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Abstract. We consider the problem of optimal information sharing in an unobservable
single-server queue offering service at a fixed price to a Poisson arrival of delay-sensitive
customers. The service provider observes the queue and may share state information with
arriving customers. The customers, who are Bayesian and strategic, incorporate this in-
formation into their beliefs before deciding whether to join the queue. We pose the following
question: Which signaling mechanism should the service provider adopt to maximize her
expected revenue? We formulate this problem as an infinite linear program in the queue’s
steady-statedistribution andestablish that, in general, the optimal signalingmechanism requires
the service provider to strategically conceal information in order to incentivize customers to join.
In particular, we show that a binary signalingmechanismwith a threshold structure is optimal.
Finally, we prove that coupled with an optimal fixed price, the optimal signaling mechanism
generates the same expected revenue as the optimal state-dependent pricingmechanism. This
suggests that in settings where state-dependent pricing is infeasible, signaling can be ef-
fective in achieving the optimal revenue. Our work contributes to the literature on dynamic
Bayesian persuasion and provides many interesting directions for extensions.
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1. Introduction
In many services systems, where resources to serve
users are often costly and limited, the user experience
depends on the state of the system, namely, the re-
source availability, wait times, the level of congestion,
etc. As an example, in a call center, the wait time until
service affects a caller’s experience. Similarly, in a
ride-hailing service, the availability of drivers in a
ride-requester’s neighborhood directly influences the
time until the requester begins her ride, thereby af-
fecting her utility. When resource availability is too
low or the wait times are high, the users in the system
might prefer to not avail the service, and perhaps
instead choose an outside option. For example, if the
time until the beginning of a ride is too long, a ride-
requester may instead choose to use public transport.

However, as compared with the service providers,
the users of such services typically have far less in-
formation about the system state. A call center may
know the number and the nature of other requests
currently on hold, whereas such information is not
available to a caller. Similarly, in a ride-hailing ser-
vice, the platform has access to the number of drivers
and their location around a ride-requester’s neigh-
borhood, whereas the requester a priori does not,

unless informed by the platform. Without the current
state information, a user may choose to obtain service
when the system is in a poor state and experience a
low quality of service. One main goal of such systems
is to minimize the occurrence of instances with poor
quality of service,whilemaintaining revenue goals by
providing service to a large number of users.
A common approach toward achieving this goal is to

price the service based on the current system state. For
example, in ride-hailingplatforms, theprice of obtaining
rides often depends on the availability of the drivers in
the platform. This price provides information to ride
requesters, who may choose to not use the service if the
price is too high. However, in some settings, practical
considerationsmay render such state-dependentpricing
infeasibleorundesirable.Thismaybebecause there isno
explicit price for the service being offered, or in other
cases, the variability of pricesmay itself act as a source of
user dissatisfaction.
When state-dependent pricing is infeasible or un-

desirable, a service provider may instead choose to
share information about the system state directly to
the users to help them decide whether to avail service.
For example, a call center may choose to make an-
ticipated delay announcements to incoming callers to
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help them decide whether to stay on the line (Armony
and Maglaras 2004a). Similarly, a ride-hailing service
may choose to provide information about wait times to
help ride-requesters decide whether to hail rides.
A natural question that arises then is how to effectively
share information with users to reliably ensure they are
satisfiedwith the service quality, while at the same time
achieving revenue or profit goals. A secondary question
is to quantify how the revenue so obtained compares
with that under state-dependent pricing.

In this paper, we study this problem of information
sharing in the context of a service system offering
service at a fixed price. Customers arriving at the
system must decide whether to leave without ob-
taining service or to possibly join a queue to obtain
service. The queue length is observable to the service
provider but unobservable to the customers. Each
customer is strategic and incurs a cost of waiting until
service completion. Furthermore, the customers are
Bayesian and incorporate any information shared by
the service provider into their beliefs prior tomaking
their decision. We consider a service provider in-
terested in maximizing her expected revenue. We
pose the following question in this setting: How
should the service provider share information about
the queue to incentivize participation and maxi-
mize the expected revenue in the resulting customer
equilibrium?

A central assumption in our model, as opposed to
previous work (Allon et al. 2011), is that the service
provider can commit to an information-sharing mecha-
nism. Without this commitment power, the service
provider will always prefer to share (possibly false)
information that maximizes the likelihood a customer
joins the queue, and, consequently, there cannot be any
meaningful information transmission. On the other
hand, as we show, by committing to a prespecified
mechanism for information sharing, the service pro-
vider can credibly convey information about the state
of the system.

Note that the set of all such mechanisms is quite
complex. At one extreme, the service provider may
choose to fully reveal the queue length to each ar-
riving customers. At the other extreme, the service
provider may choose not to disclose any information
about the queue length to the customers. But, in be-
tween these two extremes, there exists a multitude
of signaling mechanisms where the service provider
sends a signal correlated with queue length to the
customer. Moreover, each such choice of the signal-
ing mechanism leads to the customers responding
according to an equilibrium, and one must identify
their equilibrium strategies in order to determine the
resulting expected revenue. This task further exacerbates
the complexity of identifying the optimal signaling
mechanism.

The main contribution of this work is the rigorous
formulation of the service providers’ decision prob-
lem and identifying, for general waiting costs, the
structure of the optimal signaling mechanism. In
particular, we show that the service provider’s de-
cision problem can be formulated as an infinite linear
program, whose variables correspond to the steady-
state distribution of the queue under a feasible sig-
naling mechanism. By analyzing the linear program,
we show that for any given fixed price, there exists an
optimal signalingmechanism that uses binary signals
and has a threshold structure. This structure estab-
lishes that the optimal amount of information sharing
requires the service provider to strategically provide
ambiguous information about the queue, where the
same signal is provided over a range of values of the
queue length. In particular, the optimal signaling
mechanism neither fully reveals nor fully conceals
information about the system state.
We summarize our main results below.
1. Linear programming formulation: We begin in

Section 2 by formulating the service provider’s deci-
sion problem as an optimization problem, where
the customers’ behavior is constrained to be in an
equilibrium. In Section 3, we first use a revelation
principle-style argument (Fudenberg and Tirole 1991,
Bergemann and Morris 2019) to show that it suffices
to consider binary signaling mechanisms, where the
signal the service provider sends is either “join” or
“leave,” and the customer equilibrium involves fol-
lowing the service provider’s recommendation. Using
this structural characterization of the set of signals,
we show that the service provider’s decision problem
can be formulated as a linear program with a count-
able number of variables and constraints.

2. Optimality of threshold mechanisms: Next, by an-
alyzing this linear program, we establish in Section 4
that the optimal signaling mechanism has a threshold
structure, where the service provider sends the join
signal if the queue length is below some threshold,
and leave otherwise. (In addition, at the threshold, the
service provider may randomize.) We establish this
result through a perturbative analysis, where any
feasible solution is perturbed to a solution with better
objective in two steps. Furthermore, in Section 6.1, for
the special case of linear waiting costs, we use the
structural characterization of the optimal mechanism
to obtain closed-form expressions for the optimal
value of the threshold for any fixed-price.

3. Comparison of signaling with optimal state-dependent
prices: Finally, in Section 5, we study the service
provider’s problem of setting the optimal fixed price
in addition to subsequently choosing the optimal sig-
naling mechanism. Interestingly, we find that with the
optimal choice of the fixed price and using the corre-
sponding optimal signaling mechanism, the service
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provider can achieve the same revenue as with the
optimal state-dependent pricing mechanism in an
observable queue. (Hassin and Koshman 2017 obtain
this result independently for the special case of lin-
ear waiting costs.) This suggests that in settings where
state-dependent pricing is not feasible, the service pro-
vider can effectively use optimal signaling to achieve rev-
enue comparable to that under state-dependent pricing.

Our paper provides a rigorous framework for an-
alyzing the service provider’s decision problem in a
variety of related models that incorporate (exoge-
nous) abandonments and customer heterogeneity, as
we discuss in Sections 6.2 and 6.3. In particular, in
these models, our framework leads to analogous lin-
ear programs whose solutions determine the optimal
signaling mechanism. Our structural characterization
of the optimal signaling mechanism continues to hold
under abandonments. When customers are heteroge-
neous and their types are public, we show that the op-
timal mechanism may lack the threshold structure.
However, we prove that the threshold structure of the
optimal mechanism is restored if all customers types are
charged the same price, or if the prices are set optimally.

1.1. Related Work

Our methods and results contribute to the emerging
literature on Bayesian persuasion (Rayo and Segal
2010; Kamenica and Gentzkow 2011; Bergemann and
Morris 2016a, b, 2019) that studies settings where an
informed principal strategically chooses the amount
of information to share with uninformed agents to
incentivize them to act in a desired manner. In con-
trast to the literature on cheap talk (Crawford and
Sobel 1982), the distinctive feature in Bayesian per-
suasion is the assumption that the principal can commit
to sharing information in a prespecified manner. The
main insight is that, in general, the principal’s opti-
mal signal must obfuscate information by carefully
coalescing favorable and unfavorable states of the
agents. Kolotilin et al. (2017) extends this basic model
to settings with privately informed agents who must
report their types to the principal before receiving
information. For a general methodological approach
to Bayesian persuasion and information design in
finite settings, see Bergemann and Morris (2019) and
Taneva (2019).

More specifically, our work fits in the framework of
Bayesian persuasion in a dynamic setting. Several
recent papers fit this description. Kremer et al. (2014)
study a setting where a group of agents must se-
quentially choose an action from a set of actions with
unknown, but deterministic, rewards; a principal
observes the reward obtained by each agent and may
share information about this to the next agent in se-
quence, with the goal being to maximize the expected
average reward across all agents. The central tension in

this setting is that agents prefer to exploit given their
information, whereas the principal seeks to balance
exploration and exploitation. Papanastasiou et al.
(2017) extend this model to allow for stochastic re-
wards in an infinite-horizon, decentralized multi-
armed bandit setting with discounted rewards and
characterize the optimal disclosure policy as a solu-
tion to a linear program. Mansour et al. (2016) study a
similar model (and other more general settings) and
propose a bandit algorithm that achieves asymptot-
ically optimal regret in maximizing social welfare.
Our work differs from these papers in two aspects.
First, because these papers study learning in a bandit
setting, the focus is on a transient analysis starting
with exogenously specified priors. In contrast, we
perform a steady-state analysis, which leads to the
customers’ prior beliefs arising endogenously in equi-
librium. Second, these papers focus on social welfare
maximization, whereas we analyze a setting where the
principal seeks to maximize her own revenue. Finally,
Ely (2017) studies Bayesian persuasion in a dynamic
setting where a principal provides information about
a stochastically evolving state to a myopic agent. In
contrast to our work, the state evolution here is inde-
pendent of the agent’s actions.
Our work also ties into the long line of work on stra-

tegic behavior in queues in both observable and unob-
servable settings. In the seminar paper, Naor (1969)
studies revenue and welfare maximizing through
static pricing in an observable M/M/1 queue (a single
server queue with Poisson arrivals and exponential
service times), where customers strategically choose
to join or leave on arrival. Edelson and Hilderbrand
(1975) study static pricing in an unobservable M/M/1
queue with strategic balking and observe that
the revenue-maximizing static price equals welfare-
maximizing static price. Chen and Frank (2001) study
state-dependent pricing in an observable queue with
homogeneous customers and prove that the revenue-
optimal prices also maximize the social welfare. For
more detailed discussions, see the book byHassin and
Haviv (2012) or the more recent extensive survey by
Hassin (2016); in the following, we discuss a few
papers closely related to our model and results.
A number of papers have analyzed service systems

where strategic customers are partially informed about
system parameters and state (Burnetas and Economou
2007; Economou and Kanta 2008a, b), and the service
provider makes announcements about delay and ser-
vice quality. Armony and Maglaras (2004a) analyze
a customer contact center where arriving customers
choose among joining a queue to obtain service, leav-
ing (never to return), and putting a service request
for a call-back. Customers receive a state-dependent
anticipated delay information before making their deci-
sion. [Armony and Maglaras (2004b) study a similar
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setting without the anticipated delay announce-
ments.] The authors analyze a many-server, heavy-
traffic regime and propose an asymptotically
consistent delay announcement policy and an asymp-
totically optimal routing rule. Yu et al. (2017a) perform
an empirical study on how delay announcements im-
pact customer behavior using call-center data and
observe that delay announcements directly affect
customers’ waiting costs. Cui and Veeraraghavan
(2016) consider a setting where customers in an ob-
servable queue do not know the service parameters,
such as the service rate, and have arbitrary beliefs
about them. The authors compare the effects of re-
vealing these parameters and find situations where
the announcement of service parameters hurts con-
sumer welfare. Pender et al. (2017, 2018) consider
a settingwhere customers choosing between twoqueues
are provided delayed queue-length information (or a
moving average of queue lengths over a time window).
They find that such information can lead to oscilla-
tions in the two queues if the delay is beyond a critical
value. Hassin and Roet-Green (2017) study an un-
observable queue where customers can obtain the
queue-length information by paying a cost of in-
spection. The authors prove the existence and
uniqueness of the equilibrium and study its proper-
ties for a range of inspection costs.

