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Abstract— We study performance of accelerated first-order
optimization algorithms in the presence of additive white
stochastic disturbances. For strongly convex quadratic prob-
lems, we explicitly evaluate the steady-state variance of the
optimization variable in terms of the eigenvalues of the Hessian
of the objective function. We demonstrate that, as the condition
number increases, variance amplification of both Nesterov’s
accelerated method and the heavy-ball method by Polyak is
significantly larger than that of the standard gradient descent.
In the context of distributed computation over networks, we
examine the role of network topology and spatial dimension
on the performance of these first-order algorithms. For d-
dimensional tori, we establish explicit asymptotic dependence
for the variance amplification on the network size and the cor-
responding condition number. Our results demonstrate detri-
mental influence of acceleration on amplification of stochastic
disturbances and suggest that metrics other than convergence
rate have to be considered when evaluating performance of
optimization algorithms.

Index Terms— Consensus networks, convex optimization,
first-order methods, gradient descent, heavy-ball method, Nes-
terov’s accelerated gradient method, stochastic performance,
variance amplification.

I. INTRODUCTION

First-order methods are the workhorse for solving many
large scale optimization problems [1]–[3]. While gradient
descent and stochastic gradient descent are widely used
because of their simplicity and robust performance, the
accelerated first-order methods gained popularity because
of their optimal convergence rate [4]–[9]. The behavior of
these algorithms has been extensively studied in the literature
under different step size selection rules [10].

In many applications, the exact value of the objective
function and/or of its gradient is not available to the opti-
mizer. This happens when the objective function is obtained
via costly simulations (e.g., tuning of hyper-parameters in
supervised/unsupervised learning [11]–[13]) or when the
evaluation of the objective function is based on noisy
measurements (e.g., real-time and embedded applications).
Another application arises in the (batch) stochastic gradient
settings where at each iteration the gradient of the objective
function is computed from a small batch of data points.
Such a batch gradient is known to be a noisy unbiased
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estimator of the training loss. Moreover, noise may be added
to the gradient to improve generalization or to escape saddle
points [14], [15].

In all of the above scenarios, only noisy unbiased estimates
of the gradient of the objective function are available to the
iterative algorithms. This motivates the analysis of perfor-
mance of the gradient descent and its accelerated variants
in the presence of noisy/inexact gradient oracle [16]–[19].
For example, while early stochastic approximation results
suggest the use of step size that is inversely proportional to
the iteration number [17], a more robust behavior can be
obtained by combining larger step sizes with averaging [18],
[20]. Utility of these averaging schemes and their modi-
fications for solving quadratic optimization and manifold
problems has also been studied [21]–[23]. Furthermore, it
has been shown that accelerated first-order algorithms can
tolerate less noise than their non-accelerated variants [19],
[24]–[28]. In particular, an upper bound on the effect of
errors on iterates of inexact accelerated proximal gradient
methods was established in [26]. Using this upper bound,
the authors of [26] showed that both proximal gradient and
accelerated proximal gradient can maintain their convergence
rate provided that the error vanishes fast enough. While
the effect of imperfections on the performance of these
algorithms has been extensively studied, the influence of
acceleration on noise amplification has not been precisely
characterized. In particular, the existing results neither pay
attention to how the distribution of the eigenvalues of the
Hessian influences noise amplification nor provide any lower
bounds on the variance amplification.

As a first step towards answering such question, we in-
vestigate performance of first-order optimization algorithms
in the presence of additive stochastic disturbances. More
specifically, we focus on convex quadratic optimization prob-
lems and compare the steady-state variance amplification of
accelerated methods to that of the gradient descent. For this
class of problems, first-order algorithms can be cast as linear
dynamical systems and tools from control theory can be
used to study fundamental performance limitations and trade
offs that acceleration introduces. In particular, we utilize the
H2 analysis to demonstrate poor performance of accelerated
methods compared to the standard gradient descent in the
presence of noise.

For unconstrained strongly convex quadratic problems,
we evaluate the steady-state variance of the optimization
variable for three first-order algorithms: the gradient descent,
Nesterov’s accelerated method and the heavy-ball method by
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Polyak. We develop explicit formulae for the steady-state
variance amplification of these algorithms in terms of the
algorithmic parameters and problem data. For a model of
a distributed computation over networks, we specialize the
aforementioned asymptotic variance relations by focusing
on the consensus problem for large networks with tori
topologies. For such networks, we demonstrate that while
gradient descent shows similar stochastic performances as
that of the standard consensus algorithm [29], for large torus
interconnects of spatial dimension less than five, accelerated
methods suffer from significantly larger steady-state variance
amplification the gradient descent.

