find details in the aforementioned
works (Gallant et al. 1992; Plotnikov et al. 2018).
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Synchrotron maser from shocks in FRBs 3821

Figure 3. Dependence on σ of the time-asymptotic values of the normalized
wave intensity ξB (panel a), of the shock front speed βs|d (panel b), of
the corresponding Lorentz factor γ s|d (panel c), and of the energy fraction
parameter fξ (panel d). The red lines in panels (b) and (c) show the theoretical
expectation based on ideal MHD jump conditions (which do not include
effects from the precursor waves). The green line in panel (c) shows the
asymptotic scaling γs|d = √

σ expected for σ 	 1. The yellow dashed line
in panel (d) follows the scaling fξ = 2 × 10−3 σ−1.

is relatively weak, and it does not have an appreciable dynamical
effect on the shock. In contrast, in the case when the precursor wave
is the strongest, σ = 0.1, the agreement is the worst, because the
emission of the large amplitude wave can slow down the shock
front, as compared to the ideal MHD prediction.

The dependence on σ of the energy fraction parameter fξ is
presented in panel (d) of Fig. 3. It was calculated by plugging the
values from panels (a) and (b) into equation (5). It shows that the
energy fraction in the precursor wave decreases from 10 per cent for
σ = 0.1 down to 0.0065 per cent for σ = 30. The dashed orange line
follows the empirical scaling fξ = 2 × 10−3/σ that satisfactorily fits
our measured values in the σ > 1 range. The most noticeable result
of this panel is that we observe a well-defined scaling fξ ∝ σ−1.
This result arises from the fact that for σ 	 1, the normalized wave
intensity ξB is roughly constant and βs|d � 1 − 1/(2σ ). It follows
that in the limit σ 	 1 the precursor wave carries a constant fraction
of the incoming particle kinetic energy, i.e. gξ � 2 × 10−3.

Let us emphasize, however, that this σ -dependence of fξ and gξ

is derived in the DRF (simulation frame). This dependence will be
different in the shock front rest frame (SRF), since the front moves

Figure 4. Time evolution of the normalized wave intensity ξB for different
values of the upstream flow Lorentz factor γ 0 at fixed σ = 3. The blue, red,
orange, violet, and green lines correspond to γ0 = 5, 10, 20, 40, and 80,
respectively. The time-asymptotic values of ξB, with corresponding error
bars, are plotted in the inset at the lower right-hand corner of the figure.
Within the error bars, ξB is nearly independent from γ 0.

with ultrarelativistic speeds for σ 	 1. This point will be further
discussed in Section 4.

3.2.3 Dependence on the upstream bulk Lorentz factor

So far, we have investigated the dependence of the precursor
intensity on σ , for a fixed choice of the upstream flow Lorentz factor
γ 0 = 10. Here, we demonstrate that ξB is essentially independent
from γ 0 for any value of σ . Let us first consider the dependence
at a fixed σ . In Fig. 4 we show the time evolution of the precursor
wave energy for σ = 3, when varying γ 0 from 5 to 80. Lines
of different colour correspond to different values of γ 0. Despite
large oscillations in time, it appears that ξB converges to the same
value regardless of γ 0. The time-asymptotic values of ξB, with
corresponding error bars, are plotted in the figure inset. Within the
error bars, we can assert that there is no obvious dependence on γ 0.

In order to generalize this conclusion to any σ , it is worth noting
that in the seminal study of Gallant et al. (1992), two very different
values of the bulk Lorentz factor (γ 0 = 40 and 106) were used, for a
range of σ ∈ [10−3, 5]. The authors did not notice any dependence
on γ 0. Also, Iwamoto et al. (2017) performed 1D simulations with
γ 0 = 40 and explored σ values between 10−3 and 0.5, finding
similar values as in Gallant et al. (1992).

In the Appendix A, Fig. A2 shows the values of ξB obtained for
σ ∈ [10−3, 1] (horizontal axis) and for γ 0 ranging from 10 to 106

(different data sets). This figure shows that in the low magnetization
regime σ ∈ [10−3, 0.3], the normalized wave intensity ξB is nearly
independent from γ 0. In the range σ ∈ [0.3, 1] there is a larger scatter
among different data sets (which employ different γ 0). This range
of magnetizations corresponds to the transition cases (see Fig. 2).
The most plausible reason for the discrepancy among different data
sets is that the simulations from earlier studies were not evolved
long enough in order to reach the asymptotic state of the transition
cases, so the value of ξB was not yet stabilized (see Fig. 2). In fact,
Fig. 4 shows that even at σ > 1 the time-asymptotic value of ξB is
insensitive to the flow Lorentz factor.
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3.3 Precursor spectrum

After discussing the wave energy, we now address the dependence
on σ of the precursor spectrum and of the typical wavelength of the
emission. Our results will be presented in the downstream frame
of the simulations. It is important to note, however, that the wave
propagates in the upstream plasma and that its emitter is the shock
front. Both move with respect to the simulation frame. Hence,
when comparing simulation results with the expected scalings, we
need to consider the wave dispersion relation first in the upstream
frame, and then transform it to the DRF. Also, the typical emission
frequency is most naturally estimated in the SRF, and then it should
be transformed to the DRF in order to compare with simulation
results.

In this section, we first present basic analytical considerations
and then we compare them with our simulation results. A special
feature of σ > 1 shocks, where a density and magnetic field cavity is
observed in the front structure, is discussed at the end of this section.
As we argue, the cavity is instrumental in setting the precursor power
and determining its dominant frequency.

3.3.1 Basic considerations

As discussed above, the precursor wave possesses X-mode
(extraordinary-mode) polarization, such that its wave vector is
perpendicular to B0, its fluctuating magnetic field is parallel to
B0, and its fluctuating electric field is perpendicular to both k and
B0. Some basic properties of the extraordinary mode in the context
of the shock emission were derived by Gallant et al. (1992) and
Iwamoto et al. (2017). We reproduce here their estimations for
completeness.

The dispersion relation of the extraordinary mode in the frame
where the background plasma is at rest reads (see e.g. Hoshino &
Arons 1991)

k′′2c2

ω′′2 = 1 − ω′′2
p

ω′′2 − ω′′2
c

= 1 − ω′′2
p

ω′′2 − σω′′2
p

, (7)

where double primed quantities are measured in the upstream rest
frame (URF). Using Lorentz transformations for ω and k and in the
limit γ 2

0 	 σ , the dispersion relation in the DRF becomes

k2c2 � ω2 − ω2
p . (8)

Interestingly, as long as γ 2
0 	 σ , this is identical to the disper-

sion relation of a simple electromagnetic wave propagating in an
unmagnetized plasma.

The motion of the shock front imposes a cutoff frequency below
which the wave cannot escape into the upstream medium. It follows
that little or no power should be observed in the upstream precursor
spectrum below the cutoff frequency. This cutoff frequency is
obtained by equating the group velocity of the wave, dω/dk, with
the shock front velocity as:

c

√
1 − ω2

p

ω2
= βs|dc . (9)

This relation leads to the cutoff frequency and wavelength

ωcutoff = γs|dωp (10)

λcutoff = 2πc

γs|dβs|dωp
. (11)

As regard to the characteristic frequency of the precursor wave,
the most natural assumption is that it corresponds to the collective
cyclotron motion of the bunching particles at the shock front, which
we now evaluate. First, the magnetic field at the shock can be roughly
estimated by assuming that, in the shock frame, all the momentum
of the incoming particles is stored in the magnetic field at that point
(Alsop & Arons 1988):

B ′
sh

B ′
0

≈
√

1 + 2

σ
, (12)

where primed quantities are measured in the SRF. More detailed
considerations on the soliton structure of the shock, as presented
by Alsop & Arons (1988), give a similar expression for B ′

sh. For
particles with Lorentz factors comparable to the upstream bulk
Lorentz factor, the ratio of the expected emission frequency (which
we label ‘sol’ since it is emitted by the soliton at the shock) to
the upstream cyclotron frequency is then equal to the magnetic
field enhancement ratio, ω′

c,sol/ωc = B ′
sh/B

′
0.3 Lorentz transforming

to the DRF (ω′
c,sol → ωc,sol) and using the dispersion relation in

equation (8) leads to

ωc,sol ≈
(√

σ + 2 +
√

σ + 2 − β2
s|d

)
γs|dωp . (13)

Based on these arguments, we expect the precursor spectrum
to exhibit a low-frequency cutoff at ωcutoff and prominent line-like
features at ωc, sol and its harmonics. As we show below, where
we compare these scalings with our simulation results, for σ > 1
the predicted ωc, sol systematically overestimates the observed peak
frequency ωpeak. In Section 3.3.3, we propose a new model for the
precursor peak frequency in the high-magnetization regime, and we
show that it is in good agreement with our simulation results.