Our work is closely related to that of Allon et al.
(2011), who consider an unobservable, single-server
queueing system where homogeneous customers with
linear waiting costs choose to join or leave on arrival,
after receiving a signal from the service provider. The
authors assume that the service provider sends a de-
terministic signal at each queue state and focus on the
setting of cheap talk, where the service provider cannot
commit to the signaling mechanism. Essentially, the
authors identify equilibria for the setting where the
service provider and the customers choose their strat-
egies simultaneously and study their properties for a
range of settings differing in the alignment of the
service provider’s and the customers’ incentives. Yu
et al. (2017b) extend this model to include heteroge-
neous customers. In contrast to these papers, in our
model, customers have general waiting costs, and the
service provider can commit to the signaling mech-
anism. In other words, our model analyzes the Stack-
elberg setting where the service provider first selects
(and commits to) a possibly randomized signaling
mechanism, and the customers respond knowing the
signaling mechanism. Finally, whereas they consider
general objectives for the service provider, we focus on
the setting where the service provider’s goal is to
maximize revenue.

Focusing on settingswhere the service provider has
the power to commit, Hassin (1986) compares the
social welfare between an observable queue and an

unobservable queue, where customers have linear
waiting costs and are charged revenue-maximizing
static prices in each instance. The author notes that
social welfare may be higher in the observable set-
ting but not always. Guo and Zipkin (2007) study a
similar setting where the service provider can com-
mit to one of three specific signaling mechanisms (no
information, total customers in the queue, or the exact
total time needed to wait in the queue). Simhon et al.
(2016) study a similar model under a specific class of
signaling mechanisms, where the service provider
reveals the queue length when it is below a threshold
and reveals no information otherwise. They show that
no such signaling mechanism can strictly increase the
revenue over the full-information mechanism (in the
overloaded regime) or the no-information mecha-
nism (in the underloaded regime). In contrast, our
model andmethods do not a priori restrict the class of
signaling mechanisms, and we show that typically
the optimal signaling mechanism achieves strictly
higher revenue than the full-information and the no-
information mechanism. Furthermore, our analysis
shows in fact that the service provider obtains higher
revenue by revealing the queue length when it is large
and concealing it when it is short.
Recently, Hassin and Koshman (2017) analyzed the

case of linear waiting costs and observed that a
threshold-signaling mechanism, together with an
optimal choice of the fixed price, achieves the optimal
revenue.We obtain the same result for a broader class
of customer waiting costs. Furthermore, we charac-
terize the optimal mechanism for any exogenously
specified fixed price.
Finally, in our results for linear waiting costs, the

expression for the threshold in the optimal signaling
mechanism involves the Lambert-W function. Borgs
et al. (2014) obtain similar expressions involving
the Lambert-W function for determining the optimal
threshold in an admission-control problem in ob-
servable queue.

2. Model
Our model consists of a service provider facing a se-
quence of potential customerswho arrive according to a
Poisson process with rate λ> 0. The service provider is
capacity constrained, and, consequently, customers
seeking to obtain service are put into a queue. Each
customer upon arrivalmust decidewhether to join the
queue to obtain service at a fixed price p> 0 or to leave
without obtaining service. We focus on the setting
where the queue is unobservable—that is, the cus-
tomers cannot directly see the state of the queue
before deciding whether to join or leave. On the other
hand, the service provider can observe the queue and
may disclose information about its state to a customer
upon her arrival.
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We consider a setting where the queue is served by
a single server. The service discipline in the queue is
first-in-first-out (FIFO). Each customer’s service re-
quirement is distributed independently and identi-
cally as an exponential distribution and, without loss
of generality, has unit mean. We restrict our attention
to the setting where there is no abandonment: If the
customer joins the queue upon arrival, they remain
until service completion. We discuss different ap-
proaches to incorporate abandonment in our model in
Section 6.2.

We make the assumption that the customers are
homogeneous; we later discuss extensions to hetero-
geneous customers in Section 6.3. In particular, we
represent the expected utility obtained by a customer
upon joining the queue by a function u(X), where X
denotes the number of customers already in the queue
upon arrival of the customer. The net expected payoff
obtained by the customer upon choosing to join the

queue is then given by h(X, p)≜ u(X) − p. We normalize
the payoff of leaving without obtaining service to zero.

We require that the function u is nonincreasing in X,
with u(0)> 0 and limX→∞ u(X)< 0. The first condition
implies that customers incur a cost for waiting (lon-
ger) in queue. The latter two conditions are to avoid
trivialities: The condition u(0)> 0 implies that a cus-
tomer will prefer to join an empty queue if the price is
low enough, whereas the final condition implies that
for any p ≥ 0, there exists an M such that h(M, p)< 0,
making the customer prefer not joining the queue if
she knows the queue length is larger than M. Given
these assumptions, we restrict the values of p to the set
[0,u(0)], and for all p ≥ 0, let Mp denote the smallest
value of M for which we have h(M, p)< 0.

The arrival rate λ, the service requirement distri-
bution, the customers’ utility function u(·), and the
fixed price p are common knowledge among the cus-
tomers and the service provider.

2.1. Signaling Mechanism

The service provider seeks to maximize her expected
revenue andhas two controls to achieve this goal: (1) the
fixed price p at which the service is provided and
(2) the information shared with each arriving cus-
tomer regarding the state of the queue. To formally
describe the latter, we next introduce the notion of a
signaling mechanism. A signaling mechanism Σ �
(6, σ) is composed of a set 6 of possible signals to-
gether with a mapping1 σ : N0 × 6 → [0, 1], satisfy-
ing

∑
s∈6 σ(n, s) � 1 for each n ∈ N0. We interpret the

mapping σ as follows: When a customer arrives to the
system with X customers already in queue, the service
provider sends a signal s ∈ 6 to the arriving customer
with probability σ(X, s).

To illustrate our definition, we briefly discuss two
natural signaling mechanisms that have been analyzed

in the literature and serve as extreme benchmarks for
comparison:

1. No-information mechanism: At one extreme, we
have the no-information mechanism, where the ser-
vice provider reveals no information about the queue
state to arriving customers. This setting can be rep-
resented by a signaling mechanism Σ � (6, σ), where
6 � {∅} and σ(n, ∅) � 1 for each n ≥ 0. Edelson and
Hilderbrand (1975) consider revenue maximization
in unobservable queues (without any possibility of
signaling).

2. Fully revealing mechanism: At the other extreme,
we consider the fully-revealing mechanism, where
the state of the queue is completely revealed to ar-
riving customers. This setting can be represented in
our model by a signal set6 � N0, and σ(n, s) � 1 if s � n
and 0 otherwise. The seminal paper by Naor (1969)
studies the problem of revenue maximization in ob-
servable queues with strategic customers.
We assume that the service provider can commit to

the signaling mechanism publicly and that the sig-
naling mechanism Σ � (6, σ) is common knowledge
among the customers.

2.2. Customer Equilibrium

The customers are strategic and Bayesian and seek to
maximize their total expected payoff given their be-
liefs. Given a signaling mechanism Σ � (6, σ), a pure
strategy for a customer is a function f :6→!� {0,1},
that specifies, for each possible signal s∈6, an action
f (s) ∈ {0,1}, where 1 denotes the action of joining the
queue and 0 denotes the action of leaving without
obtaining service. Similarly, a mixed strategy is speci-
fied by a function f :6→[0,1], where f (s) ∈ [0,1] de-
notes the probability that the customer will join the
queue upon observing a signal s∈6.
Recall that the service provider publicly commits

to a signaling mechanism and seeks to maximize the
expected revenue resulting from the customers’ re-
sponse. We model the customers’ response as arising
endogenously from an equilibrium. More precisely,
we focus on the setting of a symmetric equilibrium
where all customers follow the same (mixed) strat-
egy. This is a mild assumption; in equilibrium, the
customers’ actions could possibly differ only at those
signals underwhich they are indifferent between joining
and leaving. To define the equilibrium notion, we con-
sider a customer’s decision problem when all other
customers follow a given strategy.
Because customers are Bayesian, to describe a cus-

tomer’s decision problem, we must describe her be-
liefs. In particular, it is sufficient to describe the
customer’s prior belief about the state of the queue
upon her arrival before receiving a signal from the
service provider. (The customer’s posterior belief af-
ter receiving a signal from the service provider is
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obtained via Bayes’ rule.) Note that these prior beliefs
are determined endogenously because the state of the
queue upon a customer’s arrival is dependent on the
actions of all customers who arrived earlier. Because
customer arrival is Poisson, using the PASTA prop-
erty (Wolff 1982), we conclude that a customer upon
arrival would see the queue in steady state. Conse-
quently, in equilibrium, a customer’s prior belief
about the state of the queue must equal the queue’s
steady-state distribution.

Formally, given that all customers follow a strategy f
and the service provider implements a signaling
mechanism Σ � (6, σ), the queue evolves as a con-
tinuous time birth–death chain whose transition
probabilities depend on f and σ. In particular, given
that there are n customers already in the queue, a new
customer enters the queue at rate λ

∑
s∈6 σ(n, s)f (s),

whereas a customer in service leaves the queue at rate 1.
We restrict our attention to those customer strat-
egies f for which the queue is stable.2 Let π∞(Σ, f )
denote the steady-state distribution of the queue
under the signaling mechanism Σ and customers’
strategies f . For notational brevity, when the context
is clear, we drop the explicit dependence on Σ and f
to denote the steady-state distribution by π∞, and we
let X∞ denote a random variable distributed inde-
pendently as π∞.

Upon arrival, a customer’s prior belief about the
state of the queue is given by π∞. Thus, after ob-
serving a signal s, the customer’s expected payoff is

given by EΣ, f [h(X∞, p)|s], where EΣ, f [·|s] denotes ex-
pectation with respect to the customers’ posterior
beliefs conditional on the signaling mechanism Σ, the
strategy f , and the observed signal s. From this ex-
pression, we conclude that the customer’s optimal
action is to join the queue if EΣ, f [h(X∞, p)|s]> 0, to

leave if EΣ, f [h(X∞, p)|s]< 0, and any mixed action if

EΣ, f [h(X∞, p)|s] � 0. This leads to the following defi-
nition of a customer equilibrium:

Definition 1. Given a price p and a signaling mecha-
nismΣ, a customer equilibrium is a strategy f satisfying
for each s ∈ 6,

f (s) � 1, if EΣ, f [h(X∞, p)|s]> 0,

0, if EΣ, f [h(X∞, p)|s]< 0,

{
(1)

and f (s) ∈ [0, 1] otherwise.

