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Abstract—Several problems in modeling and control of
stochastically-driven dynamical systems can be cast as regular-
ized semi-definite programs. We examine two such representative
problems and show that they can be formulated in a similar
manner. The first, in statistical modeling, seeks to reconcile
observed statistics by suitably and minimally perturbing prior
dynamics. The second seeks to optimally select a subset of
available sensors and actuators for control purposes. To address
modeling and control of large-scale systems we develop a unified
algorithmic framework using proximal methods. OQur customized
algorithms exploit problem structure and allow handling sta-
tistical modeling, as well as sensor and actuator selection, for
substantially larger scales than what is amenable to current
general-purpose solvers. We establish linear convergence of
the proximal gradient algorithm, draw contrast between the
proposed proximal algorithms and alternating direction method
of multipliers, and provide examples that illustrate the merits
and effectiveness of our framework.

Index Terms—Actuator selection, sensor selection, sparsity-
promoting estimation and control, method of multipliers, non-
smooth convex optimization, proximal algorithms, regularization
for design, semi-definite programming, structured covariances.

I. INTRODUCTION

Convex optimization has had tremendous impact on many
disciplines, including system identification and control de-
sign [1]-[7]. The forefront of research points to broadening the
range of applications as well as sharpening the effectiveness of
algorithms in terms of speed and scalability. The present paper
focuses on two representative control problems, statistical
control-oriented modeling and sensor/actuator selection, that
are cast as convex programs. A range of modern applications
require addressing these over increasingly large parameter
spaces, placing them outside the reach of standard solvers.
A contribution of the paper is to formulate such problems as
regularized semi-definite programs (SDPs) and to develop cus-
tomized optimization algorithms that scale favorably with size.

Modeling is often seen as an inverse problem where a search
in parameter space aims to find a parsimonious representation
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of data. For example, in the control-oriented modeling of
fluid flows, it is of interest to improve upon dynamical
equations arising from first-principles (e.g., linearized Navier-
Stokes equations), in order to accurately replicate observed
statistical features that are estimated from data. To this end, a
perturbation of the prior model can be seen as a feedback gain
that results in dynamical coupling between a suitable subset of
parameters [8]-[10]. On the flip side, active control of large-
scale and distributed systems requires judicious placement
of sensors and actuators which again can be viewed as the
selection of a suitable feedback or Kalman gain. In either
modeling or control, the selection of such gain matrices must
be guided by optimality criteria as well as simplicity (low
rank or sparse architecture). We cast both types of problems as
optimization problems that utilize suitable convex surrogates to
handle complexity. The use of such surrogates is necessitated
by the fact that searching over all possible architectures is
combinatorially prohibitive.

Applications that motivate our study require scalable algo-
rithms that can handle large-scale problems. While the opti-
mization problems that we formulate are SDP representable,
e.g., for actuator selection, worst-case complexity of generic
solvers scales as the sixth power of the sum of the state
dimension and the number of actuators. Thus, solvers that
do not exploit the problem structure cannot cope with the
demands of such large-scale applications. This necessitates the
development of customized algorithms that are pursued herein.

Our presentation is organized as follows. In Section II,
we describe the modeling and control problems that we
consider, provide an overview of literature and the state-of-
the-art, and highlight the technical contribution of the paper.
In Section III, we formulate the minimum energy covariance
completion (control-oriented modeling) and sensor/actuator
selection (control) problems as nonsmooth SDPs. In Sec-
tion IV, we present a customized Method of Multipliers (MM)
algorithm for covariance completion. An essential ingredient
of MM is the Proximal Gradient (PG) method. We also use
the PG method for sensor/actuator selection and establish
its convergence rate. In Section V, we offer two motivating
examples for actuator selection and covariance completion and
discuss computational experiments. We conclude with a brief
summary of the results and future directions in Section VI.

II. MOTIVATING APPLICATIONS AND CONTRIBUTION

We consider dynamical systems with additive stochastic
disturbances. In the first instance, we are concerned with a
modeling problem where the statistics are not consistent with
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Fig. 1. A feedback connection of an LTI system with a static gain matrix
that is designed to account for the sampled steady-state covariance X.

a prior model that is available to us. In that case, we seek
to modify our model in a parsimonious manner (a sparse and
structured perturbation of the state matrix) so as to account
for the partially observed statistics. In the second, we are
concerned with the control of such stochastic dynamics via
a collection of judiciously placed sensors and actuators. Once
again, the architecture of the (now) control problem calls for
the selection of sparse matrix gains that effect control and
estimation. These problems are explained next.

A. Statistical modeling and covariance completion

It is well-established that the linearized Navier-Stokes (NS)
equations driven by stochastic excitation can account for
qualitative [11]-[15] and quantitative [9], [10] features of shear
flows. The value of such models has been to provide insights
into the underlying physics as well as to guide control design.
A significant recent step in this direction was to recognize [9]
that colored-in-time excitation can account for features of the
flow field that white noise in earlier literature cannot [16].
Furthermore, it has been pointed out that the effect of colored-
in-time excitation is equivalent to white-in-time excitation
together with a structural perturbation of the system dynam-
ics [8], [9]. Such structural perturbations may reveal salient
dynamical couplings between variables and, thereby, enhance
understanding of basic physics [9, Section 6.1]; see [10] for
a review of covariance completion problems and its relevance
in stochastic dynamical modeling of turbulent flows.

These insights and reasoning motivate an optimal state-
feedback synthesis problem [17] to identify dynamical cou-
plings that bring consistency between the model and the
observed statistics. Model parsimony dictates a penalty on
the complexity of structural perturbations and leads to an
optimization problem that involves a composite cost function

f(X,K) + v9(K) (1)

subject to stability of the system in Fig. 1. Here, X denotes a
state covariance matrix and K is a state-feedback matrix. The
function f(X, K) penalizes variance and control energy while
g(K) is a sparsity-promoting regularizer which penalizes the
number of nonzero rows in K; sparsity in the rows of K
amounts to a reduced number of feedback couplings that
modify the system dynamics. In addition, state statistics may
be partially known, in which case a constraint X;; = G;; for
(i,7) € T is added, where the entries of G represent known
entries of X for indices in Z.

The resulting minimum-control-energy covariance comple-
tion problem can be cast as an SDP which, for small-size
problems, is readily solvable using standard software. A class

of similar problems have been proposed in the context of
stochastic control [18]-[21] and of output covariance estima-
tion [22], [23] which, likewise and for small-size, are readily
solvable by standard software.

B. Sensor and actuator selection

The selection and proper placement of sensors/actuators im-
pacts the performance of closed-loop control systems; making
such a choice is a nontrivial task even for systems of modest
size. Previous work on actuator/sensor placement either relies
on heuristics or on greedy algorithms and convex relaxations.

The benefit of a particular sensors/actuator placement is
typically quantified by properties of the resulting observ-
ability/controllability and the selection process is guided by
indicators of diminishing return in performance near optimal-
ity [24], [25]. However, metrics on the performance of Kalman
filters and other control objectives have been shown to lack
supermodularity [26], [27], which hampers the effectiveness
of greedy approaches in sensor/actuator selection.

The literature on different approaches includes convex for-
mulations for sensor placement in problems with linear mea-
surements [28], maximizing the trace of the Fisher information
under constraints when dealing with correlated measurement
noise [29], and a variation of optimal experiment design for
placing measurement units in power networks [30]. Actuator
selection via genetic algorithms has also been explored [31].
Finally, a non-convex formulation of the joint sensor and ac-
tuator placement was advanced in [32], [33] and was recently
applied to the linearized Ginzburg-Landau equation [34].

Herein, we cast our placement problem as one of optimally
selecting a subset of potential sensors or actuators which, in a
similar manner as our earlier modeling problem, involves the
minimization of a nonsmooth composite function as in (1).
More specifically, we utilize the sparsity-promoting framework
developed in [35]-[37] to enforce block-sparse structured
observer/feedback gains and select sensors/actuators.

