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An exponentially convergent primal-dual algorithm
for nonsmooth composite minimization

Dongsheng Ding, Bin Hu, Neil K. Dhingra, and Mihailo R. Jovanovi¢

Abstract— We consider a class of nonsmooth convex com-
posite optimization problems, where the objective function is
given by the sum of a continuously differentiable convex term
and a potentially non-differentiable convex regularizer. In [1],
the authors introduced the proximal augmented Lagrangian
method and derived the resulting continuous-time primal-dual
dynamics that converge to the optimal solution. In this paper,
we extend these dynamics from continuous to discrete time via
the forward Euler discretization. We prove explicit bounds on
the exponential convergence rates of our proposed algorithm
with a sufficiently small step size. Since a larger step size can
improve the convergence speed, we further develop a linear
matrix inequality (LMI) condition which can be numerically
solved to provide rate certificates with general step size choices.
In addition, we prove that a large range of step size values
can guarantee exponential convergence. We close the paper by
demonstrating the performance of the proposed algorithm via
computational experiments.

I. INTRODUCTION

We consider a class of nonsmooth convex composite
optimization problems, where the objective function is the
sum of a continuously differentiable convex term and a
potentially non-differentiable convex regularizer. This class
of problems arises in statistics, machine learning, control,
image and signal processing. Two typical examples are the
empirical risk minimization problem [2] and the structural
optimal control problem [3], [4]. The indicator function, the
£1 norm, and the nuclear norm are commonly used as nons-
mooth convex regularizers that enforce constraints, promote
sparsity, and induce low-rank structure on optimal solutions.

A common approach for nonsmooth convex composite
optimization problems is to use an auxiliary variable to
reformulate them as linearly constrained problems that sep-
arate the smooth term and the nonsmooth regularizer in the
objective function [5]. This facilitates the use of primal-dual
methods based on the augmented Lagrangian [6], including
the method of multipliers (MM) [6], and the alternating
direction method of multipliers (ADMM) [5]. The efficiency
of these methods depends on how the nonsmooth primal sub-
problems are solved. Direct approaches of subgradients [7],
or proximal operators [8] have been exploited to derive
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a large family of customized primal-dual algorithms in-
cluding the primal-dual subgradient algorithm [9], proximal
ADMM [10], and the proximal primal-dual algorithm [11].
Unfortunately, the implementation of such algorithms en-
counters technical issues such as step size selection [7] and
parameter sensitivity [12].

To avoid nonsmooth primal subproblems in MM, a prox-
imal augmented Lagrangian method has been recently de-
veloped in [1]. This method exploits the proximal operator
associated with the nonsmooth regularizer in the objective
function to restrict the augmented Lagrangian to the manifold
that corresponds to the explicit minimization over one of
primal variables in the nonsmooth term. This constrained
augmented Lagrangian is called the proximal augmented
Lagrangian and it leads to new efficient algorithms which
complement MM and ADMM in solving nonsmooth com-
posite optimization problems.

In this paper, we derive a primal-dual (PD) algorithm
from the forward Euler discretization of the continuous-time
PD dynamics of the proximal augmented Lagrangian. We
demonstrate that the proposed algorithm with a well-chosen
step size converges at an exponential rate under standard
assumptions. Our main contributions are:

1) We prove explicit bounds on the exponential conver-
gence rates of our proposed algorithm with a suffi-
ciently small step size.

2) Since a large step size can lead to potential improve-
ments in the algorithm performance, we formulate a
linear matrix inequality (LMI) condition which can be
numerically solved to provide rate certificates for our
algorithm with general step size choices.

3) We further prove that a large range of step size values
can guarantee the exponential convergence. While our
theory for large step sizes proves the exponential
convergence, our analysis for small step sizes provides
a convergence rate estimate.

4) Finally, we demonstrate performance of our algorithm
in solving quadratic optimization problems and show
that the large step size choice is preferable for fast
convergence.

We note that the convergence rate analysis for the
continuous-time PD dynamics in [1] cannot be easily tailored
for our discrete-time algorithm. This is consistent with the
observations made in [13]-[15] about the difficulty of trans-
lating rate bounds from continuous time to discrete time.