To illustrate, consider the setting where the cus-
tomers’ utility is linear u(X) � 1 − c(X + 1) for some c ∈
(0, 1) and let p ∈ [0, 1 − c]. Under the fully-revealing
mechanism, the equilibrium strategy is trivially given
by f (s) � 1 if s< (1 − c − p)/c and 0 if s> (1 − c − p)/c. (If
(1 − c − p)/c ∈ N0, then f ((1 − c − p)/c) can take any

value between 0 and 1.) On the other hand, under the no-
information mechanism, the customer equilibrium
strategy f can be computed to be f (∅) � min{(1−
c/(1 − p))/λ}. (See Appendix B for the details.)

2.3. Service Provider’s Decision Problem

Having defined the customer equilibrium, we are
now ready to formally specify the service provider’s
decision problem. For a choice of the fixed price p and
the signaling mechanism Σ, consider a customer
equilibrium f . In steady state, the queue throughput is
given by

Th(Σ, f )≜ EΣ, f λ
∑
s∈6

σ(X∞, s)f (s)
[ ]

� λ
∑∞

n�0
π∞(n)

∑
s∈6

σ(n, s) f (s).

The preceding equation follows from the fact that
customers are arriving according to a Poisson process
with rate λ and, upon arrival, see the queue in steady
state. In steady state, the number of customers already
in the queue is nwith probability π∞(n), in which case
the service provider sends a signal s ∈ 6 with prob-
ability σ(n, s) and the customer joins the queue with
probability f (s). (Note that although the throughput
Th(Σ, f ) does not depend on the price p explicitly,
there is an implicit dependence on p through the
customer equilibrium f .) Thus, the service provider’s
expected revenue in equilibrium is given by

R(p,Σ, f )≜ p · Th(Σ, f ).

The service provider’s decision problem is then to
choose a fixed price p and a signaling mechanism Σ

in order to maximize her expected revenue in the
resulting customer equilibrium3 f :

max
p

max
Σ

R(p,Σ, f ) subject to f satisfying (1). (2)

Our main goal is to determine the optimal fixed price
and to characterize the optimal signaling mechanism
(if they exist) for the decision problem (2). As a first
step in our analysis, we begin by studying the inner
maximization problem, where the service provider
seeks to choose an optimal signaling mechanism for
a given (exogenously specified) fixed price p. For a
given price, the service provider’s problem can be
equivalently cast as a throughput maximization prob-
lem, as specified below:

max
Σ

Th(Σ, f ) subject to f satisfying (1). (3)

Subsequently, in Section 5, we address the problem
of determining the optimal fixed price p.
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3. Characterization of the Signal Space
There are two main difficulties in analyzing the de-
cision problem (3). First, the space of possible sig-
naling mechanisms is quite large. In particular, we
have imposed no restrictions on the set 6. To make
any progress, we must obtain some characterization
of the set of possible signals that an optimal signaling
mechanism might use. Second, given a particular sig-
naling mechanism, one must characterize the customer
equilibrium f σ. This involves solving for a fixed point of
an operator implicitly defined by (1), and for a general
signaling mechanism, this could be a difficult prob-
lem. Hence, we first address these difficulties.

3.1. Equilibrium Characterization

Toward the goal of characterizing the set of signals in
an optimal signalingmechanism, we start by defining
the notion of equivalence between two mechanisms
and the respective customer equilibria.

Definition 2. We say two signaling mechanisms Σi �
(6i, σi) and corresponding customer equilibria fi, for i �
1, 2 are equivalent if they induce the same steady-state
distribution—that is, if π∞(Σ1, f1) � π∞(Σ2, f2).

We have the following lemma that states that it
suffices to consider signaling mechanisms where the
resulting customer equilibrium is pure. We provide
the proof in Appendix A.

Lemma 1. For any fixed price p, given a signaling mech-
anism Σ � (6, σ) and a customer equilibrium f , there exists
a signaling mechanism Σ1 � (61, σ1) with customer equi-
librium f1 such that (1) (Σ1, f1) is equivalent to (Σ, f ), and
(2) f1 is a pure strategy.

Using the preceding lemma,we can further restrict the
class of signaling mechanisms and customer equilibria
to consider. We have the following lemma that states
that it is enough for the service provider to consider
mechanismswith binary signalswith a specific customer
equilibrium. The proof of the lemma uses a revelation-
principle-style argument (Fudenberg and Tirole 1991,
Bergemann and Morris 2019); we include the proof in
Appendix A for the sake of completeness.

Lemma 2. For any fixed price p, given a signaling mecha-
nism Σ � (6, σ) and a customer equilibrium f , there exists an
equivalent signaling mechanism Σ1 � (61, σ1) and customer
equilibrium f1, where 61 � {0, 1} and f1(s) � s for s ∈ 61.

Summing up the preceding two lemmas, we con-
clude that in order to determine an optimal signaling
mechanism, it is sufficient to consider signaling mecha-
nisms Σ � (6, σ) where 6 � {0, 1} and for which, the
customer equilibrium is given by f (s) � s for s ∈ {0, 1}.
In other words, in the optimal signaling mechanism,
the service provider sends a binary signal (join or
leave) depending on the queue length, and in the

resulting equilibrium, each customer finds it optimal
to follow the recommendation. We refer to this cus-
tomer strategy as the obedient strategy (Bergemann and
Morris 2016a, 2019) and the resulting equilibrium to be
the obedient equilibrium.
Given this reduction, the service provider’s decision

problem, for any fixed price p, simplifies to identi-
fying a mapping σ : N0 × {0, 1} → [0, 1] (with the re-
striction that σ(n, 0) � 1 − σ(n, 1) for each n ∈ N0) that
maximizes the throughput:

max
σ

Eσ[λσ(X∞, 1)]
subject to Eσ[h(X∞, p)|s � 1] ≥ 0, (4)

Eσ[h(X∞, p)|s � 0] ≤ 0.

Here, the two inequalities impose the requirement
that the customers find obedience to be optimal: When
the signal s � i is revealed to a customer, choosing
action i is indeed an optimal action for her. We thus
refer to the two constraints as obedience constraints.
Note that, because we focus on the obedient equi-
librium for the customers, and the signal space isfixed
to be 6 � {0, 1}, we simplify the notation and denote
the expectation by Eσ.

3.2. Linear Programming Formulation

Observe that the preceding optimization problem (4)
is quite complex: In addition to having an infinite
number of variables {σ(n, i) : n ≥ 0, i � 0, 1}, the con-
straints are highly nonlinear. This nonlinearity im-
plies that optimizing directly would be difficult. In
this section, we provide a reformulation of (4) as a
linear program. This reformulation paves the way for
analyzing the service provider’s decision problem
and for characterizing the structure of the optimal
mechanism.
The main insight behind the reformulation is that,

instead of optimizing over the signaling mechanism
σ, one can optimize directly over the resulting steady-
state distribution πσ

∞. By doing so, the preceding
nonlinear optimization problem simplifies to the fol-
lowing linear program in {πσ

∞(n) : n ≥ 0}, albeit with
a countable number of variables and constraints:

max
π

∑∞

n�1
πn

subject to
∑∞

n�1
πnh(n − 1, p) ≥ 0, (5a)

∑∞

n�0
h(n, p) λπn − πn+1( ) ≤ 0, (5b)

λπn − πn+1 ≥ 0, for all n ≥ 0, (5c)

∑∞

i�0
πi � 1, πn ≥ 0, for all n ≥ 0.
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To obtain this linear program, we first write the expec-
tations in the obedience constraints of (4) as linear func-
tions of the steady state distribution. The constraints (5c)
are obtained from the detailed balance condi-
tions πσ

∞(n)λσ(n, 1) � πσ
∞(n + 1) and using the fact that

σ(n, 1) ∈ [0, 1] for each n ∈ N0. We have the following
lemma that relates the two optimization problems:

Lemma 3. For every signaling mechanism σ : N0 × {0, 1}→
[0, 1] feasible for (4), there exists a feasible solution {πn : n ≥
0} to (5) with the same objective value. Conversely, let {πn :

n ≥ 0} be feasible for (5). Then the signaling mechanism
σ : N0 × {0, 1} → [0, 1], defined as σ(n, 1) � πn+1/(λπn) if
πn > 0 and σ(n, 1) � 0 otherwise, is feasible for (4) and has
the same objective value.

The preceding lemma not only allows us to optimize
over the steady-state distribution {πn : n ≥ 0}, but also
provides a rule to determine σ(n, 1) from the optimal
solution and hence recover the signaling mechanism.
The proof of this lemma is given in Appendix A. With
this reformulation of the service provider’s problem, we
are now ready to identify an optimal mechanism.

4. Structure of Optimal Mechanism
Note that the signaling mechanism still has to de-
termine which binary signal to send at each queue
length. In the following, we show that this problem
has a simple structure. Toward that end, we introduce
below the class of threshold mechanisms.

Definition 3. Wedefine a thresholdmechanism σx :N0×
{0,1}→[0,1] for x∈R+∪{∞} as follows: For x∈R+, we
have

σx(n, 1)≜
1, if n< ⌊x⌋,
x − ⌊x⌋, if n � ⌊x⌋,
0, otherwise.




Also, we define σ∞(n, 1) � 1 for all n ≥ 0.

With this definition in place, we have our first main
result:

Theorem 1. For any fixed price p, there exists a threshold
mechanism σx with x ∈ R+ ∪ {∞} and x ≥ Mp that achieves
the optimal revenue.

Proof. The proof of the theorem involves three steps.
First, analyzing the constraints of the linear program (5),
we show that the optimal signaling mechanism would
signal a customer to join the queue if she would have
joined under full information. With this structure in
place, we then show that any feasible solution that
does not have a threshold structure can be perturbed
to obtain another feasible solution corresponding to a
threshold mechanism with equal or higher throughput.
Finally, in Lemma A.1, we show that the set of feasible
solutions corresponding to threshold mechanisms forms

a compact set under the weak topology. Because the
objective of the linear program (5) is continuous under
the weak topology, we conclude that an optimal sig-
nalingmechanismwith a threshold structure must exist.
Recall thatMp ∈ N is defined such that h(Mp − 1, p) ≥

0 and h(Mp, p)< 0. Consider any feasible solution {πn :

n ≥ 0} to the linear program (5). We first show that we
can construct another feasible solution with weakly
higher throughput by ensuring the (5c) constraints are
tight for all n ≤ Mp. Toward that end, we define {π̂n :

n ≥ 0} by setting

π̂n �
1

Z
π0λ

n, for n ≤ Mp,

1

Z
πn, for n>Mp,




where Z≜π0
∑Mp

i�0 λ
i + ∑∞

i�Mp+1 πi > 0 is the normaliz-

ing constant to ensure
∑∞

n�0 π̂n � 1.
We first show that π̂ is feasible for (5). From the

feasibility of {πn : n ≥ 0}, it is straightforward to show
that the constraints (5c) continue to hold for {π̂n :

n ≥ 0}. Furthermore, we obtain that πn ≤ π0λ
n for all

n ≥ 0, and hence π̂n ≥ πn/Z for all n<Mp. Because
h(n − 1, p) ≥ 0 for all n ≤ Mp, this implies that {π̂n : n ≥
0} continues to satisfy the obedience constraint (5a).
To show that π̂ is a feasible solution, it remains to
verify that (5b) holds. For this step, note that we have

∑∞

n�0
h(n, p)(λπ̂n − π̂n+1) �

∑Mp−1

n�0
h(n, p)(λπ̂n − π̂n+1)

+
∑∞

n�Mp

h(n, p)(λπ̂n − π̂n+1)

� 0 +
∑∞

n�Mp

h(n, p)(λπ̂n − π̂n+1)

≤ 0.

