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Abstract— Distributed feedback design and complexity con-
strained control are examples of problems posed within the
domain of structured optimal feedback synthesis. The optimal
feedback gain is typically a non-convex function of system
primitives. However, in recent years, algorithms have been
proposed to obtain locally optimal solutions. In applications
to large-scale distributed control, the major obstacle is compu-
tational complexity. This paper addresses complexity through a
combination of linear-algebraic techniques and computational
methods adapted from both machine learning and reinforce-
ment learning. It is shown that for general classes of optimal
control problems, the objective function and its gradient can be
computed from data. Transformations borrowed from the the-
ory of reinforcement learning are adapted to obtain simulation-
based algorithms for computing the structured optimal H feed-
back gain. Customized proximal algorithms based on gradient
descent and incremental gradient are tested in computational
experiments and their relative merits are discussed.

Index Terms— Data-driven feedback design, large-scale sys-
tems, optimization, proximal algorithms, reinforcement learn-
ing, structured and sparsity-promoting optimal control.

I. INTRODUCTION

Large-scale dynamical systems that combine sensing,
computing, and communication devices are ubiquitous in
modern technology. Systems of this type arise in applications
ranging from distributed power generation, to coordination of
autonomous vehicles, to control of fluid flows around wind
turbines, to design of combination drug therapies for HIV
and cancer treatments. One of the major challenges is the
development of fast and scalable methods for their analysis
and design. Such systems involve large-scale interconnec-
tions of components, have rapidly-evolving structure and
limitations on communication/processing power, and require
real-time distributed control actions. These requirements
make control strategies that rely on centralized information
processing infeasible and motivate new classes of optimal
control problems. In these, standard performance metrics are
augmented with typically nonsmooth regularizers to promote
desired structural features (e.g., low communication require-
ments) in the optimal controller [1]-[5]. Moreover, in many
applications, the dynamics of the plant are unknown and only
limited input-output measurements are available. Designing
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optimal controllers for these systems is challenging even in
the absence of structural constraints. The LQR problem in
the model-free setup has been recently studied in [6], [7].

Structured optimal control and inverse problems, that arise
when trying to identify and control dynamical representations
of rapidly evolving systems in real-time, typically lead to
optimization of functionals consisting of a sum of a smooth
term and a nonsmooth regularizer. Such problems are of
increasing importance in control and it is thus necessary
to develop efficient and scalable algorithms for structured
optimal control synthesis. This paper addresses complexity
through a combination of linear-algebraic techniques and
computational methods adapted from both machine learning
and reinforcement learning. We approach the structured
optimal control problem via a data-driven framework that
does not require knowledge of the dynamical generator and
avoids the need to solve large-scale matrical equations. For
the structured optimal Hs state-feedback problem, we show
that the objective function and its gradient can be computed
from data and develop customized proximal algorithms based
on gradient descent and incremental gradient method.

Our presentation is organized as follows. In Section II,
we describe the regularized structured H, optimal control
problem. In Section III, a square-additive property of the
Hj norm is used to obtain a decomposition of the objective
function and its gradient and duality arguments are utilized
to transform these into quantities that can be estimated
from simulations. In Section IV, proximal algorithms of
tractable complexity for solving the structured optimal con-
trol problem are described and computational experiments
are provided. In Section V, the paper is concluded with
remarks and a summary of outstanding challenges.

II. PROBLEM FORMULATION
Consider the LTI control system in state-space form

¢ = A + Bu
1/2 (1)
= [ e[ ]

where () € R" is the state, u(t) € R™ is the control
input, and ((t) € R™™ is the performance output. The
matrices are all of compatible dimensions, and the standard
assumptions are imposed: @ > 0, R > 0, (4,B) is
stabilizable, and (A, Q'/?) is detectable.

The control input is defined by state-feedback,

ut) = —Ky(t)
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with gain matrix K € R™*". The closed-loop system is thus
d’ = Aav
Q2 2)
C = |: _Rl/QK w
where A, := A — BK.

Closed-loop performance is quantified by the square of the
Lo norm of the impulse response for the closed-loop system,
which is expressed using either of the following expressions:

f(K) = trace(P)
= trace ((Q + KTRK)L) ®
where P > 0 is the closed-loop observability Gramian,
ATP 4+ PAy +Q + KTRK =0 4)
and L > 0 is the closed-loop controllability Gramian,
AaL + LAL + 1T =0 5)

Our objective is to promote certain structural properties
of the feedback gain matrix K by solving the regularized
optimal control problem

L K K
minimize f(K) + g(kK) (6)
where f is given by (3) and g is the regularization function.
When it is desired to design K to belong to a set S with
a specified pattern of zero elements [1], g is an indicator
function associated with the underlying sparsity constraints,

0 KeS8
9(K) = { x K¢&S8.

Similarly, the ¢; norm and the nuclear norm are commonly
used convex proxies for promoting sparsity, or for designing
K with low rank. In this case, g(K) = v, ; |Kij| or
9(K) = v|K|« = 7> ,0i(K), where v is a positive
regularization parameter and o; is the ith singular value.

