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Abstract— We study the problem of sparse interaction topol-
ogy identification using sample covariance matrix of the states
of the network. We postulate that the statistics are generated
by a stochastically-forced undirected consensus network with
unknown topology in which some of the nodes may have access
to their own states. We first propose a method for topology
identification using a regularized Gaussian maximum likelihood
framework where the `1 regularizer is introduced as a means
for inducing sparse network topology. We also develop a method
based on growing a Chow-Liu tree that is well-suited for
identifying the underlying structure of large-scale systems. We
apply this technique to resting-state functional MRI (FMRI)
data as well as synthetic datasets to illustrate the effectiveness
of the proposed approach.

Index Terms— Chow-Liu tree, consensus networks, coordi-
nate descent, FMRI, Newton’s method, sparse inverse covari-
ance estimation, topology identification.

I. INTRODUCTION

Identifying network topology and learning graphical mod-
els from partially available statistical signatures are topics
of immense interest in areas ranging from machine learning
to statistics to neuroscience [1]–[8]. Studying the human
brain as a complex network has received significant attention
recently [9]–[11]. The brain functional connectivity can be
measured by computing the correlation between time-series
functional magnetic resonance imaging (FMRI) data. The
functional connectivity structure between different regions
can be revealed by utilizing different thresholding tech-
niques [12], [13]. In general, this is a challenging problem
because it is often the case that only noisy partial network
statistics are known. The goal is to develop an efficient al-
gorithm for recovering the underlying topology of a network
utilizing the limited sample data.

Recovering the underlying network topology using sam-
ple covariance matrix of the node values under structural
constraints has been studied in [14]–[16]. Moreover, a rich
body of literature has been devoted to the problems of
designing network topology to improve performance [17]–
[21]. Several algorithms can be employed to identify the
underlying network structure from limited statistical data.
In [22], the authors show inability of standard graphical-
LASSO to identify network topology. It was demonstrated
that this popular algorithm fails to recover the underlying
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topology even when the abundance of data is available.

In this paper, we develop a convex optimization algorithm
for identifying sparse interaction topology using the sample
covariance matrix of the states of the network. First, we
utilize an `1-regularized Gaussian maximum likelihood esti-
mator that has been commonly used for recovering sparse
inverse covariance matrices [23]–[25]. We show that the
performance of graphical-LASSO can improve significantly
by imposing additional structure on the problem and using
reweighting schemes [26]. In particular, our framework over-
comes challenges that standard graphical-LASSO faced and
performs well for the case study in [22]. Moreover, inspired
by [22], we combine the Chow-Liu algorithm [27] with
the techniques for growing networks developed in [28] to
identify the underlying structure of an undirected consensus
network. Constructing the Chow-Liu tree from statistical
data does not require any matrix inversion; thereby, it is
well-suited for large-scale problems. Furthermore, we have
developed efficient algorithms [28] for growing connected
resistive consensus networks. Herein, we demonstrate that
combining these two algorithms yields an efficient method
for recovering the network topology in large-scale systems.

Our presentation is organized as follows. In Section II, we
discuss the properties of consensus networks and formulate
the problem of topology identification using sparse inverse
covariance matrix estimation. We also briefly comment on
the customized second-order algorithm based on the proxi-
mal Newton method [14] to solve the `1-regularized Gaus-
sian maximum likelihood estimation problem. In Section III,
we develop an algorithm for growing a Chow-Liu tree graph
in order to identify the network that yields close approxima-
tion of a given sample covariance matrix. In Section IV, we
use computational experiments to illustrate features of our
method. In particular, we employ our algorithm to identify
the underlying functional network of the human brain using
FMRI data. Finally, in Section V, we conclude with a brief
summary.