3.3.2 Spectrum dependence on the upstream magnetization

To characterize the spectrum of the precursor wave, we have
employed two complementary diagnostics, one spatial and one
temporal. They were used to construct the wavenumber spectrum (k-
spectrum) and the frequency spectrum (ω-spectrum), respectively.

The wavenumber spectrum was calculated by extracting the
spatial profile of Bz(x) − Bz, 0 in the region located at 5 c/ωp <

x − xfront < 105 c/ωp, at a time when the precursor has reached
the steady state, and then computing its Fourier transform. The
frequency spectrum was constructed by recording the temporal
variation of Bz(t) − Bz, 0 at one selected grid point in the upstream
region, during a time interval of 100 ω−1

p , and then calculating its
Fourier transform. The spatial window for the k-spectrum and the
time interval for the ω-spectrum are chosen so that roughly the same
segment of the precursor wave was analysed in the two cases.

In Fig. 5 we present the spectrum of the precursor wave for
different σ . Five representative cases are shown from top to
bottom, σ = 0.1, 0.3, 1, 3, and 10, respectively. Each panel
contains the k-spectrum, plotted using blue solid lines, and the
ω-spectrum, plotted using red dashed lines. For the ω-spectrum,
the horizontal axis shows ω/ωp, whereas for the k-spectrum we
take (k2c2/ω2

p + 1)1/2. Due to this choice, and given the disper-
sion relation in equation (8), each wavenumber spectrum should
nearly overlap with the corresponding frequency spectrum, as

3There is no prime on the upstream cyclotron frequency as it is Lorentz-
invariant for perpendicular shocks.
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Synchrotron maser from shocks in FRBs 3823

Figure 5. Spectrum of the precursor wave for different σ . Five repre-
sentative cases are shown from top to bottom, σ = 0.1, 0.3, 1, 3, and
10, respectively. The blue solid lines in each panel show the spectrum in
k-space and red dashed lines show the same in ω-space. The horizontal
axis shows ω/ωp for the ω-spectrum. For the k-spectrum, the choice for the
horizontal axis is motivated by the dispersion relation in equation (8), so that
the k-spectrum should nearly overlap with the corresponding ω-spectrum.
The method to compute the spectra is described in the main text. All the
spectra are normalized as

∫ |δB̃z(k)|2/B2
0 dk = ∫ |δB̃z(ω)|2/B2

0 dω = ξB .
The orange vertical lines mark the position of the expected low-frequency
cutoff, as given by equation (10).

it is indeed the case. The spectra were normalized such that∫ |δB̃z(k)|2/B2
0 dk = ∫ |δB̃z(ω)|2/B2

0 dω = ξB .
In each spectrum, the power drops rapidly below the cutoff

frequency given by equation (10), which is indicated by an orange
vertical line in each panel. This is expected, since for lower
frequencies (or wavenumbers) the group velocity is smaller than
the shock speed, so the wave cannot propagate ahead of the shock.

The spectra are narrow-band, but they are not consistent with
a unique line, as it would be expected for cyclotron emission.
This is due to the fact that the ring-like particle distribution at
the shock front possesses ultrarelativistic energies. The emission is
then controlled not by the non-relativistic cyclotron maser, but rather

by the ultrarelativistic synchrotron maser instability, that generates
a large number of harmonics with comparable growth rate to the
fundamental (Hoshino & Arons 1991).

Prominent line-like features are observed at σ < 1, with the
fundamental at ω = ωc, sol or the second harmonic dominating the
spectrum at low magnetizations (see the peak at ω � 4 ωp for σ =
0.1). In the transition cases with 0.1 < σ < 1, we observe the
generation of very strong harmonics up to N = 5, where N =
ω/ωc, sol, with high-order harmonics producing stronger lines than
the fundamental (see the case with σ = 0.3). For σ > 1 the
spectrum shows much less prominent lines. As we will argue later,
supplementary amplification mechanisms operate in this regime,
and the characteristic frequency ωc, sol given by equation (13) no
longer controls the location of the spectral peak.

The dependence of the relevant wavelengths and frequencies on
the magnetization is presented in Fig. 6. The top row refers to
wavelengths, the bottom row to frequencies. The left-hand column
shows the variation with σ of the cutoff wavelength λcutoff (panel
a) and cutoff frequency ωcutoff (panel b). The values derived from
our simulations are plotted using blue circles, and they are in very
good agreement with the analytical predictions of equations (10)
and (11), indicated by the black dashed lines. The only exception
is the transition case σ � 0.3, where the low-frequency cutoff is
non-stationary.

The central column (panels c and d) presents the variation with
σ of the peak wavelength and frequency (red squares are the results
of our simulations), defined as the location where the precursor
spectrum peaks (see Fig. 5). The black dashed lines indicate the
expectation for soliton emission (equation 13). It is apparent that
the peak values obtained in the simulations do not agree with
the analytical estimate given by equation (13) for any σ > 0.1.4

To understand the disagreement we define two regimes: (i) the
transition cases (0.1 < σ < 1) and (ii) the magnetically dominated
cases (σ > 1).

In case (i), high-order harmonics in the precursor spectrum are
stronger than the fundamental, and the spectral peak is not at the
fundamental frequency. If we artificially select the lowest frequency
corresponding to a local maximum in the spectrum, we find that its
location is in reasonable agreement with the expected fundamental
frequency ωc, sol (see top two panels in Fig. 5). In case (ii), we
do not find evidence of any strong line at the expected ωc, sol or its
harmonics, but rather we observe less prominent lines at frequencies
that have no clear connection with ωc, sol. The measured peak
frequency scales as ωpeak ≈ 3σ 1/2ωp. In contrast, from equation (13)
we would expect a stronger scaling with σ , since ωc, sol → σωp in
the limit σ 	 1. As discussed in the next subsection, we attribute the
observed scaling to the presence of a resonant cavity in the shock
structure that builds up only for σ > 1. We show below that the peak
wavelength in case (ii) corresponds to an eigenmode of the cavity,
and it is roughly three times shorter than the cavity width (see the
green dot-dashed lines in panels c and d).

The right-hand column (panels e and f, respectively) presents
the dependence on σ of the fractional spectral width in wavelength
and frequency space (�λ/λpeak and �ω/ωpeak, respectively). The
width �ω is the difference between the two frequencies (one above
the peak frequency ωpeak and one below) where the power drops
by a factor of 30 below the peak. The width �λ is defined in

4We note, however, that in simulations with σ < 0.1, not presented here,
we have obtained a very good agreement between the measured ωpeak and
ωc, sol given in equation (13) (see also Gallant et al. 1992).
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3824 I. Plotnikov and L. Sironi

Figure 6. Characteristic wavelengths and frequencies as a function of σ . Cutoff wavelengths λcutoff and frequencies ωcutoff are presented in the left-hand
column (blue circles in panels a and b, respectively). The dashed black lines show the analytical predictions in equations (10) and (11). The wavelengths and
frequencies at the peak of the spectrum (λpeak and ωpeak) are plotted in the central column (panels c and d) using red squares. The black dashed lines in panels
(c) and (d) show the expected ωc, sol from equation (13). The green dot-dashed line in panel (c) is the width of the density cavity at the shock front divided
by three: Lcav/3 (see the text, subsection 3.3.3). The right-hand column presents the dependence on σ of the fractional spectral width �λ/λpeak and �ω/ωpeak

(panels e and f, respectively).

an analogous way. This shows quantitatively that the spectrum is
narrow, with �ω/ωpeak � 3 nearly independently of σ . The spectra
of the cases with σ < 1, that show pronounced line-like features,
are even narrower, with line widths of �ω/ωpeak � 1 (see the top
two panels in Fig. 5).

