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ABSTRACT
Perpendicular relativistic (γ 0= 10) shocks in magnetized pair plasmas are investigated using
two-dimensional Particle-in-Cell simulations. A systematic survey, from unmagnetized to
strongly magnetized shocks, is presented accurately capturing the transition from Weibel-
mediated to magnetic-reflection-shaped shocks. This transition is found to occur for upstream
flow magnetizations 10−3 < σ < 10−2 at which a strong perpendicular net current is observed
in the precursor, driving the so-called current-filamentation instability. The global structure of
the shock and shock formation time are discussed. The magnetohydrodynamics shock jump
conditions are found in good agreement with the numerical results, except for 10−4 < σ < 10−2

where a deviation up to 10 per cent is observed. The particle precursor length converges
towards the Larmor radius of particles injected in the upstream magnetic field at intermediate
magnetizations. For σ > 10−2, it leaves place to a purely electromagnetic precursor following
from the strong emission of electromagnetic waves at the shock front. Particle acceleration is
found to be efficient in weakly magnetized perpendicular shocks in agreement with previous
works, and is fully suppressed for σ > 10−2. Diffusive shock acceleration is observed only
in weakly magnetized shocks, while a dominant contribution of shock drift acceleration is
evidenced at intermediate magnetizations. The spatial diffusion coefficients are extracted
from the simulations allowing for a deeper insight into the self-consistent particle kinematics
and scale with the square of the particle energy in weakly magnetized shocks. These results
have implications for particle acceleration in the internal shocks of active galactic nucleus jets
and in the termination shocks of pulsar wind nebulae.

Key words: acceleration of particles – plasmas – relativistic processes – shock waves.

1 INTRODUCTION

Relativistic shocks in pair plasmas have been identified as one of
the major sources of high-energy radiation and particle acceleration
in several classes of astrophysical objects that involve tremendous
energy releases over short time-scales (Kirk & Duffy 1999), such
as in compact object environments. At the present time, only re-
mote sensing of these environments is possible, making theoretical
investigations and numerical simulations central to the study of
collisionless shocks. In parallel, laser-plasma facilities are on the
verge of producing electron-ion collisionless shocks in the labora-
tory (e.g. Huntington et al. 2015; Ross et al. 2017), and production
of collisionless shocks in pair plasmas may be possible in a near
future (e.g. Chen et al. 2015; Lobet et al. 2015). These approaches
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give complementary insights into the physics of relativistic colli-
sionless shocks, the amplification or generation of magnetic fields
in magnetized or initially unmagnetized plasmas, and the related
production of accelerated particles.

In the case of initially unmagnetized electron-ion plasmas, the
basic theoretical structure of collisionless shocks was described
first by Moiseev & Sagdeev (1963) and Sagdeev (1966), and then
generalized to the relativistic case by Medvedev & Loeb (1999).
Here the magnetic field is generated by the Weibel-filamentation
instability (Fried 1959; Weibel 1959) that channels the beam kinetic
energy into small skin depth scale magnetic fields and dissipate
most of the flow kinetic energy into thermal energy. This model has
been confirmed by Particle-In-Cell (PIC) simulations, where the
dominant role of Weibel-filamentation instability and its ability to
generate sub-equipartition magnetic fields has been highlighted for
counter-propagating relativistic beams (Medvedev & Loeb 1999;
Silva et al. 2003; Nishikawa et al. 2005; Kato 2007).
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In the case of magnetized plasmas, the relevant parameter to
describe the relativistic pair shock structure is the magnetization
parameter Gallant et al. (1992):

σ = B2
0

8πN0γ0mc2
, (1)

where m = me− = me+ is the electron/positron mass, c the speed
of light, B0 and N0 are the magnetic field and particle number
density of the upstream plasma and γ 0 is its Lorentz factor [CGS
Gaussian units are used throughout this work, unless specified oth-
erwise]. In the present study these quantities are defined in the
downstream rest frame for convenience. This choice does not af-
fect the generality of our results since σ is invariant by Lorentz
transformation along a direction transverse to B0 (Kirk & Duffy
1999). Theoretical studies of plasma instabilities in weakly mag-
netized relativistic shocks (Bret 2009; Lemoine & Pelletier 2010,
2011) have shown that the Weibel instability can fully develop for
σ � ξCR/γ

|u 2
sh < 10−4, where ξCR ∼ 0.1 is the fraction of the in-

coming energy transferred to the supra-thermal particles and γ
|u
sh is

the shock front Lorentz factor as seen from the upstream rest frame.
On the other hand, in strongly magnetized plasmas, the physics

changes significantly as the external field is dynamically not neg-
ligible. The basic shock structure in this regime was described by
Alsop & Arons (1988), Langdon, Arons & Max (1988), and Gallant
et al. (1992). The compression of the external magnetic field builds
up a soliton-like structure at the shock front. This structure sustains
a magnetic barrier that provides the local dissipation mechanism
through maser synchrotron instability (MSI, see e.g. Hoshino &
Arons 1991) and particles reflection at the shock front.

PIC simulations by Sironi, Spitkovsky & Arons (2013) indicate
that the critical magnetization for which the shock structure changes
is σ crit � 3 × 10−3 for pair plasmas, independently of the shock
Lorentz factor (in the ultrarelativistic limit). Shocks with σ < σ crit

exhibit filamentary structures characteristic of the Weibel instability
while for larger σ , the shock is shaped by the compression of the
external magnetic field. This raised the question of what happens
for mildly magnetized shocks (10−4 < σ < 10−2) where the Weibel
instability cannot fully develop and the MSI is not strong enough
to sustain the shock front. In this work we will discuss the role of a
net perpendicular current building up in the overlapping region and
driving the current filamentation instability (CFI) (Lemoine et al.
2014b).

As a consequence of the shock propagation, different acceleration
mechanisms can take place depending on the nature of the shock,
i.e. the structure of the electromagnetic fields at the shock front. In
the case of weak magnetization (σ < 10−4), the so-called diffusive
shock acceleration (DSA, Krymskii 1977; Bell 1978), based on
the first-order Fermi mechanism, is believed to be the dominant
mechanism (e.g. Peacock 1981; Achterberg et al. 2001). In the
case of non-relativistic shocks the energy gain for each Fermi-
cycle (upstream → downstream → upstream) is modest �E ∼(
υ

|u
sh/c

)
E � 1, with υ

|u
sh the shock front velocity in the upstream

frame and E the initial particle energy. Whereas in the relativistic
limit, particles gain a large amount of energy in the first Fermi-cycle,

as �E � Eγ
|u 2
sh (Vietri 1995), where γ

|u
sh =

(
1 − υ

|u 2
sh /c2

)−1/2
�

1. However, it was demonstrated that, for all subsequent cycles, the
energy gain is reduced to �E�E because of the strong anisotropy of
the upstream particle momentum distribution (Gallant & Achterberg
1999).

In the presence of an external magnetic field, strong compression
and Lorentz transformation effects on the downstream magnetic

field may inhibit DSA in relativistic shocks. Indeed, even if the up-
stream fluid is turbulent on large scales compared to the particle Lar-
mor radius RL, which could be the case in the interstellar medium,
the strong transverse magnetic field in downstream medium pre-
vents any efficient particle cross-field scattering, as demonstrated
by Lemoine, Pelletier & Revenu (2006) and Niemiec, Ostrowski &
Pohl (2006). The magnetic turbulence then acts as an ordered field
and particles are tied to a given field line. These studies suggested
that a strong self-generated micro-turbulence on scales much lower
than RL is required to unlock the phase-space particle trapping and
allow particles to scatter on both sides of the shock and gain energy.

This picture was successfully confirmed for unmagnetized shocks
by self-consistent PIC simulations (Spitkovsky 2008; Martins et al.
2009; Haugbølle 2011). For long enough simulations, a non-thermal
tail in the particle distribution function was observed, demon-
strating that the Fermi process develops self-consistently in time
(Spitkovsky 2008). The accelerated particle distribution is theoreti-
cally predicted to follow a power law with index s = dlogN/dlogE
� 2.22 in ultrarelativistic shocks (Kirk et al. 2000; Lemoine & Pel-
letier 2003; Keshet & Waxman 2005), in rather good agreement
with the index s � 2.4 found in PIC simulations (e.g. Spitkovsky
2008; Sironi & Spitkovsky 2009). Moreover, the magnetic turbu-
lence is found to be on the skin depth scale and of a quasi-static
nature in the downstream fluid rest frame, as well as to decay by
phase mixing (Chang, Spitkovsky & Arons 2008; Lemoine 2015).
This turbulence is seeded on larger and larger spatial scales as, in
the absence of the external magnetic field, the precursor is allowed
to extend with no space limitation (Keshet et al. 2009).

The particle acceleration efficiency from unmagnetized to moder-
ately magnetized regimes, up to σ � 10−2 in perpendicular shocks,1

was studied by Sironi et al. (2013) using 2D and 3D long-term
PIC simulations. These authors found that, in weakly magnetized
shocks, DSA is efficient, with the maximum particle energy scaling
as Emax ∝ σ−1/4, and a fraction of energy transmitted to the supra-
thermal particles ξCR ∼ 10 per cent, while for σ � 3 × 10−3 DSA
is inhibited.

As the magnetization increases, a very different particle accel-
eration mechanism occurs in magnetized oblique and transverse
relativistic shocks. It is the shock drift acceleration (SDA; Begel-
man & Kirk 1990; Sironi & Spitkovsky 2009) for which particles
gain energy from the motional electric field, and are found to drift
along the shock front surface. This mechanism is found to be faster
than DSA, but does not allow to reach considerably high energies
as it requires the particle to remain close to the shock front. An
important contribution of SDA to particle acceleration in mildly
magnetized shocks will actually be demonstrated in this work.

In addition, the study of the spatial diffusion coefficients is most
interesting. Indeed, non-linear Monte Carlo simulations (e.g. Elli-
son, Warren & Bykov 2016) have demonstrated the dependence of
the particle acceleration efficiency on the spatial diffusion coeffi-
cients in relativistic shocks. Up to now, however, only an indirect
demonstration of the scaling of the diffusion coefficient as D ∝ E2

was given by Stockem et al. (2012) and Sironi et al. (2013), where
the maximum energy of the particles has been shown to grow in

1We note that ultrarelativistic shocks are generically quasi-perpendicular
for a random upstream magnetic field orientation (Gallant et al. 1992). This
is due to the shock compression and Lorentz transformation from the lab
frame to the shock front rest frame. Hence, in this study, only perpendicular
shocks are considered. The study of the acceleration efficiency for different
field orientations can be found in Sironi & Spitkovsky (2009).
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time as Emax ∝ √
t . This work will provide a direct demonstration

of the D ∝ E2 in weakly magnetized shocks by means of a de-
tailed analysis of single particle trajectories in PIC simulations. It
will also be shown that this dependence is affected by the external
magnetic field as particles scattering on turbulence are in competi-
tion with regular gyration, as expected from the theoretical study of
Plotnikov, Pelletier & Lemoine (2011).

This study provides a detailed analysis of the shock formation,
structure, and late stage evolution across a wide range of σ , from
very weakly magnetized shocks σ ≤ 10−5 relevant to shocks in the
interstellar medium, to strongly magnetized shocks σ = 10 relevant
to shocks in pulsar wind nebulae (PWNe). In particular, this work
extends the study of Gallant et al. (1992) and Sironi et al. (2013) by
performing two-dimensional PIC simulations with a more system-
atic grid of σ , and using two different PIC codes. These simulations
provide a unique way to study the relevant instabilities, particle
diffusion, and acceleration processes in-depth and self-consistently.

In Section 2, we first present the numerical tools, methods as well
as our simulation setup and parameters. Section 3 presents an analy-
sis of the shock jump conditions, and the results of PIC simulations
are compared to ideal magnetohydrodynamic (MHD) predictions.
In Section4, the global structure of the shock is discussed in terms
of density, magnetic fields, and particle phase-space distributions.
Particular attention is paid to the nature of the precursor, the mech-
anisms leading to shock formation and their dependence on σ . The
presence of a perpendicular current in the shock precursor is demon-
strated (Section4.4), and we highlight that it could play a role in
shock formation for intermediate magnetizations. In particular, it
will be shown that the amplitude of this current increases with σ ,
and that its contribution is most important for the mildly magne-
tized cases 10−4 < σ < 10−2. The characteristic time and processes
mediating shock formation are then discussed in Section 5. An op-
erating definition for the time of shock formation is introduced,
based on the temporal evolution of both the density compression
and level of anisotropy in the downstream region. Depending on the
magnetization, it is found that either compression or isotropization
is established first.

The next part of the paper is then devoted to a detailed investiga-
tion of particle acceleration in the shock. First, Section 6 provides
a study, as a function of the magnetization, of the evolution of the
accelerated particle distribution functions and of the acceleration
efficiency. Then, Section 7 deals with the kinetic aspects of par-
ticle transport and acceleration in the shock using self-consistent
particle kinematics. The spatial diffusion coefficient in the shock
propagation direction, D⊥, is extracted directly by analysing sin-
gle particle trajectories. The scaling D⊥ ∝ γ 2 is found to hold for
weakly magnetized shocks for high-energy particles while at larger
magnetizations, σ � 10−3, D⊥ is almost constant. The mechanisms
responsible for particle acceleration are also discussed. DSA is
found to be efficient at small magnetizations, while SDA gives an
important contribution to particle acceleration in mildly magnetized
purely perpendicular shocks, up to σ ∼ 10−3, where particle energy
γ ∼ 40γ sh can be reached on very short time-scales.

Finally, we discuss the main findings and give our conclusions in
Section 8.