Our presentation is organized as follows. In Section II,
we formulate the problem, review the proximal augmented
Lagrangian and the related continuous-time PD dynamics.
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In Section III, we present a discretized PD algorithm. We
provide various theoretical/numerical tools that can be used
to certify the exponential convergence of the proposed al-
gorithm. In Section IV, we provide numerical examples to
illustrate the performance of our algorithm.

II. PROBLEM FORMULATION AND BACKGROUND

Consider the nonsmooth convex composite optimization
problem
minimize f(z) + g(Tx) (1)
x

where x € R" is the optimization variable and 7" € R™*"™
is a given matrix. We assume that (1) is feasible, that its
minimum is finite, and that the matrix 7" has full row rank.

Assumption 1: The function f is strongly convex with
parameter my and its gradient is Lipschitz continuous with
parameter L ;. The function g is proper, lower semicontinu-
ous, and convex but potentially non-differentiable.

When the matrix 7" is not diagonal, the sub-gradient and
the proximal gradient methods cannot be used to solve (1)
directly. A customary approach is to introduce an additional
optimization variable z € R™,

miriir?ize fx) + g(2)

: 2
subject to Tx — z = 0.

A. Proximal augmented Lagrangian

The proximal augmented Lagrangian is defined as [1],

Lu(zy) = f(x) + Myu(Tx+py) — 2yl>  ©3)

where x is the primal variable, y is the dual variable,
and p > 0 is the augmented Lagrangian parameter. The
proximal augmented Lagrangian is obtained by restricting
the augmented Lagrangian associated with (2) along the
manifold that results from the explicit minimization over the
z-variable [1]. The Moreau envelope is given by

Mg(v) = g(prox,,(v)) + 5 [[prox,,(v) — v|*
where the proximal operator of the function g is

prox,,(v) := arginin g(z) + 2% lz — vl|?

and v is a given vector. It is noteworthy that the Moreau
envelope is continuously differentiable [8], even when g is
not, and its gradient is determined by

VM,4v) = % (v — prox,,(v)).

B. Continuous-time primal-dual (PD) dynamics

The continuous differentiability of £,(x;y) enables the
use of PD gradient flow dynamics to compute saddle points

w = F(w) (4a)
where w := [z yT']T and
—VaLy(w;y)
F(w) = { w }
vyﬁ;t('ra y) (4b)

{ —(Vf(z) + TTVM,,(Tz + py))
w(VMyug(Tz + py) — y)

As shown in [1], when the L j-smooth term f is m y-strongly
convex, the regularizer g is convex, and 7' is full row rank, (4)
with ;1 > Ly —my are globally exponentially stable with rate
p that can be calculated explicitly [1, Remark 4].

The implementation of the continuous-time PD dynamics
requires temporal discretization. We next utilize explicit
forward Euler scheme to obtain a discrete-time version of (4).

III. PROPOSED ALGORITHM AND MAIN RESULTS

In this section, we study exponential stability of a PD
algorithm (4) with a constant step size «. In Section III-A, we
introduce a discrete-time model. In Section III-B, we provide
explicit bounds on the exponential decay rate for sufficiently
small step sizes. In Section III-C, we allow for larger
step sizes and formulate an LMI condition for certifying
achievable exponential rates. Finally, in Section III-D, we
characterize a range of step size values that guarantee global
exponential stability.

A. Discretized primal-dual algorithm

The explicit forward Euler discretization of (4) with a
constant step size « yields a discrete-time algorithm

whtt = wh + aF(wh) (5a)
with wk := [(z¥)T (y*)T']T. Equivalently, we have,
bl = b — a(Vf(a?) + TTV M, (Tx* + py*))
Y = g+ ap (VMg (Ta* + py*) — yF)

(5b)
where k is the iteration index.
In what follows, we provide exponential convergence
guarantees for (5) under different restrictions on .

B. Exponential rate for sufficiently small step size

We first provide explicit bounds on the exponential con-
vergence rate for (5) with a sufficiently small step size.
Even though Lipschitz continuity of I was proved in [,
Theorem 1], we next derive the expression for the Lipschitz
constant of F'.