II. PROBLEM FORMULATION

The unconstrained optimization problem

minimize
x

f(x) (1)

can be solved in many different ways when f : Rn → R is
a convex function with an Lf -Lipschitz continuous gradient.
We are interested in examining properties of three popular
first-order algorithms for solving problem (1) in the presence
of additive stochastic disturbances. In particular, we consider
noisy versions of gradient decent,

xk+1 = xk − αk∇f(xk) + wk

Nesterov’s accelerated method,

xk+2 = xk+1 + βk(xk+1 − xk) −
αk∇f

(
xk+1 + βk(xk+1 − xk)

)
+ wk

and Polyak’s heavy-ball method,

xk+2 = xk+1 + βk(xk+1 − xk) − αk∇f(xk+1) + wk

where wk is a stochastic disturbance, αk is the step size, and
βk is a scalar parameter.

In the absence of strong convexity, Nesterov’s accelerated
method enjoys an optimal convergence rate among all linear
first-order algorithms. While the gradient descent with the
step size 1/Lf provides (1/k) decay rate,

f(xk) − f(x?) ≤ Lf
2k
‖x0 − x?‖2

accelerated Nesterov’s algorithm with α = 1/Lf and βk =
(k − 1)/(k + 2) yields,

f(xk) − f(x?) ≤ 4Lf
(k + 2)2

‖x0 − x?‖2.

On the other hand, the heavy-ball method may even fail to
converge for general strongly convex functions [30].

A. Strongly convex quadratic problems

To obtain analytical insight, in this paper we quantify
the variance amplification of noisy first-order algorithms for
strongly convex quadratic optimization problems. For this
class of problems, the function f in (1) is given by

f(x) =
1

2
xTQx − rTx

Method Parameter choice Rate

Gradient α = 2
Lf+mf

κ−1
κ+1

Nesterov α = 4
3Lf+mf

, β =
√
3κ+1−2√
3κ+1+2

√
3κ+1−2√
3κ+1

Polyak α = 4

(
√
Lf+

√
mf )2

, β = (
√
κ−1)2

(
√
κ+1)2

√
κ−1√
κ+1

TABLE I: Optimal parameters and the exponential conver-
gence rate bounds for mf -strongly convex quadratic objec-
tive functions with Lf -Lipschitz gradients and κ := Lf/mf .

where Q = QT � 0 is a positive definite matrix and r is a
vector. In this case, gradient descent, Nesterov’s accelerated
method, and Polyak’s heavy-ball algorithm converge expo-
nentially to the optimal solution x? = Q−1r. Furthermore,
the constant values of α and β given in Table I provide
optimal decay rates [30].

In what follows, without loss of generality, we set r = 0.
This yields∇f(x) = Qx and the above first-order algorithms
can be described by a linear time-invariant state-space model,

ψk+1 = Aψk + Bwk

yk = C ψk
(2)

with input wk, output yk := xk, and state ψk. In particular,
for gradient descent we can choose

ψk := xk, A = I − αQ, B = C = I

where I is the identity matrix. Similarly, for Nesterov’s and
Polyak’s methods, if we let

ψk :=

[
xk

xk+1

]
, B =

[
0
I

]
, C =

[
I 0

]
the corresponding A-matrices are, respectively, given by

A =

[
0 I

−β(I − αQ) (1 + β)(I − αQ)

]
A =

[
0 I
−βI (1 + β)I − αQ

]
.

It can be shown that for α and β in Table I and Q � 0, the
eigenvalues of the matrix A are inside the open unit disk in
the complex plane, thereby implying stability of (2) for all
three cases.

B. Variance amplification

We are interested in studying the performance of the above
first-order algorithms in the presence of noise. For white
stochastic disturbances wk with

E
(
wk
)

= 0, E
(
wk(wl)T

)
= Iδ(k − l)

we evaluate the steady-state variance of the output yk in (2),

J := lim
k→∞

E (‖yk‖2)
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where E is the expected value and δ is the Kronecker delta.
Since (2) is stable, this quantity is well-defined and it can be
equivalently expressed in terms of the steady-state covariance
matrix Y := limk→∞ E (yk(yk)T ) of the output yk,

J = trace (Y ) .