2 SIMULATION METHODS AND SETUP

2.1 Simulation codes

The simulations presented in this paper have been performed using
two different PIC codes. Both codes are multidimensional in space
(only the 2D version is used in this study) and 3D in momentum.

Our aim in using the two codes is solely to ensure that the physics
at hand does not depend on the numerical schemes and their imple-
mentation, both very different in each code. Throughout this work
a very good agreement was found when comparing the two codes,
as also be presented in more details in Appendix A.

The first code is the open-source code SMILEI2 developed in
a collaborative framework by physicists and HPC experts (Der-
ouillat et al. 2018). It is a fully electromagnetic, relativistic code
that solves Maxwell’s equations using the Finite-Difference-Time-
Domain (FDTD) method and a staggered Yee-type mesh (Taflove &
Hagness 2005). In the simulations presented here, macro-particles
(with second-order shape functions) are advanced using the standard
Boris algorithm (Birdsall & Langdon 1991), and particle currents
are deposed on to the grid using the charge conserving Esirkepov’s
algorithm (Esirkepov 2001). benefits from a state-of-the-art, hybrid
MPI-OpenMP, parallelization and a modern dynamic load balanc-
ing strategy.

Simulations have also been performed with the PIC code SHOCK-
APIC, developed by one of the authors (IP). It is a pseudo-spectral
time domain code (PSTD; as defined by Liu 1997; Vay, Haber &
Godfrey 2013) that solves Fourier-transformed Maxwell’s equa-
tions in k-space, while time advancing of the electromagnetic fields
is done using an explicit finite difference method. Particle advanc-
ing is done using the Boris algorithm, and currents are deposited on
to the grid using second-order particle shape functions. The spectral
Boris correction on the electric field (Vay et al. 2013) is applied to
ensure charge conservation at each time step.

The essential difference in between the two codes is the method
they use to solve Maxwell’s equations. PSTD methods have the
advantage to provide a more accurate representation of the elec-
tromagnetic waves dispersion relation. In particular, the light-wave
dispersion relation in an unmagnetized plasma, ω2 = ω2

p + k2c2, is
well captured at high-k modes in PSTD codes, while an important
deviation occurs in FDTD codes (Birdsall & Langdon 1991). FDTD
solvers indeed introduce a spurious dispersion resulting in a numeri-
cal speed of light lower than c (see e.g. Nuter et al. 2014). This aspect
is important when one deals with relativistic flows drifting with ve-
locity arbitrarily close to c. It produces a spurious grid-Cherenkov
instability responsible for Cherenkov-like radiation, which dramat-
ically heats the upstream plasma. In FDTD codes the instability
is practically very difficult to avoid in long-term simulations as it
involves coupling to low-k modes. In ’s simulations, using a 3-pass
digital filter on currents together with a temporal Friedmann filter
(with the control parameter θ = 0.3) on the electric field (Green-
wood et al. 2004) allowed us to prevent spurious effects for the
simulation parameters discussed in this work (see Section 2.2). The
instability is much easier to suppress in spectral codes using a sim-
ple spectral filtering of the highest k-modes. In ’s simulations, using
a spectral cut on all field components proved sufficient. A 2-pass
digital filter was however used to reduce the coarse-grain effect as
only two particles per cell were used for each species. Note that the
digital filtering and spectral cut affect only the smallest wavelengths
such that the relevant physics is not affected.

Let us note that the ‘price to pay’ for using spectral codes is
that their real space representation might be questioned due to the
non-local character of Fourier transforms (global stencil) and an
imposed periodicity on fields. The former rises some questions on
whether spectral codes respect the causality constraint. The latter
imposes a careful dealing with boundary conditions when particle
reflective walls are imposed in the simulation box. Yet, as will be

2http://www.maisondelasimulation.fr/smilei
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Figure 1. Simulation set-up. The (x, y) simulation plane contains an up-
stream pair plasma drifting in the positive x-direction. This plasma carries
a frozen-in magnetic field B0 in the z-direction perpendicular to the simu-
lation plane and an electric field E0 in the y-direction to ensure an initial
equilibrium condition. The shock front, once formed, propagates from right
to left, and the downstream plasma has no average speed.

demonstrated in this paper, both codes give very similar results for
this study.

Finally, spectral codes rely on global communications, the
Fourier transform requiring to ‘know’ the fields everywhere on
the grid, whereas FDTD codes only require local calculations. This
makes spectral codes particularly difficult to efficiently parallelize
on a large number of processors.3 For this reason the simulations
performed with are much longer than those done with .

2.2 Simulation geometry

All simulations are performed in a two-dimensional Cartesian ge-
ometry in the x–y plane. Initially, the simulation box is filled with
a cold (T0 � mc2) plasma drifting along the positive x-direction
with a relativistic velocity v0 = v0ex [corresponding to a Lorentz
factor γ0 = (1 − v2

0/c
2)−1/2]. An external uniform magnetic field

B0 is imposed in the out-of-plane z-direction. This choice is mo-
tivated by the fact that the out-of-plane field allows to recover the
main ingredients of tri-dimensional particle dynamics such as scat-
tering and acceleration process, as demonstrated by Sironi et al.
(2013). To provide an initial equilibrium condition, an electric field
E0 = − p0/(mcγ0) × B0, where p0 = mcγ0β0ex is the momentum
of the upstream flow, is initialized as well. The flow is reflected on a
conducting wall at the right edge of the simulation domain. Particles
are elastically reflected at that wall. The interaction between the in-
coming and wall-reflected flows builds up a shock that propagates
in −x direction. This setup is presented schematically in Fig. 1. In
this way the shocked (downstream) plasma has no average speed as
it corresponds to the centre-of-mass frame of the system composed
of the incoming and wall-reflected flow. Hence, the frame of the
simulations is the downstream rest frame.

All discussions (quantities) will henceforth be made (defined) in
this simulation/downstream frame, unless specified otherwise.

2.3 Units, physical and numerical parameters

In both codes times are expressed in units of the inverse of the non-
relativistic electron plasma frequency ωpe= [4πN0e2/m]1/2, where

3Let us note that techniques for efficient parallelization of spectral codes
have been recently proposed (Vay et al. 2013).

−e is the electron charge, and N0 is the electron (and positron) ini-
tial density. Velocities are expressed in units of the speed of light
c. Hence, the space unit is the non-relativistic electron skin depth
δe = c/ωpe. Note that the total plasma frequency is ωp = √

2ωpe

as both constituents have the same mass, and fields are in units
of mcωpe/e. The cyclotron frequency in the external magnetic
field is ωce = eB0/(mc). These quantities are related to their rel-
ativistic counterpart using ωpe,rel = ωpe/

√
γ0, δe,rel = δe

√
γ0 and

ωce, rel = ωce/γ 0, where γ 0 is the Lorentz factor of the upstream flow.
In this work, we use non-relativistic notations unless stated other-
wise. We note however that the reference Larmor radius (i.e. the
Larmor radius of an electron/positron with initial velocity ±v0ex in
the external magnetic field B0) is always defined as RL,0 = γ 0c/ωce.
Note also that, the magnetization parameter σ , defined by equa-
tion (1), can also be written as

σ = 1

2

(
ωce,rel

ωpe,rel

)2

. (2)

All simulations have been performed with a streaming plasma
using γ 0 = 10 and initial temperature T0 = 10−5mc2 (in the rest
frame of the flow). The main numerical parameters of the simula-
tions are presented in the Table 1. With SMILEI, we performed 20
simulations varying σ from 5 × 10−6 to 5 × 10−2 on an equally
spaced logarithmic scale and four supplementary simulations with
σ = {0.1, 0.3, 1, 5}. With SHOCKAPIC, we carried out 20 simulations
with σ ∈ [10−5, 10−1] on an equally spaced logarithmic scale.

The transverse box size was 256δe for SMILEI and 85δe for SHOCK-
APIC, chosen in order to observe at least a dozen of filaments with
typical size equal to the relativistic skin depth δe,rel. The cell size was
�x = 0.25δe for SMILEI’s simulations (0.33δe for SHOCKAPIC’s), that
in units of the relativistic skin depth give �x = 0.08δe,rel (0.1δe,rel)
ensuring that all relativistic scales are properly resolved. For SMILEI

simulations with large magnetizations (σ ≥ 1), the spatial resolution
was set to �x = δe/16.

3 SHOCK JUMP CONDITIONS

In this section we derive the shock jump conditions from our PIC
simulations and compare the results with the ideal MHD prediction.
The derivation by means of relativistic ideal MHD conservation
laws of the theoretical jump conditions, between the upstream in-
coming relativistic flow and the downstream plasma, is carried out
in Appendix B. In this derivation, no assumption is made on the
upstream flow Lorentz factor (no ultrarelativistic limit). We only
consider the strong shock limit for which the upstream flow internal
pressure (both magnetic and thermal) is neglected. This approxima-
tion is fully justified here, since the upstream plasma is cold with
T0 = 10−5mc2 and the magnetic pressure can be neglected up to
σ ∼ γ 2

0 = 100.
Fig.2(a) shows the density jump Nd/N0 as a function of the mag-

netization. Nd is the electron density in the post-shock downstream
medium measured in SMILEI simulations at tωpe = 2 × 103 (red cir-
cles). The theoretically predicted density jump is shown for com-
parison (red line). It corresponds to equation (B9), adopting the ap-
propriate adiabatic index for the downstream relativistic 2D plasma
�ad = 3/2. In addition, we show the values extracted from 1D sim-
ulations by Gallant et al. (1992) (black triangles with error bars)
along with the corresponding ideal MHD prediction for γ 0 = 106

(black solid line).
For σ < 3 × 10−4, the compression ratio keeps its unmagne-

tized limit Nd/N0 = 1 + (γ 0 + 1)/[γ 0(�ad− 1)] = 3.2 and the
simulation results are in very good agreement with the ideal MHD

MNRAS 477, 5238–5260 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/477/4/5238/4978470 by Princeton U
niversity user on 26 D

ecem
ber 2019



5242 I. Plotnikov, A. Grassi, and M. Grech

Table 1. Parameters used in the two simulation series performed with SMILEI and SHOCKAPIC: �t is the time-step, Tsim is the simulation time, �x is the cell size
(in both x- and y-directions), L⊥ is the transverse (y) width of the simulation box, Nppc is the number of particles-per-cell for each species. Nsim denotes the
number of simulations in each series varying the magnetization from σmin to σ max over a logarithmic scale. (∗) For SMILEI simulations at σ ≥ 1, the cell size in
both directions was reduced to δe/16.

PIC code �tωpe Tsimωpe �x/δe L⊥/δe Nppc σmin σmax Nsim

SMILEI 0.125 2000 0.25∗ 256 20 5 × 10−6 5 24
SHOCKAPIC 0.1 300 0.33 85 2 10−5 10−1 20

Figure 2. Variation of the density compression ratio Nd/N0 (panel a) and
of the shock front speed (panel b) as a function of the upstream flow mag-
netization σ . Red circles correspond to the values extracted from SMILEI

simulations at tωpe = 2000. Values plotted using black triangles with error
bars are taken from the 1D simulation results of Gallant et al. (1992). Black
star symbols in panel (b) correspond to the shock front speed derived from
the measured density compression ratio using equation (B9). Solid lines
follow the ideal MHD expectation, derived in Appendix B. Red and black
lines use γ 0= 10 (used in this study) and 106 [used in Gallant et al. (1992)],
respectively.

predictions. A gradual deviation occurs for intermediate magneti-
zations, 10−4 < σ < 10−2, where the measured compression ratio
can be up to the 10 per cent lower than the theoretical expectations.
Note that measurements of the compression ratio at shorter times,
tωpe = 500, show a smaller discrepancy, not exceeding 3 per cent.
A good agreement with the ideal MHD predictions is recovered for
large magnetizations, σ > 10−2, and only a small discrepancy is
observed for the case σ = 0.1 for which the compression ratio is
slightly larger than expected.

Correspondingly, in Fig.2(b), we show the shock front speed
βsh = vsh/c obtained from SMILEI simulations. Defining the shock
front position xsh as the position where the transverse averaged
density increases from the upstream value4 N0 to N(xsh) = 2.8N0,

4Note that this density value is reached at the shock front even in the highly
magnetized cases, for which the predicted density jump is smaller than
2.8N0, thanks to the density overshoot building up at the shock front, see
Section 4 and Fig. 3.

we measured xsh(t) every 2ω−1
pe and we deduced the front velocity

by a linear fit: xsh(t) = −βsht + x0, considering a constant front
velocity (red circles). Also shown (black stars) is the front speed
deduced from the theoretical relation βsh = β0(Nd/N0 − 1), see
Appendix B, using the measured final state density jump shown in
Fig. 2(a). The two measures are consistent. At low magnetization,
the shock speed is in good agreement with the unmagnetized limit
βsh(σ = 0) = (�ad − 1)(γ 0 − 1)/(γ 0β0) = 0.452. A deviation
for intermediate magnetizations 10−4 < σ < 10−2 is observed,
consistent with Fig. 2(a). In this interval of σ , the shock propagates
faster than expected from the ideal MHD. At high magnetizations,
we recover the standard result of Kennel & Coroniti (1984), that is
the shock speed tends asymptotically to c for σ � 1.

We tested the convergence of a limited number of simulations
performed with the SHOCKAPIC code up to tωpe = 1200 and the
obtained results are in good agreement with SMILEI simulations.
Observing the same effect with the two codes supports the idea that
the observed deviations are indeed physical and not a result of the
numerical filtering.