For any w; and wsy, we have

1F(w1) = F(ws)]|
< IVF (@) = V(@) + pllyr — vl +
(1 + 22) |V Myug (Tay + pyr) — pV Myug (T2 + pupo )|

AZ
< (LpAAm+Z)llen = w2fl + (2 + Am)[[y1 — w2l

where )\, is the largest eigenvalue value of T77. This
results follows from the use of triangle inequality and
Lipschitz continuity of V f and VM. Lipschitz continuity
of VM, is due to the firm non-expansiveness of proximal
operators [8].
Since max([[z1 — 22|, [y — v2ll) < [lwr — wal|, we
conclude that F' is Lipschitz continuous with parameter,
v = Lf + 2 + 20 + 2o ©6)
Similar to [16, Lemma 5], Theorem 1 exploits global
exponential stability of the continuous-time gradient flow
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dynamics (4) [1, Theorem 3], Lipschitz continuity of F', and
Assumption 1 .

Theorem 1: Let Assumption 1 hold. Then there is o > 0
such that all trajectories of (5) satisfy

lw" — @l < /Ay r* lw® — (M

where w is the equilibrium point of (4),

2.2
Q“V" Ry

2
p is the decay rate of the exponentially stable gradient flow
dynamics (4), P = PT = 0 is a matrix that certifies
exponential stability of (4) with (w(t) — w)T P(w(t) — w),
and x,, is the condition number of P.

Proof: We fix k, and consider (4) with w(0) = w".
According to [1, Theorem 3], when y > Ly — my, there
exists a positive definite matrix P and a positive rate p such
that,

ro= +e < 1 (8)

lw(t) —@lp < e lw(0) —@p ©)

where ||w||% := wT Pw.

Since the proof is similar to [16, Lemma 5], we omit it
here and only mention the existence of a > 0. It should be
noted that (8) is a continuous function of «. Furthermore,
since r = 1 for = 0, and since the derivative of r with
respect to « is negative for small «, (8) holds. [ ]

Remark 1: When « is sufficiently small, we can expand
the decay rate r with

r=1=pa+ 3(p° + ’kp)a® + O(c?) (10)

We can approximate r without the last term. Thus, (8) gives
a necessary bound,

2p

0 < a< a = —F—
0 p? 4+ V2K,

1D
However, without knowing x, and p, this bound cannot be
estimated. Therefore, it is difficult to establish the bounds
on « to guarantee exponential convergence in this approach.
Meanwhile, Theorem 1 does not provide insight into the
problems with large step sizes.

C. LMI test for general exponential rate

To complement Theorem 1, we provide a unified LMI
condition which can be used to test whether the discretized
PD algorithm (5) with any given o« converges exponentially
at rate r. We build on the framework developed in [12] and
analyze (5) as a discrete-time feedback system.

Let u* = [(uf)" (u5)"]", & = [(&)" (€5)"]", and

koo gt
5= Ta" + py"
uf o= Vf(a*) —mypa® = Ay (€7)
uy = pVM(Tz" + py*) = Ao(&3).
PD dynamics (5) can then be represented as a discrete-time
linear time-invariant system connected in feedback with a

nonlinear block A,

wktl = Awb + BuF
& & (12)
& = Cw
with
1—amg)l 0
A= !
0 (1—auw)l
—al —a77T I 0
— m =
b { 0 ol ]’C [T ,u}

The input is given by u* = A(&F), where A is a 2 x 2
block diagonal matrix with the diagonal blocks A; and
As. The nonlinear block A can be characterized using
quadratic constraints. The notation S(m, L) in [12] is used to
denote functions that are continuously differentiable, strongly
convex with parameter m, and have Lipschitz continuous
gradients with parameter L.

Note that A; is the gradient of the convex function
F(EF) — (my/2)||€5]1%, and As is the scaled gradient of
the convex Moreau envelope, it is not diffcult to show that
Ay € S(mi,L1), where mi = 0,L; = Ly — my, and
AQ S S(mQ,Lg), where mo = 0 and L2 =1.