Here, the second equality follows from the definition
of π̂, and the inequality follows from the fact that
h(n, p)< 0 for each n ≥ Mp and that π̂ satisfies (5c).
This proves the feasibility of π̂.
The difference between the objective values for the

two solutions is given by

∑∞

n�1
π̂n −

∑∞

n�1
πn � π0 − π̂0 � π0 1 − 1

Z

( )
.

Now, because πn ≤ π0λ
n for all n, we obtain that Z �

π0
∑Mp

i�0 λ
i + ∑∞

i�Mp+1 πi ≥
∑∞

n�0 πn � 1. This implies that

the objective value of π̂ is at least that of π. Further-
more, unless πn � λnπ0 for all n ≤ Mp, we obtain Z> 1,
implying that the objective value of π̂ is strictly
greater than that of π. From this, we conclude that
in any optimal solution π, we must have πi � λiπ0
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for i ≤ Mp. Henceforth, we restrict ourselves to fea-
sible solutions π satisfying this property.

Consider now a feasible solution π � {πn : n ≥ 0}
such that there exists an N >Mp with πn � λnπ0 for all
n<N, 0<πN <λπN−1 and πN+1 > 0. We consider a
perturbation of this feasible solution and show that
it remains feasible and attains the same objective
value as the original feasible solution. Toward this
goal, define π̃ � {π̃n : n ≥ 0} as follows:

π̃n �
πn, for n<N,

πN + β
∑
i>N

πi, for n � N,

(1 − β)πn, for n>N,




for some β ∈ (0, 1] to be chosen later. By construction,
the linear programming objective for π̃ is same as that
for π, and hence it suffices to show that π̃ is feasible.
Note that π̃n ≥ 0 and

∑∞
n�0 π̃n � 1, so π̃ is a valid dis-

tribution. Thus, for π̃ to be feasible, we need (5a), (5b),
and (5c) to hold.

First, observe that

∑∞

n�1
π̃nh(n − 1, p) −

∑∞

n�1
πnh(n − 1, p)

� β
∑
n>N

πnh(N − 1, p) − β
∑
n>N

πnh(n − 1, p)

� h(N − 1, p)β
∑
n>N

πn 1 − h(n − 1, p)
h(N − 1, p)

( )( )

≥ 0.

The inequality follows from the fact that because N >

Mp, we have h(N − 1, p) ≤ h(Mp, p)< 0, and the fact
that because h(n, p) is nonincreasing in n, we have
h(n − 1, p)/h(N − 1, p) ≥ 1 for n>N. Because π is fea-
sible for the linear program, this implies that π̃ sat-
isfies the constraint (5a) for all β ∈ (0, 1].

Next, note that because π̃n+1 � λπ̃n for all n<
Mp <N, we obtain that

∑∞
n�0 h(n,p)(λπ̃n− π̃n+1) �

∑∞
n�Mp

·
h(n,p)(λπ̃n− π̃n+1). Because h(n,p)<0 for all n≥Mp,

the latter expression is nonpositive, and (5b) holds,
if λπ̃n− π̃n+1 ≥ 0 for all n—that is, if π̃ satisfies (5c).
Finally, it is straightforward to verify that π̃ sat-
isfies (5c) for all n≥ 0 if it is satisfied for n�N−1—that
is, if λπ̃N−1− π̃N ≥ 0. For this condition to hold, we
need λπN−1 ≥πN +β

∑
i>Nπi, which holds for any β∈

(0,1] satisfying 0<β≤ (λπN−1−πN)/
∑

i>Nπi. So, for
any such value of β, we obtain that π̃ is feasible for the
linear program.

Note that if (λπN−1 − πN)/
∑

i>N πi ≥ 1, then choosing
β � 1 yields π̃n � 0 for all n>N. On the other hand, if
(λπN−1 − πN)/

∑
i>N πi < 1, then choosing β � (λπN−1 −

πN)/
∑

i>N πi yields λπ̃N−1 − π̃N � 0. Thus, we obtain
that any {πn : n ≥ 0}, where πn � λnπ0 for all n<N,
0<πN <λπN−1 and πN+1 > 0 for some N >Mp, can be
perturbed appropriately to obtain a feasible solution

π̃ with equal objective and satisfying either (1) π̃n �
λnπ̃0 for all n<N, 0< π̃N ≤ λπ̃N−1, and π̃n � 0 for all
n>N or (2) π̃n � λnπ̃0 for all n ≤ N. In the latter case,
if 0< π̃N+1 <λπ̃N , one can perturb π̃ analogously. By
induction, this implies that if the optimum to the linear
program (5) is attained, then it is attained by a feasible
solution {πn : n ≥ 0} for which there exists an N ≥ Mp

with πn � λnπ0 for all n<N, 0<πN ≤ λπN−1 and πn �
0 for all n>N. (Here, N could be infinite.) Hence, we
restrict our attention to feasible solutions of this form.
In Lemma A.1, we show that the set of all such

feasible distributions is compact (under the weak to-
pology). Because the objective is a continuous function
of the steady-state distribution, we obtain that an op-
timal solution of this form exists.
Summarizing, there exists an optimal solution {πn :

n ≥ 0} to the linear program (5) for which there exists
an N ≥ Mp (possibly infinity) such that πn � λnπ0 for
all n<N, 0<πN ≤ λπN−1 and πn � 0 for all n>N. Fi-
nally, by using Lemma 3, this implies that there exists
an optimal signaling mechanism σ for which there
exists an N ≥ Mp and a q � πN/(λπN−1) ∈ [0, 1] such
that σ(n, 1) � 1 for all n<N, σ(N, 1) � q and σ(n, 1) � 0
for all n>N. If N � ∞, we obtain that the mechanism
σ � σ∞ is optimal. Otherwise, we obtain that σN+q is an
optimal signaling mechanism. □

The preceding theorem has an important practical
implication: The optimal signaling mechanism is easy
to describe and implement. More precisely, our anal-
ysis assumes that the service provider can publicly
announce and commit to a signalingmechanism. Given
that signaling mechanisms are arbitrary mappings over
the set of all nonnegative integers, this is a strong as-
sumption for general signaling mechanisms. However,
the structure of the optimal signaling mechanism ren-
ders this assumption innocuous. In particular, the ser-
vice provider can easily implement the signaling
mechanism σx by announcing a priori the value N �
⌊x⌋ below which customers will be deterministically
recommended to join the queue, and the probability
q � x − ⌊x⌋ with which they will be recommended to
join when the queue length is exactly N.
We note that our proof implies that in any optimal

signaling mechanism (not necessarily threshold), no
customer would be told to leave if they would have
joined under full information. This follows from the
fact in any optimal solution π to (5), we have πn+1 �
λπn for all n<Mp. Notice that whenever a customer is
told to leave, they know the length of the queue is
more than Mp and joining will get them negative
utility. This is similar to the results of Kamenica and
Gentzkow (2011), where they showed that in an op-
timal persuasion mechanism, whenever an agent is told
to take the principal’s least-preferred action, the agent
knows with certainty that it is in her best interest.
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5. Optimal Pricing and Signaling
Having determined the structure of the optimal sig-
naling mechanism for any fixed price p, we next in-
vestigate the serviceprovider’s decisionproblemof how
to set p optimally in order to maximize her revenue.

In order to understand this problem, consider first
as a detour the case of optimal state-dependent pric-
ing in a fully-observable queue.Moreprecisely, consider
the setting where the arriving customers can observe
the queue length, but the service provider is allowed to
charge themapricedependent on the queue length. This
setting of dynamic pricing serves as a natural bench-
mark against which we compare the revenue obtained
under the optimal fixed-price and signaling mechanism.
Surprisingly, we find that setting the fixed price opti-
mally along with using an optimal signaling mecha-
nism suffices to achieve the optimal revenue in the
observable setting.Wehave the followingmain theorem.

Theorem 2. With the optimal value of the fixed price p and
the corresponding optimal signaling mechanism, the service
provider obtains the same revenue as under optimal state-
dependent prices in a fully observable queue.

Before we state the proof, we note an important
practical implication of this result. In many settings,
state-dependent pricing is infeasible, either due to
operational reasons, such as price stickiness arising
out of menu costs associated with changing prices
(Sheshinski and Weiss 1977), or due to exogenous rea-
sons such as maintaining customer expectations about
the price of service (Kalwani et al. 1990). In such set-
tings, however, it may be feasible to make recommen-
dations to customers based on the state of the system.
Our result states that in such settings, as long as the
fixed price is chosen optimally, the service provider can
effectively use signaling to guarantee the same optimal
revenue as with optimal state-dependent pricing.

Proof of Theorem 2. Let the optimal state-dependent
pricing mechanism set a price p(n) for service to an
arriving customer when the number of customers al-
ready in the queue is n. Under our assumption of
nonincreasing utilities, the prices {p(n) : n ≥ 0} can be
shown to have the following form (Chen and Frank
2001): Up to a threshold of the queue length, the service
provider sets prices that extract out all the surplus of
the incoming customer, making those customers in-
different between joining and leaving; beyond this
threshold, the service provider sets a large price, es-
sentially denying entry to any incoming customers.
Formally, the optimal prices satisfy p(n) � u(n) for all
n<κ and p(n) � ∞ for all n ≥ κ, for an appropriately
chosen κ> 0. Let πκ

∞ denote the steady-state distribu-
tion of the queue under this pricing policy, and let Xκ

∞
denote an (independent) random variable distributed
as πκ

∞. Note that under optimal state-dependent prices,

the service provider’s expected revenue is given by

λE I{Xκ
∞ <κ}p(Xκ

∞)
[ ]

� λE I{Xκ
∞ <κ}u(Xκ

∞)
[ ]

.