The algorithms developed in [37] have been used for
sensor selection in target tracking [38] and in periodic sensor
scheduling in networks of dynamical systems [39]. However,
they were developed for general problems, without exploiting
a certain hidden convexity in sensor/actuator selection. Indeed,
for the design of row-sparse feedback gains, the authors
of [40] introduced a convex SDP reformulation of the problem
formulated in [37]. Inspired by [37], the authors of [41]
extended the SDP formulation to Hy and H ., sensor/actuator
placement problems for discrete time LTI systems. Their
approach utilizes standard SDP-solvers with re-weighted /-
norm regularizers. In the present paper, we integrate several
of these ideas. In particular, we borrow group-sparsity regu-
larizers from statistics [42] and develop efficient customized
proximal algorithms for the resulting SDPs.

C. Main contribution

In the present paper, we highlight the structural similarity
between statistical modeling and sensor/actuator selection, and
develop a unified algorithmic framework for handling large-
scale problems. Proximal algorithms are utilized to address
the non-differentiability of the sparsity-promoting term g(K)



in the objective function. We exploit the problem structure,
implicitly handle the stability constraint on state covariances
and controller gains by expressing one in terms of the other,
and develop a customized proximal gradient algorithm that
scales with the third power of the state-space dimension.
We prove linear convergence for the proximal gradient al-
gorithm with fixed step-size and propose an adaptive step-
size selection method that can improve convergence. We also
discuss initialization techniques and stopping criteria for our
algorithms, and provide numerical experiments to demonstrate
the effectiveness of our approach relative to existing methods.

III. PROBLEM FORMULATION
Consider a linear time-invariant (LTI) system with state-
space representation

Az + Bu + d
y= Cx

‘(.C:

2

where z(t) € C" is the state vector, y(t) € CP is the output,
u(t) € C™ is the control input, and d(¢) is a white stochastic
process with zero-mean and the covariance matrix V' > 0,
E(d(t)d*(r)) = Vé(t — 7). Here, E is the expected value,
B € C™*™ is the input matrix with m <n, C' € CP*" is the
output matrix, and the pair (A, B) is controllable. The choice
of the state-space is motivated by spatially distributed systems
where the application of the spatial Fourier transform naturally
leads to complex-valued quantities in (2); e.g., see [43].

We consider two specific applications, one that relates
system identification and covariance completion, and another
that focuses on actuator selection in a control problem. Both
can be cast as the problem to select a stabilizing state-feedback
control law, u = —Kuz, that utilizes few input degrees of
freedom in the sense that the matrix K has a large number of
zero rows. At the same time, the closed-loop system

t =(A—-—BK)x +d
shown in Fig. 1 is consistent with partially available state-

correlations and/or is optimal in a quadratic sense.
More specifically, if

X = tllmm E (x(t) z*(t))

denotes the stationary state-covariance of the controlled sys-
tem, the pertinent quadratic cost is

f(X,K) := trace(QX + K*RKX)

= Jlim B ()Qa(t) + u' () Ru(t))

whereas () = Q* > 0 and R = R* > 0 specify penalties on
the state and control input, respectively. Both stability of the
feedback dynamics and consistency with the state covariance
X reduce to an algebraic constraint on K and X, namely,

(A—BK)X + X(A—BK)*+V =0. (4

Finally, the number of non-zero rows of K can be seen as the
number of active degrees of freedom of the input u = —Kx.
The choice of such a K, with few non-zero rows is sought via
minimization of a non-smooth composite objective function in

Problem 1, where

g(K) == 3 wi|lei K]z 5)
i=1
is a regularizing term that promotes row-sparsity of K [42],
w; are positive weights, and e; is the ¢th unit vector in R™.
Problem 1: Minimize f(X,K) + vg(K), subject to (4),
X > 0, and, possibly, constraints on the values of specified
entries of X, X;; = G;; for (4,5) € Z, where a set of pairs
Z and the entries G;; are given.

In this problem, v > 0 specifies the importance of sparsity,
and 7 specifies indices of available covariance data. A useful
variant of the constraint on the entries of X, when, e.g.,
statistics of output variables are estimated, can be expressed as

(C’AX'C'*)Zj = Gij for (’L,j) el (6)

We next explain how Problem 1 relates to the two aforemen-
tioned topics of covariance completion and actuator selection.

A. Covariance completion and model consistency

In many problems, it is often the case that a model is
provided for a given process which, however, is inconsistent
with new data. In such instances, it is desirable to revise the
dynamics by a suitable perturbation to bring compatibility
between model and data. The data in our setting consists of
statistics in the form of a state covariance X for a linear model

T = Ax + d @)

with white noise input d.

We postulate and deal with a further complication when the
data is incomplete. More specifically, we allow X to be only
partially known. Such an assumption is motivated by fluid flow
applications that rely on the linearized NS equations [9]. In
this area both the numerical and experimental determination
of all entries of X is often prohibitively expensive. Thus, the
problem to bring consistency between data and model can be
cast in the form of Problem 1, where we seek a completion of
the missing entries of X along with a perturbation A := —BK
of the system dynamics (7), into

i = (A+ Az + d

The assumed structure of A is without loss of generality,
and the choice of B may incorporate added insights into the
strength and directionality of possible couplings between state
variables. It should be noted that a full-rank matrix B that
allows the perturbation signal Kz to manipulate all degrees of
freedom can lead to the complete cancellation of the original
dynamics A; see [8, Section III] for details. Then, when
seeking a suitable perturbation, it is also natural to impose
a penalty on the average quadratic size of signals Kx. This
brings us into the setting of Problem 1, where the choice of
most suitable perturbation is determined by the optimization
criterion. Once again, the row-sparsity promoting penalty
g(K) impacts the choice of feedback couplings that need to
be introduced to modify the dynamical generator A [17].

B. Actuator selection

As is well-known, the unique optimal control law that



minimizes the steady-state variance (3) of system (2) is a
static state-feedback v = —Kz. The optimal gain K and
the corresponding state covariance X can be obtained by
minimizing f(X, K), over K € C™*", and positive definite
X = X* € C™™. The solution can also be obtained
by solving an algebraic Riccati equation arising from the
KKT conditions of this optimization problem. In general, K
is populated by non-zero entries, implying that all “input
channels” (i.e., all entries of u) would be active. Since the
columns of B encode the effect of individual “input channels”,
representing location of actuators, a subselection that is af-
fected by the row-sparsity promoting regularizer in Problem 1,
amounts to actuator selection amongst available options. A
dual formulation can be cast to address sensor selection and
can be approached in a similar manner; see Appendix A.
C. Change of variables and SDP representation

The constraint X > 0 in Problem 1 allows for a standard
change of variables Y := KX to replace K in f(X,K) =
trace (QX + K*R K X). This yields the function

f(X,Y) = trace (QX + Y*RYX_l) 8)

which is jointly convex in (X, Y"). Further, the row-sparsity of
K is equivalent to the row-sparsity of Y [40]. This observation
leads to the convex reformulation of Problem 1 (incorporating
the more general version of constraints (6)) as follows.

Problem 2: Minimize f(X,Y) + v, wille;Y |2 over a
Hermitian matrix X € C**™ and Y € C™*", subject to:
AX + XA* - BY -Y*B*+V = 0
(1 -=98[(CXC*)oE -G] = 0

X = 0
{O,
5:
L,

The symbol o denotes elementwise matrix multiplication, and
FE is the structural identity matrix,

L,
Ei =9 ¢,

As explained earlier, the matrices A, B, C, G, and V are
problem data. From the solution of Problem 2, the optimal
feedback gain matrix can be recovered as K = Y X~ 1. We
note that the optimization of f can be expressed as an SDP.
Specifically, the Schur complement can be used to characterize
the epigraph of trace (R YX ’1Y*) via the convex constraint

w RY2y
Y*RL/2 X

where

for covariance completion

for actuator selection.

if G;; is available

if G;; is unavailable.

=0
and trace (W), where W is a matrix variable and the joint
convexity of trace (RY X 'Y*) in (X,Y) follows [4].

We also note that although the row-sparsity patterns of ¥
and K are equivalent, the weights w; are not necessarily the
same in the respective expressions in Problems 1 and 2. In
practice, the weights are iteratively adapted to promote row-
sparsity; see Section IV-G. Problem 2 can be solved efficiently

using general-purpose solvers for small number of variables.
To address larger problems, we next exploit the structure
and develop optimization algorithms based on the proximal
gradient algorithm and the method of multipliers.