As mentioned above, the standard ideal MHD does not account
for kinetic effects that may take place at the shock front. In particular,
Gallant et al. (1992) has observed in 1D PIC simulations a departure
from MHD jump conditions at σ � 0.1, which they attributed to
the emission of electromagnetic waves at the shock front. They
further demonstrated that it is possible to account for this dissipative
mechanism by including an additional term into the equation for
the momentum and energy conservation across the shock front. As
clear from Fig. 2(a) the deviation observed in their 1D simulations
(black triangles) is more pronounced than ours, obtained in a 2D
geometry, for σ = 0.1. Indeed, in 2D, the situation can be different
as transverse effects may be important. Our simulations suggest
that in a 2D configuration the cyclotron loop, responsible for the
electromagnetic wave emission, loses in coherence because of the
presence of transverse instabilities, such as Weibel-filamentation or
CFI, as already suggested by Gallant et al. (1992). Consequently,
the amplitude of the emitted electromagnetic waves is lower in 2D
than in 1D and their contribution to the energy balance is reduced.
This results in the reduced [as compared to Gallant et al. (1992)]
departure from MHD predictions in our 2D PIC simulations for σ

� 10−1.
The deviation that we observe in the intermediate range

10−4 < σ < 10−2 is more puzzling as it goes in the opposite
direction: that is the density compression is somewhat lower in
the PIC simulations than predicted by the MHD jump condition.
Moreover, no strong electromagnetic precursor is observed there.
Simulations however show that the downstream region immediately
behind the shock front is very turbulent. Including the downstream
wave turbulence terms in the conservation equations, in the same
way as done in Gallant et al. (1992), we can recover the observed
10 per cent deviation in the jump conditions if about one tenth of
the incoming kinetic energy is converted in the downstream mag-
netic wave turbulence. This latter term produces the supplement
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of downstream magnetic pressure that is necessary to increase the
shock front speed. This, however, does not explain why the down-
stream wave turbulence is only important in the intermediate range
of magnetization while a very good agreement with ideal MHD is
found for either σ < 10−4 or σ > 10−2.

4 GLOBAL SHOCK STRUCTURE

In the absence of binary particle collisions the dissipation required
to build up the shock front is given by collective plasma phenomena.
For weakly magnetized shocks the transition region between the un-
perturbed upstream and the hot downstream plasmas is dominated
by beam-type instabilities in the region where the energetic return-
ing particle precursor pervades the upstream flow. With growing σ

the penetration length shortens, a cyclotron loop at the shock-front
gains in coherence and the dissipation is gradually assumed by a
coherent large-amplitude electromagnetic wave emission from the
leading edge of the cyclotron ring at the shock front. Once the tran-
sition region is settled, the incoming cold flow is heated and relaxes
to the downstream state on a spatial scale related to the relativistic
skin depth, typically ∼10δe,rel, in weakly magnetized shocks and to
the particle Larmor radius ∼RL,0 in highly magnetized shocks.

Let us note that, as relativistic pair plasmas are considered here,
the potential barrier at the shock front is of an electromagnetic na-
ture. This contrasts with shocks in electron-ion plasmas where im-
portant electrostatic effects are present (Lemoine & Pelletier 2010).

4.1 Density structure

In Fig. 3 we present the 2D density maps from the simulations
performed with the code SHOCKAPIC for five different magnetizations
at tωpe= 300, when the shock is well formed but has not yet evolved
over long time-scales. Due to the complete symmetry between the
two species we present only the electron density maps. The shock
front is located at x = xsh (black dashed line) and propagates from
right to left. In panel (a), the case of an unmagnetized shock is
presented, σ = 0. The precursor region, x − xsh < 0, is filled with
Weibel-generated filaments, elongated in the direction parallel to
the shock-normal. These filaments have initially a transverse width
∼δe,rel = √

γ0δe. They grow in size when approaching the shock
front where they mix up and are disrupted. The shock front where
the density increases from N0 to its downstream value Nd � 3.2N0

has a width of 60–70δe. Panels (b) and (c) depict the shock structure
for σ = 7 × 10−5 and 8 × 10−4, respectively. The filamentary
structures in the precursor are shorter than in the unmagnetized
case and the filaments are slightly oblique. In addition, the shock
width is narrower than in panel (a). For these low magnetization,
the downstream asymptotic density value is roughly the same as in
panel (a).

Panel (d), for which σ = 9 × 10−3, presents a case where the
magnetic field in the downstream plasma becomes dynamically
non-negligible. The particle precursor is very short and the shock
is shaped by the compression of the external magnetic field. In
this case, the so-called magnetic reflection dominates the shock
transition and a characteristic overshoot at the shock front can be
seen between 0 < x − xsh < 20δe where a density hump is formed.
The filamentary structure in the precursor, seen for x − xsh < 0,
is due to the reaction of the incoming background plasma to the
electromagnetic large-amplitude waves emitted from the shock front
(also evidenced by Iwamoto et al. 2017). The presence of these non-
Weibel filamentary structures is even more prominent in the σ = 0.1
case (panel e) for which the emitted wave intensity is larger than for

Figure 3. Electron density maps in the simulation plane at tωpe = 300 from
the spectral code SHOCKAPIC. Five different magnetizations are presented from
top to bottom panels: (a) σ = 0, (b) σ = 7 × 10−5, (c) σ = 8 × 10−4, (d)
σ = 9 × 10−3, and (e) σ = 10−1. The x-axis denotes the position relative
to the shock front xsh. The latter is defined here as the position where the
density is equal to 2.8N0.

the case σ = 9 × 10−3, and we observed this kind of filamentation for
any σ > 10−3. We attribute these filamentary structures to the self-
focusing and filamentation of the high-amplitude electromagnetic
wave when it propagates through the upstream plasma, as introduced
theoretically in, e.g. Max, Arons & Langdon (1974). Our results in
panels (d–e) illustrate this effect in a pair plasma.

4.2 Magnetic field and phase space

We now discuss the shock structure at longer times with respect
to the one presented in the previous Section4.1. The simulations
presented here have been performed with SMILEI. Fig. 4 shows at
tωpe = 2000 the magnetic field strength log [e|Bz − B0|/(mcωpe)]
in the simulation plane (left column), the electron phase space den-
sity projected in the x–px plane (central column) and in the x–py
(right column) where px,y = mcγβx,y. The results of simulations
performed with five different values of σ are presented from top to
bottom: σ = 8 × 10−6, 6 × 10−5, 4 × 10−4, 3 × 10−3, 2 × 10−2,
respectively.5 The phase spaces of positrons show the same main

5The magnetizations are different than presented in Fig.3 as we here use the
SMILEI simulation series.
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5244 I. Plotnikov, A. Grassi, and M. Grech

Figure 4. Magnetic field and flow structure around the shock at tωpe = 2000 (SMILEI code) for five representative magnetizations, from top to bottom:
σ = 8 × 10−6, 6 × 10−5, 4 × 10−4, 3 × 10−3, and 2 × 10−2. Left column: log (|Bz − B0|) magnetic field in the simulation plane. Central column: electron
x–px phase space distribution. Right column: electron x–py phase space distribution.

features, except for the inversion in the py momentum as a result of
the opposite direction of gyration in the B0 field.

Weibel turbulence is observed in the upstream region, x− xsh < 0,
for small magnetizations and up to σ = 4 × 10−4 and the field
strength peaks at the shock front x = xsh. The filamentary structures
are the result of the interaction between the cold incoming flow
with px, 0 = mcγ 0β0 and the hot, tenuous cloud of returning parti-
cles (precursor) that propagates in the opposite direction, as seen
in the x–px phase-space. In the downstream region, x − xsh > 0,
the plasma reaches a relativistic temperature, as expected from the
jump conditions, and the magnetic field turbulence decays by phase
mixing. The length of this unstable region decreases with increasing
σ and for σ ≥ 10−2 the upstream magnetic field is large enough
to completely suppress the precursor beam. A quantitative study of
the precursor length is presented later in Section 4.3. For σ > 10−3

the Weibel-unstable precursor is replaced by large amplitude elec-
tromagnetic waves emitted from the shock front. The regular down-
stream shock-compressed component of the magnetic field B0,d is
more and more prominent with growing σ . The sharp transition be-
tween upstream and downstream is clearly seen for the σ = 2 × 10−2

case.

We note that we obtain qualitatively a structure very similar to
the one presented by Sironi et al. (2013) ( fig. 3 of their article),
with a finer phase-space resolution here as 20 particles/cell/species
were used instead of 2.

4.3 Precursor length

It was shown in Figs 3 and 4 that the length of the particle precursor
Lp, composed of the hot beam of returning particles, decreases as
the magnetization increases. Eventually, the particle precursor is
completely suppressed for σ � 10−2, leaving place to an electro-
magnetic wave precursor. As long as one is interested in estimating
the particle precursor length (i.e. for σ < 2 × 10−3 for our simu-
lations, see Fig. 5 and discussion below), one should consider two
competing mechanisms.

(i) The first mechanism that can limit the expansion of the particle
precursor is the regular gyration of returning particles in the ordered
upstream magnetic field B0. The corresponding precursor length
then scales as Lp ≈ (γ inj/γ 0)RL,0, where γ inj is a representative
Lorentz factor of the returning particles. This scaling was found
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Figure 5. Dependence of the precursor length Lp on the upstream flow
magnetization σ . Filled circles present the value derived from SMILEI sim-
ulations at tωpe = 2000 and the solid line reports the Larmor radius of
particles with a Lorentz factor γ = 2γ 0 in the external B0 magnetic field.
The subset in the upper right corner presents a typical electron x − px phase
space density (here for σ = 1.3 × 10−5 at tωpe = 2000). The red cross
shows where the precursor tip is located and the corresponding precursor
length Lp is delimited by the red double arrow.

by Sironi et al. (2013) for any σ > 10−5 shocks. These authors
proposed that the characteristic energy of the returning particles
corresponds to γ inj � 5γ 0. It is roughly the lower cut-off energy
of the power-law part of the distribution function in the precursor
region. It carries the bulk of the energy content in the non-thermal
particles if the power-law spectral index s = dlogN/dlogE> 2. As
will be evidenced at the end of this section, in our simulations, this
mechanism efficiently limits the particle precursor length for large
enough magnetizations (typically σ � 10−4).

(ii) The second mechanism that can limit the expansion of the
particle precursor relates to the returning particle scattering on the
self-excited microturbulence. This process should dominate over
the regular gyration for weak enough magnetization, leading to
particle precursor length Lp of order of the diffusive length in the
direction of the shock propagation. It was argued that this scaling
may occur in very weak magnetization shocks with σ < ξCR/γ

|u 2
sh

(Pelletier, Lemoine & Marcowith 2009; Lemoine & Pelletier 2010),
where ξCR is the fraction of the incoming energy channelled to the
supra-thermal particles and γ

|u
sh is the Lorentz factor of the shock

front as seen from the upstream rest frame.

To measure the precursor length at the end of the simulation
(tωpe = 2000), we localize the tip of the precursor as the position xtip

of the phase space element in the upstream region with px = −2p0

at the largest distance from the shock front. The choice of 2p0

momentum is done as a compromise, the value of Lp depending
weakly on the choice of the phase space element between p0 and 5p0.
The precursor length is then defined asLp = xtip − xsh. Fig. 5 presents
the particle precursor length Lp, measured at tωpe = 2000, as a
function of σ . The figure subset in the upper right corner presents
the x–px phase space density for the case σ = 1.3 × 10−5. The
red cross shows where the precursor tip is located. The measured
precursor length, Lp, is compared to twice the Larmor radius of
an electron with Lorentz factor γ 0 in the upstream magnetic field
(solid line), the diffusion length being too large to be reported in
this figure.

For low magnetizations, σ < 10−4, the precursor is still expand-
ing at the end of the simulations so that it did not yet reach its
stationary size. At tωpe = 2000 the precursor size in our simulation
is limited by the ballistic expansion of the hot particles moving at
〈vx〉 ∼ c/2 to roughly 800δe. Present simulations are too short to
allow distinguishing between the two discussed length scales for
very weak magnetizations.

For intermediate magnetizations, 10−4 < σ < 10−3, Lp stabilizes
at Lp � 2RL,0. This confirms that the particle precursor extent is
here limited by the Larmor gyration in the external magnetic field,
as found by Sironi et al. (2013).

Finally, for σ > 10−2, the particle precursor disappears as the
external magnetic field is strong enough to suppress it. Indeed, in
Fig. 5, for these magnetizations Lp � RL,0, and it is very close to 0.

4.4 Perpendicular current in the precursor

It is still a matter of debate if the filamentary turbulence seen in Fig. 4
for σ > 10−5 results from the ‘pure’ Weibel instability, since the
latter may not be able to grow to sufficient strength in the precursor
(Lemoine & Pelletier 2010; Lemoine et al. 2014b; Pelletier et al.
2014). For such magnetizations indeed, the precursor may be too
narrow for the Weibel instability to fully develop.

Nevertheless, in the presence of an (ordered) perpendicular mag-
netic field, the flow of the precursor hot electrons can be deviated
in the negative y-direction. This can be clearly observed in the right
column of Fig. 4: with growing σ the deviation of the ‘cloud’ of
the precursor electrons towards negative py values becomes more
pronounced. Conversely, positrons are deviated in the positive y-
direction. This produces a net current jy,beam in that region, which is
in return efficiently compensated by the incoming plasma in order
to ensure global neutrality. This situation is unstable with respect
to the so-called CFI if the drift speed of the background plasma
imposed by jy,beam is larger than the upstream sound speed. Its
nature is different from the standard Weibel instability, the latter
being produced by a neutral beam along x. As studied theoreti-
cally by Lemoine et al. (2014b) the role of the CFI in the magnetic
field generation can be as important as the Weibel instability for
ξCR/γ

|u 2
sh < σ ≤ 10−2.

