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Abstract— Many modern large-scale and distributed opti-
mization problems can be cast into a form in which the objective
function is a sum of a smooth term and a nonsmooth regularizer.
Such problems can be solved via a proximal gradient method
which generalizes standard gradient descent to a nonsmooth
setup. In this paper, we leverage the tools from control theory to
study global convergence of proximal gradient flow algorithms.
We utilize the fact that the proximal gradient algorithm can
be interpreted as a variable-metric gradient method on the
forward-backward envelope. This continuously differentiable
function can be obtained from the augmented Lagrangian
associated with the original nonsmooth problem and it enjoys a
number of favorable properties. We prove that global exponen-
tial convergence can be achieved even in the absence of strong
convexity. Moreover, for in-network optimization problems,
we provide a distributed implementation of the gradient flow
dynamics based on the proximal augmented Lagrangian and
prove global exponential stability for strongly convex problems.

Index Terms— Distributed optimization, forward-backward
envelope, global exponential stability, gradient flow, large-scale
systems, proximal algorithms, primal-dual method, proximal
augmented Lagrangian.

I. INTRODUCTION

We study a class of nonsmooth composite convex opti-
mization problems in which the objective is a sum of a
differentiable function and a possibly nondifferentiable regu-
larizer. These problems emerge in compressive sensing, ma-
chine learning, and control. For example, structured feedback
design can be cast as a nonsmooth composite optimization
problem [1]–[3]. Standard descent methods cannot be used
in the presence of nondifferentiable component. Proximal
gradient algorithms [4], [5] offer viable alternatives to the
generic descent methods for solving nonsmooth problems.
Another effective strategy is to transform the associated
augmented Lagrangian into the continuously differentiable
proximal augmented Lagrangain [6] in which the former is
restricted to the manifold that corresponds to the explicit
minimization over the variable in the nonsmooth term.

Analysis of optimization algorithms from the system the-
oretic point of view has received significant recent atten-
tion [7]–[9]. In these references, the optimization algorithm is
interpreted as a feedback interconnection in which the states
converge to the optimal solution of the optimization problem.

In this paper, we utilize tools and ideas from control theory
to study global convergence properties of proximal gradient
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flows in continuous time. We use the fact that the proximal
gradient method can be interpreted as a variable-metric
gradient method on the forward-backward envelope [10]–
[12]. We illustrate that the forward-backward envelope can be
obtained from the augmented Lagrangian associated with the
original nonsmooth optimization problem. Specifically, we
show that the forward-backward envelope can be achieved
by restricting the augmented Lagrangian to the manifold in
which the dual variable is given by the negative of the deriva-
tive of the smooth part of the objective function. By utilizing
the theory of integral quadratic constraints (IQCs) [13], we
prove exponential convergence when the smooth part of
the objective function is strongly convex with a Lipschitz
continuous gradient. We then propose a generalization of the
Polyak-Lojasiewicz (PL) [14] condition that is well-suited to
nonsmooth problems and study the convergence rate of the
proximal gradient flow in the absence of strong convexity.

Distributed algorithms are critically important for solving
large-scale optimization problems. The decentralized con-
sensus problem in multi-agent networks [15]–[18] arises in
many applications. Herein, we restrict our attention to dis-
tributed in-network optimization and show that the proximal
gradient flow dynamics cannot be used for this class of
problems. We next describe how primal-descent dual-ascent
gradient flow dynamics based on the proximal augmented
Lagrangian [6] can be used as an effective alternative.
We provide a distributed implementation and prove global
exponential stability in the presence of strong convexity.

The paper is structured as follows. In Section II, we
formulate the nonsmooth composite optimization problem
and provide the essential background. In Section III, we
study the exponential convergence rate of the proximal
gradient flows in continuous time in the presence of strong
convexity. Moreover, we introduce the proximal PL condition
and show exponential convergence in the value function.
In Section IV, by restricting our attention to in-network
optimization, we provide a distributed implementation based
on the proximal augmented Lagrangian. Furthermore, by
introducing an appropriate change of coordinates, we utilize
the theory of IQCs to prove global exponential stability under
the strong convexity assumption. Finally, in Section V, we
offer concluding remarks.