In general, the optimization problem (6) is not convex
because f is a non-convex function of K. The proximal
augmented Lagrangian method [8] can be used to compute a
local minimum of (6); for details, see [9]. The minimiza-
tion (6) remains non-convex even in the absence of the
regularization function g. Of course, in this special case
it reduces to the standard LQR problem, and the globally
optimal solution is given by

K* =R 'BTP

where P is the unique positive definite solution of the
algebraic Riccati equation,

ATP + PA+Q - PBR'BTP = 0.

In spite of the lack of convexity, conditions for convergence
of gradient descent methods for the standard LQR problem
to the global minimum for discrete- and continuous-time sys-
tems were recently established in [7] and [10], respectively.

The goal of this paper is twofold: first is to obtain algo-

rithms of tractable complexity for truly large-scale problems.
A second goal is to solve the regularized, structured optimal
control problem without knowledge of the underlying model.
The approach to the second goal is a component of our
approach to the first: a data-driven framework is proposed
for computing the optimal feedback gain, with unknown
dynamic matrix A. This approach also avoids the need to
solve large-scale Lyapunov equations.

III. COMPUTATION FROM DATA

A square-additive property of the Ho norm is used to
obtain a decomposition of the objective function f and
its gradient V f. Duality arguments are then employed to
transform each term into a quantity that can be estimated
from simulations. The resulting algorithm obtains estimates
of the optimal gain without solving a Lyapunov equation,
and without knowledge of the matrix A.

The gradient of f with respect to K is given by [11],
Vf(K) = 2(RK — BTP) L. (7)

In what follows, we use the three decompositions

n

= > fi VHE) = Y Vi
k=1

k=1

L = En:L’a f(K)
k=1

where L* = 0 solves the Lyapunov equation
Aa LY + LF Al + epef =0, (8)

ey 1s the kth unit vector in the canonical basis of R™, and

fu(K) = trace ((Q + KTRK) L") ©)
Vf(K) = 2(RK — BTP) L.
A. Computation of P and L from data
The solution to (8) can be expressed
Lk = /oo el opel edat dt
. (10)
= [ et a
0
where )" (t) := et ¢, is the solution to
d k
% = AgoF, F0) = ew, k= 1,...,n. (1)

This leads to the first component of the data-driven archi-
tecture: for a given feedback gain K, the term K L* that
appears both in f and V f can be expressed as the integral

K2k = [Tk who)
0

where ¥ (t) and u*(t) = K1*(t) are obtained from simu-
lations of system (11).

12)

Similarly, the observability Gramian is given by

P = / 0! (Q + KTRK) et dt
0
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and its (¢, j)th component is
Py = [ @OF@Q+ KRR WA ()
0

where ¢! and ¢’ are obtained from simulations of sys-
tem (11) with the initial conditions e; and e;, respectively.

Thus, n forward-in-time simulations of (11) can be used to
compute integrals (10), (12), and (13) and evaluate V f(K)
without solving a Lyapunov equation. Overall, there are
n(n+5)/2 integrals that involve either outer vector product
or matrix-vector multiplication. Computation complexity can
be further reduced by avoiding multiplication of P and L*
in (9). A data-driven approach to compute the product PL*
directly is introduced next.

B. Computation of PL from data

As showed in [12], [13], the product PLF that appears in
V fr(K) can be expressed as

Xt = Tew @ eTa as

where ¢ is obtained from the solution of the adjoint system
oF = —Alé* +(Q + KTRE) v
¢*(00) = 0

and 9* is the solution to (11). Thus, numerical simulations
of the primal and adjoint systems (11) and (15) along with
numerical evaluations of the corresponding integrals can be
used to compute L*, PLF, f;., and V fj.