The existence and amplitude of this perpendicular current in the
precursor of relativistic shocks were never evidenced in PIC simu-
lations. Indeed the total jy current, formed by the contributions of
the returning beam particles and of the incoming cold flow parti-
cles, is very small as a result of the efficient compensation of the
beam-produced current by the background plasma. We show here
that, for a finite σ , the beam of outgoing particles in the precursor
indeed produces a net perpendicular current.

In order to measure the returning beam contribution to the current,
it is necessary to isolate the beam particles in the precursor from the
background incoming population. In our simulations, this is done by
selecting as the precursor particles those with negative momentum
along the flow x direction, px < 0. In Fig. 6 we plot as a function
of σ the number of macro-particles (panel a), the average velocity
in the x and y directions (panel b), as well as the integral over the
precursor length of the current of the returning beam particles (panel
c). As seen in panel (a) the number of macro-particles in the beam
is roughly constant up to σ ∼ 10−3, while it decreases for larger
magnetizations, the particle precursor eventually disappearing (see
previous Section 4.3). Clearly, electrons and positrons have the same
outgoing average velocity � 0.6c in the shock normal direction −x,
as seen in panel b (blue lines). This implies that no net current jx will
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Figure 6. Dependence on the magnetization of (a) the number of the return-
ing beam macro-particles in the shock precursor, (b) the mean speeds of the
returning beam electrons (dashed lines) and positrons (solid lines) in shock-
normal x-direction (blue colour) and perpendicular y-direction (red colour),
and (c) the integrals of the beam contribution to the jx current (solid line)
and to the jy current (dashed line). Done with the spectral code SHOCKAPIC at
tωpe = 300.

develop in the background plasma. The picture is different in the
perpendicular y direction. As expected, electrons and positrons go
in opposite directions with roughly the same average velocity (red
lines). The average y velocity vanishes for σ < 10−5 and increases
up to |vy| � 0.6c for σ ≥ 10−3. Such a configuration produces a
net jy current carried by the returning particles, as shown in panel
(c). The parallel component is always close to 0, as expected, while
the jy component increases gradually for 10−5 < σ < 10−3. The
maximum current is reached for σ � 2 × 10−3 and, for larger
magnetizations

∫
jy dx decreases as the precursor shortens rapidly.

Based on these results we expect the influence of the perpendicular
current, and in turns of the CFI on the shock structure to be most
important for this level of magnetization, σ ∼ 10−3.

5 CHARACTERISTIC TIME OF SHOCK
FORMATION

In this section, we investigate, as a function of the upstream magne-
tization, the characteristic time for shock formation. Our definition
of the shock formation time follows from the study of the tempo-
ral evolution of two complementary quantities: (i) the compression
factor of the downstream region, (ii) a measure of the anisotropy in
the px–py phase-space of the downstream plasma. Both quantities
have been computed in each simulation considering a region in the
overlapping plasma located close to, but no exactly at, the reflecting

wall on the right border of the simulation box (see Section 5.2 for
more details). The compression factor is obtained simply as the ratio
of the averaged plasma density in this region by the initial plasma
density N0. The anisotropy is measured introducing the anisotropy
parameter:

aiso = 〈vx px〉
〈vy py〉 − 1, (3)

where 〈vi pj〉 is the pressure tensor averaged over the whole over-
lapping region, so that an isotropized plasma corresponds to values
aiso � 1.

As previously underlined, the main instability at the origin of
shock formation depends on the upstream magnetization. In what
follows, we first (Section 5.1) discuss the early phase of shock
formation that corresponds to the initial phase dominated by the
instability, focusing in particular on the modification of the px–
py particle distribution. We then address the shock formation time
(Section 5.2), discussing the methods used to identify the time of
shock formation then presenting our results of time formation as a
function of the magnetization parameter.

5.1 Instability and isotropization of the flows

Before looking at the shock formation time-scale, we illustrate in the
initial phase of shock formation the difference between the weakly
and highly magnetized plasmas. We follow the px–py phase-space
density in the overlapping region, close to the right boundary of the
simulation box xwall, in between xwall − 28 δe and xwall − 8 δe. The
time evolution is presented in Fig. 7 where we show the px-py phase-
space density for three representative magnetizations: σ = 10−5 (left
column), σ = 10−3 (central column), and σ = 1 (right column). The
evolution in time, for tωpe = 20, 30, 90, and 500, is presented from
top to bottom.

For σ � 1 (left and middle columns), two counter streaming cold
beams are present at tωpe = 20. A slight shift in the py direction
is seen for the case σ = 10−3 as a result of the beam rotation
in the external B0 field, while both beams are centred in py = 0
for σ = 10−5. These beams quickly become unstable, and at time
tωpe= 30 the phase-space distribution of the two beams appear to be
strongly modified, and in particular broader. Yet two distinct beams
can still be identified and the anisotropy parameter (equation3)
remains large (aiso � 30 for σ = 10−5 and aiso � 2.6 for σ = 10−3).
At tωpe = 90 the distribution is almost fully isotropized, and the
anisotropy parameter has strongly decreased down to aiso ∼ 0.02 and
0.03 for σ = 10−5 and 10−3, respectively. At much a larger time,
tωpe = 500, the px–py phase space assumes a Maxwell–Juttner-
like distribution and thermalization has been reached. Note that
the temperatures measured in these simulations are found to be in
excellent agreement with Rankine–Hugoniot predictions.

The evolution is different in the highly magnetized case σ = 1
(right column of Fig. 7). At tωpe= 20 the plasma flows show a
cold ring distribution, which quickly turns unstable with respect to
the MSI (Hoshino & Arons 1991). This instability quickly heats
up the flows and a much broader ring-like structure is observed at
tωpe = 30. Yet, the anisotropy parameter for these two early times
remains quite large, aiso � 2.8 and 0.8 for tωpe = 20 and 30, re-
spectively. Isotropization is reached at time tωpe = 90 for which
aiso � 0.01, and remains approximately stable at later times. It is
worth noting that the ring distribution does not relax completely
to a Maxwell–Juttner: the phase space region around [px, py] = 0
remains depleted. The relaxation towards the Maxwell–Juttner dis-
tribution is even less efficient for larger σ .
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Figure 7. Evolution of the px –py phase space density in the downstreaming region 8δe < |x − xwall| < 28δe for times from tω= 20, 30, 100, and 500 (pefrom
top to bottom) and for three magnetizations: σ = 10−5 (left column), σ = 10−3 (central column), and σ = 1 (right column). Done with SMILEI.

5.2 Formation time

We now turn to extracting the shock formation time from our PIC
simulations. To do so, one has to find an operating definition for the
formation time, and the question arises as to what is the relevant
quantity to look at.

In Bret et al. (2014) (and following works), the authors compute
the formation time from their PIC simulations by extracting, as
a function of time, the shock front position, there defined as the
position for which the plasma density reaches 3N0. At large time,
this position is found to follow a straight line (the shock front
velocity being constant). Expanding this line towards shorter times,
they define the time of shock formation as the time at which the
line crosses the x= xwall position. While this method allows them to
compute formation times consistent with simple analytical estimates

(as will be discussed later in this section), this method proved to be
unreliable for our study.

Instead, our definition of the time of shock formation follows
from the study of the temporal evolution, in the overlapping plasma
region, of both the compression factor and anisotropy parameter
(equation3). Different averaging regions have been considered, all
of them extending up to xwall − 8 δe, but with different widths, [5,
10, 15, 20]δe.

The compression time Tdens is obtained as the time at which this
averaged density reaches 95 per cent of the maximum density of the
downstream plasma obtained at late times (well after shock forma-
tion). Note that for either small (σ � 10−4) or large (σ � 10−1) mag-
netizations, this threshold corresponds to 95 per cent of the down-
stream density theoretically predicted from Rankine–Hugoniot con-
ditions. For intermediate magnetizations, this threshold is somewhat
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Figure 8. Dependence on σ of the measured isotropization and compres-
sion times (orange and blue circles, respectively), extracted from selected
SMILEI simulations. Also shown are the compression times derived from com-
plementary SMILEI simulations (dark triangles) and SHOCKAPIC simulations
(light-grey triangles), considering only the 3δe < |x − xwall| < 13δe region.
The dashed-line reports the prediction for the time of shock formation using
the model presented in Bret et al. (2014). Inset: magnetic field growth-rate
dependence on σ during the linear phase of the instability. The averaged
magnetic field energy was taken over the region 3δe < |x − xwall| < 13δe.
The dashed line follows the maximum theoretical growth rate in the unmag-
netized limit �weib = 2ωpe/

√
γ0.

lower than predicted as the late time compression factor obtained
in our simulations is for these magnetizations slightly lower than
predicted (see Fig.2a and Section3). Finally, the isotropization time
Tiso is defined as the time such that |aiso|(t ≥ Tiso) ≤ 0.04.

Figure 8 reports, as a function of the upstream magnetization σ ,
the measured compression and isotropization times extracted from
our simulations. The reported values are obtained considering differ-
ent widths of the averaging region. Error bars account for the spread
around the mean value, the diagnostics output frequency, and the
measurement errors when analysing the time series of the density
compression ratio and isotropization parameter. As shock forma-
tion implies both a compression consistent with Rankine–Hugoniot
conditions and isotropization of the flow, the shock formation time
Tform is henceforth defined as the maximum of Tdens and Tiso:

Tform ≡ max {Tdens, Tiso} . (4)

For small magnetizations, σ < 10−3, isotropization is reached at
time tωpe � 100. At that time however the compression factor in
the overlapping region still remains below the value predicted using
Rankine–Hugoniot conditions. One has to wait tωpe � 145 before
the compression factor reaches 95 per cent of this maximum value.
Hence, for σ < 10−3, the formation time is Tform ≡ Tdens � 145ω−1

pe .
Additional simulations considering small magnetizations (triangles
in Fig. 8) show that the formation time is roughly constant for these
magnetizations, indicating that the external magnetic field is too
weak to influence shock formation. Note also that both PIC codes
give similar predictions for this time (dark up-triangles for SMILEI’s
simulations, and light down-triangle for Shockapic’s ones).

For such low magnetizations, one expects the Weibel instability
to mediate the shock. This is confirmed in our simulations where the
energy in the magnetic field Bz is found to increase exponentially
with a growth rate consistent, if slightly smaller, than the maximum
growth rate �weib = 2ωpe/

√
γ0 for the Weibel instability driven by

two cold, counterstreaming electron–positron plasmas (see insert in
Fig.8).

A simple model for the time of shock formation in an unmag-
netized plasma was proposed in Bret et al. (2014). This model
considers that shock formation is reached, in a two-dimensional ge-
ometry, at a time corresponding to twice the time Tsat necessary for
the Weibel instability to saturate, which for our parameters would
lead Tsat � 15 ω−1

pe . This predicted value does agree with the charac-
teristic time for the Weibel instability to saturate Tsat � 18–27 ωpe

measured in reduced simulations (not shown) considering initially
overlapping counterstreaming plasmas and periodic boundary con-
ditions in both x and y directions with otherwise similar physical and
numerical parameters. It is however much smaller than either the
isotropization or compression times, and thus than the measured
time of shock formation. Indeed, our reduced simulations show
that particles (electrons and positrons) are not fully stopped at the
time at which the instability saturates [see also the discussion on
the saturation mechanisms of the Weibel instability in Grassi et al.
(2017)]. As a result, in the full (shock formation) simulations, the
overlapping region continues to expand slowly well after the time
of saturation. This prompts us to suggest that the late-time merging
phase and development of turbulent magnetic fields, e.g. through
kink-like instabilities are central to the late stages of formation of
the collisionless shock and require additional time.

For intermediate magnetizations, 2 × 10−3 < σ < 5 × 10−2, there
is a transitory regime for which both compression and isotropiza-
tion times decrease gradually. As demonstrated in Section 4, in
this transitory regime, a slight departure from RH conditions was
observed on the density compression factor, the precursor length
was reduced down to twice the gyration radius of particles in the
external magnetic field, and a net current in the y-direction was
observed suggesting that the instability mediating shock formation
was more related to CFI rather than the standard, neutral, Weibel
instability. This regime was also associated with the presence of an
overshoot in the particle density at the tip of the reflected beam [see
e.g. Fig.3(d)].

Yet, for these intermediate magnetizations, the external mag-
netic field is not strong enough to trigger a rapid turnover of the
reflected particles while the filamentation growth rate decreases
rapidly (see the inset in Fig. 8). As a result, both compression and
isotropization times in this regime decrease slowly as the magne-
tization increases. Note also that, for this range of magnetizations,
2 × 10−3 < σ < 5 × 10−2, both compression and isotropization
times are found to be of the same order.