IV. CUSTOMIZED ALGORITHMS

In this section, we describe the steps through which we
solve Problem 2, identify the essential input channels in B,
and subsequently refine the solutions based on the identified
sparsity structure. For notational compactness, we write the
linear constraints in Problem 2 as

A1(X) = BY)+V 0
(1 -6 [A(X) —G] = 0

where the linear operators A;: C"*"™ — C"*™, Ay: C"*™ —
CP*P and B: C"™*™ — C™*™ are given by

A(X) == AX + X A*
As(X) = (CXC*)oE
B(YY) := BY + Y*B*.

A. Elimination of variable X
For any Y, there is a unique X that solves the equation
A1(X) - BY)+V =0 9)

if and only if the matrices A* and —A do not have any
common eigenvalues [44]. When this condition holds, we can
express the variable X as an affine function of Y,

X(Y) = ATNBY) - V) (10)
and restate Problem 2 as
mini};nize fY) + v9Y)
subject to (1 — §) [A2(X(Y)) — G] = 0 (11)
X(Y) > 0.
The smooth part of the objective function in (11) is given by
f(Y) = trace (QX(Y) + Y*RYX1(Y)) (12)
and the regularizing term is
g(Y) == Y wilefY]s. (13)

i=1
Since optimization problem (11) is equivalent to Problem 2
constrained to the affine equality (10), it remains convex.

When the matrix A is Hurwitz, expression (10) can be cast
in terms of the well-known integral representation,

o0
X(Y) = / M (V — BY — Y*B*) et tdt.
0

Even for unstable open-loop systems, the operator A4; is
invertible if the matrices A* and — A do not have any common
eigenvalues. In our customized algorithms, we numerically
evaluate the action of A] ! on the current iterate by solving
the corresponding Lyapunov equation which requires making
the following assumption.



Assumption 1: The operator A; is invertible.

Appendix B provides a method to handle cases where this
assumption does not hold.

B. Proximal gradient method for actuator selection

The proximal gradient (PG) method generalizes gradient
descent to composite minimization problems in which the
objective function is the sum of a differentiable and non-
differentiable component [45], [46]. It is most effective when
the proximal operator associated with the nondifferentiable
component is easy to evaluate; many common regularization
functions, such as the ¢; penalty, nuclear norm, and hinge
loss, satisfy this condition. Herein, we present details of a
customized variant of the PG method for solving (11) with
0 = 1. In Algorithm 1, we follow the recommendations
of [45], [47] for choosing the step-size and stopping criterion.

The PG method for solving (11) with 6 = 1 is given by

yktl .= proxﬁkg(Yk — ai Vf(Yk)) (14)

where Y% is the kth iterate, oy, > 0 is the step-size, and
Br = ~ai. The proximal operator of a real-valued proper,
closed, convex function A is defined as [48]
1
prox, (V) := argmin (h(Y) + §HY - V|%) (15)
Y

where || - || ¢ is the Frobenius norm. For the row-sparsity regu-
larizer, the proximal operator of the function g is determined

by the soft-thresholding operator which acts on the rows of the
matrix V,

1 — Bw;/||e;V]2)elV, eiVlia > Bw;
sﬁ@m:{( Bus/ [V IV, eVl > B

0, JlefVl2 < fw.

Proximal update (14) results from a local quadratic approx-
imation of f at iteration k, i.e.,

YA = argmin f(YF) + (VFYF), Yy - V") +
Y

1
5o IV = Yl + va(Y)

(16)
followed by a completion of squares that brings the problem
into the form of (15) with h := vyayg. Here, (-,-) denotes the
standard matricial inner product (M7, Ms) := trace (M7 M2)
and the expression for the gradient of f(Y') is provided in
Appendix C.

1) Initialization and choice of step-size in (14): The PG
algorithm is initialized with Y° = K%XO°, where K° is
a stabilizing feedback gain and X° is the corresponding
covariance matrix that satisfies (4). The optimal centralized
controller resulting from the solution of the algebraic Ric-
cati equation provides a stabilizing initial condition and the
closed-loop stability is maintained via step-size selection in
subsequent iterations of Algorithm 1. At each iteration of the
PG method, we determine the step-size oy via an adaptive
Barzilai-Borwein (BB) initial step-size selection [47], i.e.,

k0 = {

if ap/as > 1/2
otherwise

cm (17)
as — am/2

followed by backtracking to ensure closed-loop stability

X(Y* ) =0 (18a)

and sufficient descent of the objective function f(Y)+~vg(Y)
resulting from

FOYRY) < YR + (VYR YR YR 4

1
—;MY“l—YW%- (18b)

2c0
Similar strategies as (18b) were used in [45, Section 3].
Here, the “steepest descent” step-size as and the “minimum
residual” step-size «,, are given by,

<Yk _ kal Yk _ Yk71>
YF = YFT VfYR) = VI(VAT))

(k= YR wp(vk) - Vi(rEY))
(VI(YF) = V(YED), VFYF) = V(YR
If as < 0 or oy, < 0, the step-size from the previous iteration
is used; see [47, Section 4.1] for additional details.

Qg =

Xy =

2) Stopping criterion: We employ a combined condition
that terminates the algorithm when either the relative residual

el _ I+
= ~ b)
' max{[|[Vf (YR, [(YFHE =Y Jag ||} + e
or the normalized residual
el
" [Pt + en

are smaller than a desired tolerance. Here, ¢, and ¢,, are small
positive constants, the residual is defined as

P TR 4 (PR -y

and Y*t! := Y* — o, Vf(Y*). While achieving a small
r, guarantees a certain degree of accuracy, its denominator
nearly vanishes when Vf(z*) = 0, which happens when
0 € 9g(Y™*). In such cases, ||r,| provides an appropriate
stopping criterion; see [47, Section 4.6] for additional details.

Algorithm 1 Customized PG Algorithm
input: A, B, V, Q, R, v > 0, positive constants €, €,,
tolerance ¢, and backtracking constant ¢ € (0, 1).
initialize: £ = 0, ago = 1, 0 = 1, 2 = 1, choose
Y? = K°XO0 where K is a stabilizing feedback gain with
corresponding covariance matrix X°.

while: r¥ > e or rf > ¢
compute ay: largest feasible step in {c/ay0}j=01

such that Y5t1 gatisfies (18)

k+1 k+1
T n

yeen

compute 7 and r
k=k+1
choose ay, o based on (17)
endwhile

output: e-optimal solutions, Y**! and X (Y*+1).




C. Convergence of the proximal gradient algorithm

We next analyze the convergence of the PG algorithm for the
strongly convex nonsmooth composite optimization problem,

fY) +7vg(Y).

The PG algorithm (14) with suitable step-size converges with
the linear rate O(p*) for some p € (0, 1) if: (i) the function f
is strongly convex and smooth (i.e., it has a Lipschitz contin-
uous gradient) uniformly over the entire domain; and (ii) the
function g is proper, closed, and convex [49, Theorem 10.29].
In problem (11), however, condition (i) does not hold over the
function domain

Dy :={Y eC"™ " A(X(Y)) - B(Y)=-V, X(Y) >0}
(20)

minimize
Y

19)

corresponding to stabilizing feedback gains K = YX ! To
address this issue, we exploit the coercivity [48, Definition
11.10] of common regularization functions and establish linear
convergence of the PG method for a class of problems (19) in
which the function f satisfies the following assumption.

Assumption 2: For all scalars a, the proper closed convex
function f defined over an open convex domain D has

(i) compact sublevel sets D(a) :={Y € D| f(Y) < a};
(ii) an L,-Lipschitz continuous gradient over D(a);
(iii) a strong convexity modulus p, > 0 over D(a).

Proposition 1 establishes linear convergence of the PG
algorithm with sufficiently small fixed step-size. Proofs of all
technical results presented here are provided in Appendix D.