Now, for the setting of an unobservable queue, con-

sider thefixedprice p̂≜E u(Xκ
∞)|Xκ

∞ <κ
[ ]

, and threshold

signalingmechanism σκ—that is, the service provider
sends signal 1 (or join) if the queue length is strictly
less than κ, and 0 (or leave) otherwise. We claim that
with this choice of fixed price p̂ and the signaling
mechanism σκ, the service provider achieves the same
expected revenue in the obedient equilibrium as
under the optimal state-dependent mechanism.
We start by showing that under the fixed price p̂

and the threshold signaling mechanism σκ, the obe-
dient strategy forms a customer equilibrium. To see
this, observe that if all customers follow the recom-
mendation, the steady-state distribution of the queue
length is indeed given by πκ

∞. By an abuse of notation,
we let Xκ

∞ denote the queue length upon a particular
customer’s arrival. Thus, the expected payoff to the
customer for joining the queue upon receiving the
signal s � 1 is given by

E[h(Xκ
∞, p̂)|s � 1] � E[u(Xκ

∞)|s � 1] − p̂

� E[u(Xκ
∞)|Xκ

∞ <κ] − p̂ � 0,

where the second equality follows from the fact that
the signaling mechanism σk sends signal s � 1 if and
only if Xκ

∞ <κ. This implies that the resulting steady-
state distribution satisfies the first obedience con-
straint (5a). Similarly, the expectedpayoff to the customer
upon receiving the signal s � 0 is given by

E[h(Xκ
∞, p̂)|s � 0] � E[u(Xκ

∞)|s � 0] − p̂ � u(κ) − p̂

� u(κ) − E[u(Xκ
∞)|Xκ

∞ <κ] ≤ 0,

where the second equality follows from the fact that
under the steady state, the signaling mechanism sends
signal s � 0 if and only if Xκ

∞ � κ, the third equality
from the definition of p̂, and the inequality holds
because u is nonincreasing. This implies that the re-
sulting steady-state distribution satisfies the second
obedience constraint (5b).
Next, observe that the service provider’s expected

revenue is given by

λE[σ(Xκ
∞, 1)p̂] � λE I{Xκ

∞ <κ}p̂
[ ]

� λE I{Xκ
∞ <κ}E u(Xκ

∞)|Xκ
∞ <κ

[ ][ ]

� λE I{Xκ
∞ <κ}u(Xκ

∞)
[ ]

,

where the last equality follows from the tower prop-
erty of conditional expectation. Thus, we observe that
the service provider’s expected revenue is the same as
that of the optimal state-dependent pricing mechanism.
Finally, with homogeneous customers, the opti-

mal state-dependent pricing mechanism is welfare-
maximizing (Chen and Frank 2001) with zero customer
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surplus. Because the optimal fixed price p̂ and the
signaling mechanism σκ achieve this revenue, these
values must be optimal. Thus, we obtain that with
the optimal choice of the fixed price and the corre-
sponding optimal signaling mechanism, the service
provider obtains the same revenue as the optimal
state-dependent prices. □

The preceding theorem leads to a natural question:
Can the service provider increase her revenue in an
unobservable queue through a combination of sig-
naling and pricing? Under such a mechanism, cus-
tomers not only receive information about the queue
state from the signal but also from the price. Despite
this generality, our result already implies that such
mechanisms cannot improve the revenue. This fol-
lows from the fact that, in a fully observable queue,
the optimal state-dependent pricing mechanism is
welfare-maximizing and has zero customer surplus
(Chen and Frank 2001). Because customer surplus in
any mechanism must be nonnegative, there cannot
be any combination of signaling and pricing that ach-
ieves strictly higher revenue than the optimal state-
dependent pricing mechanism (or the optimal signaling
mechanism with an optimal fixed price). However,
there exist many mechanisms that achieve this optimal
revenue through a combination of signaling and pric-
ing. Specifically, given any partition of the set of queue
lengths for which a customer joins under the state-
dependent pricing mechanism, one can construct a
combined signaling-and-pricing mechanism that ach-
ieves the optimal revenue: Such a mechanism would
reveal to an arriving customer which set of the parti-
tion the queue-length lies in, and charge them the ex-
pected utility conditioned on the queue length being
in that set. Furthermore, as long as the prices for dif-
ferent sets of the partition are different, the prices can
themselves act as signals. This discussion suggests
that, in an unobservable queue, the service provider
has a flexibility in choosing the number of prices
while optimizing her revenue.

6. Extensions
In this section, we discuss a few extensions to our
results and ourmodel. First, for the special casewhere
the customers’ utility is linear in time spent in queue,
we obtain a closed-form expression for the threshold
in the optimal signaling mechanism as a function of
the fixed-price p. Subsequently, we discuss how our
model can be extended to include abandonment and
customer heterogeneity.

6.1. Linear Utility

A commonly studiedmodel for customer utility is one
where the customer receives a fixed value V > 0 from
service and incurs a disutility that is proportional to
the time spent while waiting until service completion.

(Naor 1969, Allon et al. 2011, Borgs et al. 2014). Be-
cause we assume that the customers’ service require-
ments are homogeneous and have unit mean, this
assumption implies that the customer utility u(·) is
given by u(X) � V − c(X + 1) for all X ≥ 0, for some
value of c> 0 that denotes the disutility per unit time
of waiting. For this utility model, Theorem 1 implies
that the linear program 5 can be analytically solved,
resulting in a closed-form expression for the threshold
in the optimal signaling policy.
To state our results, we assume, without loss of

generality, that V � 1, and, to avoid trivialities, we let
c ∈ (0, 1). Furthermore, let W0(·) and W−1(·) denote
the two real branches of the Lambert-W function,
defined as the set of functions that are the inverse of
f (X) � XeX. (See Borgs et al. 2014 for a detailed de-
scription.) We have the following theorem.

Theorem 3. Suppose u(n) � 1 − c(n + 1) with c ∈ (0, 1).
Then, for each p ∈ [0, 1 − c], the threshold mechanism σx is
optimal for x � N + q, where

N �

2(1 − p)
c

− 1

⌊ ⌋
, if λ � 1,

∞, if λ ≤ 1 − c

1 − p
,

1

log(λ) Wi −κe−κ( ) + κ( )
⌊ ⌋

, otherwise,




with κ � 1−p
c − 1

1−λ

( )
log(λ) and where i � 0 when λ> 1

and i � −1 when 1 − c/(1 − p)<λ< 1. For all values of
λ<∞, we have

q �
∑

k<N λk(1 − p − c(k + 1))
λN(c(N + 1) + p − 1) ∈ [0, 1].

The proof involves first showing that the throughput is
increasing in the threshold as long as the obedient strat-
egy is a customer equilibrium for the corresponding
threshold mechanism. Then, using the equilibrium con-
ditions for the obedient equilibrium, we obtain bounds
on the optimal thresholds. We provide the full details
in Appendix A.1.

Using this closed-form expression, we numerically
compare the optimal signaling mechanism against
those of fully-revealing and no-information mecha-
nisms. In Figure 1(a), we plot the revenue of the
optimal mechanism, along with those of the fully-
revealing and the no-information mechanisms for a
range of values of λ, when the customer utility is
given by u(X) � 1 − c(X + 1)with c � 0.2 under a fixed
price p � 0.3. As λ increases, the revenue of the fully-
revealing mechanism and the optimal mechanism
both converge to 0.3, the value when throughput
is equal to 1; however, for any fixed λ, the opti-
malmechanism outperforms the others. Note that, for
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small arrival rates, the no-information mechanism
outperforms the fully-revealing one; this is consis-
tent with existing results (Simhon et al. 2016), as in
this region, under the no-information mechanism, all
customers join the queue, whereas under the fully-
revealing mechanism, some customers will not join
upon seeing a long queue.

Next, we consider the effect of changing c while
fixing the values of the arrival rate (λ � 0.7) and the
fixed-price (p � 0.3) in Figure 1(b). Notice the revenue
for the fully-revealing mechanism is discontinuous:
This is because under full information, customers join
the queue only if the queue length is strictly less than
(1 − c − p)/c, implying that the customer strategy is
discontinuous in c. For low values of c, the revenue of
the no-information and the optimal mechanism are
both equal to pλ � 0.21, themaximal value, because all
customers join the queue. As c increases, the reve-
nue of the no-information mechanism goes to zero,
whereas the revenue of fully-revealing and the optimal

mechanism goes to 0.4, which arises when the cus-
tomers only join the queue if it is empty when they
arrive.
Finally, in Figure 1, (c) and (d), we compare the

revenue under the optimal mechanism against the
revenue of the no-information and the fully-revealing
mechanisms, where under each setting we set the
fixed-price optimally. In particular, in Figure 1(c), we
fix c � 0.2 and vary λ, whereas in Figure 1(d), we fix
λ � 0.7 and vary c. We see that the no-information
outperforms the fully-revealing information for low
values of the arrival rate λ, for a given c. As λ in-
creases, we observe that the revenue of the optimal
and the fully-revealing mechanisms converge, whereas
the no-informationmechanism’s revenue ismuch lower.
Similarly, for a fixed arrival rate, we see that optimal
signaling is effective in increasing revenue over the no-
information and the fully-revealing mechanisms for
moderate values of c—that is, when customers incur
moderate disutility for waiting.

Figure 1. (Color online) Comparison of the Optimal, the Fully-Revealing, and the No-Information Mechanisms
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6.2. Abandonment

Ourmodel assumes that the customers who choose to
join the queue stay in the queue until service com-
pletion. In many settings, this modeling assumption
is unrealistic, and one must explicitly account for cus-
tomer abandonment. A standard approach (Garnett
et al. 2002) to incorporate customer abandonment is
by modeling each arriving customer to have an in-
dependent and exogenously specified patience time τ
and assuming that the customer will abandon the
queue if she is still waiting to be served at time τ after
joining the queue.

Consider the setting where customers’ patience times
are distributed independently and identically as an
exponential distribution with rate γ. It is straight-
forward to show that our results continue to hold
in this setting. Formally, as before, let h(n, p) denote
a customers’ payoff upon joining the queue with n
customers already in the queue, and the fixed price is p.
(Note that, unlike in our original model, this payoff
function now incorporates the fact that the cus-
tomer may leave without obtaining service.) Then, by
a similar argument as before, the service provider’s
decision problem can be written as the following
linear program:

max
π

∑∞

n�1
πn

subject to
∑∞

n�0
(1 + γn)πn+1h(n, p) ≥ 0,

∑∞

n�0
λπn − (1 + γn)πn+1

( )
h(n, p) ≤ 0,

λπn − (1 + γn)πn+1 ≥ 0, for all n ≥ 0,

∑∞

n�0
πn � 1, πn ≥ 0, for all n ≥ 0.

(Here, we assume that once a customer is in service,
she would not abandon the queue; without this as-
sumption, one obtains a slightly modified linear pro-
gram.) From each feasible solution π to this linear
program, one can obtain the corresponding signaling
mechanism σ as σ(n, 1) � (1 + γn)πn+1/(λπn). For this
setting, a similar analysis of the preceding linear pro-
gram establishes Theorem 1 under samemonotonicity
conditions on the payoff function h.

Note, however, that the preceding model assumes
that the customers only choose to abandon the queue
when their patience runs out, and never before. When
the queue is observable and the service time distribu-
tions are known, this is a fairly mild assumption, be-
cause a customer does not learn new information about
her waiting time while she waits in the queue. How-
ever, in an unobservable queue, this assumption is
strong and will in fact not be followed by a fully ra-
tional customer. In particular, a rational customer may

find it optimal to abandon the queue before her patience
runs out. This is because, be the time spent waiting in
queue provides further information to a customer re-
garding the queue length, it is rational for a customer
to abandon the queue if she believes that her waiting
might be larger than her remaining patience. Modeling
the abandonment decision endogenously is challeng-
ing, even in models without signaling (Ata and Peng
2017, Ata et al. 2017), and incorporating signaling in such
models is an interesting direction for future work.