II. PROBLEM FORMULATION AND BACKGROUND

We consider composite optimization problems,

minimize
x

f(x) + g(Ex) (1)

where x ∈ Rn is the optimization variable, f : Rn → R
is a continuously differentiable function with a Lipschitz
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continuous gradient ∇f , g: Rm → R is a possibly nondif-
ferentiable convex regularization function, and E ∈ Rm×n

is a matrix that promotes structural properties in the desired
set of coordinates. Such optimization problems arise in a
number of different application domains. Depending on the
structure of the functions f and g and the matrix E, differ-
ent first- and second-order algorithms can be employed to
solve them. Since most of these algorithms utilize proximal
operator associated with the nonsmooth regularizer, we are
interested in studying global convergence properties of first-
order proximal gradient flow algorithms.

In what follows, we provide background material that we
utilize in the rest of the paper.

A. Proximal operators and the associated envelopes

The proximal operator of a proper, lower semicontinuous,
and convex function g is the solution of

proxµg(v) := argmin
z

(
g(z) +

1

2µ
‖z − v‖22

)
and the value function of this optimization problem deter-
mines the associated Moreau envelope,

Mµg(v) := g(proxµg(v)) +
1

2µ
‖proxµg(v) − v‖22.

Even for a nondifferentiable g, Mµg is a continuously
differentiable function and its gradient is given by [4],

∇Mµg(v) =
1

µ
(v − proxµg(v)).

The Moreau envelope of g can be used to introduce the
forward-backward envelope [10]–[12] of

F (x) := f(x) + g(x)

which is the value function of the optimization problem

minimize
v

J(x, v) (2a)

where

J := f(x) + 〈∇f(x), v − x〉 + 1
2µ ‖v − x‖

2
2 + g(v)

= g(v) + 1
2µ ‖v − (x − µ∇f(x))‖22 +

f(x) − 1
2µ ‖∇f(x)‖22.

(2b)
We note that J approximates F via a simple quadratic
expansion of f around x and the optimal solution of (2) is

v? = proxµg(x − µ∇f(x)).

This optimal solution is used to obtain the forward-backward
envelope,

Fµ(x) := J(x, v?) = J(x,proxµg(x − µ∇f(x)))

= f(x) + Mµg(x − µ∇f(x)) − µ

2
‖∇f(x)‖22

which is continuously differentiable with a gradient [10],

∇Fµ(x) = (I − µ∇2f(x))Gµ(x). (3)

Here, Gµ is the generalized gradient map,

Gµ(x) := 1
µ (x − proxµg(x − µ∇f(x))) (4)

which can be used to obtain an alternative expression for Fµ,

Fµ(x) = f(x) − µ 〈∇f(x), Gµ(x)〉 +
µ

2
‖Gµ(x)‖22 +

g(proxµg(x − µ∇f(x))).
(5)

B. Proximal augmented Lagrangian

By introducing an auxiliary variable z := Ex, (1) can be
rewritten as

minimize
x, z

f(x) + g(z)

subject to Ex − z = 0.
(6)

The augmented Lagrangian associated with constrained op-
timization problem (6) is given by,

Lµ(x, z; y) := f(x) + g(z) + 〈y,Ex− z〉+ 1
2µ ‖Ex− z‖

2
2

and the completion of squares yields,

Lµ = f(x) + g(z) + 1
2µ ‖z − (Ex + µy)‖22 −

µ
2 ‖y‖

2
2

where y is the Lagrange multiplier and µ is a positive
parameter. The minimizer of Lµ with respect to z is

z?(x, y) = proxµg(Ex + µy)

and the evaluation of Lµ(x, z; y) along the manifold resulting
from the explicit minimization over z yields the proximal
augmented Lagrangian [6],