It is well-known that the state covariance matrix P k :=
E (ψk(ψk)T ) satisfies the recursive Lyapunov equation

P k+1 = AP kAT + BBT

and that the steady-state limit P := limk→∞ P k can be
obtained from the algebraic Lyapunov equation,

P = APAT + BBT . (3)

The solution to this equation and the fact that Y = CPCT

allow us to compute the variance amplification as

J = trace (Y ) = trace (C P CT ).

Finally, we note that this measure of the input-output amplifi-
cation determines the square of the H2 norm of system (2).
It is well-known that the H2 norm also has an appealing
deterministic interpretation in terms of the L2 norm of the
system’s impulse response [31].

III. ANALYTICAL EXPRESSIONS

In this section, we provide analytical expressions for the
variance amplification of first-order algorithms for strongly
convex quadratic optimization problems. We show that, in
addition to algorithmic parameters α and β, the variance
amplification depends on all eigenvalues of the positive
definite matrix Q. This should be compared and contrasted
to the optimal rate of linear convergence which only depends
on the ratio of the largest and smallest eigenvalues of Q.

A. Influence of the eigenvalues on variance amplification

We use the eigenvalue decomposition of Q = V ΛV T � 0,
where Λ = diag (λi) is a diagonal matrix of the eigenvalues
and V is a unitary matrix of the eigenvectors of Q to bring
A, B, and C in (2) into a block diagonal form,

Â = diag (Âi), B̂ = diag (B̂i), Ĉ = diag (Ĉi),
i = 1, . . . , n.

In particular, the unitary coordinate transformation

x̂k := V Txk, ŵk := V Twk (4)

brings the state-space model of the gradient descent into a
diagonal form with,

ψ̂ki = x̂ki , Âi = 1 − αλi, B̂i = Ĉi = 1.

Similarly, for accelerated algorithms, change of coordi-
nates (4) in conjunction with a permutation of variables yield

ψ̂ki =

[
x̂ki
x̂k+1
i

]
, B̂i =

[
0
1

]
, Ĉi =

[
1 0

]
where

Âi =

[
0 1

−β(1− αλi) (1 + β)(1− αλi)

]

for Nesterov’s accelerated method, and

Âi =

[
0 1
−β (1 + β)− αλi

]
for the heavy-ball method.

This block diagonal structure allows us to explicitly solve
Lyapunov equation (3) for P and derive an analytical expres-
sion for the variance amplification in terms of the eigenvalues
λi of the matrix Q and the algorithmic parameters α and β.
Namely, under coordinate transformation (4) and a suitable
permutation of variables, equation (3) can be brought into
an equivalent set of algebraic Lyapunov equations,

P̂i = Âi P̂i Â
T
i + B̂iB̂

T
i , i = 1, . . . , n (5)

where P̂i is a scalar for the gradient descent method and a
2×2 matrix for the accelerated algorithms. In Theorem 1, for
each of these algorithms, we determine an analytical solution
P̂i to (5) and express the output variance as

J =

n∑
i=1

Ĵ(λi) :=

n∑
i=1

trace (Ĉi P̂i Ĉ
T
i ).

Theorem 1: For strongly convex quadratic problems, the
variance amplification of first-order algorithms subject to
additive white stochastic disturbances with zero mean and
unit variance is given by J =

∑n
i=1 Ĵ(λi), where

Gradient: Ĵ(λ) = 1
αλ(2−αλ)

Nesterov: Ĵ(λ) = 1+ β(1−αλ)
αλ(1− β(1−αλ))(2(1+ β)− (2β+1)αλ)

Polyak: Ĵ(λ) = 1+ β
1− β

1
αλ(2(1+ β)−αλ) .

Proof: For gradient descent, Âi = 1−αλi and B̂i = 1
are both scalars and, hence, the solution to (5) is given by

P̂i := pi =
1

1 − (1 − αλi)2
=

1

αλi(2 − αλi)
.