6.3. Heterogeneous Types

Another assumption of our model is that the cus-
tomers are homogeneous. Ourmodel can be naturally
extended to allow for customer heterogeneity in the
form of different utility for joining the queue. For-
mally, suppose there are K possible customer types
i ∈ {1, . . . ,K}, where the arrival rate of customers of
type i is given by λi. Suppose also that the service
provider observes the type of a customer upon her
arrival and charges a customer of type i a fixed-price
pi for obtaining service. Let

∑K
i�1 λi � Λ. Denote the

expected payoff for a customer of type i upon joining
the queue with X customers already in the queue as

hi(X, pi)≜ ui(X) − pi, where each ui(·) is nonincreasing
with ui(0)> 0 and limX→∞ ui(X)< 0. In this setting, a
signaling mechanism is specified by {σ(n, i, j) : n ≥ 0,
i � 1, . . . ,K; j � 0, 1}, where σ(n, i, 1) denotes the prob-
ability with which the service provider tells a cus-
tomer of type i to join the queue when there are n
customers already in the queue and σ(n, i, 0) denotes
the probability of telling them not to join. By let-

ting φ
i,j
n � λi/Λπnσ(n, i, j), where π � {πn : n ≥ 0} is the

steady-state distribution of the queue, the service
provider’s decision problem can be reduced to the
following linear program:

max
φ

∑∞

n�0

∑K

i�1
pi · φi,1

n

subject to
∑∞

n�0
φi,1
n hi(n, pi) ≥ 0, for i � 1, 2, . . . ,K,

∑∞

n�0
φi,0
n hi(n, pi) ≤ 0, for i � 1, 2, . . . ,K,

1

λ1
φ1,0
n + φ1,1

n

( )
� 1

λi
φi,0
n + φi,1

n

( )
,

for all n ≥ 0, i � 2, 3 . . . ,K,

1

λ1
φ1,0
n + φ1,1

n

( )
�

∑K

i�1
φi,1
n−1, for all n ≥ 1,

∑∞

n�0

∑K

i�1
φi,1
n + φi,0

n � 1,

φi,j
n ≥ 0, for all n ≥ 0, i � 1, 2, . . . ,K,

and j � 0, 1.

(6)
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Here, the first two inequalities correspond to the
obedience constraints for each type of customer. In
particular, the first inequality requires that when a
type i customer is told to join the queue, she finds it
optimal to join, whereas the second inequality re-
quires that the customer finds it optimal not to join
the queue if she is told not to join. The remaining
constraints in the linear program arise from the
constraints on the steady-state distribution π. From
a feasible solution φ, one can obtain the signaling

mechanism as σ(n, i, 1) � φi,1
n /(φi,1

n + φi,0
n ) and σ(n, i, 0) �

φi,0
n /(φi,1

n + φi,0
n ). Note that if K � 1, we are back to the

case with homogeneous customers, and the preceding
linear program reduces to the linear program (5), where
φ1,1
n � πn+1/λ, and φ1,0

n � πn − πn+1/λ for all n.
For the heterogeneous customer type setting, our

main result, Theorem 1, extends as follows:

Theorem 4. Suppose all the customer types are charged
the same fixed price; that is, pi � p for all i � 1, . . . ,K.
Then, there exists an optimal signaling mechanism that
signals each customer type by using a threshold mecha-
nism: σ(n, i, 1) � 1 for n<Ni and σ(n, i, 1) � 0 for n>Ni

for some Ni.

This result is obtained by using a similar argument
as to our main result: First, we show that under the
optimal mechanism, each customer type is told to join
the queue at all queue lengths for which they would
have joined under full information; next, we show that
any feasible mechanism satisfying this property but
not of a threshold type can be perturbed appropriately
without reducing the revenue. We omit the details for
brevity.

On the other hand, if not all customer types are
charged the same price, threshold mechanisms need
not be revenue-optimal across all signaling mecha-
nisms. We illustrate this using the following exam-
ple: Consider a setting with two types of customers
(K � 2), where each customer type has the following
utility function:

u1(n) �
51, n � 0,

40, n � 1,

−10, 000, n ≥ 2,

u2(n) �
2, n ≤ 1,

−8.5, n ≥ 2.

{


The type 1 customers are charged a price p1 � 50 for
service, whereas the type 2 customers are charged
p2 � 1. The arrival rates of the two types are λ1 �
λ2 � 1. Solving the linear program (6), we obtain the
optimal signaling mechanism to be

σ(n, 1, 1) �
1, n � 0,
1

10
, n � 1,

0, n ≥ 2,

σ(n, 2, 1) �
0, n � 0,
1

10
, n � 1,

0, n ≥ 2.







Observe that this is not a threshold mechanism for
customers of type 2. One can verify that no threshold
mechanism achieves the same revenue as the pre-
ceding mechanism.
Nevertheless, the following theorem shows that if

the (fixed) price for each type is set optimally, the
revenue-optimal signaling mechanism is a threshold
mechanism. Furthermore, an analogous result as in
Theorem 2 holds: The optimal signaling mechanism
(together with optimally set fixed type-dependent pri-
ces) achieves the same revenue as the optimal state-
and-type-dependent pricing mechanism. We provide
the proof in Appendix A.2.

Theorem 5. For the optimal choice of fixed prices pi, i �
1, . . . ,K, the optimal signaling mechanism has a threshold
structure. Also, the revenue achieved by the service provider
under this mechanism is same as that in the optimal state-
and-type dependent pricing mechanism.

Finally, a further extension of our model to het-
erogeneous customers involves the setting of private
types, where the service provider cannot observe the
types of the arriving customers. These settings in
general require a combinatorial number of signals,
where each signal corresponds to a subset of customer
types who join the queue after receiving it. In the
special case where all customer types are charged the
same price p, and the types are ordered, meaning
hi(n, p) ≥ hi+1(n, p) for all i � 1, . . . ,K and n ≥ 0, it suf-
fices to consider mechanisms involving K + 1 signals,
where the signal i corresponds to all customers with
types less than or equal to i joining the queue. Al-
though we can again formulate the service provider’s
decision problem as a linear program, we note once
again that threshold mechanisms need not be optimal;
there may exist signaling mechanisms that obtain
higher revenue than threshold mechanisms.

7. Conclusion
We analyze the optimal information-sharing prob-
lem in the context of an unobservable queue with
strategic customers. We establish that in the optimal
signaling mechanism, the service provider does not
fully reveal the queue state, nor completely conceals
it. We show that the optimal signaling mechanism
uses binary signals and has a threshold structure.
We obtain analytical expressions for the optimal
threshold in the case of linear customer utility. Fur-
thermore, we show that with the optimal choice of
the fixed price, the service provider can effectively use
signaling to achieve the expected revenue achieved by
the optimal state-dependent pricing mechanism.
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Appendix A. Proofs
In this section, we provide the proofs of the results in the
main body of the paper. We start with the proofs of the
lemmas in Section 3.

Proof of Lemma 1. Given a signaling mechanism Σ � (6, σ)
and customer equilibrium f , consider a new signaling mech-
anism Σ1 � (61, σ1), where 61 � 6 × {0, 1}, and σ1 : N0 ×
61 → [0, 1] is given by

σ1(n, s, 1) � σ(n, s)f (s),
σ1(n, s, 0) � σ(n, s)(1 − f (s)).

Now, consider the strategy f1 under the signaling mecha-
nism Σ1, where f1(s, 1) � 1 and f1(s, 0) � 0. We begin by
showing that the strategy f1 constitutes a customer equi-
librium under Σ1. First, note that the steady-state distri-
bution of the queue under (Σ1, f1) is same as that under (Σ, f ).
This follows from the fact that the queue has the same
transition probabilities at each state under the two set-
tings. Denote this common steady-state distribution by π∞.
From this, we obtain

EΣ1 ,f1 [h(X∞, p)|(s, 1)] �
∑∞

n�0
π∞(n|s, 1)h(n, p)

�
∑∞

n�0
π∞(n|s)h(n, p)

� EΣ, f [h(X∞, p)|s].

Here, π∞(n|s, 1) and π∞(n|s) denote the conditional proba-
bility that there are n customers in the queue upon seeing a
signal (s, 1) and s respectively in the two signaling mech-
anisms. The second equality follows from the fact that the
choice of the second component in σ1 is independent of the
number of customers in the queue.

Note that underΣ1, a customer sees the signal (s, 1) only if
f (s)> 0, which implies, from the fact that f is a customer
equilibrium under σ, that EΣ, f [h(X∞, p)|s] ≥ 0. This implies
that EΣ1 ,f1 [h(X∞, p)|(s, 1)] ≥ 0, and indeed f1(s, 1) � 1 is an
optimal action. Similarly, we obtain that if the customer
observes the signal (s, 0), then f1(s, 0) � 0 is indeed an op-
timal action. Together, we obtain that the strategy f1 is a
customer equilibrium under Σ1.

The proof then follows from the fact that f1 is a pure
strategy. □

Proof of Lemma 2. From Lemma 1, without loss of gener-
ality, assume that the customer equilibrium f is pure. Let 6i �
{s ∈ 6 : f (s) � i} for i � 0, 1. Define σ1 : N × {0, 1} → [0, 1] as
follows

σ1(n, i) �
∑
s∈6i

σ(n, s), for i � 0, 1.

Now, consider the strategy f1 under the signaling mecha-
nism σ1, where f1(i) � i for i � 0, 1. By similar argument as
in Lemma 1, it follows that the steady-state distribution
under (Σ, f ) is same as that under (Σ1, f1). Denote this steady-
state distribution by π∞. Thus, it follows that the two set-
tings are equivalent, if we show that f1 is indeed a customer
equilibrium under Σ1. This follows directly by observing
that π∞(n|i � 1) � π∞(n|s ∈ 61), and hence

EΣ1 ,f1 [h(X∞, p)|i � 1] � EΣ, f [h(X∞, p)|s ∈ 6
1]

�
∑∞

n�0
π∞(n|s ∈ 6

1)h(n, p)

�
∑
s∈61

π∞(s)
π∞(61)

∑∞

n�0
π∞(n|s)h(n, p)

� 1

π∞(61)
∑
s∈61

π∞(s)EΣ, f [h(X∞, p)|s]

≥ 0,

because EΣ, f [h(X∞, p)|s] ≥ 0 for all s ∈ 61. Here, π∞(s) de-
notes the probability in steady state of seeing signal s upon
arrival, and π∞(61) denotes the probability of seeing a
signal in 61. The third equation follows from the law of total
probability. From this, we obtain that f1(1) � 1 is an optimal
action on observing a signal 1 under σ1. Similarly, we obtain
that f (0) � 0 is an optimal action on observing 0 under σ1.
Together, this implies that f1 is a customer equilibrium
under Σ1 and the result follows. □

Proof of Lemma 3. We begin by showing that for any
signaling mechanism σ : N0 × 6 → [0, 1] feasible for (4),
there exists a feasible solution π � {πn : n ≥ 0} to the linear
program (5) with the same objective value. Note that the
steady-state distribution πσ

∞ of the queue under σ in the
obedient equilibrium satisfies the following detailed balance
equation,

πσ
∞(n)λσ(n, 1) � πσ

∞(n + 1),

implying that

πσ
∞(n) � λn ∏

n−1

j�0
σ( j, 1)

( )
πσ
∞(0), (A.1)

with πσ
∞(0) given by

πσ
∞(0) �

∑∞

n�0
λn ∏

n−1

j�0
σ( j, 1)

( )( )
−1
. (A.2)

Define π as πn � πσ
∞(n) for all n ≥ 0. Clearly πn ≥ 0 for all

n ≥ 0 and
∑∞

n�0 πn � 1. Similarly, using the detailed balance
equation, we obtain for any n ≥ 0,

λπn − πn+1 � λπσ
∞(n) − πσ

∞(n + 1)
≥ λπσ

∞(n, 1)σ(n, 1) − πσ
∞(n + 1) � 0.
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Thus, to show feasibility of π, we must verify that (5a)
and (5b) hold. To see this, observe that

Eσ[h(X∞, p)I{s � 1}] �
∑∞

n�0
πσ
∞(n, s � 1)h(n, p)

�
∑∞

n�0
πσ
∞(n)σ(n, 1)h(n, p)

� 1

λ

∑∞

n�0
πσ
∞(n + 1)h(n, p)

� 1

λ

∑∞

n�0
πn+1h(n, p)

� 1

λ

∑∞

n�1
πnh(n − 1, p).