Lµ(x; y) := Lµ(x, z?(x, y); y)

= f(x) + Mµg(Ex + µy) − µ
2 ‖y‖

2
2

(7)

This function is continuously differentiable with respect to
both x and y and it can be used as a foundation for the
development of different first- and second-order primal-dual
methods for nonsmooth composite optimization [6], [19]. It
is noteworthy that, for E = I , forward-backward envelope
Fµ(x) is obtained by restricting the proximal augmented
Lagrangian Lµ(x; y) along the manifold y?(x) = −∇f(x),

Fµ(x) := Lµ(x; y?(x)) = Lµ(x; y = −∇f(x))

= f(x) + Mµg(x − µ∇f(x)) − µ
2 ‖∇f(x)‖22.

C. Strong convexity and Lipschitz continuity

The function f is strongly convex with parameter mf if
for any x and y,

f(y) ≥ f(x) + 〈∇f(x), y − x〉 +
mf

2
‖y − x‖22

and the gradient of a continuously-differentiable function f
is Lipschitz continuous with parameter Lf if for any x and y,

f(y) ≤ f(x) + 〈∇f(x), y − x〉 +
Lf
2
‖y − x‖22.

Furthermore, the subgradient ∂g of a nondifferentiable func-
tion g is the set of points z ∈ ∂g(x) that for any x and y
satisfy,

g(y) ≥ g(x) + zT (y − x). (8)
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D. Proximal Polyak-Lojasiewicz inequality

The Polyak-Lojasiewicz (PL) condition is an inequality
that can be used to establish linear convergence of standard
gradient descent method in the absence of strong convexity
(or even convexity) [20]. For an unconstrained optimization
problem with a non-empty solution set,

minimize
x

f(x)

where f is a twice differentiable function with a Lipschitz
continuous gradient, the PL condition is given by

‖∇f(x)‖2 ≥ γ (f(x) − f?)

where γ > 0 and f? is the optimal value of the function f .
We next provide the generalization of the PL condition for

nonsmooth composite optimization problems (1) with E = I .
For this class of problems, the proximal PL inequality holds
for µ < 1/Lf if there exist γ > 0 such that

‖Gµ(x)‖2 ≥ γ (Fµ(x) − F ?µ). (9)

Here, Lf is the Lipschitz constant of ∇f , Fµ is the forward-
backward envelope, and Gµ is the generalized gradient map.
It can be shown that the above condition is equivalent to the
condition provided in [20]; the proof is omitted due to page
limitations and it will be reported elsewhere.

III. EXPONENTIAL STABILITY OF PROXIMAL
ALGORITHMS

In this section, we briefly discuss the Arrow-Hurwicz-
Uzawa gradient flow dynamics that can be used to solve (1)
by computing the saddle points of the proximal augmented
Lagrangian [6]. We then show that the proximal gradient
method in continuous time can be obtained from the proximal
augmented Lagrangian method by restricting the dual vari-
able along the manifold y = −∇f(x). Finally, we discuss
global stability properties of proximal algorithms both in the
presence and in the absence of strong convexity.

Continuous differentiability of the proximal augmented
Lagrangian (7) can be utilized to compute its saddle points
via the Arrow-Hurwicz-Uzawa gradient flow dynamic,[

ẋ
ẏ

]
=

[
−
(
∇f(x) + ET∇Mµg(Ex + µy)

)
µ (∇Mµg(Ex + µy) − y)

]
.

(10)
It was recently shown that these primal-descent dual-ascent
dynamics are globally exponentially stable for convex prob-
lems in which the matrix EET is invertible and the smooth
part of the objective function f is strongly convex [6].