3.3.3 Resonating cavity in the shock structure at σ > 1

In the previous subsection we have found that in the magnetically
dominated regime σ > 1, the peak frequency in our simulations does
not scale as the expected gyration frequency in the soliton, ωc, sol.
The physical picture that led to the estimate of ωc, sol must then be
revised, since the shock structure for σ > 1 appears to be different
than for lower magnetizations. In fact, instead of one density peak
defining the shock front, as it is the case in the σ � 1 regime, we
observe for σ � 1 the build-up of two density peaks separated by a
cavity.5 As we now argue, it appears that the density cavity plays an
essential role in amplifying the precursor emission and in selecting
a well-defined wavelength for the precursor waves that corresponds
to an eigenmode of the cavity.

In Fig. 7 we illustrate the structure of the shock transition region
for σ = 10 at a well-advanced stage of the simulation when the
precursor power has reached a steady state. Panel (a) of this figure
shows the profile of the electron density (blue line) and of the
transverse magnetic field Bz/B0 (red line). The shock front is located
at x − xshock = 0 and it propagates in the +x̂ direction. The two
density peaks near the shock are separated by a cavity of width
Lcav � 1.6 c/ωp, just behind the shock front. The magnetic field
profile peaks at the positions of the two density spikes, but in
addition it exhibits a wave-like pattern within the density cavity.

5We believe that the structure of the shocks studied here is controlled by wave
dispersion (rather than dissipation), given the importance of the precursor
emission from the shock. For σ > 1, the amount of dispersion provided by
the leading soliton becomes insufficient to sustain the shock structure, and
a secondary soliton forms to provide additional dispersion.

For this particular snapshot, only a mode with wavelength λ =
Lcav/2 is clearly seen in the cavity. However, the cavity is dynamic
in nature, and different eigenmodes are distinctly seen at different
times.

In panel (b) of Fig. 7 we demonstrate the role of the cavity
in shaping the precursor spectrum by showing the wavenumber
spectrum as a function of λ−1 = k/(2	). Some characteristic
emission wavelengths are easily identified. For instance, the cutoff
wavelength at λcutoff � 1.6 c/ωp seems to be closely related to the
width of the density cavity Lcav, which is indicated by a vertical
dashed blue line. The other two vertical lines (red and orange,
respectively) correspond to wavelengths equal to Lcav/2 and Lcav/3,
respectively. The latter matches well the position of the strongest
emission line. As discussed below, this holds for all σ � 1.

To assess the connection between the cavity size and the precursor
efficiency we show in panel (c) the time evolution of Lcav (blue line)
and of the precursor wave energy ξB multiplied by a factor of 100
(red line). The value of ξB was computed in a region closer to the
shock front than we have done before (here, between 1 and 5 c/ωp

ahead of the front), which allows to probe more directly the causal
connection between the precursor efficiency and the instantaneous
shock structure. This panel shows that the cavity width (blue line)
initially increases, then it decreases, and finally settles to a steady
state. The time evolution of the precursor efficiency appears to be
anticorrelated to the cavity width: when the cavity size is larger
the emitted precursor is weaker (no amplification), and the wave
intensity settles to a steady state at the same time (ωpt ∼ 1000) as
the cavity width. We interpret this behaviour as a self-regulation
in the shock structure, such that the cavity width self-tunes to the
value where it can efficiently channel the precursor emission into
the upstream, i.e. Lcav has to be roughly equal to λcutoff (see also
panel b). When this condition is met, the wave is amplified and its
efficiency settles to the steady state. The critical role of the cavity
for efficient wave emission is also revealed by inspecting the shock
profile at the time when the precursor intensity sharply increases,
right before settling to a steady state (ωpt∼ 1000): we see that large
Bz fluctuations are first amplified in the cavity, and the emission of
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Synchrotron maser from shocks in FRBs 3825

Figure 7. Structure of the shock transition region for σ = 10. Panel (a): profile of the electron density Ne/N0 (blue line) and of the transverse magnetic field
Bz/B0 (red line). Panel (b): precursor spectrum in k-space, |δBz(k)|2/B2

0 , as a function of the inverse wavelength λ−1 = k/(2	). The three vertical dashed lines
correspond to the cavity width Lcav (blue), to Lcav/2 (orange), and to Lcav/3 (red). Panel (c): time evolution of Lcav (blue line) and of the precursor wave energy
ξB multiplied by 100 (red line). The value of ξB was derived in the region closer to the shock front than previously (between 1 and 5c/ωp ahead of the front).
The efficiency settles to a steady state at the same time as the cavity length does.

a strong precursor propagating upstream is then the consequence
of partial transmission of these waves from the cavity through the
leading soliton.

The validity of our ‘resonating cavity’ interpretation is tested in
Fig. 6 (panels c and d), where we show that the peak wavelength of
the precursor emission (red squares) is consistent with Lcav/3 (green
dot-dashed lines in panel c), for all σ � 1. In other words, for
magnetically dominated plasmas the wave amplification inside the
cavity plays an important role in selecting the dominant wavelength
of the emitted precursor as an eigenmode of the cavity. It follows
that the peak frequency for σ � 1 scales as ωpeak � 3 ωcutoff �
3
√

σωp � 3 ωc in the simulation frame, where we have used that
γs|d � √

σ for σ 	 1. This should be contrasted with equation (13),
whose scaling (∝ σωp in the σ 	 1 limit) is not supported by our
simulations.

3.4 Wave strength parameter

The wave strength parameter (also known as ‘wiggler’) measures
the dynamical effect of the propagating wave on the background
plasma. It is defined through the equation of motion of particles in
a high-amplitude wave (Lyubarsky 2006; Iwamoto et al. 2017):

ux = γβx = −γ0β0 + a2

2
cos2[ω(x/c + t)], (14)

uy = γβy = a cos[ω(x/c + t)] , (15)

where

a = e δEy

mecω
(16)

is the strength parameter of the wave. δEy is the electric field of
the wave and ω is the wave frequency; e and me are the particle
charge and mass, respectively. When a > 1, the particle quiver
motion becomes relativistic and the plasma back-reacts strongly on
to the wave. We have employed two measures for the wave strength
parameter: either from the maximum excursion in uy, amax =
max (uy); or from the root mean square value, astd. These choices are
motivated by the form of equation (15), where the wiggler parameter
controls the y-oscillations of the particle 4-velocity. In either case,

Figure 8. Dependence on σ of the wave strength parameter a. The two
colours refer to different measurements of a: the blue symbols correspond
to the maximum value of uy in the precursor region (between 5 and 105 c/ωp

ahead of the front) and red symbols correspond to the root mean square value
of uy in the same region. The inset presents the dependence of amax on γ 0

for σ = 3. The solid black line shows a linear scaling.

we have extracted the measurement from the region between 5 and
105 c/ωp ahead of the front at the final time of the simulations.

Fig. 8 presents the dependence on σ of the wave strength
parameter derived from our simulations. The maximal value amax

decreases from �5 for σ = 0.1 down to �1 for σ = 10, while
the root mean square value has the same dependence on σ but it is
three times smaller, astd � amax/3. The subpanel of this figure shows
the dependence on γ 0. Supplementary simulations were performed
for this purpose, where we fixed σ = 3. There is a clear linear
dependence of a on γ 0, as already suggested by Iwamoto et al.
(2017).