(A.3)

Here, the third equality follows from the detailed balance con-
dition. Because σ is feasible for (4), we have E[h(X∞, p)|s �
1] ≥ 0. From this, we conclude that

∑∞
n�1 πnh(n − 1, p) ≥ 0,

and hence (5a) holds. Similarly, we have

Eσ[h(X∞, p)I{s � 0}] �
∑∞

n�0
πσ
∞(n, s � 0)h(n, p)

�
∑∞

n�0
πσ
∞(n)(1 − σ(n, 1))h(n, p)

�
∑∞

n�0
πσ
∞(n) −

1

λ
πσ
∞(n + 1)

( )
h(n, p)

� 1

λ

∑∞

n�0
λπn − πn+1( )h(n, p).

(A.4)

Again, we have used the detailed balance condition in
the third equality. Because σ is feasible for (4), we have
Eσ[h(X∞, p)|s � 0] ≤ 0. From this and the preceding equal-
ities, we conclude that (5b) holds. Finally, observe that

Eσ[λσ(X∞, 1)] �
∑∞

n�0
λπσ

∞(n)σ(n, 1) �
∑∞

n�0
πσ
∞(n + 1) �

∑∞

n�1
πn.

(A.5)

Thus, we obtain that π is feasible for (5), with the same
objective value as σ in (4).

Next, consider any feasible solution π� {πn : n≥ 0} for (5).
We show that there exists a signaling mechanism σ feasible
for (4) that attains the same objective value as π. Define σ :
N0×{0,1}→ [0,1] as

σ(n, 1) �
πn+1
λπn

, if πn > 0,

0, otherwise.




In order to verify that the obedience constraints hold for σ,
we first compute the steady-state distribution πσ

∞ when all
customers follow the obedient strategy. Using (A.1) and
(A.2), we get πσ

∞(n) � πn for all n ≥ 0. Thus, from (A.3) and
(A.4) and from the fact that π is feasible for (5), we obtain
that Eσ[h(X∞, p)I{s � 1}] ≥ 0 and Eσ[h(X∞, p)I{s � 0}] ≤ 0.
After conditioning on the appropriate event, we obtain that
σ satisfies the obedience constraints. Finally, using (A.5),
we conclude that σ achieves the same objective value in (4)
as π in the linear program (5). □

The following lemma is used in the proof of Theorem 1
to show that the maximum in the linear program (5) is
attained.

Lemma A.1. Let $ denote the set of all feasible solutions {πn :

n ≥ 0} to (5) of the following form: There exists an N ≥ Mp, such
that πn � λπn−1 for all n<N, 0<πN ≤ λπN−1 and πn � 0 for
n>N. (Note N can equal ∞.) Then, the set $ is compact under
the weak topology.

Proof. We will show that the set of distributions $ is tight.
The result then follows from Prokhorov’s theorem. To show
tightness, we prove that for any ǫ> 0, there exists an N such
that for any π ∈ $, we have

∑
n>N πn < ǫ.

Fix an ǫ> 0. First, note that if λ< 1, then for any feasible
solution π, we have πn ≤ λnπ0 ≤ λn. Hence, we obtain that
for all large enough N,

∑
n>N πn ≤ ∑

n>N λn
<λN/(1 − λ)< ǫ.

Thus, for the rest of the proof, suppose λ ≥ 1.
Let N be the first positive integer such that

∑N−1
n�1 λnh(n −

1, p)< 0 [because h(n, p) ≤ h(Mp, p)< 0 for all n ≥ Mp, there
must be such a value of N]. Note that for λ ≥ 1 and for π ∈
$, there must be an m<∞ such that πm <λπm−1. For a
feasible π ∈ $, let L be such that πn � λnπ0 for all n< L, 0 ≤
πL < λπL−1 and πn � 0 for all n>L. If L>N, we have

∑∞

n�1
πnh(n − 1, p) � π0

∑L−1

n�1
λnh(n − 1, p) + h(L − 1, p)πL

≤ π0

∑N−1

n�1
λnh(n − 1, p)< 0,

contradicting the fact that π ∈ $. Thus, for all π ∈ $, we
have L ≤ N and hence

∑
n>N πn � 0< ǫ. Thus, by Prokhor-

ov’s theorem, the set $ is compact. □

The following simple lemma states that the throughput
is increasing in the threshold, and is used in the Proof
of Theorem 3.

Lemma A.2. The throughput of the threshold signaling mecha-
nism σx is monotonically increasing in x ∈ R+.

Proof. Note that for x � N + q with N ∈ N0 and q ∈ [0, 1], we
have πx

∞(0) �
∑N

i�0 λ
i + λN+1q

( )−1, where {πx
∞(n) : n ≥ 0} de-

notes the steady-state distribution of the queue under the
signalingmechanism σx. This follows from the fact that under
σx, there are at most N + 1 customers in the queue, with a
new customer joining the queue with probability 1 if the
number of customers already in the queue is strictly less than
N, and joining with probability q if the number of customers
is equal to N, and balking otherwise. Thus, πx

∞(0) is strictly
decreasing in x � N + q. The result then follows from the
fact that throughput satisfies Th(σx) � λ(1 − πx

∞(0)). □

A.1. Proof of Theorem 3

We now present the Proof of Theorem 3, obtaining ana-
lytical expression for the optimal threshold in the case of
linear utility.

Proof of Theorem 3. Consider a threshold mechanism σx

with x ≥ Mp. We seek to find the largest value of x for which
the obedient strategy is a customer equilibrium. Then, by
Lemma A.2 and Theorem 1, we obtain the threshold mech-
anism σx is optimal.
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To begin, note that because x ≥ Mp, if a customer observes
a signal s � 0, then the number of customers in the queue is
at least ⌊x⌋ � Mp, and hence the expected payoff on joining the
queue is at most h(Mp, p) ≤ 0. Hence, leaving on seeing signal
s � 0 is indeed optimal.

We have for x � N + q ≥ Mp,

πx
∞(n|s � 1) � λnI{n<N} + qλNI{n � N}∑

k<N λk + qλN
.

This implies,

Eσx [h(X∞, p)|s � 1]

�
∑

k<N λk(1 − p − c(k + 1)) + qλN(1 − p − c(N + 1))∑
k<N λk + qλN

.

Thus, for joining the queue to be optimal for a customer on
seeing a signal s � 1, we must have

∑
k<N

λk(1 − p − c(k + 1)) + qλN(1 − p − c(N + 1)) ≥ 0. (A.6)

We consider the following two cases separately:

Case 1. λ � 1. In this case, the Equation (A.6) becomes

(1 − p − c)N − c

2
N(N − 1) + q(1 − p − c(N + 1)) ≥ 0. (A.7)

We first consider the case where q � 0 to find the largest N
that satisfies this equation. The largest such value of N is

N∗ � 2(1 − p)
c

− 1

⌊ ⌋
.

Unless the expression inside the floor operator on the right-
hand side is an integer, we have (1 − p − c)N − cN(N −
1)/2> 0, implying we can set q> 0 and not violate (A.7). The
largest value of q � q∗ that can be set is for which (A.7) is an
equality. (Note that q∗ cannot be equal to 1, by definition of
N∗.) From this, we obtain the following expression for q∗:

q∗ � (1 − p − c)N∗ − c
2N

∗(N∗ − 1)
c(N∗ + 1) + p − 1

.

Case 2. λ � 1.We, again, first consider the casewhere q � 0
and seek the largest value of N that satisfies (A.6). For any
value N that satisfies (A.6), upon adding up the summations,
we obtain

(1 − p) 1 − λN

1 − λ
− c

1 − λN

1 − λ
+ λ −NλN + (N − 1)λN+1

(1 − λ)2
( )

≥ 0,

which on simplifying yields,

(1 − p − c)(1 − λ)
λc

(1 − λN) ≥ 1 −NλN−1 + (N − 1)λN .

Let α � (1 − p − c)(1 − λ)/(λc) and β � (1 − λ)/λ. Then, we
obtain after some algebra,

Nβ + 1 − α
( )

λN ≥ 1 − α. (A.8)

Note that if α ≥ 1, implying that λ ≤ 1 − c/(1 − p), then the
right-hand side is nonnegative for allN ≥ 1. Thus, all values

of N ≥ Mp satisfy this equation, and hence we obtain
N∗ � ∞. In other words, the optimal signaling mechanism
always signals the customer to join the queue.

Suppose now that α< 1. Then, multiplying both sides

of (A.8) by λ
1
β

( )
1−α

> 0 gives us

Nβ + 1 − α
( )

λ
1
β

( )
Nβ+1−α ≥ (1 − α) λ

1
β

( )
1−α

.

Let ψ � Nβ + 1 − α and γ � λ1/β. Note that for all λ � 1, we
have γ< 1. The preceding equation can be written as
(1 − α)γ1−α ≤ ψγψ. After multiplying both sides by log(1/γ)> 0
and some algebra, we obtain

ψ log
1

γ

( )
exp −ψ log

1

γ

( )( )

≥ (1 − α) log 1

γ

( )
exp −(1 − α) log 1

γ

( )( )
. (A.9)

For x> 0, let H(x) be the function defined implicitly by
H(x) exp(−H(x)) � x exp(−x) with H(x) � x for x � 1. Ob-
serve that if x> 1, then H(x)< 1 and if x< 1, then H(x)> 1,
with H(1) � 1.

Note that if λ> 1, then β< 0, α< 0, which implies 1−α≥ 1.
Furthermore, we obtain that for λ>1, γ≤ e−1, which implies
log(1/γ) ≥ 1. Hence, z� (1−α) log(1/γ) ≥ 1. On the other
hand, if 1− c/(1−p)<λ<1, then β>0, 1−α ∈ [0,1], and fur-
thermore log(1/γ) ≤ 1. Hence, z� (1−α) log(1/γ) ≤ 1. Using
these facts, and the definition of H(·), we obtain from (A.9),

H (1 − α) log 1

γ

( )( )
≤ ψ log

1

γ

( )
≤ (1 − α) log 1

γ

( )
, if λ> 1;

(1 − α) log 1

γ

( )
≤ ψ log

1

γ

( )
≤ H (1 − α) log 1

γ

( )( )
, if λ< 1.

Using the fact that ψ � Nβ + 1 − α, and noting that β< 0 if
λ> 1 and β> 0 if λ< 1, we get

N ≤ 1

β log 1
γ

( ) H (1 − α) log 1

γ

( )( )
− (1 − α) log 1

γ

( )( )
.

Because N∗ is the largest such value of N, we have

N∗ � 1

β log 1
γ

( ) H (1 − α) log 1

γ

( )( )
− (1 − α) log 1

γ

( )( )


.

Using the definition of the Lambert-W function and its two
branches W0 and W−1 [see Borgs et al. (2014)], it can be
shown that for x> 0, we have H(x) � −Wi(xe−x), where i � 0

if x> 1 and i � −1 if x< 1. Upon letting κ � (1 − α) log 1
γ

( )
�

(1−pc − 1
1−λ) log(λ), we obtain

N∗ � 1

log(λ) Wi −κe−κ( ) + κ( )
⌊ ⌋

,

where i � 0 if λ> 1 and i � −1 if 1 − c
1−p <λ< 1.

Finally, observe that unless the expression inside the
floor operator in the expression for N∗ is an integer, we
have

∑
k<N∗ λ

k(1 − c(k + 1))> 0, and we can set q> 0 without
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violating (A.6). The largest value of q � q∗ that can be set is
for which (A.6) is an equality. (Note that q∗ cannot be equal
to 1, by definition of N∗.) From this, we obtain

q∗ �
∑

k<N∗ λk(1 − p − c(k + 1))
λN∗ (c(N∗ + 1) + p − 1) .