For convex problems with E = I ,

minimize
x

f(x) + g(x) (11)

the proximal gradient method,

xk+1 = proxµg(x
k − αk∇f(xk)) (12)

with the stepsize αk ≤ 1/Lf can be used to solve (11),
where Lf is the Lipschitz constant of ∇f . In [10], it was
demonstrated that (12) can be interpreted as a variable-metric

gradient method on forward-backward envelope,

xk+1 = xk − αk
(
I − αk∇2f(x)

)−1∇Fαk
(xk)

= xk − αkGαk
(xk).

This interpretation can be utilized to solve (11) via the
continuous-time proximal gradient flow dynamics

ẋ = −Gµ(x)

= − (∇f(x) + ∇Mµg(x − µ∇f(x)))

= − 1
µ

(
x − proxµg(x − µ∇f(x))

)
.

(13)

Remark 1: Proximal gradient algorithm (12) can be ob-
tained via explicit forward Euler discretization of (13) with
the stepsize µ = αk. This should be compared and contrasted
to a standard interpretation [4] in which (12) results from
implicit backward Euler discretization of the subgradient
flow dynamics associated with (11). We also note that (13)
can be obtained by substituting −∇f(x) for the dual variable
y in the x-update step of primal-descent dual-ascent gradient
flow dynamics (10) with E = I .

We next study global stability of proximal gradient flow
dynamics (13), first for strongly convex problems and then
for the problems in which only the PL condition holds.

A. Strongly convex problems

Herein, we utilize the theory of integral quadratic con-
straints to establish global asymptotic stability of proximal
gradient flow dynamics (13) under the following assumption.

Assumption 1: Let the differentiable part f of the objec-
tive function in (11) be strongly convex with parameter mf ,
let ∇f be Lipschitz continuous with parameter Lf , and let
the regularization function g be proper, lower semicontinu-
ous, and convex.

Proximal gradient flow dynamics (13) can be expressed as
a feedback interconnection of an LTI system

ẋ = Ax + B u

ξ = C x
(14a)

with a nonlinear term,

u = proxµg(x − µ∇f(x)). (14b)

Here,
A = − 1

µ I, B = 1
µ I, C = I (14c)

and the corresponding transfer function is

H(s) = C (s I − A)−1B =
1

µs + 1
I. (14d)

Lemma 1 exploits properties of f and g to characterize
nonlinear map (14b) via a quadratic inequality on x and u.

Lemma 1: Let Assumption 1 hold. Then, for any x ∈ Rn
and x̂ ∈ Rn there exists a symmetric matrix Kx,x̂ satisfying
mfI � Kx,x̂ � LfI such that the quadratic inequality[

x − x̂
u − û

]T
Π

[
x − x̂
u − û

]
≥ 0
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holds for u := proxµg(x− µ∇f(x)) and û ∈ Rn, where

Π :=

[
0 I − µKx,x̂

I − µKx,x̂ −2I

]
. (15)

Proof: Let ζ := x − µ∇f(x). Since the proximal
operator of g is firmly nonexpansive [4], we have

(ζ − ζ̂)T (u(ζ) − u(ζ̂)) ≥ ‖u(ζ) − u(ζ̂)‖22. (16)

Using the definition of ζ, the left-hand side in this inequality
can be written as

(x − x̂)T (u(ζ) − u(ζ̂)) −

µ (∇f(x) − ∇f(x̂))T (u(ζ) − u(ζ̂)).

For an mf -strongly convex function f with an Lf -Lipschitz
continuous gradient, there is a symmetric matrix Kx,x̂ such
that for any x and x̂ [19, Lemma 3] ,

∇f(x) − ∇f(x̂) = Kx,x̂(x − x̂),

mfI � Kx,x̂ � LfI.

Thus, inequality (16) can be written as

(x − x̂)T (I − µKx,x̂)(u(ζ) − u(ζ̂)) ≥ ‖u(ζ) − u(ζ̂)‖22
which completes the proof.