The linear dependence on γ 0 arises naturally from the fact that
ξB does not depend on γ 0, combined with the fact that the typical
frequency of the precursor wave is �3 ωp for σ � 0.1 and �3 ωc
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for σ > 1. It follows from equation (16) that a ≈ γ0
√

ξBσ for σ �
0.1 and a ≈ γ0

√
ξB/3 for σ > 1, which justifies the linear scaling

with γ 0 shown in the inset of Fig. 8.
The wiggler parameter is Lorentz-invariant under transformations

along the shock propagation direction, in virtue of equation (15).
Alternatively, one can note that the electric field of the wave
transforms in the same way as its frequency. Values presented in
Fig. 8 will then be the same in the SRF and in the URF. This is in
contrast to the precursor normalized energy ξB and the precursor
spectrum, which are frame-dependent.

4 ENERGETICS IN THE SHOCK FRONT REST
FRAME

The SRF is, by definition, the frame where the shock is stationary. In
this frame the upstream plasma flows along the shock normal with a
negative velocity in the x direction (whose magnitude is larger than
in the DRF). The downstream plasma recedes from the front along
the negative x direction. This frame can be naturally employed to
quantify the incoming (and outgoing) momentum and energy, and
so to derive the energy fraction channelled into the precursor wave.

4.1 From the simulation frame to the shock rest frame

So far, all the quantities related to the precursor waves have been
given in the DRF, so we need to Lorentz transform them to the SRF.
We will employ primed variables for the SRF. The amplitude of the
mean magnetic field transforms as

B ′
0 = γs|d

(
B0 + βs|dE0

) = γs|dB0

(
1 + βs|dβ0

)
, (17)

where we have used the shortcut notations B0 = Bz, 0 and E0 = Ey, 0.
Since by transforming into the shock frame we are ‘catching up’
with the precursor wave, the precursor amplitude will decrease as

δB ′
z = γs|d

(
δBz − βs|dδEy

) � γs|dδBz

(
1 − βs|d

)
. (18)

The ξB parameter then transforms as (Gallant et al. 1992)

ξ ′
B = ξB|sh = 〈δB ′2

z 〉
B ′2

0

=
(

1 − βs|d
1 + β0βs|d

)2 〈δB2
z 〉

B2
0

=
(

1 − βs|d
1 + β0βs|d

)2

ξB . (19)

We compute directly ξ ′
B with the following procedure. The values

of γ s|d and βs|d obtained from our simulations (see Fig. 3, panels b
and c) are used to Lorentz transform the electromagnetic fields into
the SRF at a given snapshot of the simulation. Then, ξ ′

B is computed
directly, by averaging between 5 and 105 c/ωp ahead of the front
(the distance is still measured in the simulation frame).

In Fig. 9 (panel a) we present the dependence of ξ ′
B = ξB|sh on σ ,

obtained independently with the three PIC codes used in this study:
orange squares for SHOCKAPIC, red circles for SMILEI, and blue
diamonds for TRISTAN-MP. First, the figure demonstrates excellent
agreement between the three codes. Secondly, it shows that, beyond
the transition cases with 0.1 < σ < 1, where ξ ′

B attains the largest
values, the normalized wave energy in the SRF scales as ξ ′

B �
7 × 10−4σ−2 for σ > 1. This scaling is plotted with a dashed black
line, and it can be easily justified. In fact, in Section 3 we have
shown that for σ 	 1 the wave amplitude in the DRF converges
to a constant (i.e. σ -independent) value, ξB � 10−2. In addition,
the asymptotic shock velocity in the DRF is βs|d � 1 − 1/(2σ )
for σ 	 1. Plugging these two scalings into equation (19) leads to
ξ ′
B = 6.3 × 10−4σ−2, which is very close to the measured scaling.

Figure 9. Energetics in the shock front rest frame: dependence on σ of
the normalized precursor wave energy ξB|sh = ξ ′

B (top panel) and of the
energy fraction in the precursor wave relative to the total incoming energy,
fξ |sh = f ′

ξ (bottom panel). Different symbols refer to a different code: the
red circles for SMILEI, blue diamonds for TRISTAN-MP, and orange squares
for SHOCKAPIC. The dashed black lines indicate the ∝ σ−2 scaling.

4.2 Energy budget in the precursor

Let us also discuss the global energy budget as seen from the
SRF (i.e. the fraction of total incoming energy channelled into the
precursor). In the SRF, the energy conservation equation including
wave contributions can be written as

γ ′2
u β ′

uWu − δB ′2
u

4π
= γ ′2

d β ′
dWd + δB ′2

d

4π
, (20)

where Wi = wi + b2
0,i/(4π) is the generalized enthalpy expressed

in the proper frame of the fluid. The left-hand side corresponds to
the upstream total energy content and the right-hand side to the
downstream energy content. We have used that the upstream and
downstream electromagnetic wave energies can be expressed as

δB ′2
u

4π
= 〈δB ′2

z,u + δE′2
y,u〉

8π
, (21)

δB ′2
d

4π
= 〈δB ′2

z,d + δE′2
y,d〉

8π
, (22)

respectively. The brackets represent either space averages at a given
time or equivalently time averages at one spatial position. We
have neglected the contribution from electrostatic waves, since it
is largely subdominant in pair plasmas.
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Reminding that the upstream magnetization is Lorentz invariant,
we use σ = σ ′ = b2

0,u/(4πwu). The fraction of total incoming
energy channelled into the precursor wave is then

f ′
ξ = fξ |sh = EM wave energy

Total incoming energy
= ξ ′

B

β ′
u

σ

1 + σ
, (23)

where β ′
u is the upstream flow velocity measured in SRF. Equiv-

alently, it is the shock front speed in the URF. One can also give
the fraction of incoming particle kinetic energy channelled into the
precursor wave:

g′
ξ = EM wave energy

Incoming kinetic energy
= δB ′2

u

4πγ ′2
u β ′

unumc2
= ξ ′

B

β ′
u

σ . (24)

In the latter equation nu is the upstream plasma proper density,
including both species (so, nu = 2N0/γ 0).

Getting back to the simulation results, in Fig. 9 (panel b) we
present the dependence on σ of the energy fraction fξ |sh = f ′

ξ , as
measured in the SRF. The maximum value is reached at σ ∼ 0.1,
where the precursor carries up to 5 per cent of the incoming energy.
For σ > 0.3 the energy content in the wave rapidly drops. Similarly
to the ξ ′

B scaling, there is a clear dependence as ∝ σ−2 for σ > 1
(more precisely, f ′

ξ � 7 × 10−4σ−2). The similarity comes from the
fact that the upstream velocity is β ′

u → 1 and the upstream energy
content is dominated by the magnetic field (i.e. σ 	 1). This implies
from equation (23) that f ′

ξ � ξ ′
B .

In the limit σ 	 1, the conversion efficiency of incoming
particle kinetic energy into wave energy scales as g′

ξ � ξ ′
Bσ �

7 × 10−4σ−1. This should be contrasted with what we have obtained
in the DRF, where this quantity became constant in the σ 	 1 limit.

We remark that the scalings reported so far have been obtained
from 1D runs. While we expect that the dependence on σ will remain
unchanged in 2D and 3D, we speculate that the normalizations of
fξ and gξ will decrease due to transverse effects that cannot be
captured in 1D, e.g. wave filamentation and self-focusing through
interaction with the upstream plasma. In fact, the 2D simulations of
Iwamoto et al. (2017, 2018), performed in the low magnetization
regime σ < 0.5, demonstrated that the wave energy is reduced
typically by a factor of 3 (and up to 10), when going from 1D to
2D. However, we expect that the efficiency drop from 1D to 2D
(and 3D) will be much less severe in the magnetically dominated
regime (σ > 1) of interest for our work, given the rapid decrease of
the wave strength parameter with magnetization (see Fig. 8), and so
of the wave feedback on to the upstream plasma. This point will be
addressed in a forthcoming study (Sironi et al, in preparation).