For accelerated methods, we note that for any Âi and B̂i of
the form

Âi =

[
0 1
ai bi

]
, B̂i =

[
0
1

]
the solution P̂i to Lyapunov equation (5) is

P̂i =

[
pi bipi/(1− ai)

bipi/(1− ai) pi

]
where

pi :=
ai − 1

(ai + 1)(bi + ai − 1)(bi − ai + 1)
. (6a)

For Nesterov’s accelerated method, we have

ai = −β(1 − αλi), bi = (1 + β)(1 − αλi) (6b)

and for the heavy-ball method,

ai = −β, bi = (1 + β) − αλi. (6c)

Now, since Ĉi = 1 for gradient descent and Ĉi = [ 1 0 ] for
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accelerated algorithms, we have

Ĵ(λi) := trace (Ĉi P̂i Ĉ
T
i ) = pi.

Finally, if we use the expression for pi for gradient descent
and substitute for ai and bi in (6a) from (6b) for Nesterov’s
algorithm and from (6c) for Polyak’s algorithm we obtain
the expressions for Ĵ(λi) in the statement of the theorem.

B. Analysis in condition number

For the optimal parameters provided in Table I, we use
the expressions derived in Theorem 1 to establish explicit
relations between the variance amplification of gradient
descent and its accelerated variants. We also provide tight
upper and lower bounds that reveal the dependence on the
condition number κ and the problem size n.

In what follows, we use Jgd, Jna, and Jhb to denote the
steady-state variances of gradient descent, Nesterov’s accel-
erated, and Polyak’s heavy-ball methods. Theorem 2 estab-
lishes a linear relation between Jhb and Jgd and demonstrates
that acceleration always increases variance amplification of
the heavy-ball method relative to gradient descent.

Theorem 2: For strongly convex quadratic problems with
λmax(Q) = Lf , λmin(Q) = mf , κ := Lf/mf , and
parameters given in Table I, the variance amplification of
the heavy-ball method is determined by

Jhb =
(
√
κ + 1)4

8
√
κ(κ + 1)

Jgd.

Proof: For the values of the parameters α and β
provided in Table I, using Theorem 1, it is straightforward
to show that for any λ ∈ [mf , Lf ] we have

Ĵhb(λ)

Ĵgd(λ)
=

(
√
κ+ 1)4

8
√
κ(κ+ 1)

which proves the result.

Theorem 2 shows that the ratio between Jhb and Jgd is a
monotonically increasing function of the condition number
κ. We note that although the heavy-ball method decreases the
number of iterations required to achieve any given accuracy
by a factor of

√
κ, it also increases variance amplification

relative to gradient descent by a factor that asymptotically
(i.e., as κ → ∞) scales as

√
κ. The relationship between

variance amplification of Nesterov’s method and gradient
descent is more subtle and it depends on the distribution
of the eigenvalues of the matrix Q.

In the next proposition, we provide upper and lower
bounds on variance amplification in terms of the problem
size n and the condition number κ.

Proposition 1: For strongly convex quadratic problems
with λmax(Q) = Lf , λmin(Q) = mf , and κ := Lf/mf , the
variance amplification of noisy first-order algorithms, with

parameters given in Table I, is bounded by

(κ − 1)2

2κ
+ n ≤ Jgd ≤

n(κ + 1)2

4κ

3κ
√

3κ

32
+ n − 1 ≤ Jna ≤

6n(κ + 3)
√
κ + 3

32

(κ − 1)2

2κ
+ n ≤ Jhb

8
√
κ(κ + 1)

(
√
κ + 1)4

≤ n(κ + 1)2

4κ
.

Proof: It is straightforward to show that for the values
of parameters α and β given in Table I, the functions Ĵ(λ)
in Theorem 1 for gradient descent and Nesterov’s algorithm
attain their maximum and minimum at λ = mf and λ =
1/α, respectively. In other words,

1 = Ĵ(1/α) ≤ Ĵ(λ) ≤ Ĵ(mf ), ∀λ ∈ [mf , Lf ]. (7)

Therefore, fixing the smallest and largest eigenvalues, the
variance amplification J is maximized when the other n− 2
eigenvalues are all equal to mf and is minimized when they
are all equal to 1/α. This leads to the above upper and lower
bounds for gradient descent. For Nesterov’s algorithm, it is
not hard to verify that

3κ
√

3κ

32
≤ Ĵna(mf ) ≤ 6(κ+ 3)

√
κ+ 3

32
.