Proposition 1: Let the function g be coercive, proper,
closed, and convex and let the function f in (19) satisfy
conditions (i) and (ii) in Assumption 2. Then, for any initial
condition Y € D the iterates {Y*} of the PG algorithm (14)
with step-size « € [0,1/L,] remain in the sublevel set D(a),
with a > f(Y?) +~(g(Y?) — g(Y)), for all Y. Furthermore,
if condition (iii) in Assumption 2 also holds, then

YA = Y*E < (1 = mae) Y = Y5 @D

where Y™ is the globally optimal solution of (19).

We next establish strong-convexity and smoothness for the
function f in (12) over its sublevel sets. These properties allow
us to invoke Proposition 1 and prove linear convergence for
the PG algorithm applied to problem (11) with § = 1.

Proposition 2: The function f in (12) with the convex
domain D, given by (20) satisfies Assumption 2.

Our main result is presented in Theorem 1.

Theorem 1: For any stabilizing initial condition Y° € Dy,
the iterates of the PG algorithm (14) with step-size a €
[0,1/L,] applied to problem (11) with 6 = 1 satisfy (21),
where ., and L, are the strong convexity modulus and
smoothness parameter of the function f over D(a) with
a> f(Y°) +~g(Y?).

Proof: In addition to being proper, closed, and convex, it
is straightforward to verify that the function g given by (13)

is coercive, i.e.,

lim Y) = 4.
IYlle H+oog( )
Moreover, from the nonnegativity of g(Y"), it follows that a >
FY?) ++(g(Y%) — g(Y)) for all Y. Thus, the result follows
from combining Propositions 1 and 2. [ ]

Remark 1: Proposition 1 proves that the PG algorithm
with fixed step-size o € (0,1/L,] converges at the lin-
ear rate O((1 — pg)®). A linear rate O(p*) with p =
1 —min{1/(v/2L,),c/L,} can also be guaranteed using the
adaptive step-size selection method of Section IV-B1; see
Appendix E.

The next lemma provides an expression for the smoothness
parameter of the function f over its sublevel sets. We note
that this parameter depends on problem data.

Lemma 1: Over any non-empty sublevel set D(a), the
gradient V f(Y) is Lipschitz continuous with parameter

La _ 2>\1naX(R) 1 + \/&”Al 8”2 (223)
v l//\min(R)
where the positive scalar
2
o M) (AL Bl o)
da \/)\min(Q> \/)\min (R)

gives the lower bound vI < X(Y') on the covariance matrix.

Remark 2: While Lemma 1 provides an expression for the
smoothness parameter, we have recently established an explicit
expression for the strong convexity modulus [50]

2 )\min (R))\mln(Q) .
(4172 + @Bl (i Qs (V) () ™)

Based on Theorem 1, the explicit expressions for parameters
L, and p, determine a theoretical bound of 1 — p,/L, on
the linear convergence rate of the PG algorithm with step-size
ay = 1/L,. Tt should be noted that this bound depends on the
initial condition Y'° and problem data.

Ha =

D. Method of multipliers for covariance completion

We handle the additional constraint in the covariance com-
pletion problem by employing the Method of Multipliers
(MM). MM is the dual ascent algorithm applied to a smooth
variant of the dual problem and it is widely used for solving
constrained nonlinear programming problems [51]-[53].

The MM algorithm for constrained optimization prob-
lem (11) with § = 0 is given by,

YR+t = arg}r/nin L, (Y; AF)

(23a)

ARHL = AR (Az(X(YkH))

where £, is the associated augmented Lagrangian,
L,(Y;A) = f(Y) + v9(Y) +

(A A(X(Y)) = G) + £ A(X(Y) = GII3

- G)  (23b)



A € CP*P is the Lagrange multiplier and p is a positive scalar.
The algorithm terminates when the primal and dual residuals
are small enough. The primal residual is given as

Ap = [AAXYFE) = Glp (24a)

and the dual residual corresponds to the stopping criterion on
subproblem (23a)

Ay = min{r,,r,}

(24b)

where the relative and normal residuals, r», and r,, are
described in Section IV-B.

1) Solution to the Y -minimization problem (23a): For fixed
{pr, A*}, minimizing the augmented Lagrangian with respect
to Y amounts to finding the minimizer of £,, (Y; A¥) subject
to X(Y) > 0. Since g(Y) is nonsmooth, we cannot use
standard gradient descent methods to find the update Y*+1,
Howeyver, similar to Section IV-B, a PG method can be used
to solve this subproblem iteratively

yith = Proxg . (Y7 — a;VF(Y7)) (25)

where j is the inner PG iteration counter, o; > 0 is the step-
size, B; := a;7, and F(Y') denotes the smooth part of the
augmented Lagrangian £,, (Y;A"),

F(Y) = f(Y) + (A% A(X(YV)) = G) +
24X (V) - Gl

The expression for the gradient of F(Y) is provided in
Appendix F. Similar to Section IV-B, we combine BB step-
size initialization with backtracking to satisfy conditions (18).
2) Lagrange multiplier update and choice of step-size
in (23b): Customized MM for covariance completion is sum-
marized as Algorithm 2. We follow the procedure outlined
in [53, Algorithm 17.4] for the adaptive update of pj. This
procedure allows for inexact solutions of subproblem (23a) and
a more refined update of the Lagrange multiplier A through
the adjustment of convergence tolerances on A, and Ag4. Note
that standard convergence results for MM depend on the level
of accuracy in solving subproblem (23a) [51, Sections 5.3
and 5.4]. While we establish linear convergence of the PG
algorithm for solving this subproblem, we relegate a detailed
convergence analysis for the MM algorithm to future work.

E. Computational complexity

Computation of the gradient in both algorithms involves
evaluation of X from Y based on (10), a matrix inversion, and
solution to the Lyapunov equation. Each of these take O(n?)
operations as well as an O(mn?) matrix-matrix multiplication.
The proximal operator for the function g amounts to comput-
ing the 2-norm of all m rows of a matrix with n columns,
which takes O(mn) operations. These steps are embedded
within an iterative backtracking procedure for selecting the
step-size «. If the step-size selection takes g; inner iterations
the total computation cost for a single iteration of the PG
algorithm is O(gin3). On the other hand, if it takes go
iterations for the PG method to converge, the total computation
cost for a single iteration of our customized MM algorithm is
O(q1g2n?). In practice, the backtracking constant c is chosen

such that ¢; < 50. The computational efficiency of the PG
algorithm relative to standard SDP solvers whose worst-case
complexity is O(n®) is thus evident. However, in MM, ¢o
depends on the required level of accuracy in solving (23a).
While there is a clear trade-off between this level of accuracy
and the number of MM steps, careful analysis of such effects
is beyond the scope of the current paper. Nonetheless, in
Section V-B, we demonstrate that relative to ADMM and
SDPT3, customized MM can provide significant speedup.

Algorithm 2 Customized MM Algorithm

input: A, B, C, E, G, V, v > 0, and tolerances ¢, and ¢g4.
initialize: £ = 0, pg = 1, pmax = 10° € = 1/po,
No = pao'l, choose Y? = K9X© where KO is a stabilizing
feedback gain with corresponding covariance matrix X°.
for k=0,1,2,...

solve (23a) using a similar PG algorithm to Algorithm 1

such that Ay < €.

if Ap S Nk

if A, <e,and Ag < ey

stop with approximate solution Y*+1!

else
AR = AR 4 g (A(X(YFTY) - G)
Pet1 = Pk, Merr = max{nk p, 1y, 6}
€k+1 = maX{ék/pk+1,Ed}
endif
else
Ak+1 — Ak
pri1 = {5pk, pmax},  mey1 = max{p (', e}
€k+1 = max{l/prt1,€a}
endif
endfor

output: optimal solutions, Y**1 and X (Y*+1).

F. Comparison with other methods

One way of dealing with the lack of differentiability of the
objective function in (11) is to split the smooth and nonsmooth
parts over separate variables and to add an additional equality
constraint to couple these variables. This allows for the min-
imization of the augmented Lagrangian via the Alternating
Direction Method of Multipliers (ADMM) [54].