Next, we show that the matrix X* in (14) can be computed
without simulating the adjoint system (15). This is a critically
important step in the model-free setup. Introduce the new
variable

15)

7" = (Q + KTREK) "

so that (15) becomes

F = — AL + nf, ¢F(c) =0 (16)
which admits the solution,
oh(t) = [Hn*](t)
(17)

= /OO e~ Adt—7) nk(r) dr
t

The linear operator H is introduced here to facilitate an
adjoint transformation below. This operator and its adjoint
H* are defined defined on Ly(]0, 00)) — R™. For any func-
tions £, x € L2([0,00)), we have by definition (x, H{) =
(H*x, &), see, e.g., [14]. An explicit representation for p =
H*~ is obtained using elementary calculus:

t
p(t) = / et (r)dr.
0

The (i, )th element of the matrix X* can be expressed

/qs’f B k()

5o

ij = e;fFXkej =
’ (13)

where ¢f(t) := e] ¢*(t) and ¥ (t) := e ¥ (t) are the ith
and jth elements of the vectors ¢*(¢) and 1% (t), respectively,
and the inner product is in Ly([0,00)). By substituting the
expression (17) for ¢* in (18), we obtain

Xik,j = _< Jo 2H77>
= (H*e; 9}, n")
<zk,jv’7k>-

Applying the expression for H* then gives
ﬁj(t) = — [H*eiefwk] (t)

t
= / eAalt=7) ¢, el F(r)dr
0

This implies that £F;
LTT system,

dgl T k k
S0 aaghs 4 eddut, €50

Thus, to compute Vf(K) for a given gain K, the only
systems that need to be simulated are the forward in time
systems (11) and (20). The system (11) is unforced, and
its solution determines the input to the forced system (20).
To compute the n? elements of the matrix X* via (19), n
simulations of (11), n? simulations of (20), and n? inner
products between §ﬁj and n* are required. Moreover, a
matrix-vector multiplication is needed to compute each n*.
Relative to Section III-A, the number of simulations has
increased but the computation of integral (13) and the matrix
multiplication of P and L* have been avoided.

19)

can be obtained as the solution to the

= 0.

(20)

Remark 1: Similar adjoint techniques are used in analysis
of reinforcement learning. The proof that the TD(1) algo-
rithm solves a minimum norm problem is based on related
adjoint transformations [15], [16]. And, a similar adjoint
transformation is a crucial step in a -learning algorithm
for deterministic continuous-time systems [17].

Remark 2: By writing the Lyapunov equation for the
controllability Gramian as (8), unlike the requirement of
stochastic simulations in [12], only deterministic simulations
are needed in the present framework.

Remark 3: Since the optimal unstructured gain K* only
depends on the closed-loop observability Gramian P (which
can be obtained from the solution of the algebraic Riccati
equation), L does not influence K* and its computation
can be avoided. To promote structure (e.g., via proximal
algorithms) we need to compute both P and L to form V f.
In contrast, only computation of P is required to form natural
policy gradient, which is defined as [18], [19],

Vh(K) = Vf(K)L™* = 2(RK — BTP).
IV. PROXIMAL ALGORITHMS

21

Algorithms of tractable complexity are introduced here
for solving the regularized structured optimal control prob-
lem (6). A standard proximal gradient algorithm is consid-
ered as a starting point. It is argued however that computing
the full gradient may be prohibitively expensive. Thus, we
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propose a more efficient algorithm based on incremental
proximal gradient that is well-suited for the design of struc-
tured optimal feedback gains in large-scale systems.

A. Proximal gradient algorithm

The proximal gradient algorithm is a first-order method
that extends standard gradient descent to a class of non-
smooth composite optimization problems. In our setup, it
iteratively updates the feedback gain K via application of
the proximal operator associated with the function g on the
standard gradient descent update. The algorithm is initialized
with a stabilizing K© and the iterates are determined by,

K'*! = prox,  (K' - alVf(Kl))

g (

where [ is the iteration index and «; is the step-size. At
each iteration, the step-size is selected via backtracking to
guarantee sufficient descent of the objective function and
stability of (2). To enhance practical performance, we use
the Barzilai-Borwein (BB) step-size initialization [20].

For any matrix V' and a positive scalar «, the proximal
operator of the function g is defined as [21],

1
prox,,(V) = arguin (4(2) + 512 - VI )
: A 2c

where || - || 7 is the Frobenius norm. In particular, for g(K) =
YKL = VZM |K;;|, we have

K* = 80 (K — ayVF(KY))

where S, (V) is the soft-thresholding function that acts on
the individual entries V;; of the matrix V' according to
S.(Vij) = sign (Vij) max (|V;;] — k,0). In the absence of
the regularization function g in (6), the proximal gradient
algorithm simplifies to standard gradient descent with the
updates Kt = K! — o, Vf(K).

Recall that estimates of V f(K!) require the matrices K L
and PL. These can be computed or estimated from data
using the techniques described in the previous section.