Remark 2: Lemma 1 combines firm nonexpansiveness of
proxµg , strong convexity of f , and Lipschitz continuity of
∇f to establish a quadratic inequality that u = proxµg(x−
µ∇f(x)) has to satisfy at any x and x̂. Even though the
matrix Kx,x̂ depends on the operating point, its spectral
properties, mfI � Kx,x̂ � LfI , hold for all x and x̂.

We next use the KYP lemma [21][
Hρ(jω)

I

]∗
Π

[
Hρ(jω)

I

]
≺ 0, ∀ω ∈ R (17)

where Π is given by (15) and

Hρ(jω) = C (jωI − (A + ρI))−1B =
1

jµω + 1− µρ
I

to establish global exponential stability of (14).

Theorem 2: Let Assumption 1 hold. Then proximal gra-
dient flow dynamics (14) are globally exponentially stable,
i.e., there is τ > 0 and 0 < ρ < min (mf , 1/µ) such that,

‖x(t) − x?‖ ≤ τ e−ρt ‖x(0) − x?‖, ∀ t ≥ 0.

Proof: From the definition of Π in Lemma 1, we see
that (17) holds for all ω ∈ R if

2 I − H∗
ρ (jω) (I − µKx,x̂) − (I − µKx,x̂)Hρ(jω) � 0.

This inequality can be equivalently written as

µ2ω2I + (1 − µρ) ((1 − µρ) I − (I − µKx,x̂)) =

µ2ω2I + µ(1 − µρ) (Kx,x̂ − ρI) � 0.

Since the stability of Hρ requires 1− ρµ > 0, it holds if

ρI ≺ Kx,x̂.

Finally, the spectral properties of the matrix Kx,x̂

mfI � Kx,x̂ � LfI

imply exponential stability with the rate ρ < min (mf , 1/µ).

B. Proximal Polyak-Lojasiewicz condition

Next, we consider the problems in which the function f is
not necessarily strongly convex but the function F := f + g
satisfies proximal PL condition (9).

Assumption 2: Let the regularization function g in (6) be
proper, lower semicontinuous, and convex, let f be twice
differentiable, let∇f be Lipschitz continuous with parameter
Lf , and let the generalized gradient map satisfy the proximal
PL condition,

‖Gµ(x)‖2 ≥ γ (Fµ(x) − F ?µ)

where 0 < µ < 1/Lf , γ > 0, and F ?µ is the optimal value
of the forward-backward envelope Fµ.

Remark 3: We recall that the proximal gradient algorithm
can be interpreted as a variable-metric gradient method on
forward-backward envelope and that (13) can be equivalently
written as

ẋ = −(I − µ∇2f(x))−1∇Fµ(x).

Under Assumption 2, the matrix I − µ∇2f(x) is invertible
and the functions F = f + g and Fµ have the same
minimizers and the same optimal values [10],

argmin
x

F (x) = argmin
x

Fµ(x), F ? = F ?µ .

This motivates study of the convergence properties of (13)
in terms of the forward-backward envelope.

Theorem 3: Let Assumption 2 hold. Then the forward-
backward envelope associated with proximal gradient flow
dynamics (13) converge exponentially to the optimal function
value F ?µ = F ? with the rate ρ = γ(1− µLf ),

Fµ(x(t)) − F ?µ ≤ e−ρt (Fµ(x(0)) − F ?µ), ∀ t ≥ 0.

Proof: We introduce a Lyapunov function candidate,

V (x) = Fµ(x) − F ?µ

where Fµ is the forward-backward envelope. The derivative
of V along the solutions of (13) is given by

V̇ (x) = 〈∇Fµ(x), ẋ〉 = −GTµ (x) (I − µ∇2f(x))Gµ(x).

Since the gradient of f is Lf -Lipschitz continuous,
∇2f(x) � LfI for all x ∈ Rn and Assumption 2 implies that

V̇ (x) ≤ −(1 − µLf ) ‖Gµ(x)‖22
≤ −γ (1 − µLf ) (Fµ(x) − F ?µ)

(18)

is non-positive for µ ∈ [0, 1/Lf ). Moreover, from the
definition of V and (18) we have,

V̇ ≤ −γ (1 − µLf )V
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which yields

Fµ(x(t)) − F ?µ ≤ e−γ (1−µLf )t(Fµ(x(0)) − F ?µ).