At a stationary point w = [ET gT}T of (12) we have
& =7,& =Tr+ py, u1 = A1(&1), Uz = Az(&2), and
apply [12, Proposition 5] to characterize A; € S(m;, L;) for
1 = 1,2 via quadratic constraints,

[&"—&]T[ —m;L;I (LmLW)I} Ff—ﬁi
( P

Uf — fti L1 + ml)I —21 u; —

E

(2

The above two quadratic constraints can be combined into

(" =)™ 11 (n* —7) >0, (13)

where n* = [(¢F)T (uk)T]T, 7= [T @)7]

0 Il LI 0
= {Ho —21]’ o = {0 I}'

Now, [12, Theorem 4] implies that the PD algorithm (5)
with a step size a converges exponentially to the stationary
point w at a rate r if there exists a positive definite P such
that

{ATPA —r2p ATPB} [CT 0} I {C 0

BTPA BTPB 0 I 0 I
Given (4, B,C) and r, (14) is an LMI condition in P. For
a general T', the dimension of the above LMI scales with n.
When T is the identity matrix, we can use the argument in
[12, Section 4.2] to convert (14) to a 4 x 4 LML

The LMI condition (14) provides a general numerical
tool for the convergence rate analysis. It is non-trivial to
solve the LMI analytically for general .. In next subsection,
we translate (14) into a frequency condition which is then
analytically checked to find a large range of step size.

T

] <0. (14)

Remark 2: We can further reduce the conservatism in
the LMI condition (14) by introducing additional decision
variables, See the second to last remark in [12, Section 3.2].
Adding decision variables can lead to useful LMI conditions
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for other distributed optimization methods. In [17], this type
of LMI conditions have been used to obtain numerical rate
bounds for EXTRA [18] and NIDS [19]. However, it is non-
trivial to obtain analytical rate bounds via these LMIs.

D. Large step size guaranteeing exponential convergence

In contrast to the analysis in Section III-B, here we
establish conditions on step sizes that guarantee exponential
convergence. First, we apply the KYP lemma [20] to translate
(14) to an equivalent frequency condition.

Lemma 2: Let G(rel?) = C(rel’T — A)~' B be stable for
€ (0,1), where A, B, C are system matrices in (12), let A
be characterized by a static quadratic constraint II, and let

[ G(Zeje) }H{ G(Z?je) ] <0, VO el 2m). (15

Then, the feedback interconnection of G with A is exponen-
tially stable with rate 7.

Next, we give an upper bound on the step size « to ensure
exponential stability of (12) when 777 is a full rank matrix.

Theorem 3: Let Assumption 1 hold. Then, for the aug-
mented Lagrangian parameter p1 = Ly —my, the discretized
PD algorithm (5) converges exponentially to the optimal
solution if the step size « satisfies one of the following
conditions:

) If my > p,
0 < a < ag = m (16)
(i) I my < p,
0 < a < min(ag,as) 17
where
ay = Ry, =t (18)

and the parameters a; are given by

ag = (i + pmy —mp)pPmy — (p® = 3pmy + 2m3)pAp,
2my (1 — myp)Am + pmy) + 24°) > 0

4mf,u2 > 0.

ay

ao
(19)

Proof: ~We establish the result for system (12) in
which the nonlinear block satisfies quadratic inequality (13)
with p = L=1L ¢ — my. We utilize Lemma 2 to show
the exponential convergence with some rate » € (0,1) by
verifying (15) through a series of conditions on a.

Let ¢ := cos6. Evaluating the left-hand side of (15) for
p = L and dividing by —2 yield the matrix inequality

a(¢)1 b()T™

bOT () +d)TTT |~ 0, V¢ € [-1,1]

(20a)

where
a€) == 1 4+ aphy(a,r)
b(¢) == ahp(a,r)
Q) = 1 - aphuland)
(20b)
d(C) = %hm(a,r,C)
(OL’I’C) = ((xmf—oin-:-frg);iig(l—@)
hy(a,r,0) = ap—l+r¢

(ap—1+r0)?+r2(1-¢C%)"
Proving (20a) amounts to establishing:

1) stability of the transfer function G(rei?);

2) positive definiteness of the (1,1) block in (20a) via,
a@) >0, V¢el-L1;  Qla

3) positive definiteness of the Schur complement [21]

(O + (d(g) - a(<<)>)TTT =0, V(e [-1,1].

This condition amounts to checking

() + () -

b* ()
s ) A >0, V¢ e [-1,1]
(21b)
for each eigenvalue \; of TT7.
Next, we establish the conditions on the step size « such
that above three conditions hold for some rate r € (0,1).