In contrast to splitting methods, the algorithms considered
in this paper use the PG method to solve the nonsmooth
problem in terms of the primal variable Y, thereby avoiding
the necessity to update additional auxiliary variables and their
corresponding Lagrange multipliers. Moreover, it is important
to note that the performance of augmented Lagrangian-based
methods is strongly influenced by the choice of p. In contrast
to ADMM, there are principled adaptive rules for updating the
step-size p; in MM. Typically, in ADMM, either a constant
step-size is used or the step-size is adjusted to keep the norms
of primal and dual residuals within a constant factor of one
another [54]. Our computational experiments demonstrate that



the customized proximal algorithms considered in this paper
significantly outperform ADMM.

Remark 3: In [55], a customized ADMM algorithm was
proposed for solving the optimal sensor and actuator selection
problems. In this, the structural Lyapunov constraint on X
and Y is dualized via the augmented Lagrangian. While this
approach does not rely on the invertibility of operator .A;
(cf. (10)), it involves subproblems that are difficult to solve.
Furthermore, as we show in Section V, it performs poorly in
practice, especially for large-scale systems. This is because of
higher computational complexity (O(n®) per iteration) of the
ADMM algorithm developed in [55].

G. Iterative reweighting and polishing

To obtain sparser structures at lower values of v, we
follow [56] and implement a reweighting scheme in which
we run the algorithms multiple times for each value of ~ and
update the weights as w? ™' = 1/(|lefY7||y + €). Here, Y7 is
the solution in the jth reweighting step and the small parameter
€ ensures that the weights are well-defined.

After we obtain the solution to problem (11), we conduct
a polishing step to refine the solution based on the identified
sparsity structure. For this, we consider the system

&t = (A—-BpK)x + d

where the matrix By, € C"*9 is obtained by eliminating the
columns of B corresponding to the identified row sparsity
structure of Y, and ¢ denotes the number of retained input
channels. For this system, we solve optimization problem (11)
with v = 0. This step allows us to identify the optimal matrices
Y € C9*™ and K € C?*"™ for a system with a lower number
of input channels.

V. COMPUTATIONAL EXPERIMENTS

We provide two examples to demonstrate the utility of the
optimization framework for optimal actuator selection and co-
variance completion problems and highlight the computational
efficiency of our customized algorithms.

A. Actuator selection

The Swift-Hohenberg equation is a partial differential equa-
tion that has been widely used as a model for studying
pattern formations in hydrodynamics and nonlinear optics [57].
Herein, we consider the linearized Swift-Hohenberg equation
around its time independent spatially periodic solution [58]

B (t,€) = — (92 + 12 P(t,€) — c(t,€) + F(t,€)
+u(t,€) + d(t,€)

with periodic boundary conditions on a spatial domain £ &€
[0, 27]. Here, the state 1(t,&) denotes the fluctuation field,
u(t, £) is a spatio-temporal control input, d(t, £) is a zero-mean
additive white noise, c is a constant bifurcation parameter, and
we assume that f(&) := acos(wf) with a € R. Finite dimen-
sional approximation using the spectral collocation method
yields the following state-space representation

v = Ay + u + d (26)

TABLE I
COMPARISON OF DIFFERENT ALGORITHMS (IN SECONDS) FOR DIFFERENT
NUMBER OF DISCRETIZATION POINTS 1 AND v = 10.

n CVX PG ADMM
32 12.39 6.2 362.4
64 268.11 51.9 4182.6
128 8873.3 875.8 -
256 - 3872.1 —

IY* = Y*|[p/IIY*|Ip

0 . 500 1000 1500 102 10 10° 10t 102
iteration solve time (sec)

(@) (b)

Fig. 2. Convergence curves showing performance of PG (—) and ADMM
(— - —) vs. (a) the number of outer iterations; and (b) solve times for the
Swift-Hohenberg problem with n = 32 discretization points and v = 10.
Here, Y'* is the optimal value for Y.

For ¢ = —-0.2, a = 2, and w = 1.25, the linearized
dynamical generator has two unstable modes. We set Q = [
and R = 107 and solve the actuator selection problem (prob-
lem (11) with § = 1) for 32, 64, 128 and 256 discretization
points and for various values of the regularization parameter ~.
For v = 10, Table V-A compares the proposed PG algorithm
against SDPT3 [59] and the ADMM algorithm of [55]. Both
PG and ADMM were initialized with Y° = K. X, where K,
and X, solve the algebraic Riccati equation which specifies
the optimal centralized controller. This choice guarantees that
X(Y% = 0. All algorithms were implemented in Matlab
and executed on a 2.9 GHz Intel Core 15 processor with 16
GB RAM. The parser CVX [60] was used to call the solver
SDPT3. The algorithms terminate when an iterate achieves a
certain distance from optimality, i.e., || X* — X*|| /|| X*||F <
e and |[Y* — Y*||r/|Y*|lr < e The choice of ¢ = 1073
guarantees that the value of the objective function is within
0.01% of optimality. For n = 256, CVX failed to converge.
In this case, iterations are run until the relative or normalized
residuals defined in Section IV-B2 become smaller than 1072,

For n = 128 and 256, ADMM did not converge to desired
accuracy in reasonable time. Typically, the ADMM algorithm
of [55] computes low-accuracy solutions quickly but obtaining
higher accuracy requires precise solutions to subproblems. The
iterative reweighting scheme of Section IV-G can be used to
improve the sparsity patterns that are identified by such low-
accuracy solutions. Nonetheless, Fig. 2 shows that even for
larger tolerances, PG is faster than ADMM.

As v increases in Problem 2, more and more actuators are
dropped and the performance degrades monotonically. For n =




64, Fig. 3(a) shows the number of retained actuators as a func-
tion of ~ and Fig. 3(b) shows the percentage of performance
degradation as a function of the number of retained actuators.
Figure 3(b) also illustrates that for various numbers of retained
actuators, the solution to convex optimization problem (11)
with § = 1 consistently yields performance degradation that
is no larger than the performance degradation of a greedy
algorithm (that drops actuators based on their contribution to
the Ho performance index). For example, the greedy algorithm
leads to 24.6% performance degradation when 30 actuators are
retained whereas our approach yields 20% performance degra-
dation for the same number of actuators. This greedy heuristic
is summarized in Algorithm 3, where S is the set of actuators
and f(S) denotes the performance index resulting from the
actuators within the set S. When the individual subproblems
for choosing fixed numbers of actuators can be executed
rapidly, greedy algorithms provide a viable alternative. There
has also been recent effort to prove the optimality of such
algorithms for certain classes of problems [61]. However, in
our example, the greedy algorithm does not always provide the
optimal set of actuators with respect to the Ho performance
index. Relative to the convex formulation, similar greedy
techniques yield suboptimal sensor selection for a flexible
aircraft wing [7, Section 5.2].

The absence of the sparsity promoting regularizer in Prob-
lem 2 leads to the optimal centralized controller which can be
obtained from the solution to the algebraic Riccati equation.
For n = 64, Figs. 4(a) and 4(b) show this centralized feedback
gain and the two norms of its rows, respectively. For v = 0.4,
21 of 64 possible actuators are retained and the corresponding
optimal feedback gain matrix and row norms are shown in
Figs. 4(c) and 4(d). Figure 4(d) also shows that a truncation
of the centralized feedback gain matrix based on its row-
norms (marked by blue * symbols) yields a different subset
of actuators than the solution to Problem 2.