Finally, for high magnetizations, σ � 5 × 10−2, one enters
the regime for which the dynamical effect of the external mag-
netic field becomes dominant and neither Weibel nor CFI is ob-
served (see Section 4). For such high magnetizations, both the
compression and isotropization times are reduced so that the av-
eraging region over which these times are computed is reduced6 to
3 < |x − xwall| < 13. In this regime, the downstream density accu-
mulation predicted by the RH conditions is reached very quickly,
for times ωpeTdens∼ (20−30). This can be explained by the faster
particle gyration in the compressed magnetic field, as well as by the
reduced value of the density jump predicted by the RH conditions
at high magnetizations. This reduced compression factor makes the
definition of the shock formation time at these high magnetization
quite difficult to diagnose using the density compression argument

6Reducing the averaging region for smaller magnetizations does not impact
our results.
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Figure 9. Dependence on σ of the density compression time and isotropiza-
tion time measured at the exact position of the wall. Here Tdens is derived
by considering the density accumulation up to 0.9Nd (for σ < 5 × 10−2) or
the formation of the second density shell (for σ > 5 × 10−2).

only. As a result, even though density compression is quite fast,
it takes more time to achieve isotropization of the flows, and one
typically obtains ωpeTiso∼ (50−70) for magnetizations σ � 1, and
ωpeTiso∼ (20−40) for the two simulations performed at high magne-
tizations σ � 1. In this regime of high magnetization, isotropization
thus defines the time of shock formation: Tform ≡ Tiso > Tdens. For
times larger than Tform, the downstream region is relaxed, the shock
is stabilized and propagates steadily with a constant speed consistent
with RH conditions (see Section3 and Fig. 2b in particular).

Yet, no clear dependence of either compression or isotropization
times on σ is observed. This is somewhat intriguing as one could
expect a σ−1/2-dependence corresponding to the gyration time in
the compressed magnetic field, or some different scaling relevant to
the characteristic MSI growth. Indeed, in magnetically dominated
shocks one needs to reconsider the relevant time-scales since any
filamentation instability is no longer relevant. We can identify three
of them:

(i) The relativistic particle gyro-period in the external B0 field:
τ g,0= 2πγ 0/ωce= 2πγ 0mc/(eB0). It is the shortest time-scale. Dur-
ing the first stages of the shock formation a dense shell of plasma
(overshoot) is formed on this time-scale.

(ii) The MSI saturation time-scale. It corresponds to the time on
which the cold ring distribution in px –py space collapses towards a
quasi-Maxwellian.

(iii) The time-scale of convection/diffusion of the dense shells
built up in the overlapping region during the early stage (∝τ g,0).
These shells are responsible for a highly modulated density profile,
and need time to fully mix before getting a stationary downstream
density.

In the simplest scenario of the shock formation by mag-
netic reflection, only the first time-scale is considered, leading to
Tform ∼ τ g,0 ∝ σ−1/2. In a more refined picture, full relaxation of the
downstream plasma is required, i.e. distribution function isotropiza-
tion and convergence towards Rankine–Hugoniot conditions. Then
one needs to consider the two last time-scales.

We further assess this picture by recomputing the characteristic
time of density compression and isotropization right at the reflecting
wall (x = xwall) of the simulation. The results are reported in Fig. 9.
The values ofTdens andTiso remain globally unchanged for σ < 10−2.

Then, as σ increases, the compression time is found to decrease
much faster than the time of isotropization. For σ > 10−2, the
compression time measured at the reflecting wall corresponds to
the time of formation of density overshoots (shells). It is found to
scale with σ−1/2 (as indicated by the solid line for σ � 1 in Fig. 9),
consistent with the idea that the density overshoot is formed on the
τ g,0 time-scale. In addition, this compression time is much shorter
than the time of isotropization, that has a much weaker dependence
on σ (it slightly decreases from 80 to 25ω−1

pe over the three decades
σ ∈ [10−2, 10]), and is related to the relaxation of the downstream
plasma.

6 DOWNSTREAM PARTICLE DISTRIBUTION
FUNCTIONS

We now turn to the particle energy spectra as measured behind
the shock front, in the downstream plasma. We first discuss the
evolution in time, and for different magnetizations, of the thermal
component of the distribution and the development of a high-energy
tail (Section 6.1). We then discuss in more details the temporal
evolution of the maximum particle energy (Section 6.2).

6.1 Thermal component and high energy tail

After the initial phase of shock formation the particle distribution
relaxes to a downstream isotropic, quasi-thermal spectrum with, in
the case of small enough magnetization, a high-energy non-thermal
component eventually developing. The acceleration efficiency of
the shocks as a function of the magnetization can then be measured
by the extent of this tail and its high-energy cut-off.

Fig. 10 presents the time evolution of the electron distribution
function far downstream for four different magnetizations: σ = 0
in panel (a), σ = 1.9 × 10−4 in panel (b), σ = 10−3 in panel
(c), and σ = 1.2 × 10−2 in panel (d). Because of the symmetry
with positrons we do not present their distribution here. For all
magnetizations, at early times tωpe < 200, Fig. 10 illustrates the
transition from the initial beam-like to the isotropic distribution
during the shock formation. A thermal state with dN/dγ ∝ γ e−γ /γth

is reached before tωpe = 500, with γ th = kBT/(mc2) and temperature
T in good agreement with the value expected from the MHD jump
conditions (derived in Appendix B). Indeed, for comparison we
show (dashed lines) the expected 2D Maxwell–Jüttner distribution
function with γ th deduced from equation (B10).

For the three top panels (σ ≤ 10−3), a non-thermal power-law
part develops at large times and its high-energy cut-off extends with
time. The dot–dashed guide-line in panels (a–c) follows the dN/dγ

∝ γ −2.5 scaling at non-thermal energies. The power-law index is
roughly the same than found in previous PIC studies (Spitkovsky
2008; Sironi et al. 2013), and it is slightly larger than the theo-
retically expected slope for ultrarelativistic shocks s � 2.2 (e.g.
Kirk et al. 2000; Achterberg et al. 2001; Lemoine & Pelletier 2003;
Keshet & Waxman 2005).

No supra-thermal component is present in the σ = 1.2 × 10−2

case (panel d) and the 2D Maxwell–Jüttner distribution provides
here a very good fit of the observed distribution.

We finally note that close to the transition magnetization σ ∼ 10−3

the acceleration is faster: the maximum cut-off energy is larger than
for the two lower magnetization cases, and so is the overall number
of particles in the high-energy tail. This larger acceleration rate may
be attributed to the smaller spatial diffusion coefficient D⊥ in the
shock normal direction x also perpendicular to B0. This reduces the
residence time tres ∝D⊥/c2 on both sides of the shock. This situation
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Figure 10. Temporal evolution of the electron energy spectrum (SMILEI

code) in the 200δe-wide slice between 500δe and 300δe from the reflecting
wall for four representative magnetizations: (a) σ = 0, (b) σ = 1.9 × 10−4,
(c) σ = 10−3, and (d) σ = 1.2 × 10−2. The lines of different colour corre-
spond to increasing simulation times from < 500ω−1

pe (yellow) to 2000ω−1
pe

(violet), as indicated in the colourbar. The black dashed lines show the en-
ergy spectra corresponding to a 2D relativistic Maxwell–Jüttner distribution
with temperature expected from the ideal MHD jump conditions. The black
dot–dashed lines show the power-law guide line dN/dγ ∝ γ −s with s = 2.5.

is known to be beneficial for the DSA mechanism as, in the Fermi
picture, the acceleration time is governed by the scattering time of
particles on both sides of the shock front. Another explanation for
this faster acceleration may be attributed to non-Fermi acceleration,
in particular to the SDA as some particles may gain energy in the
convective upstream electric field |E0| = β0|B0|. This point will be
discussed further in the next section.

In Fig. 11 we present the downstream distribution functions at
the final (SMILEI) simulation time tωpe = 2 × 103 for various mag-
netizations σ ∈ [10−5, 5], the lines colour coding corresponding to
different σ as given in the colourbar. Red shaded lines correspond to
weak magnetization shocks σ � 10−3 and blue shaded lines corre-
spond to the high magnetizations σ � 10−3. The dashed guide-line
follows the dN/dγ ∝ γ −2.5 scaling as in the previous figure.

While a smooth high-energy power-law tail is observed for
σ < 10−3, its shape becomes irregular for 10−3 ≤ σ < 10−2 and
the tail disappears for larger magnetizations. The width of the ther-
mal part of the distribution function narrows at high magnetizations
σ > 0.1 as required by the MHD jump conditions (see Appendix B).
The expected temperature, given by equation (B10), is Td = 4.5mc2

at σ = 10−3, and decreases gradually to � 3.7mc2 for σ = 1.
The figure insert depicts the dependence on σ of the energy ratio

ξCR in the non-thermal tail by the total energy (blue diamonds) and
of the non-thermal particle number fraction nCR (red stars). Both are
constant for σ < 10−3 with ξCR � 8 per cent and nCR � 1 per cent.
A rapid decrease occurs between σ = 2 × 10−3 and σ = 10−1,
where the supra-thermal part disappears. An irregular behaviour is
observed for σ = 1.

6.2 Maximal energy evolution and saturation

It was shown by Stockem et al. (2012) and by Sironi et al. (2013)
that tracking the temporal evolution of the particle maximum en-
ergy in the simulation unveils the properties of the spatial scattering
of the accelerated particles. In the Bohm regime the diffusion coef-
ficient evolves as D⊥ ∝ γ and consequently the particle maximal
energy evolves linearly with time, γ max ∝ t. This follows from the
acceleration time dependence in relativistic shocks as tacc ∼ D⊥/c2,
derived assuming that the particle residence time is dominated by
the downstream residence time. In contrast, in the small-angle scat-
tering regime D⊥ ∝ γ 2 and the particle maximal energy scales as
γmax ∝ √

t . This characteristic growth with the square-root of time
was demonstrated in relativistic pair shocks by Sironi et al. (2013).

Fig. 12 presents the temporal evolution of the maximum Lorentz
factor γ max(t) of the particles in the simulations with magnetization
σ ∈ [5 × 10−6, 10−1] (curves of different colour). The dashed line
represents the

√
t scaling. After the initial shock-formation phase

(tωpe < 100), the scaling γmax ∝ √
t is satisfied in all simulations

with σ < 10−3 and at early times for σ > 10−3, confirming the results
of Sironi et al. (2013). This also provides an indirect confirmation
of the small-scale nature of the self-generated turbulence and as a
consequence of the small-angle scattering regime.7 For simulations
with σ ≥ 10−3, the particle maximum energy is found to saturate
after some time. Both the time at which saturation is reached, and the
value of the particle energy at that time (saturation energy) are found
to decrease as the upstream magnetization increases. Note that the
final simulation time, tωpe = 2000, allows to reach energy saturation
only for magnetizations σ > 10−3. Longer simulations would allow
us to investigate the energy saturation for lower magnetizations.

The particle maximal energy at the final simulation time
γ max(tωpe= 2000) is presented in Fig.13 as a function of σ consider-
ing either all electrons in the simulation (blue circles) or only elec-
trons in the downstream far from the shock front x − xwall = 200δe

(yellow triangles).
For low magnetizations (σ < 10−3), γ max(tωpe = 2000) has a

constant value. This is because the saturation time is not yet reached
and particles are still being accelerated at the shock front. As a result,
in the far downstream region, electrons have lower energy respect to
the ones close to the shock front, the latter are still being accelerated
and need more time to escape and reach the far downstream.

7We note that in the Bohm regime the diffusion coefficient is ∝γ and the
maximal particle energy would evolve as γ max ∝ t. Hence, Bohm diffusion
is ruled out here.
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Figure 11. Electron energy spectrum far downstream of the shock (SMILEI code) at tωpe = 2000 for simulations with growing magnetization from σ = 5 × 10−6

(deep red solid line) to σ = 5 (deep blue solid line). The black dot–dashed line corresponds to the energy distribution corresponding to the 2D Maxwell–Jüttner
with the temperature Td = 0.45mc2 expected from MHD jump conditions in the unmagnetized case. The black dashed line shows the power law guide line
dN/dγ ∝ γ −s with s= 2.5. The subpanel presents the dependence on σ of the particle number fraction (red stars) and energy fraction (blue diamonds) contained
in the power-law part of the distribution function.

Figure 12. Temporal evolution of the highest particle energy in different
simulations with increasing magnetization (lines with different colours).
The dashed line indicates the γmax ∝ √

t scaling.

In the opposite case of high magnetizations, for σ > 10−2, the
saturation energy does not correspond to any acceleration process.
It simply reflects the high-energy cut-off of the thermal distribution.

More interesting is the case of intermediate magnetizations,
10−3 < σ < 10−2, for which the particle maximal energy has
reached saturation (as discussed earlier and shown in Fig. 12). The
energy saturation level γ sat ≡ γ max(tωpe = 2000) is found to de-
crease with increasing σ . Note also that in this stationary regime,
the saturation level is the same for both electron populations. The
scaling seems to follow γ sat ∝ σ−1/2 with better confidence than
the scaling γ sat ∝ σ−1/4 found by Sironi et al. (2013). Yet, the latter

Figure 13. Dependence on σ of the maximum energy of particles at the
final simulation time tωpe = 2000 (SMILEI code). Two different populations of
particles are considered: (blue circles) all electrons in the simulation, (yellow
triangles) only far downstream electrons. The dot–dashed lines indicate the
power-law scalings γ sat ∝ σ−1/4 and γ sat ∝ σ−1/2.

cannot be rejected here because the scaling is derived in a region
(10−3 < σ < 10−2) where the particle acceleration efficiency drops
rapidly, while Sironi et al. (2013) investigated a wider range of
magnetizations 10−4 < σ < 10−2 (their simulations being longer
than the ones presented here).

The saturation mechanism is an important point to discuss further.
However, this discussion is postponed to the last section of this
article since it is required to derive the behaviour of the spatial
diffusion coefficient before. This latter is done in the section below.
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7 PARTICLE KINEMATICS

Important insights into the particle acceleration physics can be pro-
vided by studying the particle trajectories. In this section we study
the statistical and individual behaviour of the particles’ dynamics.
We select and follow test particles, injected into the simulation box
at different positions and times, and with different initial Lorentz
factors. These particles do not contribute to the current deposition
on the grid, but they fully experience the time-dependent electro-
magnetic fields during the simulation. In each SMILEI simulation,
several populations of test particles were injected:

(i) 8192 electrons located initially at tωpe = 0 at the wall
(right side of the simulation box) with the same initial momen-
tum and energy as the bulk particles, i.e. px = p0�ex and γ i = γ 0.
These particles are initially located at the leading edge of the
wall-reflected flow and participate in the shock formation and
evolution.