Remark 4: When the proximal PL condition is satisfied,
Fµ(x(t)) − F ?µ converges exponentially but, in the absence
of strong convexity, the exponential convergence rate cannot
be established for ‖x(t) − x?‖. Thus, in the absence of
strong convexity, although the objective function converges
exponentially fast, the solution to (13) does not enjoy this
convergence rate. To the best of our knowledge, in the
absence of strong convexity, the convergence rate of x(t)
to the set of optimal values x? is unknown.

Proximal gradient flow dynamics (13) cannot be used
for distributed optimization. We next describe how primal-
descent dual-ascent gradient flow dynamics based on proxi-
mal augmented Lagrangian (10) can alleviate this challenge.

IV. DISTRIBUTED OPTIMIZATION

Let us consider the unconstrained optimization problem,

minimize
x

n∑
i=1

fi(x)

where x ∈ Rn is the optimization variable and f :=
∑
i fi

is a strongly convex objective function. It is desired to solve
this problem over an undirected connected network with the
incidence matrix ET and the graph Laplacian L := ETE.
To accomplish this objective, we reformulate it as,

minimize
x

n∑
i=1

fi(xi) + g(Ex) (19a)

where x := [x1 · · · xn ]T and g(Ex) is an indicator function
associated with the equality constraint Ex = 0,

g(Ex) =

{
0, Ex = 0,

∞, otherwise.
(19b)

This constraint is introduced to ensure asymptotic agreement
between the node values xi(t) ∈ R.

As demonstrated in [6], the primal-descent dual-ascent
gradient flow dynamics based on the proximal augmented
Lagrangian (10) can be used to solve this problem. The
resulting gradient flow dynamics are given by,

ẋ = −∇f(x) − 1
µ Lx − ỹ

˙̃y = Lx,
(20)

where L = ETE is the Laplacian matrix of the underlying
communication graph between neighboring nodes and the
vector ỹ := ET y belongs to the orthogonal complement of
the vector of all ones. This setup is well-suited for distributed
implementation in which each node only shares its state
xi with its neighbors and maintains the corresponding dual
variable ỹi. A Lyapunov-based argument was used in [22]
to prove the exponential convergence of (20). Herein, we
provide an alternative proof that utilizes the theory of IQCs

to establish global exponential stability of (20) under the
condition that 1T ỹ(0) = 0.

Assumption 3: Let the differentiable part f :=
∑
i fi(x)

of the objective function in (19) be strongly convex with
parameter mf , let ∇f be Lipschitz continuous with param-
eter Lf , let the regularization function g be proper, lower
semicontinuous, and convex, let ET be incidence matrix of
a connected undirected network, and let 1T ỹ(0) = 0 in (20).

From Assumption 3 it follows that the graph Laplacian
L := ETE is a positive semidefinite matrix with one zero
eigenvalue. Thus, it can be decomposed as

L = V ΛV T =
[
U 1

n 1
] [ Λ0 0

0 0

] [
UT
1
n 1

T

]
where the columns of V are the eigenvectors of L, Λ0 is
a diagonal matrix of the nonzero eigenvalues of L, and the
matrix U satisfies,

UTU = I, UT1 = 0, U UT = I − 1
n 11

T . (21)

By introducing a change of variables[
ψ
x̄

]
=

[
UTx
1
n 1

Tx

]
,

[
φ
ȳ

]
=

[
UT ỹ
1
n 1

T ỹ

]
with ψ ∈ Rn−1 and φ ∈ Rn−1, (20) can be written as

ψ̇

˙̄x

φ̇

˙̄y

 =


− ( 1

µ Λ0 + mfI)ψ − φ − UTu

− 1
n 1

Tu − mf x̄ − ȳ

Λ0 ψ

0

 (22)

where u = ∇f(x) −mfx, and from the properties (21) of
the matrix U we have,

x =
[
U 1

] [ ψ
x̄

]
. (23)

By choosing ȳ(0) = 0, we have ȳ ≡ 0. Thus, the ȳ-dynamics
can be eliminated from (22), which yields

ẇ = Aw + B u

ξ = C w

u = ∇f(ξ) − mfξ.