Remark 4: The step-size «; is adjusted via backtracking to
ensure stability of closed-loop system (2) at each iteration. It
is initialized using the BB method which provides a heuristic
for approximating the Hessian of the function f via the
scaled version of the identity matrix [20], (1/cy)I. At the
lth iteration, the initial BB step-size

I — K3
— KO)T(VF(K'=Y) = VF(KD))
(§2)
is adjusted via backtracking until system (2) is stable and
sufficient descent is achieved at each iteration by satisfying
FIKTY) < f(KY) + trace (K™ — KHT VF(KY)
ok K - K3,

0 T Yrace (K-t

(23)
The algorithm stops when the generalized gradient map
becomes smaller than the given tolerance,

K' — oV f(KY)

ay

K! — prox

H Oély(

||<e

uy u, Uy u,
— ——> — —
= —d

Fig. 1: A mass-spring-damper system.

B. Incremental proximal gradient

Next, we exploit the separable structure obtained in Sec-
tion II to speed up computations and save memory. This for-
mulation exploits a decomposition into n separable optimiza-
tion problems, based on fj, and V fj, which reduces compu-
tational complexity and allows implementation at scale.

We start with an initial stabilizing gain K°, and at each
iteration we solve the following optimization problem

fu(K) + g(K).
The explicit solution to (24) is given by
KT = prox,,, (Kl - o ka(Kl)).

(24)

minimize
K

Here, prox is the proximal operator of the function g, and
oy is a step-size. This is the incremental proximal gradient
algorithm because, at each iteration, the optimization variable
is updated in the negative direction of a single element of the
gradient where the index k is selected in a random manner.
At each iteration, we choose step-size to be O(1/l) and
adjust it to guarantee stability of closed-loop system (2).

Incremental and stochastic gradient based algorithms have
recently found widespread use in large-scale optimization
and machine learning. High variance that results from esti-
mating the full gradient V f using samples of its entries can
result in slow convergence. Moreover, to ensure convergence,
the step-size has to decay to zero.

In the first few iterations, the objective function in the
incremental proximal gradient decreases dramatically but it
starts to oscillate after that. Thus, in large-scale optimization
problems where having high accuracy may not be achiev-
able, these methods are useful because of their fast initial
convergence rate.

C. Computational experiments

We next provide examples to illustrate the performance
of proximal algorithms. The acronym proxG represents the
proximal gradient and proxIG is the incremental proximal
gradient. We have implemented all algorithms in MATLAB.
In all examples, we choose R =1 and Q = 1.

The algorithms were tested for a mass-spring-damper
(MSD) model with N masses, illustrated in Figure 1. Our
goal is to find the local minimum of the problem (6)
with g(K) = ~ | K||1, where « is the sparsity-promoting
parameter and the ¢; norm is a proxy for inducing sparsity
in the feedback gain matrix. The MSD system with [V masses
has n = 2N states where the first IV states denote the
positions and the rest are velocities. We consider the case
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where all masses, spring, and damping constants are equal
to one, which results in the state-space model with

A:[—OT —IT]’B:[H

where 7" is an N x N tridiagonal symmetric Toeplitz matrix
with 2 on the main diagonal and —1 on the first upper and
lower sub-diagonals, and I and 0 are N x N identity and
Zero matrices.

Sparsity-promoting controllers were designed for this
model with N = 10 masses and compared with the ADMM-
based algorithm [3] that does not utilize the iterative re-
weighting scheme. The algorithms were initialized with the
(unstructured) optimal feedback gain K*. Figure 2 shows
how the sparsity pattern of the controller changes as the
value of the parameter 7y is increased. It is worth to note
that all algorithms give the same structure of K with very
close feedback gain values. For v = 0, the optimal feedback
controller is given by a dense matrix and as -y increases the
controller becomes sparser. It is diagonal when v = 1, and
for sufficiently large + the gain is identically zero. This is a
feasible solution because the open-loop system is stable.

n, =200, y=0

n, =102, v=0.01

10 .. .
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Fig. 2: Structure of feedback gains resulting from the
solution to (6) for different values of the regularization
parameter v for an MSD system with /N = 10 masses. The
number of non-zero elements in K is denoted by n,.

V. CONCLUDING REMARKS

This paper provides a step towards a comprehensive theory
for distributed and structured optimal control of LTI systems.
Even within the linear setting there are many open questions,
including

(i) Development of simulation-based methods in the pres-
ence of disturbances and uncertainty;

(i1) Construction of truly recursive algorithms, similar to
those used in traditional reinforcement learning settings;

(iii) Techniques to avoid local minima;

(iv) Development of algorithms that combine proximal
methods with natural policy gradient.

Extensions to nonlinear control will probably require more
modest objectives since it is not an easy task to compute the

performance of a given policy. However, both Q-learning
and TD-learning are based on value function approximation.
Consequently, as in the present work, these algorithms can
be designed so that each value function approximation serves
as a Lyapunov function for the current approximating policy.
This provides bounds on performance, as well as stability.
Consequently, algorithms for computation of structured sta-
bilizing policies with good performance are not out of reach
even for nonlinear control systems.
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