II. TOPOLOGY IDENTIFICATION VIA STRUCTURED
GRAPHICAL-LASSO

The problem of topology identification using a sample
covariance matrix for stochastically forced undirected con-
sensus networks has been studied in [14]. In consensus
networks, each node updates its own state using localized
information exchange with the neighbors. Two nodes are
neighbors if an edge connects them together. Herein, we
consider a network that leader nodes are equipped with
absolute information about their own states. In [14], we
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showed that the underlying topology of an undirected con-
sensus network can be identified using Gaussian maximum
likelihood estimator. In this paper, we formulate the topology
identification problem for undirected consensus networks
with leader nodes and provide two algorithms to solve this
problem.

Consider an undirected network with n nodes governed
by

ψ̇i =
∑
j∈Ni

xij (ψj − ψi) − zi ψi + wi,

where each node i updates its own state using relative
information exchange with its neighbors in the set Ni.
Moreover, certain nodes, the so-called leaders, have access
to their own states. Here, zi is the weight that the ith node
sets for the absolute measurement, xij is the edge weight,
and wi is an exogenous stochastic disturbance. The ith node
is a leader if zi 6= 0 and it is a follower if zi = 0. By
concatenating all the states in a vector ψ ∈ Rn, the consensus
dynamics can be written as

ψ̇ = − (Lx + Dz)ψ + w (1)

Here, Lx ∈ Rn×n is the graph Laplacian of the consensus
network and Dz ∈ Rn×n is a diagonal matrix with the ith
diagonal entry zi. The incidence matrix E of the underlying
graph represents the edges in the network. The lth column
of this matrix is given by

ξl = ei − ej ,

that demonstrates the lth edge between the nodes i and j.
Here, ei ∈ Rn is the ith basis vector. By using the incidence
matrix, the Laplacian matrix Lx can be written as

Lx :=
m∑

l=1

xl ξl ξ
T
l = E diag (x)ET

where diag (x) is a diagonal matrix with the edge weights
x ∈ Rm in its diagonal.

Given that the covariance of the disturbance is a multiple
of the identity matrix I , the steady-state covariance of ψ,

Σ := lim
t→∞

E (ψ ψT ),

can be computed as the solution to the associated algebraic
Lyapunov equation

(Lx + Dz) Σ + Σ (Lx + Dz) = 2 I.

Thus, the steady state covariance can be explicitly computed
as

Σ = (Lx + Dz)
−1
. (2)

The inverse of the steady-state covariance matrix of the states
of the system can be determined by the structure of the
underlying graph that connects the n nodes. Thus, by using
a sampled second-order statistics and estimating the inverse
covariance matrix, the underlying topology of an undirected
consensus network with leaders can be identified. The prob-
lem of sparse covariance estimation has received significant

attention recently [29]–[32]. Relative to these works, our
optimization problem has additional structure coming from
the dynamics of undirected consensus networks. Moreover,
compared to our previous work [14], we consider consensus
networks with leaders and introduce a new algorithm that is
convenient for solving large-scale problems.

We first generalize the proposed algorithm based on the
structured graphical-LASSO in [14] to solve the problem
of topology identification in undirected consensus networks
with leaders. It is well-known that the estimation of the
inverse covariance matrix X can be obtained as the solution
to the regularized maximum log-likelihood problem [25],

minimize
X

− log det (X) + trace (SX) + γ ‖F ◦ X‖1

subject to X � 0,
(3)

where S is the sample covariance matrix, γ is a posi-
tive regularization parameter, F is the weight matrix, and
‖F ◦ X‖1 :=

∑
Fij |Xij | is the weighted `1 norm of the

matrix X . By substituting the expression (2) for the inverse
covariance matrix in (3) and using the incidence matrix E,
the topology of a network that generates close approximation
of a given sample covariance matrix can be identified by
solving the following problem,

minimize
x, z

J(x, z) + γ1

m∑
l=1

fl |xl| + γ2

N∑
k=1

gk |zk|

subject to E diag (x)ET + diag(z) � 0,
(NI)

where

J(x, z) = − log det
(
E diag (x)ET + diag(z)

)
+

trace
(
S (E diag (x)ET + diag(z)

)
.