5 APPLICATIONS TO FRBS

During a magnetar flare, in response to the motions of the neutron
star crust, the above-lying magnetosphere is violently twisted
and a strongly magnetized pulse is formed, which propagates
away through the magnetar wind. The FRB can be potentially
generated at ultrarelativistic shocks resulting from the collision
of the magnetized pulse with the steady magnetar wind produced
by its spin-down luminosity or by the cumulative effect of earlier
flares (Lyubarsky 2014; Beloborodov 2017; Waxman 2017). The
train of electromagnetic waves emitted by the shock front via the
synchrotron maser is the candidate FRB. Most works up to now
assumed empirical values for the conversion efficiency of the shock
kinetic energy into the precursor waves. These values were primarily
motivated by the work of Gallant et al. (1992) where, however, high-
σ simulations were not evolved long enough to reach a stationary
state. Here, we use long-term simulations to quantify the steady-

state energetics and spectrum of the precursor waves for a wide
range of magnetizations (up to σ 	 1). As we now argue, our work
can provide a physically grounded model for the origin of coherent
emission in FRBs.

First, the synchrotron maser at shocks is a coherent process,
which helps explaining the extremely high brightness temperatures
of FRBs. In this work, we have derived the fraction of incoming
flow energy channelled into the precursor waves. If considered in
the ejecta frame (post-shock frame), our simulations show that for σ

> 1 the emitted wave carries a fraction fξ = 2 × 10−3/σ of the total
energy. This corresponds to a fraction gξ � 2 × 10−3 of the incoming
particle kinetic energy regardless of σ . If one considers the energy
budget in the SRF, the previous scalings become f ′

ξ � 7 × 10−4/σ 2

and g′
ξ � 7 × 10−4/σ , respectively.

Secondly, the precursor emission is linearly polarized, in agree-
ment with the observations of several non-repeating FRBs (Ravi
et al. 2016; Petroff et al. 2017; Caleb et al. 2018) and of the repeating
FRB 121102 (Gajjar et al. 2018; Michilli et al. 2018). Linear
polarization is a natural consequence of the resonance of bunching
particles with the extraordinary mode (X-mode). This mode can
escape out of the plasma and become a vacuum electromagnetic
wave. A contribution from the ordinary mode (O-mode) was also
observed in the 2D simulations of Iwamoto et al. (2018), but it was
found to be largely subdominant in strongly magnetized plasmas.

Thirdly, the spectral peak can fall in the GHz range for a
reasonable choice of parameters. In particular, we have found that
in the post-shock frame the emission peak frequency scales as
ωpeak � 3 ωp for σ � 0.1 and as ωpeak � 3 ωc for σ > 1. Several high-
order harmonics characterize the transition region with 0.1 < σ < 1.
Joining the two regimes, and neglecting for simplicity the transition
cases, we can cast the peak frequency as ωpeak � 3 ωp max[1,

√
σ ].

This can be recast in a simpler form in the pre-shock frame as

ω′′
peak ≈ 3γs|uωp, (25)

as long as the shock is moving with an ultrarelativistic bulk Lorentz
factor γ s|u into the upstream medium. The emission frequency for
an upstream observer is then

ν ′′ = ω′′

2π
≈ 2.7 × 104γs|u

( ne

1 cm−3

)1/2
Hz, (26)

where ne is the pre-shock electron density. If we assume that the
upstream frame corresponds to the observer frame (which is true if
the pre-burst wind expands with a non-relativistic velocity), then the
combination γs|u

√
ne/1 cm−3 ≈ 4 × 104 is required for the shock

to emit in the GHz band, in rather good agreement with the estimates
of Beloborodov (2017). As recently found by Metzger, Margalit &
Sironi (2019), this frequency is also consistent with ∼GHz emission
from decelerating blast waves produced by flare ejecta in young
magnetars.

Finally, the spectrum is narrow-band, �ω/ωpeak � 1 − 3 (see
Fig. 6), which is again consistent with the observations (e.g. Law
et al. 2017; Macquart et al. 2019).

5.1 Comment on criticisms to the synchrotron maser

A number of criticisms have recently been moved against the
synchrotron maser emission as a source of the coherent FRB
radiation. Lu & Kumar (2018) looked into a wide variety of maser
mechanisms operating in either vacuum or plasma and found that
none of them can explain the high luminosity of FRBs without
invoking unrealistic or fine-tuned plasma conditions. Here, we argue
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that the synchrotron maser at relativistic shocks — due to its unique
properties — still remains a viable candidate for powering FRBs.

First, it was argued that the synchrotron maser in vacuum requires
fine-tuned plasma conditions where the magnetic field is nearly
uniform (to within an angle γ −1) and the particles’ pitch-angle
distribution is narrowly peaked with spread �γ −1. Here, γ is the
typical Lorentz factor of the emitting particles. This is indeed the
natural configuration expected at a relativistic magnetized shock,
if the pre-shock particles have non-relativistic temperatures (which
is anyway a requirement for efficient synchrotron maser emission).
In the shock transition region, the magnetic field is nearly uniform,
and the particles coherently rotate in a plane perpendicular to the
field (with negligible pitch angle spread).

Secondly, it was argued that it is unclear how the mechanism
for the population inversion required by the maser is achieved.
Once again, this is naturally realized in the shock transition of a
magnetized relativistic shock, where the particles form a ring in
momentum space at fixed Lorentz factor γ ∼ γ 0, while the inner
region of the ring (i.e. at lower γ ) is devoid of particles, as indeed
required for the existence of a population inversion.

Also, it was argued that during the maser amplification process,
high-energy electrons radiate faster than low-energy ones, so the
population inversion condition may be quickly destroyed. This is
indeed true for each generation of particles passing through the
shock, since the synchrotron maser instability relaxes by ‘filling up’
the hollow ring in momentum space, thus destroying the population
inversion. However, while this happens, a new generation of
particles is entering into the shock. They establish a new ring in
momentum space, and keep sustaining the radiated train of precursor
waves. In other words, the continuous passage of plasma through the
shock ensures that the population inversion is steadily maintained
(yet, at each time by different particles).

Finally, Lu & Kumar (2018) considered more specifically the
maser synchrotron emission at shocks, which they named as ‘bunch-
ing in the gyration phase.’ In order to minimize the effect of induced
Compton scattering, they estimated that the radiative efficiency of
the shock must be extremely small. However, they considered only
internal shocks occurring in between two identical consecutive den-
sity shells propagating inside the pre-burst wind, and not the leading
shock moving directly into the wind. Aside from the limitations of
induced Compton scattering, it is anyway hard for internal shocks
to be efficient emitters of maser synchrotron radiation, since they
propagate into a relativistically hot shocked plasma (the downstream
region of the leading shock). The arguments by Lu & Kumar (2018)
will not apply to the leading shock. First, this shock is likely to be
ultrarelativistic, unlike internal shocks. Secondly, the properties of
the shell and of the pre-burst wind (as regard to magnetization,
temperature, and composition) are generally different, in contrast
to what Lu & Kumar (2018) implicitly assumed. We believe that
the quantitative results on precursor energetics and spectrum that
we provide in this work will help revisit the estimates provided by
Lu & Kumar (2018) for the case of the leading shock.

6 SUMMARY AND CONCLUSIONS

In this work we have investigated by means of 1D PIC simulations
the physics of synchrotron maser emission from perpendicular
relativistic shocks that propagate in highly magnetized electron–
positron plasmas (with magnetization 0.1 ≤ σ ≤ 30). For strongly
magnetized shocks, we expect that multidimensional simulations
(to be discussed in a forthcoming work) will not yield very
different results than what we present here. We have explored the

efficiency and spectrum of the electromagnetic precursor emission
as a function of σ and γ 0. We have found that:

(i) The shock front emits efficiently and steadily a train of high-
amplitude electromagnetic precursor waves for any σ and γ 0, in the
range 0.1 ≤ σ ≤ 30 and γ 0 ≥ 5 that we have explored. The emission
is linearly polarized, with fluctuating magnetic field along the same
direction as the upstream mean field.