(ii) 8192 positrons injected far upstream at tωpe = 0 with the
same distribution as the upstream drifting particles. These particles
interact with a well-formed shock front.

(iii) 8192 electrons injected at tωpe = 500 and at the right side of
the simulation box with an initial momentum in −x direction and
Lorentz factor γ i = γ 0. They experience the downstream decaying
micro turbulence and do not interact with the shock front nor with
the upstream medium. These particles are considered to study the
spatial transport downstream.

(iv) Same population 3, but with an initial particle Lorentz fac-
tor γ i = 10γ 0. They are considered to study the particles spatial
transport downstream at a different initial energy.

(v) In four dedicated simulations with σ = 0, 9 × 10−5, 4 × 10−4,
and 10−3, same as population 3 but with initial particle Lorentz
factors γ i = {1.5, 2, 3, 5}γ 0 in order to study the energy dependence
of the spatial diffusion laws.

7.1 Spatial diffusion downstream

It is a well-known result that the particle transport in a small-scale
magnetic and isotropic turbulence is governed by small-angle scat-
tering (Aloisio & Berezinsky 2004; Pelletier et al. 2009). We de-
fine the effective particle Larmor radius RL = γmc2/(eB̄), where
B̄ =

√
B2

0 + 〈δB2〉 is the total rms magnetic field strength. A par-
ticle crossing this magnetic turbulence is randomly deviated by a
small angle δθ ∼ �c/RL at each coherence length of the field �c. It is
common to define the parameter ρ = RL/�c so that the small-angle
scattering regime corresponds to ρ > 1, generally satisfied for any
supra-thermal particle in the downstream of the shock (e.g. Kirk &
Reville 2010).

In the limit of vanishing B0 (unmagnetized upstream plasma) it is
straightforward to derive the isotropic spatial diffusion coefficient
from order of magnitude considerations as D = cR2

L/(3�c) ∝ γ 2.
In the presence of an external (even weak such as B2

0 � 〈δB2〉)
magnetic field, the spherical symmetry is broken and one needs to
distinguish between the diffusion coefficients D� in the direction
parallel to the external magnetic field B0, and D⊥ in the direction
perpendicular to B0. A rigorous theory of the particle scattering
under these conditions was presented and verified by Monte Carlo
simulations by Plotnikov et al. (2011). These authors found that the
diffusion coefficient D� is the same as in the unmagnetized limit
as far as ρ > 1, while the diffusion in the transverse direction is
affected by the regular gyration imposed by the external field B0. It
was found that the diffusion coefficient D⊥ obeys a law similar to

Figure 14. Running diffusion coefficients 〈�x2〉/�t, in units of cδe, for five
initial particle energies (γ i/γ 0 = {1.5, 2, 3, 5, 10}) plotted using different
shades of blue and for four magnetizations, from top to bottom: σ = 0,
σ = 9 × 10−5, σ = 4 × 10−4, and σ = 10−3.

classical diffusion:

D⊥ = 〈�x2〉
2�t

= c2

3

νs

ν2
s + ω2

L,0

, (5)

where ωL,0 = eB0,d/(γ imc) is the relativistic Larmor frequency of a
particle in the homogeneous downstream magnetic field B0,d, and
νs = e2〈δB2〉�c/(γ 2m2c3) is the pitch-angle scattering frequency
governed by the turbulent component. If B2

0 � 〈δB2〉 and the par-
ticle energy is not very high, νs > ωL,0 and the mean field has no
influence on the particle scattering. As a result, the scaling D⊥ ∝
γ 2 holds. When the particle energy increases up to the value for
which ρ =

√
〈δB2〉/B2

0 , the regular gyration produces the same
angular deviation than the random scattering, since νs decreases
faster then ωL,0. Consequently, the transverse diffusion coefficient
saturates when ωL,0 � νs to a value D⊥ � c2νs/(3ω2

L,0).
This saturation effect has been previously observed in Monte

Carlo simulations but it was never evidenced in self-consistent PIC
simulations of relativistic shocks, where the presence of an approx-
imately isotropic magnetic micro-turbulence is known to develop.
Here, we directly derive the diffusion coefficient in the shock nor-
mal direction (perpendicular to the mean field B0) by following
particle trajectories in the downstream medium.

In Fig. 14 we present the evolution in time of the coefficient
D⊥ ≡ 〈�x2〉/2�t, where �x = x(t0 + �t) − x(t0) measures at a
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Figure 15. Final values of the running diffusion coefficient D⊥ as function
of the initial particle energy γ i for the same magnetizations than in Fig. 14.
The dashed lines show the D⊥ ∝ γ 2 scaling.

given time t0 + �t the distance travelled by a particle along the
x direction since its time of injection t0 = 500ωpe−1 , and angular
brackets 〈〉 denote the average over all particles (populations 4 and
5 considered here). We report the results of simulations performed
with four representative magnetization σ = 0, 9 × 10−5, 4 × 10−4,
and 10−3, from top to bottom, respectively. The five initial energies
γ i/γ 0= {1.5, 2, 3, 5, 10} correspond to lines with different shades
of blue.

At early times, the behaviour is ballistic: 〈�x2〉 ∝ �t2. Particles
typically follow a straight path, at constant velocity. When the dif-
fusive process occurs 〈�x2〉/�t reaches a constant value, i.e. �t
becomes larger then the scattering time τ s = 1/νs. This is observed
at large times in Fig. 14. Moreover, since the scattering time in-
creases with the particle initial energy, so does the value of the
plateau. In addition, the final value of D⊥ decreases with increasing
σ . Note that, in weakly magnetized cases σ � 10−4, the diffusion
does not reach an asymptotic value. This suggests that there may
be a second saturation time-scale that is not reached at the end of
these simulations.8

Fig. 15 presents the final values of D⊥ ≡ 〈�x2〉/2�t as a function
of the particle energy γ i for the four values of σ introduced above.
The dashed guidelines indicate the D⊥ ∝ γ 2

i scaling. This scaling
describes well the behaviour of weakly magnetized shocks σ �
10−3, while D⊥ is almost constant for σ = 10−3. This is a natural
consequence of the increasing strength of B0, when it becomes
comparable to δB. In this case D⊥ enters directly in the regime
ωL,0 >νs where its value is roughly constant. These findings confirm
the theoretical prediction for the transverse spatial diffusion law
given by equation (5).

8Let us note that the long-term behaviour is hard to constrain because (i)
simulations are obviously not long enough, (ii) the downstream magnetic
turbulence is decaying in time by phase mixing. This implies that after some
time (and at large distance from the shock front) the level of turbulence
decreases to the level of the thermal ‘noise’. PIC codes are known to produce
a level of thermal fluctuations much larger than expected in realistic systems.
This latter effect may strongly impact the particle scattering properties at
later times. For this reason, we cannot clearly identify a different scattering
time-scale or change of particle scattering from micro turbulence to the
thermal noise dominated regimes.

7.2 Accelerated particles

We now look at the dynamics of the particles accelerated at the shock
front, as well as of the particles that lie in the low energy part of
the downstream distribution function at the end of the simulation.
We consider population 1 that follows the shock front during its
formation and evolution. A large part of the considered particles
contribute to the thermal distribution of the downstream medium.
A small fraction of them however can reach energies above 10γ 0,
if the initial magnetization allows for particle acceleration.

Fig. 16(a) shows the typical electron downstream spectrum for σ

≤ 10−3. It is composed of a 2D Maxwell–Jüttner contribution for
energies γ < 5γ 0 and of a power-law component at larger energies.
We illustrate the trajectories of the low-energy particles having final
γ < 2 (left column panels b,c,d) and of the high-energy particles
having final Lorentz factor γ > 10γ 0 (right column panels e,f,g), for
three representative magnetizations σ = 5 × 10−6, σ = 9 × 10−5,
and σ = 10−3. Each line represents the trajectory x(t) of a single
particle. In the background we highlight the evolution in time of the
transverse average electron density. The white region corresponds to
the upstream while grey region to the downstream. The shock front
position is located at the interface between the two regions and
propagates from right to left. In panels (b–g), the accompanying
right-side plots present the energy γ (t) temporal evolution for each
particle (using the same colour-coding than in the main panels, b–g).
The energy averaged over all the considered particles is presented
as a thick dashed line.

Let us now have a closer look at the low-energy particles (left-
hand panels). Except for one particle in the (b–c) panels, all low-
energy particles remain downstream after the shock is formed. Their
spread in the x-direction is reduced with increasing σ . This reflects
the decrease of the spatial diffusion coefficientD⊥ when σ increases
(see Fig. 15). The average energy decreases from the initial value
γ = γ 0 to 〈γ 〉 � 2 at end of the simulation.

Some rare particles that initially escape upstream of the shock
gain a non-negligible amount of energy, but lose it when are ad-
vected back downstream. This energy decrease is due to an un-
favourable shock-crossing condition that occur when a particle
transfer part of its energy to the wave turbulence in the precursor
before reaching the downstream. Those are the ‘unlucky’ particles
that are unable to perform more than one Fermi-cycle. Indeed, the
Fermi mechanism involves a statistical energy gain and does not
exclude an energy lost during a cycle for a single particle.

The picture is different for the high-energy particles with final
γ > 10γ 0 as highlighted by the right panels (e,f,g) of Fig. 16. These
particles remain close to the shock front and keep gaining energy,
as shown in the right-side γ (t) panels. The stochastic nature of the
particles’ trajectories is clearly observed in panel (e) for the case
of low magnetization (σ = 5 × 10−6). For larger magnetizations,
the kinematic importance of the ordered magnetic field is no more
negligible, and leads to more ordered trajectories, as visible in panel
(g) for the mildly magnetized case (σ = 10−3).

This confirms that the standard first-order Fermi mechanism op-
erates in the unmagnetized and weakly magnetized (σ � 10−3)
relativistic e± shocks, consistent with the results of (Spitkovsky
2008; Martins et al. 2009) and (Sironi et al. 2013). In addition, for
σ = 10−3 (panel f) we observe a regular gain in energy when parti-
cles are in the upstream region. This points towards a non-negligible
contribution of the SDA process. Also this acceleration seems to
be limited to not very high maximal energy here γ max ∼ 10γ 0

and the average particle energy saturates after tωpe = 1000 for this
population of particles.

MNRAS 477, 5238–5260 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/477/4/5238/4978470 by Princeton U
niversity user on 26 D

ecem
ber 2019



5254 I. Plotnikov, A. Grassi, and M. Grech

Figure 16. Trajectories and temporal evolution of the energy of particles selected from different parts of the distribution function. (a) Typical electron (or
positron) energy spectrum downstream. The grey shaded rectangles illustrate the selections (at low and high energy) on the particles whose trajectories and
energy evolution are plotted in the lower panels. Left column (panels b,c,d): low-energy particles with final Lorentz factor γ < 2. Right column (panels e,f,g):
highest energy particles. In each column, the main set presents the trajectories of different particles (shown with different colours). The electron density
averaged along the transverse y-direction is plotted in grey-scale in order to highlight the position of the shock front with time. The grey and white regions
correspond to the downstream and upstream regions, respectively. The subsets show the temporal evolution of the selected particle energy (Lorentz factor).
The thick dashed black lines show the temporal evolution of the mean energy 〈γ (t)〉. Three representative magnetizations are reported: σ = 5 × 10−6 in panels
(b) and (e), σ = 9 × 10−5 in panels (c) and (f), σ = 1 × 10−3 in panels (d) and (g).

We further highlight the differences between the two acceleration
mechanisms in Fig. 17 for σ = 5 × 10−6 (top panels) and σ = 10−3

(bottom panels). The particle with the highest final energy was
selected from each simulation. We plot the time evolution of its
position x(t) − xsh(t) (left-side panels) and of its energy γ (t) (right-
side panels).

In the low-magnetization case the particle scatters on both sides
of the shock, gaining energy through each downstream→ upstream
→ downstream cycle. The energy gain per cycle is �γ � γ as
expected for a typical Fermi process in relativistic shocks (Gallant
& Achterberg 1999), and the upstream and downstream residence
times are of the same order.
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Figure 17. Trajectories and temporal evolution of the energy of the highest
energy particle obtained in the simulations: for σ = 8 × 10−6 (upper panels)
and σ = 1 × 10−3 (lower panels). The left column shows the particle
distance to the shock front x(t) − xsh(t) versus time. The right column
shows the corresponding particle Lorentz factor versus time. The blue colour
corresponds to times when the particle is in the upstream region, and the red
colour to times when the particle is in the downstream region.

In the σ = 10−3 case, we observe the same behaviour at
early times (tωpe < 500), when the particle energy increases from
γ = 10 to γ � 90 through the Fermi-like process. For larger times
500 < tωpe < 1500, the particle located in the upstream sees its
energy increasing nearly linearly with time. A linear fit gives �γ �
0.14�tωpe in good agreement with the energy gain due to the up-
stream electric field: eEy,0/(mcωpe) ∼ 0.143, as expected in the SDA
process. Once the particle is advected downstream, it cannot be scat-
tered back towards the upstream since the self-generated turbulence
is not strong enough to turn it back towards the shock front. This
demonstrates a significant contribution from the SDA process in
mildly magnetized relativistic shocks, similarly to what was found
by Sironi & Spitkovsky (2009) for higher magnetization (σ = 0.1)
oblique shocks. Our simulations show that, in perpendicular mildly
magnetized shocks, SDA can rapidly accelerate electrons up to en-
ergies larger than 20 times the typical downstream thermal energy.
This corresponds to electron Lorentz factors above 20γ 0 in the
downstream rest frame (and to γ |u

max � 20γ 2
0 = 20γ

|u 2
sh (2/�ad − 1)

in the upstream rest frame, where �ad is the adiabatic index of
the downstream) for σ = 10−3. Here we assumed that the process
efficiency scales linearly with γ 0 in the limit σ � 1 and γ 0 � 1.