Algorithm 3 A greedy heuristic for actuator selection
input: A, B, V, Q R.
initialize: II + {1,...,m}.
I} > 0 and f(5) < o0
¢" = argmin f(I) — f(IT\{e})
ec

IT + I1\{e}
endwhile
output: the set of actuators represented by the set II.

while:

B. Covariance completion

We provide an example to demonstrate the utility of our
approach for the purpose of completing partially available
second-order statistics of a three-dimensional channel flow.
In an incompressible channel-flow, the dynamics of infinites-
imal fluctuations around the parabolic mean velocity profile,
a=[U(xz) 0 0]T with U(zz) = 1—12, are governed by the
Navier-Stokes equations linearized around u. The streamwise,
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Fig. 3. (a) Number of actuators as a function of the sparsity-promoting

parameter «; and (b) performance comparison of the optimal feedback
controller resulting from the regularized actuator selection problem (O) and
from the greedy algorithm (x) for the Swift-Hohenberg problem with n = 64.
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Fig. 4. (a) Optimal centralized feedback gain matrix and (b) its row-norms
corresponding to the Swift-Hohenberg dynamics (26) with n = 64. (c¢) The
optimal feedback gain matrix and (d) its row-norms (o) resulting from solving
Problem 2 with 6 = 1 and v = 0.4 in which the rows between the dashed
lines have been retained and polished via optimization. The result of truncating
the centralized feedback gain matrix based on its row-norms is shown using
blue * symbols.

wall-normal, and spanwise coordinates are represented by x1,
x9, and x3, respectively; see Fig. 5(a) for geometry. Finite
dimensional approximation via application of the Fourier
transform in horizontal dimensions (z; and x3) and spatial
discretization of the wall-normal dimension (x2) using N
collocation points, yields the state-space representation

pk,t) = Ak)y(kt) + £(k, 1)
(27a)
vk, t) = C(k)y(k,t).
Here, 1 = [v1 7T]T € C?¥ is the state of the linearized

model, v and 1 = 0y,v1 — Oy, v3 are the normal velocity
and vorticity, the output v = [v] vl vI']T € C3V denotes
the fluctuating velocity vector, ¢ is a stochastic forcing dis-
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Fig. 5. (a) Geometry of a three-dimensional pressure-driven channel flow.
(b) Structure of the matrix ® = lim; ;o0 E (v(t)v*(t)), where ®;; denotes
the cross-correlation matrix of components v; and v; of the velocity vector
v across the discretization points in the wall-normal direction. Available
diagonal entries of the blocks in the velocity covariance matrix ® determine
correlations at the same discretization point.

turbance, k = [k; k3|7 denotes the vector of horizontal
wavenumbers, and the input matrix is the identity Ionxon.
The dynamical matrix A € C2V*2N and output matrix
C € C3N*2N are described in [13].

We assume that the stochastic disturbance ¢ is generated by
a low-pass filter with state-space representation

where w denotes a zero-mean white process with identity
covariance matrix. The steady-state covariance of system (27)
can be obtained as the solution to the Lyapunov equation

AY, + S A* + BB* = 0

(8 ]3] e[ )
o -1\’ I\’ Yla a2

For any k, the matrix 311 = lim;_, o, E (¥(¢)9*(t)) denotes
the steady-state covariance of system (27a) and is related
to the steady-state covariance matrix of the output v via
®(k) = C(k)X11(k)C*(k). Figure 5(b) shows the structure
of the output covariance matrix .

In this example, we assume that all one-point velocity
correlations, i.e., the diagonal entries of all submatrices ®;;
in Fig. 5(b), are known. Owing to experimental and computa-
tional limitations, one-point correlations are easier to measure
and compute than two-point spatial correlations [10]. While
the colored-in-time input process £ enters across all channels,
not all input channels equally impact the state statistics 17 as
the input to state gain differs across different inputs. Herein,
we seek a minimal set of input channels with dominant
contribution that can lead to a parsimonious perturbation
A — BK of the system dynamics. The identified structure
represents important feedback mechanisms that are responsible
for generating the available statistics when the system is
driven by white noise d. Finally, we note that due to the
parameterization of system dynamics (27) over wavenumbers
k, modification BK also depends on k.

Computational experiments are conducted for a flow with
Reynolds number 103, the wavenumber pair (k1, k3) = (0, 1),
for various number of collocation points N in the wall-normal
direction (state dimension n = 2N), R =1, () = 0, and for
various values of the regularization parameter . Moreover,
we assume that system (2) is driven by white process d
with covariance V' = I. We initialize Algorithm 2 with

(27b)

TABLE II
COMPARISON OF DIFFERENT ALGORITHMS (IN SECONDS) FOR DIFFERENT
NUMBER OF DISCRETIZATION POINTS N AND v = 10.

N CVX MM ADMM
11 9.3 0.19 3.10
21 97.67 5.6 113.4
31 900 7.19 574.44
51 - 34.76 -
101 — 146.51 —

o
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Fig. 6. Convergence curves showing performance of MM (—) and ADMM
(——) versus (a) the number of outer iterations; and (b) solve times for N =
31 collocation points in the normal direction x2 and v = 10. Here, Y* is
the optimal value for Y.

the optimal centralized controller, Y0 .= K.X.. Our MM
algorithm is compared against SDPT3 and ADMM where
CVX is used to call SDPT3. When CVX can compute the
optimal solution of Problem 2, for each method, iterations are
run until the solutions are within 5% of the CVX solution.
For larger problems, iterations are run until the primal and
dual residuals satisfy certain tolerances; €, €4 = 10~2. For
v = 10, Table V-B compares various methods based on run
times (sec). For V = 51 and 101, CVX failed to converge and
ADMM did not converge in a reasonable time. Clearly, MM
outperforms ADMM. This can also be deduced from Fig. 6,
which shows convergence curves for 14 steps of MM and 500
steps of ADMM for N = 31 and = 10. For this example,
Fig. 7 shows the convergence of MM based on the normalized
primal residual A, /|G| r and the dual residual A, in (24).
We now focus on N = 51 collocation points and solve
Problem 2 for various values of . Since B = I, the number
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Fig. 7. Performance of MM for the fluids example with N = 31 collocation
points in the normal direction x2 and v = 10. (a) normalized primal residual;
and (b) dual residual based on (24).
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Fig. 9. Active input channels in u € C'02 (black dots) corresponding to
row-sparsity of Y* in problem (11) with (a) v = 0, (b) v = 0.1, (c) v = 10,
and (d) v = 100, for the channel flow problem.

of inputs u in this case is m = 102. Figure 8 shows the
~v-dependence of the number of retained input channels that
result from solving Problem 2. As + increases, more and more
input channels are dropped. A feature of our framework is that
the solution Y* determines which inputs in « play a role in
matching the available statistics in a way that is consistent with
the underlying dynamics. Figure 9 shows the input channels
that are retained via optimization for different values of ~.
This figure illustrates the dominant role of input channels
that enter the dynamics of normal velocity v, and away from
the boundaries of the channel. In favor of brevity, we do not
expand on the physical interpretations of such findings.
Figures 10(b,d) show the streamwise, and the stream-
wise/normal two-point correlation matrices (®1; and @5 in
Fig. 5(b)) resulting from solving (11) with v = 100. Even
though only one-point velocity correlations along the main
diagonal of these matrices were used in Problem 2, we observe
reasonable recovery of off-diagonal terms of the full two-point
velocity correlation matrices and 82% of the original output
covariance matrix ® is recovered. This quality of completion
is consistently observed for various values of v that do not
result in the elimination of the critical input channels in the
direction of normal velocity, and is an artifact of including
the Lyapunov constraint in our formulation. This allows us to
simultaneously retain the relevance of the system dynamics
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Fig. 10. True covariance matrices of the output velocity field (a, c), and

covariance matrices resulting from solving problem (11) (b, d) with v = 100
and N = 51. (a, b) Streamwise ®11, and (c, d) streamwise/normal 12 two-
point correlation matrices at k = (0, 1). One-point correlation profiles that
are used as problem data are marked along the main diagonals.

and match the partially available statistics of the underlying
dynamical system. Additional details regarding the stochastic
modeling of turbulent flow statistics and the importance of
predicting two-point velocity correlations can be found in [9].

VI. CONCLUDING REMARKS

We have examined two problems that arise in modeling
and control of stochastically driven dynamical systems. The
first addresses the modeling of second-order statistics by
a parsimonious perturbation of system dynamics, while the
second deals with the optimal selection of sensors/actuators
for estimation/control purposes. We have shown that both
problems can be viewed as the selection of suitable feedback
gains, guided by similar optimality metrics and subject to
closed-loop stability constraints. We cast both problems as
optimization problems and use convex surrogates from group-
sparsity paradigm to address combinatorial complexity of
searching over all possible architectures. While these are SDP
representable, the applications that drive our research give
rise to the need for scalable algorithms that can handle large
problem sizes. We develop a unified algorithmic framework
to address both problems using proximal methods. Our algo-
rithms allow handling statistical modeling, as well as sensor
and actuator selection, for substantially larger scales than what
is amenable to current general-purpose solvers.