Moreover, f ∈ Rm and g ∈ RN are the vectors of non-
negative weights and (γ1, γ2) are the positive regularization
parameters. An effective heuristic for weight selection is
given by the iterative reweighted algorithm where the weights
f and g are inversely proportional to the magnitudes of x
and z in the previous iteration [26]. Problem (NI) is a convex
but non-smooth optimization problem where the optimization
variables are the vector of the edge weights x ∈ Rm and the
vector of leaders weights z ∈ RN . Relative to our prior
work [14], our optimization problem has additional structure
induced by presence of the leader nodes.

The algorithm based on the sequential quadratic approxi-
mation of the smooth part of the objective function in [14]
can be utilized for solving (NI) with minor changes. The
difference is that the optimization variable size has increased
form m to m + N . This method benefits from exploiting
second-order information of the smooth part of the objective
funtion and from computing the Newton direction using
cyclic coordinate descent [33] over the set of active variables.
For a detailed version of the algorithm; see Section III.C
in [14]. We solve the problem (NI) for different values
of (γ1, γ2) using a path-following iterative reweighted al-
gorithm. The topology identification then is followed by a

5422



polishing step [14] to debias the identified edge weights. We
next propose an algorithm to solve the topology identification
problem of large-scale networks.

III. GROWING A CHOW-LIU TREE NETWORK

In this section, we discuss an alternative algorithm for
identifying the underlying network topology which is well-
suited for large-scale systems. In order to find the under-
lying network structure using statistical data, the Chow-Liu
tree algorithm [27] can be utilized. This method does not
require any matrix inversion; thereby, suitable for large-
scale usage. However, as discussed in [22], it causes false
positives and negatives when using it for identifying the
topology of disconnected networks or networks with cycles,
respectively. Herein, we propose a framework in order to
combine the Chow-Liu tree and the reweighted graphical-
LASSO algorithms for identifying the structure of connected
networks with cycles.

We consider the same consensus network in (1) and we
assume that the sample covariance matrix S is given. In
order to use the Chow-Liu algorithm, the mutual information
matrix M should be constructed from the sample covariance
matrix. Assuming Gaussian distribution for the noise w, the
mutual information is given by

Mij =
1

2
log

(
Sii Sjj

Sii Sjj − S2
ij

)
,

where Sij is the ijth element of the matrix S. We only use
the n (n − 1)/2 off-diagonal elements of this symmetric
matrix to construct the Chow-Liu tree. A spanning tree of a
graph with n nodes has (n−1) edges. To build the Chow-Liu
tree, we sort the elements of the mutual information matrix
and choose the biggest (n − 1) of them that do not create
cycles [27].

After finding the underlying tree network that generates
close approximation of the sample covariance matrix, our
goal is to add a certain number of edges to the tree graph
in order to enhance the closed-loop performance [28]. The
performance is measured by the proximity of the second-
order statistical data generated by the network to the given
sample covariance matrix.

Consider an undirected consensus tree network,

ψ̇ = −Lt ψ + u + w, (4)

where w and u are the exogenous disturbance and the control
input, respectively and Lt is the graph Laplacian of the tree
network that is obtained using the Chow-Liu algorithm. The
goal is to improve the performance of this system by growing
the tree network. We approach this problem as a feedback
design problem with

u = − (Lx + Dz)ψ, (5)

where Dz is a diagonal matrix with the ith diagonal entry
zi and the symmetric feedback-gain matrix Lx is required to
have the Laplacian structure. Since a nonzero ijth element

of Lx corresponds to an edge between the nodes i and j,
the communication structure in the controller graph is deter-
mined by the sparsity pattern of the matrix Lx. Moreover,
the ith node is a leader if zi is nonzero. By substituting the
control input u from (5) in (4)

ψ̇ = − (Lt + Lx + Dz)ψ + w. (6)

For a computed Lt from the Chow-Liu algorithm, our objec-
tive is to design the topology Lx and to identify the leader
nodes in the network in order to achieve the desired tradeoff
between the controller sparsity and the network performance.
The performance is quantified by the proximity of the steady-
state covariance matrix of the closed-loop system to the
sample covariance matrix.