This completes the proof. □

A.2. Proof of Theorem 5

In this subsection, we prove Theorem 5. The proof follows a
similar structure to that of Theorem 2: We use the structure
of the optimal state-and-type-dependent pricing mecha-
nism in a fully observable queue to construct a threshold
signaling mechanism (with fixed prices) that attains the same
revenue. As the first step, we analyze the optimal state-and-
type-dependent prices in a fully observable queue, where the
service provider sets a price pi(n) for customer type i and
queue length n. We have the following lemma.

Lemma A.3. The optimal state-and-type-dependent pricing mech-
anism in a fully observable queue satisfies

pi(n) �
ui(n), if n<κi,
∞, if n ≥ κi,

{
(A.10)

for some κ � (κ1, . . . , κK) ∈ N
K

0
. Furthermore, this mechanism is

welfare-optimal.

Proof of Lemma A.3. We begin by formulating the pricing
problem in a fully observable queue as an infinite-horizon
Markov decision process (MDP) with average rewards. We
consider the embedded discrete time chain with states as
follows. For each n ≥ 0 and i ∈ {1, . . . ,K}, let (n, i) denote the
state where there are n customers already in the queue and a
customer of type i has arrived. Similarly, for n ≥ 0, let (n, 0)
denote the state after a customer has departed, leaving n
customers in the queue. Note that the service provider must
choose a price pi(n) ≥ 0 at state (n, i) for n ≥ 0 and i ∈ {1, . . . ,
K}. (At state (n, 0), the service provider chooses a dummy
action.)

First, note that because limX→∞ ui(X)< 0 for all i, there
exists anN such that the ui(n)< 0 for all i and n>N. Because
pi(n)> ui(n) for all n>N and each i, no customer will join
the queue when there are at least N customers already in the
queue. Thus, it follows that the MDP is unichain (Puterman
1994), and the optimal prices can be found by solving the
Bellman equation. Let V denote the average revenue under
the optimal pricing mechanism, and let g(n, i) denote the
bias (Puterman 1994) of each state (n, i).

The Bellman equation for the pricing problem can then be
written as follows: For each n ≥ 0 and i ∈ {1, . . . ,K}, we have

V+g(n,i)

� max
pi(n)≥0

I{pi(n)≤ui(n)} pi(n)+
∑K

j�1

λj

1+Λ
g(n+1,j)+ 1

1+Λ
g(n,0)

( )[

+ I{pi(n)>ui(n)}
∑K

j�1

λj

1n+Λ
g(n,j)+ 1n

1n+Λ
g(n−1,0)

( )]
,

(A.11)

and

V + g(n, 0) �
∑K

j�1

λj

1n + Λ
g(n, j) + 1n

1n +Λ
g(n − 1, 0). (A.12)

Here, we define 1n ≜ I{n> 0} and recall that Λ � ∑K
j�1 λj. The

first equation follows from the fact that if pi(n) ≤ ui(n), a
customer of type iwill join the queue at state (n, i), yielding
an immediate revenue of pi(n). Subsequently, the queue
state transitions to (n + 1, j) with probability λj/(1 + Λ) for
j ∈ {1, . . . ,K}, and to state (n, 0) with probability 1/(1 + Λ).
On the other hand, if pi(n)> ui(n), then the customer does
not join the queue at state (n, i), yielding no immediate
revenue and similar subsequent transitions. The second
equation follows from the fact that the service provider has
a single dummy action at state (n, 0) that yields no imme-
diate revenue.

From the Bellman equation, it follows that one can al-
ways restrict to pi(n) ∈ {ui(n),∞}: The price pi(n) � ∞ per-
forms equally as well as any pi(n)>ui(n), and any pi(n)<
ui(n) is strictly dominated by pi(n) � ui(n). Using this, we
can write (A.11) as

V + g(n, i) � max ui(n) +
∑K

j�1

λj

1 +Λ
g(n + 1, j) + 1

1 + Λ
g(n, 0)

[
,

∑K

j�1

λj

1n + Λ
g(n, j) + 1n

1n + Λ
g(n − 1, 0)

]
,

(A.13)

where the optimal price is ui(n) if the first term attains the
maximum, and ∞ otherwise. Thus, it remains to show that
the optimal pricing mechanism has a threshold structure—
that is, pi(n)<∞ implies pi(m)<∞ for all m< n.

Substituting (A.12) into (A.13) and after simplifying, we
obtain

g(n, i) � max ui(n) + g(n + 1, 0), g(n, 0)
{ }

� g(n, 0) + ui(n) − η(n)
( )+,

where η(n)≜ g(n, 0) − g(n + 1, 0) for all n. Substituting this
expression back into (A.12) and simplifying, we obtain the
following equation that holds for all n ≥ 0:

V �
∑K

i�1

λi

1n + Λ
ui(n) − η(n)

( )++ 1n
1n + Λ

η(n − 1). (A.14)

Note that pi(n)<∞ if and only if ui(n) ≥ η(n). Thus, to show
that the optimal prices have a threshold structure, we must
show that if ui(n) ≥ η(n) for some n, then ui(m) ≥ η(m) for all
m< n. Because ui(n) is nonincreasing in n for each i, it suffices
to show that η(n) is nondecreasing in n. We prove this latter
statement by induction.

First, note that because limX→∞ ui(X)< 0 for all i ∈ {1, . . . ,
K}, there exists an N > 0 such that ui(n)< 0 for each i and
n>N. By our earlier argument, this implies that optimal
prices satisfy pi(n) � ∞ for all i and n>N, which in turn
implies ui(n)< η(n) for all i and n>N. Then, using (A.14), we
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obtain η(n) � V(1 + Λ) for all n ≥ N. Hence, η(n) ≥ η(n − 1)
for all n>N.

Now suppose η(n) ≥ η(n − 1) for some n ≥ 2. Note that
because ui(n) ≤ ui(n − 1), this implies that (ui(n) − η(n))+ ≤
(ui(n − 1) − η(n − 1))+. From (A.14) and using the fact that
n ≥ 2, we obtain

V �
∑K

i�1

λi

1 + Λ
ui(n) − η(n)( )++ 1

1 + Λ
η(n − 1)

≤
∑K

i�1

λi

1 + Λ
ui(n − 1) − η(n − 1)( )++ 1

1 +Λ
η(n − 1)

�V − 1

1 + Λ
η(n − 2) + 1

1 + Λ
η(n − 1).

Thus, we have η(n − 1) ≥ η(n − 2). This completes the in-
duction step, and we conclude that η(n) is nondecreasing in
n. Thus, if ui(n) ≥ η(n) for some n, then ui(m) ≥ η(m) for all
m<n, and hence the optimal prices have a threshold structure.

Finally, it is straightforward to show that the problem
of welfare optimization (where the service provider per-
forms admission control to maximize social welfare) can
be written as a dynamic program with the same Bellman
equation, given by (A.12) and (A.13). This implies that the
optimal state-and-type-dependent pricing mechanisms is
also welfare optimal. □

We conclude with the proof of Theorem 5.

Proof of Theorem 5. From Lemma A.3, let κ � (κ1, . . . , κK)
denote the thresholds in the optimal state-and-type-dependent
pricing mechanism. Let Xκ

i denote the steady-state distribu-
tion of the queue under this pricing mechanism.

For the unobservable queue, consider the signaling mech-
anismσ, where σ(n, i, 1) � I{n<κi} for each i ∈ {1, . . . ,K}, and
the fixed (type-dependent) prices pi �E u(Xκ

∞)|Xκ
∞<κi

[ ]
. Us-

ing the same argument as in the proof of Theorem 2, it is
straightforward to show that, for this setting, obedience is
an equilibrium, and that under the obedient equilibrium,
the service provider’s revenue is the same as that of the
optimal state-and-type-dependent pricing mechanism.

Finally, because the latter mechanism is welfare-optimal
and has zero customer surplus, we conclude that the mecha-
nism σ and the prices pi together constitute the optimal fixed
price and signaling mechanism. □

Appendix B. Comparison of the Fully-Revealing and

the No-Information Mechanisms
In this section, we briefly compare the fully-revealing and
no-information mechanisms in the case of linear expected
utility u(X) � 1 − c(X + 1) and a fixed price p. Observe that
for p> 1 − c, no customer will join the queue to obtain
service, and hence the service provider’s revenue is zero.
We restrict our attention to p ∈ [0, 1 − c].

For the fully-revealing mechanism, we find the throughput
to be

Thfull � λ
1 − λMp

1 − λMp+1

( )
,

where Mp �
⌈
(1 − c − p)/c

⌉
. The optimal revenue for the

full-information signal is given by

Rfull � max
p

λ − λMp+1

1 − λMp+1

( )
p.

In the case of the no-information mechanism, a customer
strategy is a probability q with which a customer joins the
queue. We can view the queue as a thinned M/M/1 queue
with arrival rate qλ. Recall that the stationary distribution
for such a queue is qλ/(1 − qλ).

Note that q � 0 is not an equilibrium for p< 1 − c: If so,
joining the queue would have utility 1 − c − p> 0. We see
that q � 1 is an equilibrium if and only if the utility for
joining the queue (1 − p − c(λ/(1 − λ) + 1)) is at least that of
not (0), or, equivalently, if λ ≤ 1 − c/(1 − p). Otherwise, if
λ> 1 − c/(1 − p), we must have a mixed-strategy equilib-
rium q ∈ (0, 1). For this to be an equilibrium, the utility for
joining the queue [1 − p − c(qλ/(1 − qλ + 1)] must equal the
utility for not joining the queue (0), so that a mixed strategy
is optimal. This is equivalent to q � (1 − c/(1 − p))/λ. Putting
these cases together, we get that for any p ∈ [0, 1 − c], the
customer equilibrium f is given by q � min{(1 − c/(1−
p))/λ, 1}, with the corresponding throughput given by

Thno−info � min{1 − c/(1 − p), λ}. Maximizing the revenue p ·
Thno−info over values of p ∈ [0, 1 − c], we obtain the optimal
price p∗ to be

p∗ � 1 − c

1 − λ
, if λ ≤ 1 −   

c
√

,

1 −   
c

√
, otherwise,




with corresponding revenue given by

Rno−info � λ − cλ

1 − λ
, if λ ≤ 1 −   

c
√

,

1 −   
c

√( )
2, otherwise.




From the preceding discussion, we observe that for values
where λ< 1 − c/(1 − p), we have Thfull <Thno−info, implying
that sharing no information about the queue with cus-
tomers achieves higher throughput than revealing the
number of customers in the queue. On the other hand,
observe that when p � 1 − c − ǫ for small enough ǫ> 0, we
have Mp � 1, and hence,

lim
λ→∞

Rfull ≥ lim
λ→∞

(1 − c − ǫ) λ − λ2

1 − λ2

( )
� 1 − c − ǫ.

However, because
  
c

√
> c + ǫ for small enough c, we have

lim
λ→∞

Rno−info � (1 −
  
c

√
)2 � 1 − 2

  
c

√
+ c< 1 − c − ǫ.

Thus, in this limiting regime, we have that revealing the
number of customers in the queue obtains a higher revenue
than not revealing, as seen for large values of λ in Figure 1(c).

Endnotes
1Here, and in the sequel, we let N0 denote the set of nonnegative
integers.
2We note that in any equilibrium (as defined below), the queue will
be stable.
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3Note that in this formulation, we have ignored the possibility of the
existence of multiple equilibria under a signaling mechanism. The
right formulation would require that the service provider chooses, in
addition to the signaling mechanism, a focal equilibrium f among all
possible equilibria. Our results continue to hold under this formu-
lation; we suppress the technical details for brevity and readability.
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