Combining this inequality with (7) completes the proof for
Nesterov’s algorithm. The bounds for the heavy-ball method
is the direct consequence of applying Theorem 2 to the
bounds obtained for gradient descent method.

For a fixed problem size n, we observe that the variance
amplification of gradient descent Jgd scales linearly with the
condition number. On the other hand, the variance amplifica-
tion of the accelerated algorithms scales as κ

√
κ. However,

in many problems, the condition number κ depends on the
problem size n which calls for a closer examination of the
scaling trends as n increases. This issue is further discussed
in Section IV. More specifically, in the next section, we
consider a simple model for a distributed computation over
undirected consensus networks and employ the first-order
algorithms to compute the network average. We utilize the
relations in Theorems 1 and 2 to establish bounds on the
variance amplification of noisy algorithms as the size of the
network increases.

IV. APPLICATION TO DISTRIBUTED COMPUTATION OVER
NETWORK

Distributed computation over networks has been the focus
of extensive research in the optimization and machine learn-
ing communities. In this problem, the goal is to optimize
an objective function (e.g., for the purpose of training a
model) over distributed processing units that are connected
to each other over a network. Clearly, the structure of the
network (e.g., node dynamics and network topology) would
impact the performance (e.g., noise amplification) of any
optimization algorithm.

As a first step toward understanding the impact of network
structure on noisy optimization algorithms, in this section,
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we analyze the asymptotic noise amplification in solving
standard distributed consensus problem via first-order al-
gorithms. In the classical network consensus problem, the
sensors/processing nodes each have measurements and the
goal is to compute the average of these measurements by
local information exchange among the nodes. This problem
arises in a number of applications ranging from social
networks, to distributed computing networks, to cooperative
control in multi-agent systems and it can be formulated as a
minimization of the quadratic function

minimize
x

1

2
xTLx (8)

where L = LT � 0 is the Laplacian matrix of the graph
associated with the underlying undirected network and x ∈
Rn is the vector of node measurements. The graph Laplacian
of a connected network is a positive semidefinite matrix
that has only one zero eigenvalue with the corresponding
eigenvector of all ones, 1 := [ 1 · · · 1 ]T . Using this fact,
one can make the following observations:

• Any vector parallel to the vector of all ones 1 is a global
minimizer of (8).

• In the absence of noise, each step of the gradient descent
or its accelerated variants does not change the average
values of nodes, i.e., 1Tx remains constant during the
algorithm.

• Performing each step of gradient descent, Nesterov’s
method, or the heavy-ball method only requires local
information exchange among the nodes.

Combining these observations, one can conclude that, in the
absence of noise, all three algorithms converge to the average
of the node values, 1

n

∑
i xi1. Moreover, these algorithms

can be implemented in a completely distributed fashion.
In the presence of noise, the zero eigenvalue of the graph
Laplacian leads to an unbounded steady-state variance of xk

because the network average 1
n

∑
i xi experiences random

walk. As described in [32], performance of noisy algorithms
can be quantified by examining the mean-square deviation
of the node values from the network average. We note that,
although (8) is not strongly convex on Rn, for connected
undirected networks it is strongly convex on the orthogonal
complement of the subspace spanned by the vector of all
ones, 1⊥. On this subspace, only positive eigenvalues of
L influence the variance amplification and all formulae in
Theorems 1 and 2 all remain valid by conducting summations
over the non-zero eigenvalues of L.

In what follows, we study large networks with simple
structure for which there is a systematic way of increasing
the network size n. When the computation at each node
is subject to additive noise we evaluate asymptotic perfor-
mance of the noisy first-order algorithms as the size of the
network increases. We show that the asymptotic variance
amplification of the gradient descent is equivalent to that of
the standard consensus algorithm studied in [29] and that
acceleration negatively impacts the performance of noisy
algorithms. Our results also highlight the subtle influence of
the distribution of the eigenvalues on variance amplification.