Next, we are going to establish a relation between the
closed-loop graph Laplacian and the inverse covariance ma-
trix of the network. The steady-state covariance of ψ is given
by

Σ = (Lt + Lx + Dz)−1, (7)

where Lx = Ediag(x)ET . Thus, the problem of identifying
the sparse topology of a network, i.e., finding Lx and
Dz , that generates close approximation of a given sample
covariance matrix is equivalent to sparse inverse covariance
estimation problem. This can be achieved by solving a
similar regularized maximum log-likelihood problem to (3)
with one main difference. The inverse covariance matrix X
is the summation of the Laplacian matrices of the tree plant
network Lt and the controller network Lx + Dz . Thus, the
problem of growing a tree network in order to match the
available statistical data can be formulated as

minimize
x, z

J(x, z) + γ1

m∑
l=1

fl |xl| + γ2

N∑
k=1

gk |zk|

subject to Lt + E diag (x)ET + diag(z) � 0,
(8)

where

J(x, z) = − log det
(
Lt + E diag (x)ET + diag(z)

)
+

trace
(
S (E diag (x)ET + diag(z)

)
.

In the case of resistive networks (i.e., all the edge weights
are nonnegative), since the plant network is given by a tree
graph, the closed-loop network is connected; thereby, the
optimization problem simplifies to

minimize
x, z

J(x, z) + γ1

m∑
l=1

fl xl + γ2

N∑
k=1

gk zk

subject to x ≥ 0, z ≥ 0.
(9)

In this scenario, the topology identification problem turn
into the problem of growing a tree network and the positive
definiteness constraint simplifies to nonnegativity constraints
of the vectors x and z. Thus, several optimization algorithms
can be employed to solve this problem efficiently for large-
scale networks.
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IV. COMPUTATIONAL EXPERIMENTS

We next illustrate the performance of our methods by
employing them to identify the topology of an RC network
with 10 nodes and a tree structure shown in Fig. 1. The
voltages of the nodes form the states of the system. In this
network, node 5 is grounded with z5 = 4 and all other edge
weights are one which implies that node 5 is a leader. This
example is borrowed from [22].

Fig. 1: The RC tree network with n = 10 nodes.

A. Structured graphical-LASSO algorithm

Assume that infinite samples of the nodes’ voltages are
available; thereby, the sample covariance matrix S is equal
to the exact solution of the Lyapunov equation. Moreover,
we set γ1 = γ2 = γ. In this case, the structured graphical-
LASSO algorithm in Section II can completely recover the
underlying network topology for different values of γ. This
example has been previously studied in [22]. They show that
when the sample covariance matrix is precise, the graphical-
LASSO algorithm results in 5 false positives and negatives.
However, by adding a structural constraint to the problem
and using a reweighting scheme, we showed that the same
algorithm can recover the network topology with zero error.

Next, we utilize our method to solve the problem by using
a sample covariance matrix which is not very close to the
actual covariance matrix and is constructed from only 80
samples. The algorithm is again able to recover the network
topology and to identify the leader for different values of γ.

It is worth to note that the performance of this method
deteriorates if we replace the reweighted `1 norm scheme
with the `1 norm. In particular, by eliminating the reweighted
`1 norm, we observed the effect of grounding one of the
nodes with high capacitance. Although the network topology
will be identified for some values of γ, by increasing γ (to
very large value), the algorithm chooses the optimal edges in
the same way as [22]. In particular, it ignores the connections
between nodes 1 to 5 because of their low variances. In the
next example, we illustrate the effectiveness of growing a
Chow-Liu tree by using it on a synthetic dataset.