(ii) Thanks to unprecedentedly long simulations, we have been
able to reach the stage when the precursor emission settles to
a steady state, which allows to systematically extract the wave
properties (energetics and spectrum). We find that the ratio of the
wave energy to the upstream magnetic energy, ξB, decreases rapidly
from 3.5 at σ = 0.1 down to 0.04 at σ = 1, as measured in the post-
shock frame of the simulations. For σ 	 1, this ratio converges to a
constant value ξB � 0.01. In the SRF, the asymptotic scaling in the
limit σ 	 1 becomes ξ ′

B ∝ σ−2.
(iii) For σ > 1, the energy output in precursor waves normalized

to the total incoming energy scales as fξ � 2 × 10−3σ−1 in
the post-shock frame and as f ′

ξ � 7 × 10−4σ−2 in the SRF. The
former implies that in the downstream frame, σ > 1 shocks convert
a constant fraction of the incoming particle kinetic energy into
precursor waves (equal to gξ � 2 × 10−3).

(iv) Magnetically dominated shocks with σ > 1 exhibit a res-
onating cavity in the shock front structure in between two solitons,
instead of the single soliton loop that is observed for σ � 1 shocks.
This cavity plays an essential role in amplifying the radiation and
selecting the dominant emission frequency as an eigenmode of the
cavity. This effect causes the peak emission frequency, as measured
in the downstream frame, to scale as ωpeak � 3 ωc = 3

√
σωp for σ

> 1, whereas earlier works (Gallant et al. 1992) quote a stronger
scaling with magnetization, ωpeak � σωp.

(v) The characteristic frequency of the emission, as measured in
the post-shock frame, is ω � 3ωp for weakly magnetized shocks σ

≤ 0.1, and ω � 3ωc for σ 	 1, as we have just discussed. In the
transition region 0.1 < σ < 1, prominent high-order harmonics
of ωc, sol (given in equation 13) were observed along with the
fundametal at ωc, sol. Aside from the transition cases, we can
interpolate between the low- and high-magnetization results and
state that the peak emission occurs at ωpeak � 3 ωp max[1,

√
σ ],

as measured in the downstream frame. In the pre-shock frame
(which coincides with the observer frame, if the magnetar wind
is non-relativistic), this can be recast in a simpler form as ω′′

peak ≈
3γs|uωp, where γ s|u is the shock Lorentz factor in the upstream
frame.

(vi) The spectrum of the precursor is narrow-band, �ω/ωpeak �
1 − 3, with a low-frequency cutoff at ωcutoff = γ s|dωp (here, γ s|d
is the shock Lorentz factor in the downstream frame) set by the
requirement that the group velocity be faster than the shock speed.

(vii) We did not observe any dependence on γ 0 of the energy
fraction, ξB, and of the characteristic emission frequency, ωpeak/ωp,
in the post-shock frame.

We conclude with a few caveats. First, we have assumed that the
upstream plasma has negligible thermal spread, kBT0/mec2 = 10−4.
Higher temperatures are likely to suppress high-order harmonics
and reduce the global energy of the wave. Secondly, we have mostly
focused on strongly magnetized (σ > 1) plasmas, a regime that so far
has received little attention. Even though this work only presents 1D
simulations, we anticipate that the multidimensional physics of σ >

1 shocks (Sironi et al., in preparation) will not depart significantly
from what we report here. In contrast, for weaker magnetizations
(σ � 10−2), transverse effects (e.g. Weibel-driven filamentation)
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will significantly reduce the energy carried by the precursor waves
(Sironi et al. 2013; Iwamoto et al. 2017). In summary, both higher
pre-shock temperatures and multidimensional effects at low σ are
expected to degrade the precursor efficiency, which might become
too low to explain the FRB emission.

Finally, we have only considered electron–positron shocks.
Recently, a very large Faraday Rotation Measure (RM) of
∼105 rad m−2 was reported from the repeating FRB 121102
(Michilli et al. 2018). This challenges the pure electron–positron
composition assumed in this study, since the presence of an
appreciable fraction of ions is required to produce non-zero RM
(Margalit & Metzger 2018). This urges us to explore the shock
physics for electron–proton and electron–positron–proton compo-
sitions. Yet, it is still possible that the FRB pulse is produced in
localized regions with pristine electron–positron composition, even
though most of the magnetar wind (which inflates the surrounding
nebula, where the RM accumulates) is proton-dominated.
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APPENDIX A: CODES COMPARISON

In this appendix we show how the results from the different codes
compare. The synchrotron maser emission occurs through the
resonance of the cyclotron harmonics with the X-mode branch. It is
not guaranteed that a typical PIC code can capture accurately a large
number of these resonances, especially at the high-frequency end of
the branch. For instance, in typical Yee-type second-order solvers of
Maxwell’s equations the numerical speed of electromagnetic waves
is known to be artificially suppressed at high ω if the CFL number
is smaller than unity (Birdsall & Langdon 1991).

For this reason we undertook an extensive comparison of three
different PIC codes: two Finite-Difference Time-Domain (FDTD)
codes, TRISTAN-MP and SMILEI, and the pseudo-spectral code
SHOCKAPIC. In principle, SHOCKAPIC is the best suited to capture
the dispersion relation of waves in a plasma, but it is the least
optimized among the three codes, making it challenging to perform
long-term simulations. Concerning SMILEI, it is a well-optimized
code, but in 1D setups it currently has only a standard Yee solver.
TRISTAN-MP is the most optimized for shock setups. Also, it allows
us to use a fourth-order scheme to solve Maxwell’s equations
(Greenwood et al. 2004) that reproduces accurately the dispersion
relation of electromagnetic waves even at low CFL numbers. This
is the reason why the runs presented in the main body of the paper
were performed with TRISTAN-MP. In general, each code employs
different algorithms and implementations. The agreement between
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Table A1. Typical parameters of the PIC simulations presented in this study: �t is the time-step in units of the inverse plasma frequency ω−1
p (defined with

both species), Tsim is the simulation timespan, �x is the cell size in units of c/ωp, kBT0 is the upstream thermal energy in units of mec2, Nppc is the number of
particles-per-cell for each species, σmin and σmax are the minimal and maximal values of the magnetization explored with a given code.

PIC code �t ωp Tsimωp �x/(c/ωp) Nppc kBT0/(mec2) σ min σmax γ 0

TRISTAN-MP 1/200 � 2 × 104 1/100 64 10−4 10−1 30 10
SMILEI 1/224 & 1/113 6.7 × 103 1/112 20 10−4 10−1 30 10
SHOCKAPIC 1/90 1.2 × 103 1/44.7 20 10−4 10−3 1 10
SMILEI (2) 1/90 1 × 103 1/44.7 20 10−6 10−3 2 10
SMILEI (3) 1/90 1.5 × 103 1/44.7 20 10−4 10−3 2 160

the three codes will then be a strong indication of the physical
robustness of our results.

The simulation parameters for each code are presented in
Table A1. The table reports the space and time resolution, the
simulation timespan, the number of particles per cell, the values
of the upstream temperature T0 and bulk Lorentz factor γ 0, and the
explored range of σ . For better comparison we used comparable
space and time resolutions: the skin depth was resolved with
100 cells in TRISTAN-MP simulations, with 112 cells in SMILEI

simulations, and with 44.7 cells in SHOCKAPIC simulations. The
latter has a twice smaller resolution due to code performance
limitations (not parallelized). We noticed that a resolution lower
than 20 cells per skin depth affected the results for any σ negatively.
The results become stable for any resolution higher than 40 cells
per c/ωp, as long as σ ≤ 10. Similar conclusions were reached
by Iwamoto et al. (2017). For this reason a high spatial and time
resolution was employed in the simulations presented in the main
body of the paper. Only short simulations were affordable with
SHOCKAPIC. For this reason, the σ > 1 regime was not explored
with this code (as we have discussed, at high σ it takes longer to
reach a steady state). With TRISTAN-MP and SMILEI it was possible
to reach the stationary state for σ up to 30. Concerning the number
of particles per cell, the results are very weakly dependent on Nppc,
as long as at least a dozen of particles per cell are initialized.