A. Explicit formulae for d-dimensional tori networks

Tori with nearest neighbor interactions generalize one-
dimensional rings to higher spatial dimensions. Let Zm
denote the group of integers modulo m. A d-dimensional
torus Tdm consists of n := md nodes denoted by va where
a ∈ Zdm and a set of edges E := {{va vb} | ‖a − b‖ = 1
mod m}; nodes va and vb are neighbors if and only if a
and b differ exactly at one entry by one. For example, T1

m

denotes a ring with n = m nodes and T5
m denotes a five

dimensional torus with n = m5 nodes.
The multidimensional discrete Fourier transform can be

used to determine the eigenvalues of the Laplacian matrix L
of a d-dimensional torus Tdm,

λi =
d∑

l=1

2
(
1 − cos 2πil

m

)
, il ∈ Zm (9)

where i := (i1, . . . , id) ∈ Zdm. We note that λ0 = 0 is the
only zero eigenvalue of the graph Laplacian with eigenvector
of all ones and that all other eigenvalues are positive. As
aforementioned, all formulae in Theorem 1 remain valid if
sums are taken over non-zero eigenvalues of L. Namely, the
network-size normalized variance amplification J/n of noisy
algorithms can be written as

J

n
=

1

n

∑
0 6= i∈Zd

m

Ĵ(λi)

where, for each algorithm, Ĵ : R+ → R+ is a function deter-
mined in Theorem 1 and λi’s are the non-zero eigenvalues
of the graph Laplacian L.

The following theorem characterizes the asymptotic vari-
ance amplification per network node of noisy first-order
distributed averaging algorithms for d-dimensional tori net-
works with n = md nodes. This result is obtained by
combining relations derived in Section III with the analytical
expression (9) for the eigenvalues of the corresponding
Laplacian matrix L ∈ Rn×n. The key observation is that,
for m� 1, the condition number of L on 1⊥ is given by

κ =
λmax

λmin
≈ 2

1 − cos 2π
m

= Θ(m2) = Θ(n2/d).

Here, the notation g = Θ(h) means that there exist positive
constants c1 and c2 such that

c1 ≤ lim inf
h→∞

h

g
≤ lim sup

h→∞

h

g
≤ c2.

Theorem 3: Let L ∈ Rn×n be the graph Laplacian of the
d-dimensional undirected torus Tdm with n = md � 1 nodes.
For optimization problem (8), the variance amplification J
of the noisy first-order algorithms on the subspace 1⊥ satisfy
the asymptotic trends provided in Table II.

Proof: The proof is omitted due to page limitations. �
It is worth noting that for one-dimensional rings, the

upper bounds on the variance amplification established in
Proposition 1 are all conservative by a factor of

√
κ when

compared to the exact trends presented in Theorem 3 that are
obtained based on the distribution of the eigenvalues. This
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d = 1 d = 2 d = 3 d = 4

Jgd
n

Θ(
√
κ) Θ(log κ) Θ(1) Θ(1)

Jna
n

Θ(κ) Θ(
√
κ log κ) Θ(κ

1
4 ) Θ(log κ)

Jhb
n

Θ(κ) Θ(
√
κ log κ) Θ(

√
κ) Θ(

√
κ)

TABLE II: The asymptotic trends for the network-size-
normalized variance amplification J/n of the first-order
methods for the torus Tdm with n = md nodes. Here,
κ = Θ(n2/d) is the condition number of the graph Laplacian
L restricted to the subspace 1⊥.

gap becomes even larger in higher spatial dimensions mainly
due to the fact that the upper bounds are obtained using only
the extreme eigenvalues. In other words, we observe that
as we increase the dimension, the trends depart from the
upper bounds and get closer to the lower bounds established
in Proposition 1. Our results emphasize the importance of
paying attention to the whole spectrum of the Hessian rather
than just the extreme eigenvalues.

V. CONCLUDING REMARKS

We demonstrate that acceleration techniques although can
improve the convergence rate of first-order algorithms, may
suffer from a significantly larger noise amplfication. In
particular, in the presence of white additive stochastic distur-
bances, as we establish in Section III-B, for large condition
number κ and fixed problem size n, gradient descent has
a smaller steady-state variance for the optimization variable
than both Nesterov’s accelerated and the heavy-ball methods.

We further consider the special case of quadratic opti-
mization problem whose objective function is given by the
Laplacian matrix of a torus interconnect that is a gener-
alization of cycle graphs. For this class of problems, that
arise in the context of distributed computation over networks,
we derive asymptotic relations for the variance amplification
of the three above algorithms, as the size of the network
increases. These results demonstrate that for tori networks
gradient decent is more robust to stochastic disturbances than
its accelerated variants.
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