B. Topology identification via growing a Chow-Liu tree

In this section, the second method is utilized to identify the
underlying structure of a network with cycles. The original
plant network is shown in Fig. 2a. We first assume that the
sample covariance matrix S is equal to the exact solution
of the Lyapunov equation. We form the mutual information
matrix and construct the Chow-Liu tree accordingly which
is shown in Fig. 2b. We next grow this tree network in order
to enhance the performance of the closed-loop system. In
particular, we solve the problem (8) to find the leader nodes
and the Laplacian matrix of the controller graph Lx. In this
case, our algorithm can completely recover the underlying
network topology for different values of γ. Next, we employ
this algorithm to identify the topology of a larger network
with real data to evaluate its performance.

C. FMRI dataset

The FMRI technique detects the activity of a region in
the brain by measuring the blood flow to that region. Since
the blood flow increases in an active part of the brain, the
functioning regions can be identified by monitoring the blood
flow. The functional connectivity structure between different
regions can be revealed by utilizing different thresholding
techniques [12], [13]. The results indicate that different
regions of the brain that are not anatomically connected act
closely together and are functionally linked. Moreover, the
previous studies have shown that the human brain has small-
world network properties [13].

In this section, we employ the second algorithm based on
growing a Chow-Liu tree to identify the underlying func-
tional network of the human brain. The sample covariance
matrix is computed using the resting-state FMRI data of 20
healthy patients [13]. In the resting-state FMRI, the patients
are asked to close their eyes and try not to think. The studies
have shown that even in the rest state, the brain is highly
active and different regions of the brain are communicating
with each other [34]. We collect 134 samples from 140
cortical brain regions (nodes) in the right hemisphere. The
sample correlation matrix for each patient is a 140 × 140
matrix and can be computed using the time series data.
The sample covariance matrices are not invertible since the
number of samples is smaller than the number of the nodes in
the network. Thus, we use our proposed algorithm to estimate
the inverse covariance matrix and to identify the underlying
network structure of the human brain.

First, we form the mutual information matrix and construct
the Chow-Liu tree Fig 3a. Next, we grow the obtained tree
network to identify the remained edges and improve the
performance of the closed-loop system. We set γ1 = γ2 = γ.
The identified networks for a randomly chosen patient are
shown in Fig 3. In particular, as the sparsity promoting
parameter γ increases, the identified network gets sparser.

This example has been previously studied in [35]. Their
results show that the nodes that are located in the lower left
corner of the graphs are highly connected to their neighbor-
ing nodes. They compare this pattern of connectivity with the
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(a) plant network (b) Chow-Liu tree (c) identified structure

Fig. 2: (a) Plant network; (b) constructed Chow-Liu tree network; and (c) the identified network from growing the
Chow-Liu tree.

false positives created by their algorithm in a synthetic RC
circuit and conclude that the high number of edges in that
area is false positives created by the same phenomenon in the
circuit example. However, by adding a structural constraint
to the problem and using a reweighting scheme, we showed
that the underlying network can be recovered without high
connectivity in the lower left corner. Moreover, the general
shape of the identified network is consistent with the results
reported in [13]. Furthermore, the small-world properties
such as high clustering and high efficiency coefficients can
be seen in the identified networks.

To conclude, it seems that using both an additional struc-
tural constraint and the reweighted `1 norm scheme can
improve the performance of the graphical-LASSO algorithm
significantly. Unlike the Chow-Liu algorithm that can be
employed to construct tree networks only, our algorithm is
more general and overcomes the challenges associated with
the conventional algorithms proposed in [35].
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V. CONCLUDING REMARKS

We have studied the problem of sparse topology identifi-
cation of an undirected consensus network with leaders using
second-order statistical data. The goal is to identify a sparse
interaction topology using sample covariance matrix of the
network state. We have introduced two algorithms based on
regularized Gaussian maximum likelihood and growing a
Chow-Liu tree. In the first algorithm, we propose a struc-
tured graphical-LASSO algorithm that uses the weighted `1
regularizer as a proxy for inducing sparse network topology.
The other method is based on growing a Chow-Liu tree
that is well-suited for identifying the underlying structure of
large-scale networks. Several examples have been provided
to demonstrate the performance of our framework.
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