Stability of the transfer function G(re')

The transfer function G(re?) is stable if and only if |1 —
amy| < r and |1 — au| < r. Since r belongs to an open
interval (0, 1), these conditions hold if |1 — am| < 1 and
|1 — ap] < 1 which yield the restriction on a,

0 < a < min (-2, 2).

Z, 2 (@)
Checking condition (21a)

Since a(¢) is a linear fractional function of (, it is
quasilinear [21]. This implies that (21a) can be established

by checking a(1) > 0 and a(—1) > 0,
_ alptmp)—1+r
a(-1) = alptmy) —1-r o o (22b)

amy—1—r

From (C1) it follows that the denominator in (22a) is positive
and that the denominator in (22b) is negative. Thus, (22a) is
satisfied if 1 —a(u+my) < r < 1 which clearly holds for all
positive . On the other hand, (22b) holds if o/(u+my)—1 <
r < 1. Therefore, condition (21a) holds if

Z__, (C2)

O<O(<m

Clearly, (C2) is more restrictive than (C1).

Checking condition (21b)

The Schur complement (21b) can be written as

5(0) == 1 + s1(¢) + s2(¢) > 0, V¢ € [-1,1] (23)
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where
—ap (ap—1+17¢)
510) = @t
._ (aXi/p)(ams —1+7C)
5200) = fam;—TFr07 + amlamy — T O F A=

Since both s; and so are linear fractions of (, they are
quasilinear functions of (. Furthermore, under (C2), their
denominators are strictly positive for all ¢ € [—1, 1]. Thus,
s1 and sg are well-defined for all ¢ € [—1, 1]. By checking
derivatives of s; and so: ds;/d¢ < 0, dsy/d¢ > 0, we
know that s; (respectively s2) is monotonically decreasing
(respectively increasing) over the interval [—1,1] and that
their extreme values take place at ¢ = £1.

To prove exponential convergence with some rate r €
(0,1), we show (21b) for » = 1. By continuity of the
functions sy and s, in r, this establishes the existence of
r € (0,1) such that (23) holds. Thus, in the remainder of
the proof, we take r = 1.

Checking condition (21b) at { = +1

Evaluating functions s; and s; at ( = +1 and r = 1
yields,

51(_1) = a;a_MQ > 07 51(1) = _17
i/ al;/n

Clearly, at ¢ = 1, condition (23) holds for all values of .
On the other hand, since s1(—1) > 0, the sufficient condition
on « for s(—1) > 0 is obtained from

1+ sp(=1) = 1 — o/

2—a(p+my) > 0.

Let the largest eigenvalue of TT7 be \,. The above
condition holds for all ¢ if it holds for A\; = A,,. Thus,
relative to (C1) and (C2), further restricts the values that the
step size « can take,

0<ac< (C3)

-2
pwAmy 4+ A /0

From (C3), it follows that the quasilinear functions s; and
so for r = 1 satisfy

s1(¢) > —1, s2(¢) > -1, V(¢ € (-1,1).
Checking condition (21b) for ( € (—1,1)

We note that 1 + s1(¢) is positive for all { € (—1, 1) and
that s5(¢) is non-negative for { € [1 — amy, 1). Thus, we
only need to check (23) for ( € (=1, 1 — amy). Since s;
is a decreasing function with s1(—1) > 0 and since s, is
an increasing function with 1+ s5(—1) > 0, under (C3), for
any ¢ € (—1,1 —amy), we have

(24)

L+ 51(¢) + 52(¢) > 1 4 s1(1 —amy) + sa(—1)
> s1(1 —amy)

ap(my — p)
almy —p)?+my(2—amy)”

(25)

Since the denominator is always positive, the sign of s1(1 —
amy) is determined by the sign of m; — p. In what follows,
we examine the two relevant cases.

1) Case 1: my > p: Under (C3) on a, we have s1(1 —
amy) > 0. Thus, from (25) we see that 1451 ({)+s2(¢) > 0
holds for all { € (—1,1—amy) when my > p; the left task
is to establish conditions on « to ensure 1451 ({)+s2(¢) > 0
for ( € (—1,1 — amy) when my < p.