8 DISCUSSION AND CONCLUSIONS

8.1 Numerical considerations

We start this discussion with some considerations on the numerical
limitations of the present study, commenting first on the possible
differences in between 2D and 3D simulations, secondly on the need
of long-term simulations in particular when considering weakly
magnetized shocks, and finally on the differences between FDTD
and spectral codes.

We demonstrate that, even within a 2D configuration, the domi-
nant physical processes behind the shock formation and evolution
are captured. Nevertheless some differences may appear when con-
sidering 3D simulations.

First, the density jump at the shock would be different since
for a relativistic downstream plasma the adiabatic index in 3D is
�ad = 4/3 instead of �ad = 3/2 in 2D. Hence, a stronger compression
is expected in 3D Nd/N0 � 4 in the limit σ � 1 while in 2D Nd/N0

� 3. As a consequence, the shock front velocity would be υsh �
0.3c instead of υsh � 0.45c obtained in this study.

More important, the 3D geometry opens a new degree of freedom
for plasma fluctuations in the direction of the external field B0 (in
2D the kz wavevector is 0 by definition). This could have important
consequences on the hierarchy of plasma instabilities in the mildly
magnetized regime, while no fundamental variations are expected
in the weakly and strongly magnetized limit, see Sironi et al. (2013)
and Lemoine et al. (2014b). A hint for this is given in fig. 5 of
Sironi et al. (2013) where 3D simulations for σ = 0 and σ = 10−3

(and γ 0 = 15) were presented. Clear variations along z-direction are
seen that implies an important contribution from the kz component
when linear stability analysis of the precursor is done. Lemoine
et al. (2014b) found from a linear instability analysis that in some
cases the contribution from this component may be as important
as from the kx and ky related modes. Therefore, accounting for the
third dimension may change somewhat the value of σ crit at which
occurs the transition between Weibel-mediated shocks and magnetic
reflection-shaped shocks.

Another point to investigate further concerns the long-term evo-
lution of the shock. The simulations presented here could not exceed
tωpe = 2000. Imposed by both limited computer resources and the
efficiency of the Cherenkov mitigation techniques, this time limit
was the main limiting factor of the present study: the saturation
energy is not reached for σ < 10−3 and the diffusion coefficients
are not fully stabilized by the end of the simulations. The imple-
mentation of alternative filtering techniques in SMILEI is currently
under study which may allow to run longer simulations and thus
strengthen our findings.

Running long-term simulations will also be of particular impor-
tance to reach a better understanding of the behaviour of the weak
magnetization shocks σ � 10−4. The main open questions concern
the asymptotic shock structure, such as the length of the particle pre-
cursor, the turbulence properties, and the maximal particle energy.
This is numerically challenging since it requires long simulation
times, beyond 105ω−1

pe , while up to now the longest simulations
in the unmagnetized and weakly magnetized regimes (Spitkovsky
2008; Keshet et al. 2009; Sironi et al. 2013) reach �8 × 104ω−1

pe .
Even these time-scales seem to be not enough to bring a definitive
answer regarding inverse cascades (generation of large wavelength
modes) in the particle precursor or to quantitatively investigate the
differences between purely Weibel-mediated shocks σ < ξCR/γ

| u2
sh

and shocks in the mildly magnetized regime (σ ∼ 10−4). As pre-
viously stated, the shock steady state is unreachable with current
state-of-art PIC simulations for two main reasons: the available
computational resources and the limit imposed by the spurious nu-
merical Cherenkov instability at large times.

The filtering solution employed to deal with the Cherenkov in-
stability is different in the SMILEI (FDTD) and SHOCKAPIC (spectral)
codes. Since it entails the cleaning (or damping) of some wave-
lengths in the light-wave branch, it is unavoidable to impact small-
scale physical effects that involve particle-wave interaction on this
branch. An example is provided in Appendix A. By comparing di-
rectly the results from SMILEI and SHOCKAPIC simulations, we show
that the temporal Friedman filter used in SMILEI damps the elec-
tromagnetic precursor waves emitted from the shock front in the
strongly magnetized regime. This has no important effect on the
shock dynamics or on the particle acceleration, but it should be
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taken into account for a detailed analysis of the precursor wave
properties (such as in Gallant et al. 1992). Concerning the spec-
tral code, we adopted the solution that ‘cleans’ large kx modes.
This suppresses efficiently the numerical instability, but also any
physical processes at wavelengths λ < δe. This does not affect the
processes involved in the relativistic shock dynamics, but it could
be important in other systems.

Finally, concerning the spectral codes, one could be concerned
with causality issue as they rely on a large numerical stencil. For the
study at hand, however, this issue seems not to be important as both
the FDTD and spectral codes give very similar results. The spectral
method however requires global communications over the whole
simulation box, which makes its optimization quite challenging for
massively parallel, high-performance computing (HPC). We would
like to point out that some HPC-relevant strategies for spectral
methods start to emerge in the literature (e.g. Vay et al. 2013).

8.2 Maximal energy of particles

Much attention has been paid in this work to the study of particle
acceleration and transport in the downstream turbulence. Our sim-
ulations have shown (i) that particle gain energy when located in
the upstream region, and (ii) that, overall, the particle maximal en-
ergy increases with the square-root of time, supporting the idea that
particle acceleration proceeds in the small-angle scattering regime.
The particle maximal energy will thus be limited by the particle
ability to return from the downstream, back into the upstream.

For (weak yet finite9) magnetizations in the range 10−4 < σ �
10−3, Sironi et al. (2013) found a scaling γ max ∝ σ−1/4. In that case
indeed, the particle diffusion length in the downstream turbulence
scales with the square of the particle energy λ⊥ = D⊥/c ∝ γ 2,
and the main limitation on the particle maximal energy is given by
the width of the downstream turbulence LB,sat. While the width of
the downstream turbulence is still a matter of debate (Chang et al.
2008; Keshet et al. 2009; Lemoine 2015), Sironi et al. (2013) esti-
mate LB,sat to be of the order of the precursor (upstream) length Lp,
consistent with simulations. These authors also reported that, for
such magnetizations, the precursor length is limited by the injected
particle Larmor radius in the upstream magnetic field, yielding
LB,sat ∼ Lp ∝ ηinj/

√
σ , where ηinj = γ inj/γ 0 is found not to depend

on the upstream magnetization. The maximal energy of the particle
will keep increasing as long as the diffusion length in the down-
stream turbulence remains smaller than this characteristic width of
the downstream turbulence, that is as long as λ⊥ < LB,sat. Equating
the two lengths thus provides the scaling for the particle maximal
energy γ max ∝ σ−1/4.

The simulations presented in this study were however not long
enough to extract the maximal particle energy for such weak mag-
netizations. Nevertheless, we found that, for intermediate magneti-
zations 10−3 < σ < 10−2, the maximal particle energy scales with
σ−1/2 with seemingly better confidence than the σ−1/4 scaling ob-
served by Sironi et al. (2013) (even though it spans over a single
decade). This can be explained by the fact that, for these interme-
diate magnetizations, the role of the ordered magnetic field on the
particle diffusion in the downstream is important. In this case par-
ticles can gain energy as long as their scattering frequency in the

9We here consider planar shocks and will thus not appeal to any geometri-
cal considerations, e.g. shock front corrugation, that may further limit the
maximal particle energy.

downstream turbulence νs ∝ 1/γ 2 remains larger than their rela-
tivistic gyration frequency in the regular field ωL,d = eB0,d/(γmc),
that is as long as νs > ωL,d (see e.g. Pelletier et al. 2009; Lemoine &
Pelletier 2010). As soon as this inequality is not satisfied, the par-
ticle would effectively freeze within the downstream fluid and see
the shock front receding at a speed vsh � c/2 (in 2D). Equating the
two frequencies then provides the scaling for the particle maximal
energy γ max ∝ σ−1/2.

We finally stress that for very weak magnetizations, such as en-
countered in the ISM (σ < 10−8), the question of the maximal
particle energy dependence on the upstream magnetization remains
open. While one could expect the scaling∝ σ−1/4 obtained by Sironi
et al. (2013) at 10−4 < σ � 10−3, the σ−1/2-scaling cannot be ruled
out (e.g. Lemoine & Pelletier 2010) and has been used in several
studies (e.g. Reville & Bell 2014; Araudo, Bell & Blundell 2015).

8.3 Astrophysical implications

We saw that the shock structure changes gradually between
σ = 10−3 and σ = 10−2 from Weibel-mediated to magnetic
reflection-shaped shocks. The critical magnetization at which this
transition occurs seems to be independent from the shock Lorentz
factor in the ultrarelativistic limit, see Sironi et al. (2013). However,
the range of magnetization for which the Weibel-filamentation in-
stability can fully develop in the shock precursor is σ ≤ 10−4. This
discrepancy can be explained, as proposed by Lemoine et al. (2014b,
2014a), by the instability triggered by the perpendicular current in
the precursor in mildly magnetized shocks. The effect of this in-
stability modifies the motion of the centre of mass in the shock
precursor. It also explains how Fermi-like acceleration processes
can be sustained up to σ ∼ ξ 2

CR � 10−2, assuming ξCR ∼ 10−1.
In the present study, we demonstrated that the beam of return-
ing/accelerated particles carries a measurable perpendicular current
and that it gives its maximum contribution for σ ∼ 10−3 (Sec-
tion 4.4). We also observed that particle acceleration efficiency
drops rapidly between σ = 10−3 and σ = 10−2 (Section 6) in good
agreement with the scaling provided by Lemoine et al. (2014a).

As we have shown, weakly magnetized shocks are efficient parti-
cle accelerators. However an isolated ultra-relativistic shock cannot
accelerate electrons above γ = 106 due to the synchrotron radiation
limit (Kirk & Reville 2010; Sironi et al. 2013) and protons above
γ = 108 due to the pre-shock magnetization in the ISM and to the
particle scattering properties (Gallant & Achterberg 1999; Lemoine
& Pelletier 2010; Reville & Bell 2014). It is required to consider
some alternatives, such as supplementary downstream turbulence
on large scales in order to unlock the phase space and decrease
the scattering time-scale, or multishock front interaction such as in
internal shocks of AGN or GRB jets. A possible alternative is the
injection of a pre-existent energetic particle population in the shock,
so that it can boost the particles energy by γ 2

sh factor in one Fermi
cycle, as seen in the upstream rest frame (e.g. Gallant & Achterberg
1999; Caprioli 2015).

In the case of the termination shock in the PWNe the magnetiza-
tion is always lager than σ = 10−2 and the shock is perpendicular,
leading to an inefficient particle acceleration. Instead, one expects
an intense semicoherent electromagnetic waves emission towards
the internal part of the pulsar magnetosphere through the MSI at
the shock front. Our simulations show that this emission occurs for
σ � 10−3 and its intensity peaks around σ ∼ 0.1. For larger mag-
netizations the fraction of the incoming energy channelled to the
MSI decreases rapidly. A detailed investigation of the MSI emitted
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waves by relativistic shocks will be presented in a dedicated study
(in preparation; see also Iwamoto et al. 2017).

A particular region of the PWNe is the equatorial plane (for an
aligned rotator) where the presence of the current sheet decreases
the local magnetization to very low values as result of efficient chan-
nelling of magnetic energy into kinetic energy of the background
plasma (Uzdensky & Spitkovsky 2014; Cerutti et al. 2015). Such
regions are known to provide enhanced levels of wave turbulence
and increased background plasma density, similarly to the Helio-
spheric Current Sheet where in situmeasurements are available. Yet,
particles in this region are already significantly energized through
magnetic reconnection and the acceleration by the terminal shock
should account for different upstream conditions than assumed in
the present study.

8.4 Summary and conclusion

The present study presents a systematic description of magnetized
relativistic pair shocks by means of 2D PIC simulations. It provides
a discussion of the shock structure, jump conditions, formation time-
scales, particle acceleration efficiency, and mechanisms as well as
particle transport properties from weakly magnetized σ = 10−5 to
highly magnetized σ ≥ 1 shocks.

It was found, in agreement with previous studies, that the shock
structure evolves from Weibel-dominated to magnetic-reflection-
shaped shocks. The transition occurs between σ = 10−3 and
σ = 10−2 beyond which the particle populated precursor disappears
leaving place to a large amplitude electromagnetic wave emission
from the shock front through MSI, in agreement with Sironi et al.
(2013). The shock jump conditions are derived systematically and
found to be in good agreement with the ideal MHD prediction except
in the range 10−4 < σ < 10−2 where the density compression ratio
is �10 per cent lower and the front speed is 10 per cent faster than
predicted. We argued that including the supplementary downstream
pressure from magnetic wave turbulence, with intensity deduced
from simulations, into the conservation equations can account for
this discrepancy. We also demonstrated the presence of a perpendic-
ular current in the precursor for σ ∼ 10−3 as predicted theoretically
by Lemoine et al. (2014b). This net current triggers the CFI that
plays an important role in shaping the shock precursor and gener-
ating magnetic turbulence at these intermediate magnetizations.