(24a)

Here, w := [ψT x̄ φT ]T , ξ := x,

A =

 − ( 1
µ Λ0 + mfI) 0 − I

0 −mf 0

Λ0 0 0


B =

 −UT
− 1

n 1
T

0

 , C =
[
U 1 0

] (24b)

and the corresponding transfer function is

H(s) = −
[
U 1

]  H1(s) 0

0
1

s+mf

[ UT
1
n 1

T

]
(24c)
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where

H1(s) = diag

(
s

s2 + (λi/µ + mf ) s + λi

)
.

Furthermore, under Assumption 3 with u = ∇f(ξ)−mfξ,
for any ξ and ξ̂ ∈ Rn, we have [9],[
ξ − ξ̂
u− û

]T [
0 (Lf −mf )I

(Lf −mf )I −2I

] [
ξ − ξ̂
u− û

]
� 0.

We now employ the KYP lemma to establish global
exponential stability of (24a).

Theorem 4: Let Assumption 3 hold. Then proximal gra-
dient flow dynamics (24a) are globally exponentially stable,
i.e., there is τ, 0 < ρ < mf such that,

‖w(t) − w?‖ ≤ τ e−ρt ‖w(0) − w?‖

.
Proof: The KYP lemma implies global exponential

stability if[
Hρ(jω)

I

]∗
Π

[
Hρ(jω)

I

]
≺ 0, ∀ω ∈ R (25)

where

Π =

[
0 (Lf −mf )I

(Lf −mf )I −2I

]
Hρ(jω) = H(jω − ρ).

It is easy to show that (25) holds for all ω ∈ R if

2 I − (Lf − mf ) (H∗
ρ (jω) + Hρ(jω)) � 0.

This condition yields a decoupled family of inequalities,

ω2 + (mf − ρ)2 + (Lf − mf )(mf − ρ) > 0 (26)

(ω2 − bi(ρ))2 + ci(ρ)ω2 + di(ρ) > 0 (27)

which have to hold for all ω ∈ R and for i = 1, . . . , n − 1.
Condition (26) clearly holds if ρ ∈ (0,mf ). On the other
hand, checking (27) amounts to checking a decoupled family
of quadratic inequalities in ω2 where bi(ρ), ci(ρ), and di(ρ)
are parameters that depend on µ, Lf , mf , λi, and ρ. At
ρ = 0, these are given by

bi(0) = λi/µ, ci(0) = (λi/µ+mf ) (λi/µ+Lf ), di(0) = 0.

Positivity of bi(0) and ci(0) for each i and continuity of
bi(ρ), ci(ρ), and di(ρ) with respect to ρ imply the existence
of ρ > 0 that guarantees (27) for each ω ∈ R and each
i = 1, . . . , n− 1, which completes the proof.

V. CONCLUDING REMARKS

We studied a class of nonsmooth optimization problems
in which it is desired to minimize a sum of differentiable
and nondifferentiable functions. We employed the tools from
control theory to prove exponential convergence of proximal
gradient flows in continuous time in the presence of strong
convexity. We also proposed a generalized version of the PL
condition and established the global convergence of the first-
order proximal algorithms in the absence of strong convexity.

Moreover, by exploiting the structure of in-network optimiza-
tion problems, we provided a gradient flow dynamics based
on proximal augmented Lagrangian which is well-suited for
distributed implementation and showed global exponential
stability for strongly convex functions.
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