2) Case 2: my < p: We split (—1,1 — amy) into
two intervals (—1,1 — au] and (1 — au,1 — amy) where
s1(1—ap) = 0. Using the argument similar to that preceding
equation (25), under (C3), for any ( € (—1,1—apu], we have

1+ 51(C) + 52(¢) > 1 4 so(—1) > 0. (26)

Since s; is decreasing and sp is increasing, for any ( €
(1 —ap,1 —amy), we have

14+ 51(¢) +s2(¢) > 14+ s1(1—amy) + s2(1—ap). (27)

Thus, when my < p, a sufficient condition for the stepsize «
to guarantee (23) is given by 14s1(1—amy)+sa(l—ap) >
0, which can be simplified into

asa® — aja + ag > 0 (28)

where parameters a; are given by (19).
The discriminant associated with the quadratic inequal-
ity (28) is always positive,

D = a% — 4agag
=dms(p — myg)*(Al,my + pm$ + 2u(m3 + 24%) Ay
and the condition (23) is satisfied if

0 g0 = C4
Ssas a1 1+\/174a0|a2|sign(a2)/a% (€4
where
G0 — 2
a ptmyp+ (u—msp)Am/p+p+me)/p

Thus, by combining (C3) and (C4) we complete the proof.

|

The upper bound (16) or (17) in Theorem 3 also holds for

it > = Ly —my, since we can always choose 7y = my

and Ly = L + (s — ), and Ls-Lipschitz V f is also L-

Lipschiz. Meanwhile, the upper bound on « depends on the
largest eigenvalue ), of the positive definite matrix 777 .

IV. COMPUTATIONAL EXPERIMENTS

We consider a quadratic optimization problem [22, (18)]

minimize $z7Qx + ¢"x + g(2)
T,z (29)
subject to Tx — z = 0.

where z,q € R", T € R™*" @ € R™*" is a positive
definite matrix, and g(z) is the indicator function as g(z) = 0
for z < ¢ and g(z) = +oo otherwise, where ¢ € R™.

Denote f(z) = (1/2)z7Qx + qTz, (29) is a case of the
problem (2). We use the proposed PD algorithm (5). We
choose L; and my be the largest and the smallest eigenvalue
of (), and 4 = Ly—my. The gradient of the Moreau envelope
VM,4(v;) is given by max(0, (v; — ¢;)/ ).

We generate problem instances in Matlab. We set n =
m = 10, ¢ = 10 x randn(n,1), and Q = EET 4+ F,
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Fig. 1: Problem instance with Ly = 32.44 and m; = 0.87.
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Fig. 2: Problem instance with Ly = 0.92 and ms = 0.62.

where E = randn(n,n) and F' = diag(exp(randn(n,1))).
We choose ¢ as a vector with all ones, and 7" = I. This class
of instances have large condition numbers, i.e., Ly > my,
which corresponds to the case of ;1 > my. We choose the
step size « smaller than min (aq, ag) in (17).

We report one instance as shown in Fig. 1. We take several
step sizes near the upper bound: min (aq, as) = 0.0528 (a
circle line in Fig. 1). We show the convergence in Fig. 1 by
distances of iterations #* and y* to the optimal.

For comparison, we test some well-conditioned instances.
We rescale the singular values of () to reduce L —my. One
instance is shown in Fig. 2. We choose several step sizes near
the upper bound: a; = 0.4798 using (16) (a line of circles
in Fig. 2). We show the convergence in Fig. 2 by distances
of iterations 2* and y* to the optimal.

In Figs. 1 and 2, we show that our algorithm converges
exponentially if a step size is selected within upper bounds in
Theorem 3. Within these bounds (circle lines in figures), by
increasing the step size, the algorithm converges faster and
faster. Therefore, a large step size is preferable empirically.
It is noted that, black (or solid) lines indicate very slow
convergence for small step sizes.

Unfortunately, if we choose larger step sizes beyond upper
bounds, the aglorithm can diverge quickly as a star line
shown in Figs. 1 and 2. A slightly larger step size over upper

bounds may speedup as a square line shown in Fig. 1, but
it could be detrimental as shown in Fig. 2. Admittedly, our
step size upper bounds are still conservative.

Finally, to show how small analytic step size bounds «y
in (11) are, we compute rate p and P from the matrix
inequality condition [1, (16)] using bisection search on p.
For the above ill- and well-conditioned cases, necessary step
size bounds ag are 5.7 x 10716 and 3.6 x 104, respectively,
and our upper bounds are significantly larger.
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