In this work, we promote row sparsity by penalizing a
weighted sum of row norms of the feedback gain matrix.
While we note that iterative reweighting [56] can improve
the row-sparsity patterns determined by this approach, the
efficacy of more refined approximations, namely low-rank
inducing norms [62], [63], for which proximal operators can be
efficiently computed, is a subject of future research. Moreover,
we will investigate solving these problems via primal-dual
algorithms based on the proximal augmented Lagrangian [64],
[65], and proximal Newton-type methods [66], [67].
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APPENDIX
A. Sensor selection
Consider the LTI system
Asz + d
Cz + 1

Tr =
y:

where y denotes measurement data which is corrupted by
additive white noise 7. If (A, C) is observable, the observer

& = Agi + LC(x — &) 4+ Ly

provides an estimate % of the state x, where L is the observer
gain. When A; — LC is Hurwitz, the zero-mean estimate of
x is given by Z. The Kalman gain minimizes the steady-
state variance of x — Z, it is obtained by solving a Riccati
equation, and, in general, has no particular structure and uses
all available measurements.

Designing a Kalman filter which uses a subset of the
available sensors is equivalent to designing a column-sparse
Kalman gain matrix L. Based on this, the optimal sensor
selection problem can be addressed by solving the following
regularized optimization problem

mig%r)r{lize trace (XVy + LV, LX) + '721@ IIL e;||2

subject to (As — LC)*'X + X(A,—LC) + C*C =0
X =0 (28)
where v, w;, e; are as described in Problem 1, V; > 0 is the

covariance of d, and V;, > 0 is the covariance of 7. By setting
the problem data in Problem 1 to

A= A B=2C, Q=1
V = Cc'C, R=1Y,

the solution to problem (28) can be obtained from the solution
to the actuator selection problem as X and L = K*.

B. Non-invertibility of Ay

In cases where the matrix X cannot be expressed via (10),
since (A, B) is a controllable pair we can center the design
variable around a stabilizing controller K, i.e., by letting
K := Ky + K1, where K is held fixed and K is the design
variable. Based on this, the change of variables introduced in
Section lI-C yields Y = Ko X + K1 X = KoX + Y] and
X(V1) = ATH(B(Yy) — V) with

Aj(X) == (A-BKo) X + X(A-BKy)". (29
The resulting optimization problem,
min}i/mize f(Y1) + vg(Y1 + Ko X(Y7))
1
(1 - 8)[A(X(11)) - G]
X(Y1) >~ 0

subject to =0

involves a nonsmooth term g which is not separable in Y7,
and the smooth term is given by

f(Y1) = trace (Q X(Y1)) +
trace (Y1 + KoX (Y1) "R (Y1 + Ko X (Y1) X 1.

Although convex, g(Y7 + KX (Y1)) does not have an easily
computable proximal operator, making it difficult to apply
algorithms that are based on proximal methods.

In this case, one may begin with an input matrix B°
such that the pair (A4, B°) is stabilizable and the nonzero
columns of BY correspond to a subset of input channels Z that
always remain active. It would thus be desired to search over
input channels from the complement of Z via the following
optimization problem

min}i/rlnize f(Y1) + v9(11)
(1 =98 [A(X(N)) — G]
X(Y1) = 0.

subject to =0

The operator fil in (29) would now be defined using B°
and the fixed feedback gain matrix K that abides the row-
sparsity structure corresponding to Z. The regularization term
g(Y1) == >, g7 willejYi[]2 is used to impose row-sparsity
on the remaining input channels ¢¢7Z and has an easily
computable proximal operator, thus facilitating the use of
proximal methods. It is noteworthy that this approach may
also be employed to obtain an operator Ay which is better
conditioned than A;.

The alternative approach would be to avoid this problem
altogether by not expressing X as a function of Y and directly
dualizing the Lyapunov constraint on X and Y via augmented
Lagrangian based methods, e.g., ADMM [55]. However, as we
show in Section V, such approaches do not lead to algorithms
that are computationally efficient for large problems.

C. Gradient of f(Y) in (14)

To find Vf(Y) in (14), we expand f(Y + ¢Y) around Y
for the variation ef/, and collect first-order terms in €. We also
account for the variation of X as a result of the variation of
Y from

(X +eX)™ = X1 — eXIX X! 4 o(e)

and the linear dependence of X on Y, ie., X = A7 (B(Y)).
Here, o(e) contains higher-order terms in e. Thus, at the kth
iteration, the gradient of f with respect to Y is given by,

VFY*) = 2RY*X™1 — 2B*(W, — W)
where W, and W; solve the Lyapunov equations
AWy + WA + X WYRRYFX -1 =
AWy + WA + Q =

and X! denotes the inverse of X (Y¥).

D. Proofs of Section IV-C

1) Proof of Proposition 1: Without loss of generality, let
y=1anda=b—c, where b= f(Y°)+g(Y?) and c < g(Y)



is a lower bound on the function g. Consider the sublevel set
Eb) == A{Y eD[fY) +g(Y) < b}.
It is easy to verify that Y? € £(b) C D(a). For a given
Y € E(b), let P: RT — C™*" be defined as
P(a) = prox,,(Y — aVf(Y)).

In what follows, we show that P(a) € £(b) for all a €
[0,1/L,], with L, being the Lipschitz continuity parameter
of Vf(Y) over the sublevel set D(a). Since P(0) =Y, this
holds trivially for a« = 0. For o > 0, consider the quadratic
function [, : C"™*"™ — R,

(V) = FO0) + (VALY = Y) 4 5 ¥ - VP

which satisfies
V) < la(Y) (30)

for all Y € D(a) and o € (0,1/L,]. Inequality (30)
follows from the L,-Lipschitz continuity of V f(Y") over D(a)
(Descent Lemma). Moreover, by definition,

P(a) = argmin 1o(Y) + g(V) (31)

Y ecmxn

and [,(Y) = f(Y), which yields
la(P(a)) + g(P(e)) < f(Y) +9(Y) <b (32

for all positive ov. We next show that P(a) € D(a) for all o €
(0,1/L,], which allows us to substitute P(a) for ¥ in (30)
and complete the proof by combining (30) and (32).

Since the functions g and || - ||? are coercive, it follows
from [48, Theorem 26.20] that the map P(«) is continuous.
Let ay € (0, 400] be the smallest scalar such that f(P(ay)) >
a. Such «; exists and f(P(a1)) = a because the set D is
open, the function f(P(«)) is continuous, and f(P(0)) =
f(Y) < a. We next show that oy > 1/L,. For the sake of
contradiction, suppose a1 < 1/L,. By substituting P(«) for
Y in Eq. (30), using (32), and ¢ < g(P(cv)), we arrive at

F(P(a1)) < lo,(Play)) < b —c¢

a =

which contradicts with a = b — ¢. Thus, oy > 1/L, and
P(a) € D(a) for all a € [0,1/L,]. Furthermore, based on
this, substituting P(«) in (30) and utilizing (32) gives

f(P(a)) + 9(P(a)) < b

which in turn implies P(a) € £(b).

Based on the fact that we can restrict the domain of the
optimization problem (19) to the sublevel set D(a), the rest
of the proof about the convergence rate follows from the proof
of [49, Theorem 10.29].

2) Proof of Proposition 2: It is straightforward to verify
that the set D, is open. We first utilize previously established
properties of the set of stabilizing feedback gains to prove that
the sublevel sets D(a) of the function f(Y') are compact. We
then prove that for any convex compact set C C Dy there
exist a strong convexity modulus ; > 0 and a smoothness
parameter L > 0 for f(Y) over C.

Consider the function Y (K) := KX (K) where K belongs

to the set of stabilizing feedback gains /s and X (K) > 0 is
the unique solution to the algebraic Lyapunov equation (4).

The function X (K) is continuous and the sublevel sets of the
function f(Y(K))

K(a) == {K e K | f(Y(K)) < a}

are compact [68]. Since the sublevel set D(a) is the image
of the compact set C(a) under the continuous map Y (K), it
follows that D(a) is also compact.

The next lemma provides an expression for the second-order
approximation of the function f(Y").

Lemma 2: The Hessian of the function f(Y") satisfies
- - 1 . - 1
(V,V2(V57)) = 20|RZ(V =YX M(T)X 2|}
where X = AT (B(Y) — V) and M(Y) := A7 (B(Y)).