We studied in detail the particle acceleration efficiency and spatial
transport in the downstream micro-turbulence. Particle acceleration
is efficient in weakly magnetized perpendicular shocks. The max-
imal particle energy increases in time as Emax ∝ √

t for σ < 10−2

and saturates in simulations with σ > 10−3. For this magnetiza-
tions, the saturation energy obeys the scaling Esat ∝ σ−1/2. Our
simulations were however too short to reach the saturation energy
in shocks with lower upstream magnetization. Hence, we do not
exclude the scaling Esat ∝ σ−1/4 observed by Sironi et al. (2013)
for σ < 10−3 shocks. The non-thermal tail disappears above the
transition magnetization beyond which (σ > 10−2) the particle en-
ergy spectrum is that expected for a Maxwell–Jüttner distribution.
It is found that DSA is efficient only in weakly magnetized shocks,
while a dominant contribution of SDA is evidenced at intermediate
magnetizations. The diffusion coefficients are extracted from the
simulations and found to evolve with the square of the particle en-
ergy in weakly magnetized shocks, as expected in the small-angle
scattering regime. They reach a constant value when the external and
irregular magnetic field are of comparable strength downstream of
the shock, i.e. when the scattering frequency on the microturbulence
becomes comparable with the regular gyro-frequency.

We conclude by a remark that further developments could shed
some light on plasma physics of particle acceleration in astrophys-
ical environments by studying the accurate long-term behaviour
of σ < 10−5 shocks, multifront interaction, and relativistic shocks
in a turbulent upstream medium. Enhanced particle acceleration is
expected in these environments.
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APPENDIX A: COMPARISON OF THE
FINITE-DIFFERENCE AND SPECTRAL CODES

To compare the two codes we chose the mildly magnetized case
σ = 2 × 10−3 as the returning particle beam-filamentation is present
in the precursor along with the electromagnetic wave emission from
the shock front. The numerical set-up is the same for the two codes:
upstream plasma is injected with γ 0 = 10, the transverse box size
in the y-direction is 42δe wide, there are 2 particles/cell/species and
the simulation time is tωpe = 1200.

In addition to the difference in the way Maxwell’s equations are
solved in the two codes, there are differences in the current depo-
sition algorithms on the grid as well as in the filtering techniques
adopted to avoid the spurious Cherenkov instability. In the FDTD
code SMILEI we used a 3-pass digital filter on currents and the tem-
poral Friedmann filter on the electric field (Greenwood et al. 2004),
with the control parameter θ = 0.1 or 0.3. In the case of the spectral
code SHOCKAPIC, we used a 2-pass digital filter and a spectral cut of
large kx modes on all field components.

As previously, the shock is triggered by reflecting the incident
flow on the right-side wall (see Fig. 1). The shock is formed after

Figure A1. Comparison of the two PIC code results: spectral 2D code
SHOCKAPIC and FDTD 2D code SMILEI using two different parameters (θ = 0.1
and θ = 0.3) for the Friedmann filter. Simulation parameters are set to
γ 0= 10, σ = 2 × 10−3, Ly = 42δe, Nppc = 2. The comparison is made at
time tωpe = 1200. (a) Electron density map Ne/N0 in the simulation plane
from SHOCKAPIC. (b) Transversely averaged electron density profiles from
the three simulations. (c) Bz component of the magnetic field in the simu-
lation plane from SHOCKAPIC. (d) Transversely averaged Bz from the three
simulations. (e) x –px electron phase-space distribution from SHOCKAPIC. (f)
Downstream electron energy spectra from the two codes (blue line: SHOCK-
APIC, red line: SMILEI with θ = 0.3). The dashed lines present the respective fits
of the two spectra using the energy dispersion expected for a 2D Maxwell–
Jüttner distribution. Inset: Temporal evolution of the maximal energy
γ max(t).

tωpe � 140 (see Section 5). The formation is slightly retarded in
the FDTD simulations, using a strong filtering on the electric field
θ = 0.3. At longer times the shock structure sets up with the pre-
cursor populated with hot, energetic particles. An electromagnetic
wave is also emitted from the shock front and propagates at the
speed of light in the −x direction. In Fig. A1 we present the state of
the simulations at tωpe = 1200.

Panel (a) presents the electron density map in the simulation
plane derived from the SHOCKAPIC code. The shock front position is
indicated by the vertical dashed line at x � 2125δe. On the right
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side the plasma is compressed towards Nd/N0 � 3.1 (see Fig. 2 for
the compression ratio dependence on σ ). On the left side the pre-
cursor exhibits two types of filamentary structures. The first type
of filamentary structures extends from x = 1800δe to the shock
front. It is elongated in the shock normal direction. This filamen-
tation is produced in reaction to the strong electromagnetic wave
emitted from the front. The second type of filamentation is seen
more closely to the front, between x � 2050δe and the shock front.
It is oblique and is produced by the returning beam of the hot
shock reflected/accelerated particles. Panel (b) presents the trans-
versely averaged density profile from the three simulations: blue
line is for the SHOCKAPIC code, green line for the SMILEI code with
θ = 0.1 and red line the SMILEI code with θ = 0.3. The shock
front is slightly retarded in the SMILEI simulation with θ = 0.3
as the shock formation is slightly delayed. Still the shock front
speed and density compression ratio are identical in the three
simulations.

In panels (c) and (d) we present the magnetic field Bz in the
simulation plane derived from the SHOCKAPIC simulation (c) and the
transversely averaged 〈Bz〉 from the three simulations (d). The pre-
cursor (x < xsh) is composed of the electromagnetic X-mode wave
between x = 1500δe and the front end of the filamentary oblique
structures closely to the shock front. The magnetic field is increased
towards its downstream shock compressed value in x > 2125δe re-
gion. Large amplitude fluctuations can be observed as the plasma
has not yet fully relaxed. Vertical dashed lines, from left to right,
delimit the extent of the electromagnetic wave precursor, the extent
of the particle precursor, and the shock front position, respectively.
Inspecting panel (d) we remark that the electromagnetic wave in the
precursor is of larger amplitude when derived from the spectral code
(blue line) than in θ = 0.1 case derived from the FDTD code (green
line). It is considerably damped in the θ = 0.3 FDTD simulation
(red line).

Panel (e) presents the phase-space projected on the longi-
tudinal x –px momentum (from SHOCKAPIC simulation), where
px = γβx. A cold upstream flow is seen at the left part of the
box, px/p0 = 1. The particle precursor with hot returning beam
fills the 1965 < x/δe < 2125 region. The shock front is at xsh

� 2125δe and the downstream hot plasma fills the x > xsh

medium.
Finally, panel (f) presents the downstream electron energy spec-

trum as derived from the two codes (θ = 0.3 for the SMILEI sim-
ulation presented here). Both are in general agreement with the
downstream distribution function composed of the Maxwellian part
and non-thermal part for γ > 40. The downstream ‘temperature’
is slightly lower for SMILEI (Td = 0.43γ 0mec2) than for SHOCK-
APIC (0.46γ 0mec2). We remark that the maximal energy evolution
γ max(t) is in very good agreement for the two codes (panel in-
set) except that the shock forms slightly earlier in the SHOCKAPIC

simulation.
In conclusion, both codes provide very similar results. It is shown

that the usage of the temporal Friedmann filter produces some damp-
ing of the electromagnetic wave precursor. This damping is negli-
gible for θ = 0.1, but becomes important for stronger filtering
θ = 0.3. The filter acts mainly on the small wavelength in the light-
wave branch of the plasma dispersion in order to damp efficiently
the spurious Cherenkov modes. It is therefore logical that it damps
also the physical modes that involve resonance or wave emission on
the same branch. We also remark that, while it has an impact on the
amplitude of the emitted wave, it has no impact on the particle ac-
celeration efficiency that is governed by the beam-type instabilities
in the shock foot.

APPENDIX B: DERIVATION OF THE IDEAL
MHD JUMP CONDITIONS

Here we follow the derivation of jump conditions as stated in Gal-
lant et al. (1992) or in Lemoine, Ramos & Gremillet (2016). The
difference is that we need to alleviate here some approximations
that they adopted (ultrarelativistic or 3D ideal gas adiabatic index
downstream) and derive the shock front speed and density compres-
sion ratio in a most general form. We note that a similar derivation to
the one presented here was carried out recently by Stockem Novo,
Bret & Sinha (2016).

If the upstream magnetic field is perpendicular to the shock nor-
mal (θBn= 90◦), the ideal MHD conservation equations of the parti-
cle number density, magnetic flux, total energy, and total momentum
as written in the downstream rest frame take the following form:

γ0 (β0 + βsh) n0 = βshnd (B1)

γ0 (β0 + βsh) b0 = βshbd (B2)

γ 2
0 (β0 + βsh)

(
w0 + b2

0

4π

)
− βsh

(
p0 + b2

0

8π

)

= βsh

(
wd − pd + b2

d

8π

)
(B3)

γ 2
0 β0 (β0 + βsh)

(
w0 + b2

0

4π

)
+

(
p0 + b2

0

8π

)
= pd + b2

d

8π
, (B4)

where n0 and nd are the proper densities of upstream and down-
stream fluids, respectively. They are related to the apparent density
as Ni = γ ini, where γ i is the bulk Lorentz factor of the flow. The
upstream bulk flow is defined by its speed β0 in units of c and
Lorentz factor γ 0, βsh is the absolute value of the shock speed as
seen from the downstream frame, bi is the perpendicular magnetic
field, wi is the fluid enthalpy, and pi is the kinetic pressure. The
subscript i can take values 0 and d for upstream and downstream,
respectively. The enthalpy is related to the rest mass energy and
pressure as wi = nimc2 + (�ad/(�ad − 1))pi, where m is the total
mass of the fluid components and �ad is the gas adiabatic index
as defined using Synge equation of state. We note that the set of
equations (B1)–(B4) can be obtained by writing the conservation
laws in the shock front rest frame and then Lorentz transforming
them into the downstream frame or by directly writing the set in the
downstream frame, as done in Lemoine et al. (2016).

The only approximation we need to make is the strong
shock limit (w0 � n0mc2), but still not ultrarelativistic, i.e.
wd = ndmc2 + (�ad/(�ad − 1))pd. In that case the second terms
on the left-hand side of the equations (B3) and (B4), i.e. upstream
total pressure terms, are negligible.

Defining the upstream magnetization as σ = b2
0/(4πw0) (Kirk &

Duffy 1999) and inserting bd as deduced from the equation (B2) into
the equation (B4) the downstream kinetic pressure can be written
as

pd

w0
= γ 2

0 β0(β0 + βsh)(1 + σ ) − γ 2
0

(β0 + βsh)2

β2
sh

σ

2
. (B5)

Inserting this expression into the equation (B3) and using equa-
tion (B1) for nd/n0, results in a second-order equation for βsh:

2γ0β0(1 + σ )β2
sh − [2(γ0 − 1) (�ad − 1)

+γ0�adσ ]βsh + γ0β0 (2 − �ad) σ = 0. (B6)
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The physical solution of this equation in its complete form is

βsh = A +
√

8γ 2
0 β2

0σ (1 + σ )(2 − �ad) + A2

4(1 + σ )γ0β0
, (B7)

where

A = 2(γ0 − 1)(�ad − 1) + �adγ0σ. (B8)

This is a general solution for a strong perpendicular shock. In
the unmagnetized limit, σ = 0, the shock speed is equal to
(�ad − 1)(γ 0 − 1)/(γ 0β0) andNd/N0 = 1 + (γ 0 + 1)/[(�ad − 1)γ 0], in
agreement with Blandford & McKee (1976), Kirk & Duffy (1999),
and Spitkovsky (2008). In a strongly magnetized case σ � 1,
the shock speed tends to c and the compression ratio tends to 2,
in agreement with Kennel & Coroniti (1984) and Lemoine et al.
(2016). Equation (B7) is also relevant for non-relativistic shocks if
the appropriate �ad is chosen. Considering additional approxima-
tions allows to recover Gallant et al. (1992) (ultrarelativistic limit)
or Kennel & Coroniti (1984) (ultrarelativistic and �ad = 4/3).

The compression ratio can be deduced using equation (B1):

Nd

N0
= nd

γ0n0
= 1 + β0

βsh
, (B9)

and the jump in magnetic field is the same in virtue of equation B2.
We recover the classical results for a perfect 2D relativistic gas

(�ad= 3/2) and ultrarelativistic shock (γ 0 � 1) the density jump is
equal to �ad/(�ad − 1) = 3.

Complementarily, using pd =NdkBTd, one can derive the expected
downstream temperature:

kBTd

γ0mc2
= βshβ0 (1 + σ ) − β0 + βsh

βsh

σ

2
. (B10)

Its unmagnetized limit is kBTd = (�ad − 1)(γ 0 − 1)mc2.
Finally, it is important to note that the strong shock approximation

is valid as far as σ < γ 2
0 , i.e. as long as the alfvenic Mach number

of the upstream flow remains larger than unity (Alsop & Arons
1988). Indeed, equation (B7) gives non-physical shock front speed,
βsh > 1, for σ > γ 2

0 . This is because for such high magnetizations
the magnetic pressure of the upstream flow cannot be neglected any-
more and additional pressure terms in the left-hand side of equations
(B3) and (B4) need to be accounted for. Including these terms in the
system of conservation laws yield to a third-order equation on βsh

that ensures that the shock front is always subluminal for any σ �
1. The asymptotic behaviours of the shock front speed and Lorentz
factor for σ > γ 2

0 � 1 are then βsh → √
1 − σ−2 and γsh → √

σ ,
respectively.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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