In the following we present in more detail the comparison of
precursor energy and spectrum as derived from different codes.

A1 Precursor energy

In Fig. A1 we present the normalized wave energy ξB as a function of
σ obtained with the three codes. Values obtained with SHOCKAPIC,
SMILEI, and TRISTAN-MP are plotted using orange squares, red
circles, and blue diamonds, respectively. In the overlapping range of
σ , we observe good agreement among different codes. For instance,
in the σ > 1 regime SMILEI and TRISTAN-MP give the same values
of ξB. In the range 0.1 < σ ≤ 1, where all codes overlap, the scatter
among codes is slightly larger, although the rapid drop in ξB is
common to all codes, and it happens around the same σ . We note
that the transition is more abrupt in SHOCKAPIC than in SMILEI and
TRISTAN-MP, but differences remain minor.

In Fig. A2 we extend the comparison to different studies in the
literature and to different values of γ 0 from 10 to 106. The range of
σ in this figure is from 10−3 to 1, since other studies did not explore
highly magnetized cases with sufficiently long simulations (i.e. they
did not reach a steady state in the regime σ 	 1). The blue circles
and green diamonds report the values obtained with SMILEI using
γ 0 = 10 and 160, respectively. Both give nearly the same values
for any explored σ confirming that ξB does not depend on the flow
Lorentz factor. The red squares report the values from TRISTAN-
MP using γ 0 = 10 (same as in Fig. A1). The data from the 1D

Figure A1. Precursor wave energy ξB as a function of σ : comparison
between three PIC codes used in this study (TRISTAN-MP, SMILEI, and
SHOCKAPIC). Values obtained with SHOCKAPIC, SMILEI, and TRISTAN-MP are
plotted using orange squares, red circles, and blue diamonds, respectively.

Figure A2. Same as Fig. A1, but comparing the results from PIC codes
in this work with earlier studies from the literature. The explored values of
σ range here from 10−3 to 1, since other studies did not explore highly
magnetized cases with sufficiently long simulations. Also, results with
different values of γ 0 are shown here. The blue circles correspond to SMILEI

simulations with γ 0 = 10, red squares are from TRISTAN-MP with γ 0 = 10,
orange stars present the data taken from Iwamoto et al. (2017) with γ 0 =
40 (1D), magenta stars are from Gallant et al. (1992) with γ 0 = 40, green
diamonds present SMILEI results with γ 0 = 160, and the values presented
using light blue triangles are taken from Gallant et al. (1992) with γ 0 = 106.
The dashed black line presents the scaling ξB = 1/

√
σ , which roughly fits

the data points in the range σ ∈ [10−3, 0.1].
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Figure A3. Precursor spectrum in k-space for three values of σ as indicated
in the legend. We perform a comparison among the three PIC codes used in
this study: the spectrum extracted from TRISTAN-MP simulations is plotted
using a solid blue line, whereas red lines are used for SMILEI and orange
lines for SHOCKAPIC.

simulations of Iwamoto et al. (2017) using γ 0 = 40 are plotted with
orange stars. Their values are slightly smaller than what is found in
this study, though generally in good agreement. The violet stars and
light-blue triangles report the values from Gallant et al. (1992) using
γ 0 = 40 and 106, respectively. We notice that all codes provide the
same results in the range of σ ∈ [10−3, 0.3], regardless of γ 0. This
demonstrates that the precursor wave normalized energy ξB is not
dependent on γ 0, and that our study is in very good agreement with
earlier results.

For σ > 0.3 there is a noticeable scatter between different
simulations. The most plausible reason for the discrepancy among
different data sets is that the high-σ simulations from earlier studies
were not evolved long enough to reach the asymptotic state, so the
value of ξB was not yet stabilized (see Fig. 2 for the time convergence
of the efficiency).

A2 Precursor spectrum

We now compare the precursor k-spectrum among the three
codes. Some differences are expected since the numerical schemes
for the integration of Maxwell’s equations differ among the
codes.

In Fig. A3 we compare the precursor spectrum extracted from
the three codes for a few representative values of magnetization.
From top to bottom, the value of σ is 0.1, 0.5, and 1, respectively.
We cannot perform any comparison for σ > 1 as this range was not

Figure A4. Comparison of the precursor spectrum in k-space obtained
from TRISTAN-MP and SMILEI for σ = 30 (the largest magnetization that
we have explored, where differences among codes are most dramatic). The
upper panel presents the spectrum from TRISTAN-MP using a fourth-order
scheme to solve Maxwell’s equations (blue line) and from SMILEI using a
Yee-type scheme with CFL number = c�t/�x = 0.5 (red line). The latter
presents a sharp cutoff at high-k (i.e. for λ < 0.14 c/ωp) and irregular line-
like emission features. The lower panel presents the same comparison but
with CFL = 0.99 for SMILEI (red line). The high-k cutoff disappears and a
very good agreement with TRISTAN-MP is obtained. We note that the spectra
presented in this figure are normalized to unity, instead of the previously
adopted normalization

∫ |δB̃z(k)|2/B2
0 dk = ∫ |δB̃z(ω)|2/B2

0 dω = ξB .

explored with SHOCKAPIC (but see below for a comparison between
SMILEI and TRISTAN-MP at σ = 30). The spectrum extracted from
TRISTAN-MP is plotted using a solid blue line. The red and orange
lines are used for SMILEI and SHOCKAPIC, respectively. There is
generally a good agreement among the codes for all values of σ as
regard to the low-k cutoff wavenumber, the high-k slope, and the
main peaks in the spectrum. For example, the dominant emission
line for σ = 0.1 and the high-order harmonic line at λ = 0.24 c/ωp

for σ = 0.5 are exactly at the same wavelength for the three codes.
One difference can be noted: the spectral energy density is slightly
smaller in SHOCKAPIC than in the two FDTD codes around λ−1c/ωp

∼ 1, for σ = 0.5 and σ = 1. Yet, this difference is not systematic
and the overall energy in the precursor is very close among the three
codes.

As an exception and a word of caution, we noticed that the
use of a small CFL number with a Yee-type solver of Maxwell’s
equations (as used in the SMILEI code) has a negative impact on the
results for the largest magnetizations explored here, i.e. σ > 10. In
fact, the emission peaks at high frequencies where the light-wave
branch is affected by the artificial reduction of the phase speed. The
spectrum of the precursor is then sharply cut at high frequencies,
affecting the overall energy output in the precursor. This effect is
evidenced in Fig. A3 for σ = 30 (the largest value explored in
this work). The upper panel of the figure compares the spectrum
from TRISTAN-MP (blue), where a fourth-order scheme was used,
with the spectrum from SMILEI (red), which employs a Yee-type
scheme with c�t/�x = 0.5. There is an artificial suppression in the
high-k region in the SMILEI simulation. The bottom panel shows
the same comparison, but with c�t/�x = 0.99 being used with
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SMILEI. In this case, the spectra agree very well, up to details
in line-like features. This conveys that the high-k (and so, high-
ω) part of the precursor spectrum can be properly captured only
when the numerical integrator is capable of reproducing correctly
the dispersion relation of electromagnetic waves. This problem
does not arise in TRISTAN-MP (with high-order spatial solver) and
SHOCKAPIC, since for them the numerical dispersion of the light-
wave branch is much closer to the realistic one even for small CFL
numbers.

All SMILEI simulations that use a CFL number as close as
possible to unity (CFL = 0.99) display spectra that are in very
good agreement with the other two codes for any σ .

A3 Concluding remark

We find that our results do not depend on the code that we employ
if these three conditions are realized: (i) a high spatial resolution
(i.e. large c/ωp) is employed; (ii) in a Yee-type based code, the CFL
number is as close as possible to unity; (iii) the simulations are
sufficiently long to reach the steady state.