Proof: For any Y € D, and X = A7 (B(Y) — V), the
function f(X,Y") in Problem 2 reduces to f(Y"). The second-
order approximation of f(Y") is determined by

. - 1 /- -
JO+7) & f(¥) + (VIY)Y) + 5 (7, V(i)
where the matrix V2f(Y;Y) depends linearly on Y.

The gradient V f(X,Y’) can be found by expanding f(X +
€ X,Y +e€Y) around the ordered pair (X, Y") for the variation
(eX,€Y) and collecting first-order terms in e. This yields,

Vxf(X,Y) = Q — X 'Y*RY X!
Vyf(X,Y) = 2RYX L.

To find the Hessian, we expand V(X + e XY +¢€Y),
Vxf(X +eX,Y) — Vxf(X,Y) = eNy + o(e)
Vxf(X,)Y +€¥) — Vx[(X,Y) = eNa + ofe)
Vyf(X + eX,Y) — Vyf(X,Y) = eN3 + oe)
Vyf(X,)Y +€¥) — Vyf(X,Y) = eN; + ole)

where the matrices

Ny = X"'W*RYX XX ! + X 'XX lY*RY X!
Ny := —X"'Y*RY X! — X lYy*RY X!

N3 := —2RYX X X1

Ny = 2RY X!

depend linearly on X and Y. Thus, we arrive at
((X,7), V(XY X, 7))
= <X’,N1 +N2> + <Y,N3 +N4>
= 2|R2(Y - YX—lX)X—%H%.
The result follows from A, (X) = B(Y). [ |
Let us define (: Dy, x S; — R as
(V,V21(v, 7))

where S; := {Y € C"™*"|||Y||r = 1}. To establish strong
convexity of f(Y) and Lipschitz continuity of its gradient over

(YY) =



a compact set C, we find a positive lower bound 1 and an upper
bound L on ¢, p < ¢(YV,Y) < L, forall (Y,Y) € C x S.

Using the expression in Lemma 2, it is straightforward to
show that the function ( is continuous. From the continuity
of ¢(Y,Y) and the compactness of C x Sy, it follows that
¢ is bounded on C x &;. This implies the existence of an
upper bound L. To find a positive lower bound, let (Y,,Y,)
be a minimizer of the function ((Y,Y) over the set C x Sj.
The existence of (Y,,Y,) follows from the compactness of
C x &1 and the continuity of the function (. We next show
that p := ((Y,,Y,) > 0.

Suppose, for the sake of contradiction, that ¢(Y,,Y,) = 0.
From Lemma 2, we have

Y, = K, X, (33)
where K, = Y, X!, X, = X(Y,), and
X, = M(Y,). (34)
Combining (34) and the Lyapunov equation (9) yields
Al(X,+X,) — B(Y,+Y,) = —V. (35)
From (33), we also have
Y, +Y, = K, (X, + X,). (36)

Substituting for Y, + }70 in (35) from (36), we arrive at
Ai(X, + X,) — B (Ko (X, + XO)) -V

Consequently, both X, and X, + X, solve the Lyapunov
equation with stabilizing feedback gain K, which is a contra-
diction. Thus, ((Y,,Y,) is positive. This completes the proof.

3) Proof of Lemma 1: We first show that the positive
definite matrix X = A;(B(Y') — V) satisfies

vl < X 37

with v given by (22b). Let v be the normalized eigenvector
corresponding to the smallest eigenvalue of X. Multiplying
Lyapunov equation (9) from left and right by v* and v gives

1 1
v (DX2 + X2D*)v = /Amm(X) v*(D + D*)v

= —v* Vo
where D := AX/2 — BY X~1/2_ We thus have
(v*V v)? A2 (V)
Amin (X) = > _n 38
X =worpyee = 4o %Y

where we have applied the Cauchy-Schwarz inequality on the
denominator. For Y € D(a), we have

trace (QX + Y*RYX_l) < a.

This inequality along with trace (Q X) > Amin(Q) | X /?||%
and trace (RY X 1Y) > Apin(R) [|[Y X V2% yields

IXV21% < a/Auin(Q)
IYX2)% < a/Auin(R).

(39a)
(39b)

Combination of the triangle inequality, submultiplicative prop-
erty of the 2-norm, and (39) leads to

IDll2 < va ( Tnaxld)_ , Zmax(D) ) .
\/)\min(Q) \/)\min (R)
Inequality (37), with v given by (22b), follows from combin-
ing (38) and (40).

We now show that L, given by (22a) is a Lipschitz
continuity parameter of V f. Form (39b) and (37), we have

(40)

VX7 < 3= (41)

a < a
(R)Amin(X) V)‘min(R)'
This allows us to upper bound the quadratic form provided in
Lemma 2,

(V. V(v 7)) =

In particular, for Y € D(a) and Y with ||Y||z = 1, we have

1 - ~ 1
2|R2(Y — YX ' ME)X 2|3

1. o oL
2|RI(Y — YX 'M(Y)X 2|3
< 2 Amax (R Amax (X H[Y = YXTIM(Y)|%
< 2 MR Amax X (V|5 + VX MT)|£)°

< 2Amax(R) (1 N Val M|l )2: I
- v V Amin (R) “

where the last inequality follows from (37), (41), and the sub-
multiplicative property. This completes the proof.

E. Linear convergence with adaptive step-size selection

We show that iterates {Y*} of the PG algorithm with the
backtracking scheme of Section IV-B1 remain in D(a) and
achieve linear convergence. The main challenge in proving
the first part of Proposition 1 is to show that (30) holds for
Y = P(ax), ax € (0,1/L,], where P(oy,) is given by (31).
However, condition (18b) is itself equivalent to (30) with Y =
P(ay). Thus, from the proof of Proposition 1, it is easy to
verify that the iterates {Y*} C D(a) and

YA = Y55 < (1 = paad) IV = Y*7 (42)

Here, we show that the adaptive backtracking method gen-
erates a sequence {ay} that is lower bounded by a fixed
positive scalar. Together with (42), this lower bound yields
linear convergence for the PG method with backtracking.

As we discussed in the proof of Proposition 1, the step-
size a = 1/L, satisfies conditions (18). Thus, backtracking
from a constant initial step-size o, o would result in a step-size
ag > min{ay o, ¢/L,}, where c is the backtracking parameter
in Algorithm 1. While the initialization «y,o proposed by (17)
is not constant, we show that a o > 1/ (\/§L’ ), for any

L' > || Aqllr/l A ¢ (43)

where Ay = Y*—Y*~Land A, := VF(Y*)-VF(Y* ).
Assuming (A, Az) > 0, the steepest descent and minimum
residual step-sizes are given by as = ||A]|%/ (A1, Ag) and
am = (A1, As) /|| As|%, respectively. If o, /as > 1/2, then



\/§<A1, A2> > ||A1||||A2||, which leldS

(A1, Ag) |ALlF 1
apo = 2 2 .
Azl V2||Asllr T V2L
On the other hand, if a,,/as < 1/2, then V2 (A1, Ay) <
|A1]|F||Az | F, which yields
1Al (A1, 49 3
(A, A2) 2227~ 2v2 | AqflF
Since Y*, Y*=1 € D(a), inequality (43) holds with L' =

L, the Lipschitz continuity factor of V f(Y) over D(a). Thus,
the resulting step-size satisfies ap > min{1/(v/2Lg), ¢/Lq}.

F. Gradient of F(Y) in (25)

Similar to Appendix C, we expand F'(Y + €Y) around Y
for the variation €Y, and collect first-order terms in €. At the
kth iteration, the gradient of F' with respect to Y is given by,

VF(Y*) = 2Y* X1 — 2B*(Wy + pp W3 — W),

[Adlle 3

Qk,0

where W7, Ws, and W3 solve the Lyapunov equations
AWy + WA + X lykykx-1 = 0

AWy + WoA + AL (AF) = 0

AWs + WiA + AL (A (X(YF) = G) = 0

Here, X! denotes the inverse of X (Y*) and the adjoint of
the operator A, is given by A} (A) := C* (EoA)C.
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