APPENDIX B: PRECURSOR ENERGETICS: 1D
VERSUS MULTIDIMENSIONAL SIMULATIONS

In order to support our claim that the precursor wave energy does
not significantly decrease due to multidimensional effects (in the σ

≥ 1 regime of interest for this work), here we present a preliminary
analysis of 2D and 3D simulations performed with TRISTAN-MP.6

We explore a range of σ ∈ [0.1, 10] in 2D, and σ ∈ [0.1, 3] in 3D.
In 2D simulations we focus on the out-of-plane configuration: the
simulation plane is the xy plane, the shock front propagates in the
x-direction, and the upstream magnetic field is along the z-direction.
We do not present any in-plane 2D simulation results here because
we find that 3D simulations are in excellent agreement with 2D
out-of-plane results.

In 2D simulations we keep all parameters the same as in 1D,
except that the number of particles per cell per species is set to
8 (values between 2 and 32 have been tested with no significant
differences). The transverse dimension of the simulation box is set
to 14 c/ωp. We find that a transverse width of more than 2 − 3 c/ωp

is sufficient to capture multidimensional effects. In particular, the
effects of wave filamentation and self-focusing that lead to efficient
pre-heating of the upstream plasma in the longitudinal momentum
are properly captured with a box width of a few skin depths.

In 3D simulations we reduce the transverse dimension to 4 c/ωp

(in both y and z directions). The spatial resolution in 3D runs is
set to 25 cells per c/ωp (four times lower than in 1D and 2D) and
the number of particles per cell per species is varied between 3 and
18 (again with little differences). This was necessary to produce
sufficiently long runs while still capturing the relevant physics. The
effect of a lower spatial resolution was only apparent in the σ =
3 run, since the spectrum extends to higher frequencies, which are
not captured properly if the resolution is insufficient.

Fig. B1 presents the time evolution of the precursor energy
for σ = 1 as measured in 1D (blue line), 2D (red line), and 3D
(orange line) simulations. The direct comparison between 1D and
multidimensional simulations shows that the asymptotic value of ξB

6The code accuracy and stability in multidimensional simulations of rel-
ativistic shocks was assessed in several studies (Spitkovsky 2005, 2008;
Sironi & Spitkovsky 2009, 2011; Sironi et al. 2013).

Figure B1. Comparison of the time-evolution of the escaping Poynting flux
along the shock-normal direction in 1D, 2D, and 3D simulations for σ = 1.
The blue solid line presents 1D, red for 2D (out-of-plane Bz, 0), and orange
for 3D. 1D results are the same as in Fig. 2, as the Poynting flux is nearly
equal to ξB in 1D (see the main text for details on numerical parameters in
2D and 3D simulations).

in 2D and 3D simulations is only a factor of two smaller than in 1D,
while for σ < 0.5 – as we will show below, and see also Iwamoto
et al. (2017) – the energy of the wave decreases by a factor of about
3−10 when going from 1D to 2D and 3D configurations. It also
shows that the 2D and 3D energetics are in very good agreement.
The only difference between 2D and 3D is that it takes more time
in 3D to settle into the steady state (see the rise of the red line
after tωp = 500 and of the orange line after tωp = 1000). So,
we can confidently state that the decrease in precursor efficiency
due to multidimensional effects is much less severe in the high-
magnetization case σ = 1 than for σ < 0.5.

Let us note that in this appendix we have redefined the ξB

parameter. Here, ξB corresponds to the normalized Poynting flux in
the x-direction, ξB = 〈δEyδBz − δEzδBy〉/B2

0 . The average is done
over the region between 5 and 25 c/ωp ahead of the shock front,
for consistency with our 1D results, and over all the transverse
directions (y in 2D; y and z in 3D). In 1D we have systematically
verified that 〈δB2

z 〉 = 〈δEyδBz − δEzδBy〉 = 〈δEyδBz〉, but this
equality is not obviously satisfied in multidimensional simulations
with σ ≤ 0.6. The choice of defining ξB as the precursor Poynting
flux is due to the fact that the most relevant measure of the
electromagnetic energy output of the shock is the Poynting flux
of the escaping wave in the shock-normal direction.

In Fig. B2, using a suite of 1D, 2D, and 3D simulations, we
show the dependence on σ of the normalized Poynting flux of the
precursor wave ξB (panel a), of the energy fraction parameter as
measured in the simulation frame fξ (panel b), and of the energy
fraction parameter as measured in the SRF f ′

ξ = fξ |sh (panel c). The
definition of the latter two is given in the main body of the article:
equation (5) and equation (23), respectively. Values from 1D, 2D,
and 3D simulations are plotted using blue circles, red squares, and
green stars, respectively. The results of 2D out-of-plane simulations
of Iwamoto et al. (2017) are plotted using orange triangles in panel
(a). The measurement of ξB in 2D and 3D simulations was done
by considering the asymptotic values in the time evolution for each
σ , as shown in Fig. B1 for the particular case of σ = 1. Error
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FigureB2. Dependence on the upstream magnetization σ of the normalized
Poynting flux of the precursor wave ξB (panel a), of the energy fraction
parameter measured in the simulation frame fξ (panel b), and of the energy
fraction measured in the shock front rest frame f ′

ξ = fξ |sh (panel c). The

dashed line in panel (b) follows the scaling fξ = 2 × 10−3/σ , in the same
way as in Fig. 3. The dashed line in panel (c) follows fξ |sh = 7 × 10−4/σ 2,
identical to Fig. 9.

bars quantify uncertainties due to temporal oscillations of the time-
evolution curves. Knowing ξB and measuring directly the shock
front velocities from simulations, the values in panels (b) and (c)
were produced using equations (5) and (23), respectively.

Fig. B2 shows that:

(i) In 2D and 3D (red and green symbols), for σ = 0.1 the
Poynting flux of the precursor wave ξB, the energy fractions fξ and
fξ |sh are reduced by a factor of ≈10−20 as compared to 1D (blue
circles). This is in agreement with Iwamoto et al. (2017).

(ii) The suppression in efficiency becomes gradually smaller
when σ increases from 0.1 to 3. For σ � 1, the difference between
1D and multidimensional results becomes negligible.

(iii) Values from 2D out-of-plane and 3D simulations are gener-
ally in very good agreement, except for σ = 0.3 and 0.4 (which we
have called ‘transition cases’ in the main body of the text).

(iv) If the precursor energy fraction is cast in the SRF, panel (c)
shows that f ′

ξ � 10−3 for σ ∼ 0.1 − 0.4, instead of ∼0.01 in 1D. For
σ > 1, multidimensional simulations converge towards 1D values
and follow the scaling f ′

ξ ≈ 5 × 10−4/σ 2, only slightly lower than
reported in the main text for 1D simulations only.

Using 3D simulations we can address other aspects of the precur-
sor physics, such as the importance of the O-mode (δBy component,
since δB ⊥ B0 for this mode) versus X-mode (δBz component,
since δB ‖ B0 for this mode) and beaming of the emitted precursor
wave. By extracting systematically the values of 〈δB2

y 〉 and 〈δB2
z 〉

in 3D simulations, we find that the O-mode is subdominant for all
magnetizations explored here, i.e. 〈δB2

y 〉/〈δB2
z 〉 ∼ 0.2 − 0.5. This

implies that the precursor wave retains (at the 99 per cent level, or
more) the linear polarization of the X-mode, with magnetic field of
the wave lying in the same direction as the upstream background
field.

Concerning the beaming of the precursor wave in 3D, we
considered the components of the Poynting vector in different
directions. We find that the Poynting flux along the y-direction
(and z-direction) is largely subdominant as compared to the shock-
normal direction. The ratio is |	y|	x ∼ 5 × 10−2 for any σ ∈
[0.1, 3], where the Poynting vector of the wave is defined as
π = δE × δB/B2

0 . This shows that the emitted wave is strongly
beamed in the shock-normal direction. For an external observer the
beaming will be further enhanced by Lorentz transformation from
the simulation frame to the observer frame (in the case of shocks in
magnetar winds from the post-shock frame to the pre-shock frame).

This preliminary analysis of multidimensional runs demonstrates
that 1D simulations provide accurate numbers in the σ 	 1 regime,
in agreement with 2D out-of-plane and 3D simulations.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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